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In [7] Roy produced natural derivation systems, including demonstration
of soundness and completeness, for each of the logics described in the first
edition of Priest, An Introduction to Non-Classical Logic [3]. The first edi-
tion of Priest’s book is Part I of the second edition. Eventually, we hope to
complete the project, providing natural derivation systems for the quanti-
fied versions in Part II. In the meantime, this document simply extends the
previous paper to account for additions and changes in the first part of the
new edition.

Thus, as before, we offer an alternative or supplement to the semantic
tableaux of his text. Some of the derivation systems may also be of interest
in their own right. They are all Fitch-style systems on the model of [1, 6],
and many other places. Though a classical system is presented for chapter
1, prior acquaintance with some such system is assumed. Associated goal-
directed derivation strategies are discussed extensively in [6, chapter 6].

Except that some chapters are collapsed, there are sections for each
chapter in the first part of Priest’s book, with an additional section on four-
valued relevant logic. In each case, (i) the language is briefly described and
key semantic definitions stated, (ii) the derivation system is presented with
a few examples given, and (iii) soundness and completeness are proved.

∗Thanks to all!
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1 Classical Logic: CL (ch. 1)

1.1 Language / Semantic Notions

LCL The language consists of propositional parameters p0, p1 . . . com-
bined in the usual way with the operators, ¬, ∧, ∨, ⊃, and ≡. So
each propositional parameter is a formula; if A and B are formulas,
so are ¬A, (A ∧B), (A ∨B), (A ⊃ B) and (A ≡ B).

ICL An interpretation is a function v which assigns to each proposi-
tional parameter either 1 (true) or 0 (false).

TCL For complex expressions,

(¬) v(¬A) = 1 if v(A) = 0, and 0 otherwise.

(∧) v(A ∧B) = 1 if v(A) = 1 and v(B) = 1, and 0 otherwise.

(∨) v(A ∨B) = 1 if v(A) = 1 or v(B) = 1, and 0 otherwise.

(⊃) v(A ⊃ B) = 1 if v(A) = 0 or v(B) = 1, and 0 otherwise.

(≡) v(A ≡ B) = 1 if v(A) = v(B), and 0 otherwise.

For a set Γ of formulas, v(Γ) = 1 iff v(A) = 1 for each A ∈ Γ; then,

VCL Γ |=CL A iff there is no CL interpretation v such that v(Γ) = 1 and
v(A) = 0.

1.2 Natural Derivations: NCL

NCL is just the sentential portion of the system ND from [6, chapter 6].
Refer to that source for examples and further discussion (compare, e.g., [1]).
Every line of a derivation is a premise, an assumption, or justified from
previous lines by a rule. The rules include introduction and exploitation
rules for each operator, and reiteration. In the parenthetical “exit strategy”
for assumptions, ‘c’ indicates a contradiction is to be sought, ‘g’ a goal at
the bottom of the scope line.

R (reiteration)

a P

P a R

¬I (negation intro)

a P A (c, ¬I)

Q

b ¬Q
¬P a-b ¬I

¬E (negation exploit)

a ¬P A (c, ¬E)

Q

b ¬Q
P a-b ¬E
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∧I (conjunction intro)

a P

b Q

P ∧Q a,b ∧I

∧E (conjunction exploit)

a P ∧Q

P a ∧E

∧E (conjunction exploit)

a P ∧Q

Q a ∧E

∨I (disjunction intro)

a P

P ∨Q a ∨I

∨I (disjunction intro)

a P

Q ∨ P a ∨I

⊃I (conditional intro)

a P A (g, ⊃I)

b Q

P ⊃ Q a-b ⊃I

⊃E (conditional exploit)

a P ⊃ Q
b P

Q a,b ⊃E

∨E (disjunction exploit)

a P ∨Q
b P A (g, a ∨E)

c R

d Q A (g, a ∨E)

e R

R a,b-c,d-e ∨E

≡I (biconditional intro)

a P A (g, ≡I)

b Q

c Q A (g, ≡I)

d P

P ≡ Q a-b,c-d ≡I

≡E (biconditional exploit)

a P ≡ Q
b P

Q a,b ≡E

≡E (biconditional exploit)

a P ≡ Q
b Q

P a,b ≡E

NCL Γ ǸCL A iff there is an NCL derivation of A from the members of Γ.

As derived rules, we accept the following “ordinary” and “two-way”
rules. The “two-way” rules are usually presented as replacement rules. Inso-
far as we will not have much call to use them that way, in order to streamline
demonstrations of soundness, we treat them just as ordinary rules which
work in either direction – where it is trivial that the rules are in fact derived
in this sense from the rules of NCL.

Ordinary Derived Rules

modus tollens

MT P ⊃ Q
¬Q

¬P

negated biconditional

NB P ≡ Q P ≡ Q
¬P ¬Q

¬Q ¬P

disjunctive syllogism

DS P ∨Q P ∨Q
¬P ¬Q

Q P
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Two-way Derived Rules

DN P / . ¬¬P double negation

Com P ∧Q / . Q ∧ P commutation
P ∨Q / . Q ∨ P

Assoc P ∧ (Q ∧R) / . (P ∧Q) ∧R association
P ∨ (Q ∨R) / . (P ∨Q) ∨R

Idem P / . P ∧ P idempotence
P / . P ∨ P

Impl P ⊃ Q / . ¬P ∨Q implication
¬P ⊃ Q / . P ∨Q

CDeM ¬(P ⊃ Q) / . P ∧ ¬Q Conditional De Morgan
¬(P ⊃ ¬Q) / . P ∧Q

Trans P ⊃ Q / . ¬Q ⊃ ¬P transposition

DeM ¬(P ∧Q) / . ¬P ∨ ¬Q De Morgan
¬(P ∨Q) / . ¬P ∧ ¬Q

Exp P ⊃ (Q ⊃ R) / . (P ∧Q) ⊃ R exportation

Equiv P ≡ Q / . (P ⊃ Q) ∧ (Q ⊃ P ) equivalence
P ≡ Q / . (P ∧Q) ∨ (¬P ∧ ¬Q)

Dist P ∧ (Q ∨R) / . (P ∧Q) ∨ (P ∧R) distribution
P ∨ (Q ∧R) / . (P ∨Q) ∧ (P ∨R)

Examples. Here are derivations to demonstrate the first form of Impl
(among the relatively difficult of derivations for the derived rules).
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¬P ∨Q ǸCL P ⊃ Q

1 ¬P ∨Q P

2 ¬P A (g, 1 ∨E)

3 P A (g, ⊃I)

4 ¬Q A (c, ¬E)

5 ¬P 2 R

6 P 3 R

7 Q 4-6 ¬E

8 P ⊃ Q 3-7 ⊃I

9 Q A (g, 1 ∨E)

10 P A (g, ⊃I)

11 Q 9 R

12 P ⊃ Q 10-11 ⊃I

13 P ⊃ Q 1,2-8,9-12 ∨E

P ⊃ Q ǸCL ¬P ∨Q

1 P ⊃ Q P

2 ¬(¬P ∨Q) A (c, ¬E)

3 P A (c, ¬I)

4 Q 1,3 ⊃E

5 ¬P ∨Q 4 ∨I

6 ¬(¬P ∨Q) 2 R

7 ¬P 3-6 ¬I

8 ¬P ∨Q 7 ∨I

9 ¬(¬P ∨Q) 2 R

10 ¬P ∨Q 2-9 ¬E

1.3 Soundness and Completeness

The following are standard arguments. Cases that are omitted are like ones
worked, and so left to the reader.

Theorem 1.1 NCL is sound: If Γ ǸCL A then Γ |=CL A.

L1.1 If Γ ⊆ Γ′ and Γ |=CL P , then Γ′ |=CL P.
Suppose Γ ⊆ Γ′ and Γ |=CL P , but Γ′ 6|=CL P . From the latter, by
VCL, there is some v such that v(Γ′) = 1 but v(P ) = 0. But since
v(Γ′) = 1 and Γ ⊆ Γ′, v(Γ) = 1; so v is a CL interpretation such that
v(Γ) = 1 but v(P ) = 0; so by VCL, Γ 6|=CL P. This is impossible;
reject the assumption: if Γ ⊆ Γ′ and Γ |=CL P , then Γ′ |=CL P.

Main result: For each line in a derivation let Ai be the formula on line i and
set Γi equal to the set of all premises and assumptions whose scope includes
line i. Suppose Γ ǸCL A. Then there is a derivation of A from premises in
Γ where A appears under the scope of the premises alone. By induction on
line number of this derivation, we show that for each line i of this derivation,
Γi |=CL Ai. The case when Ai = A is the desired result.

Basis: A1 is a premise or an assumption. Then Γ1 = {A1}; so v(Γ1) = 1 iff
v(A1) = 1; so there is no v such that v(Γ1) = 1 but v(A1) = 0. So by
VCL, Γ1 |=CL A1.
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Assp: For any i, 1 ≤ i < k,Γi |=CL Ai.

Show: Γk |=CL Ak.
Ak is either a premise, an assumption, or arises from previous lines
by R, ⊃I, ⊃E, ∧I, ∧E, ¬I, ¬E, ∨I, ∨E, ≡I or ≡E. If Ak is a premise
or an assumption, then as in the basis, Γk |=CL Ak. So suppose Ak
arises by one of the rules.

(R)

(⊃I) If Ak arises by ⊃I, then the picture is like this,

P

j Q

k P ⊃ Q

where j < k and Ak is P ⊃ Q. By assumption, Γj |=CL Q; and by
the nature of access, Γj ⊆ Γk ∪ {P}; so by L1.1, Γk ∪ {P} |=CL Q.
Suppose Γk 6|=CL P ⊃ Q; then by VCL, there is some v such that
v(Γk) = 1 but v(P ⊃ Q) = 0; from the latter, by TCL(⊃), v(P ) = 1
and v(Q) = 0; so v(Γk) = 1 and v(P ) = 1; so v(Γk ∪ {P}) = 1;
so by VCL, v(Q) = 1. This is impossible; reject the assumption:
Γk |=CL P ⊃ Q, which is to say, Γk |=CL Ak.

(⊃E) If Ak arises by ⊃E, then the picture is like this,

i P ⊃ Q
j P

k Q

where i, j < k and Ak is Q. By assumption, Γi |=CL P ⊃ Q and
Γj |=CL P ; but by the nature of access, Γi ⊆ Γk and Γj ⊆ Γk; so
by L1.1, Γk |=CL P ⊃ Q and Γk |=CL P . Suppose Γk 6|=CL Q; then
by VCL, there is some v such that v(Γk) = 1 but v(Q) = 0; since
v(Γk) = 1, by VCL, v(P ⊃ Q) = 1 and v(P ) = 1; from the former,
by TCL(⊃), v(P ) = 0 or v(Q) = 1; so v(Q) = 1. This is impossible;
reject the assumption: Γk |=CL Q, which is to say, Γk |=CL Ak.

(∧I)

(∧E)
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(¬I) If Ak arises by ¬I, then the picture is like this,

P

i Q

j ¬Q
k ¬P

where i, j < k and Ak is ¬P . By assumption, Γi |=CL Q and Γj |=CL
¬Q; but by the nature of access, Γi ⊆ Γk∪{P} and Γj ⊆ Γk∪{P}; so
by L1.1, Γk∪{P} |=CL Q and Γk∪{P} |=CL ¬Q. Suppose Γk 6|=CL ¬P ;
then by VCL, there is some v such that v(Γk) = 1 but v(¬P ) = 0;
from the latter, by TCL(¬), v(P ) = 1; so v(Γk) = 1 and v(P ) = 1;
so v(Γk ∪ {P}) = 1; so by VCL, v(Q) = 1 and v(¬Q) = 1; from
the latter, by TCL(¬), v(Q) = 0. This is impossible; reject the
assumption: Γk |=CL ¬P , which is to say, Γk |=CL Ak.

(¬E)

(∨I) If Ak arises by ∨I, then the picture is like this,

j P

k P ∨Q

or j P

k Q ∨ P

where j < k and Ak is P ∨ Q or Q ∨ P . Consider the first case.
By assumption, Γj |=CL P ; but by the nature of access, Γj ⊆ Γk; so
by L1.1, Γk |=CL P . Suppose Γk 6|=CL P ∨ Q; then by VCL, there is
some v such that v(Γk) = 1 but v(P ∨ Q) = 0; since v(Γk) = 1, by
VCL, v(P ) = 1; but since v(P ∨Q) = 0, by TCL(∨), v(P ) = 0 and
v(Q) = 0. This is impossible; reject the assumption: Γk |=CL P ∨ Q,
which is to say, Γk |=CL Ak. And similarly when Ak is Q ∨ P .

(∨E) If Ak arises by ∨E, then the picture is like this,

h P ∨Q
P

i R

Q

j R

k R
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where h, i, j < k and Ak is R. By assumption, Γh |=CL P∨Q, Γi |=CL R
and Γj |=CL R; but by the nature of access, Γh ⊆ Γk, Γi ⊆ Γk ∪ {P}
and Γj ⊆ Γk ∪ {Q}; so by L1.1, Γk |=CL P ∨Q, Γk ∪ {P} |=CL R and
Γk ∪ {Q} |=CL R. Suppose Γk 6|=CL R; then by VCL, there is some
v such that v(Γk) = 1 but v(R) = 0. Since v(Γk) = 1, by VCL,
v(P ∨ Q) = 1; so by TCL(∨), v(P ) = 1 or v(Q) = 1. Suppose,
for the moment, that v(P ) = 1; then v(Γk) = 1 and v(P ) = 1; so
v(Γk ∪ {P}) = 1; so by VCL, v(R) = 1; this is impossible; reject the
assumption: v(P ) 6= 1; so v(Q) = 1; so v(Γk) = 1 and v(Q) = 1; so
v(Γk ∪ {Q}) = 1; so by VCL, v(R) = 1; this is impossible; reject the
assumption: Γk |=CL R, which is to say, Γk |=CL Ak.

(≡I)

(≡E)

———
For any i, Γi |=CL Ai.

Theorem 1.2 NCL is complete: if Γ |=CL A then Γ ǸCL A.

Con Γ is consistent iff there is no A such that Γ ǸCL A and Γ ǸCL ¬A.

L1.2 If Γ 6 ǸCL ¬P , then Γ ∪ {P} is consistent.

Suppose Γ 6 ǸCL ¬P but Γ ∪ {P} is inconsistent. Then there is some
A such that Γ ∪ {P} ǸCL A and Γ ∪ {P} ǸCL ¬A. But then we can
argue,

1 Γ

2 P A (c, ¬I)

3 A from Γ ∪ {P}
4 ¬A from Γ ∪ {P}
5 ¬P 2-4 ¬I

So Γ ǸCL ¬P . But this is impossible; reject the assumption: if
Γ 6 ǸCL ¬P , then Γ ∪ {P} is consistent.

L1.3 There is an enumeration of all the formulas, A1, A2 . . .

Proof by construction in the usual way.1

Max Γ is maximal iff for any A either Γ ǸCL A or Γ ǸCL ¬A.

1For this, and extended discussion of the larger argument, see e.g. [6, §11.2].
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C(Γ′) We construct a Γ′ from Γ as follows. Set Ω0 = Γ. By L1.3, there
is an enumeration, A1, A2 . . . of all the formulas; for any Ai in this
series set,

Ωi = Ωi−1 if Ωi−1 ǸCL ¬Ai

Ωi = Ωi−1 ∪ {Ai} if Ωi−1 6 ǸCL ¬Ai

then
Γ′ =

⋃
i≥0 Ωi

L1.4 Γ′ is maximal.

Suppose Γ′ is not maximal. Then there is some Ai such that Γ′ 6 ǸCL
Ai and Γ′ 6 ǸCL ¬Ai. Whatever i may be, each member of Ωi−1 is in
Γ′; so if Ωi−1 ǸCL ¬Ai then Γ′ ǸCL ¬Ai; but Γ′ 6 ǸCL ¬Ai; so Ωi−1 6 ǸCL
¬Ai; so by construction, Ωi = Ωi−1 ∪ {Ai}; so by construction, Ai ∈
Γ′; so Γ′ ǸCL Ai. This is impossible; reject the assumption: Γ′ is
maximal.

L1.5 If Γ is consistent, then each Ωi is consistent.

Suppose Γ is consistent.

Basis: Ω0 = Γ and Γ is consistent; so Ω0 is consistent.

Assp: For any i, 0 ≤ i < k, Ωi is consistent.

Show: Ωk is consistent.

Ωk is either Ωk−1 or Ωk−1 ∪ {Ak}. Suppose the former; by
assumption, Ωk−1 is consistent; so Ωk is consistent. Suppose
the latter; then by construction, Ωk−1 6 ǸCL ¬Ak; so by L1.2,
Ωk−1 ∪ {Ak} is consistent; so Ωk is consistent.

———
For any i, Ωi is consistent.

L1.6 If Γ is consistent, then Γ′ is consistent.

Suppose Γ is consistent, but Γ′ is not; from the latter, there is some P
such that Γ′ ǸCL P and Γ′ ǸCL ¬P . Consider derivations D1 and D2
of these results and the premises Ai . . . Aj of these derivations. Where
Aj is the last of these premises in the enumeration of formulas, by
the construction of Γ′, each of Ai . . . Aj must be a member of Ωj ; so
D1 and D2 are derivations from Ωj ; so Ωj is not consistent. But since
Γ is consistent, by L1.5, Ωj is consistent. This is impossible; reject
the assumption: if Γ is consistent then Γ′ is consistent.

C(v) We construct a CL interpretation v based on Γ′ as follows. For any
parameter p, set v(p) = 1 iff Γ′ ǸCL p.
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L1.7 If Γ is consistent then for any A, v(A) = 1 iff Γ′ ǸCL A.

Suppose Γ is consistent. By L1.4, Γ′ is maximal; by L1.6, Γ′ is
consistent. Now by induction on the number of operators in A,

Basis: If A has no operators, then it is a parameter p and by con-
struction, v(p) = 1 iff Γ′ ǸCL p. So v(A) = 1 iff Γ′ ǸCL A.

Assp: For any i, 0 ≤ i < k, if A has i operators, then v(A) = 1 iff
Γ′ ǸCL A.

Show: If A has k operators, then v(A) = 1 iff Γ′ ǸCL A.

If A has k operators, then it is of the form ¬P , P ⊃ Q, P ∧Q,
P ∨Q or P ≡ Q where P and Q have < k operators.

(¬) A is ¬P . (i) Suppose v(A) = 1; then v(¬P ) = 1; so by
TCL(¬), v(P ) = 0; so by assumption, Γ′ 6 ǸCL P ; so by maxi-
mality, Γ′ ǸCL ¬P , where this is to say, Γ′ ǸCL A. (ii) Suppose
Γ′ ǸCL A; then Γ′ ǸCL ¬P ; so by consistency, Γ′ 6 ǸCL P ; so by
assumption, v(P ) = 0; so by TCL(¬), v(¬P ) = 1, where this
is to say, v(A) = 1. So v(A) = 1 iff Γ′ ǸCL A.

(⊃) A is P ⊃ Q. (i) Suppose v(A) = 1 but Γ′ 6 ǸCL A; then
v(P ⊃ Q) = 1 but Γ′ 6 ǸCL P ⊃ Q. From the latter, by
maximality, Γ′ ǸCL ¬(P ⊃ Q); from this it follows, by simple
derivations, that Γ′ ǸCL P and Γ′ ǸCL ¬Q; so by consistency,
Γ′ 6 ǸCL Q; so by assumption, v(P ) = 1 and v(Q) = 0; so
by TCL(⊃), v(P ⊃ Q) = 0. This is impossible; reject the
assumption: if v(A) = 1 then Γ′ ǸCL A.

(ii) Suppose Γ′ ǸCL A but v(A) = 0; then Γ′ ǸCL P ⊃ Q
but v(P ⊃ Q) = 0. From the latter, by TCL(⊃), v(P ) = 1
and v(Q) = 0; so by assumption, Γ′ ǸCL P and Γ′ 6 ǸCL Q;
but since Γ′ ǸCL P ⊃ Q and Γ′ ǸCL P , by (⊃E), Γ′ ǸCL Q.
This is impossible; reject the assumption: if Γ′ ǸCL A, then
v(A) = 1. So v(A) = 1 iff Γ′ ǸCL A.

(∧)

(∨)

(≡)

———
For any A, v(A) = 1 iff Γ′ ǸCL A.

L1.8 If Γ is consistent, then v(Γ) = 1.
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Suppose Γ is consistent and A ∈ Γ; then by construction, A ∈ Γ′; so
Γ′ ǸCL A; so since Γ is consistent, by L1.7, v(A) = 1. And similarly
for any A ∈ Γ. So v(Γ) = 1.

Main result: Suppose Γ |=CL A but Γ 6 ǸCL A. By (DN), if Γ ǸCL ¬¬A, then
Γ ǸCL A; so Γ 6 ǸCL ¬¬A; so by L1.2, Γ ∪ {¬A} is consistent; so by L1.8,
there is a v constructed as above such that v(Γ∪ {¬A}) = 1; so v(¬A) = 1;
so by TCL(¬), v(A) = 0; so v(Γ) = 1 and v(A) = 0; so by VCL, Γ 6|=CL A.
This is impossible; reject the assumption: if Γ |=CL A, then Γ ǸCL A.

2 Normal Modal Logics: Kα, Kt
α (ch. 2,3)

2.1 Language / Semantic Notions

LK
(t)
α Allow K

(t)
α to be either Kα or Kt

α, depending on context, where for
both Kα and Kt

α systems, the vocabulary consists of propositional
parameters p0, p1 . . . with the operators, ¬, ∧, ∨, ⊃, and ≡; along
with � and ♦ for Kα systems; but with [F], 〈F〉, [P], and 〈P〉 for Kt

α

systems. Each propositional parameter is a formula; if A and B
are formulas, so are ¬A, (A ∧ B), (A ∨ B), (A ⊃ B), (A ≡ B), �A,
♦A, [F]A, 〈F〉A, [P]A, and 〈P〉A.

IK
(t)
α For any of these systems except Kυ, an interpretation is a triple
〈W,R, v〉 where W is a set of worlds, R is a subset of W 2 = W ×W ,
and v is a function such that for any w ∈ W and p, vw(p) = 1 or
vw(p) = 0. For x, y, z ∈ W , where α is empty or indicates some
combination of the following constraints,

η For any x, there is a y such that xRy extendability
ρ for all x, xRx reflexivity
σ for all x, y, if xRy then yRx symmetry
τ for all x, y, z, if xRy and yRz then xRz transitivity
η′ For any x, there is a y such that yRx backward extendibility
δ If xRy then for some z, xRz and zRy denseness
ϕ If xRy and xRz then yRz or y = z or zRy forward convergence
β If yRx and zRx then yRz or y = z or zRy backward convergence

〈W,R, v〉 is a K
(t)
α interpretation when R meets the constraints from

α.

TK For complex expressions,
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(¬) vw(¬A) = 1 if vw(A) = 0, and 0 otherwise.

(∧) vw(A ∧B) = 1 if vw(A) = 1 and vw(B) = 1, and 0 otherwise.

(∨) vw(A ∨B) = 1 if vw(A) = 1 or vw(B) = 1, and 0 otherwise.

(⊃) vw(A ⊃ B) = 1 if vw(A) = 0 or vw(B) = 1, and 0 otherwise.

(≡) vw(A ≡ B) = 1 if vw(A) = vw(B), and 0 otherwise.

For K,

(♦) vw(♦A) = 1 if some x ∈ W such that wRx has vx(A) = 1, and
0 otherwise.

(�) vw(�A) = 1 if all x ∈ W such that wRx have vx(A) = 1, and 0
otherwise.

For Kt,

([F]) vw([F]A) = 1 iff all x ∈W such that wRx have vx(A) = 1.

([P]) vw([P]A) = 1 iff all x ∈W such that xRw have vx(A) = 1.

(〈F〉) vw(〈F〉A) = 1 iff some x ∈W such that wRx has vx(A) = 1.

(〈P〉) vw(〈P〉A) = 1 iff some x ∈W such that xRw has vx(A) = 1.

For a set Γ of formulas, vw(Γ) = 1 iff vw(A) = 1 for each A ∈ Γ; then,

VK
(t)
α Γ |=

K
(t)
α

A iff there is no K
(t)
α interpretation 〈W,R, v〉 and w ∈W such

that vw(Γ) = 1 and vw(A) = 0.

System Kυ. For Kυ either accept the constraint, (υ) for all x, y, xRy.
Then let everything work as before. Otherwise simplify the semantics: An
interpretation is just 〈W, v〉. For TK(�) and TK(♦) substitute,

TK (♦)υ vw(♦A) = 1 iff for some x ∈W , vx(A) = 1.

(�)υ vw(�A) = 1 iff for all x ∈W , vx(A) = 1.

then,

VKυ Γ |=Kυ A iff there is no Kυ interpretation 〈W, v〉 and w ∈ W such
that vw(Γ) = 1 and vw(A) = 0.
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2.2 Natural Derivations: NK
(t)
α

Where s is any integer, let As be a subscripted formula. For subscripts
s and t allow also expressions of the sort, s.t. As in Priest, intuitively,
subscripts indicate worlds, where As is true or false at world s, and s.t
just in case world s has access to world t. Derivation rules apply to these
expressions. Rules for ¬, ∧, ∨, ⊃, and ≡ are like ones from before, but with
consistent subscripts. Rules for �, ♦, [F], 〈F〉, [P], and 〈P〉 are new.2

R Ps

Ps

¬I Ps

Qt
¬Qt
¬Ps

¬E ¬Ps

Qt
¬Qt

Ps

∧I Ps
Qs

(P ∧Q)s

∧E (P ∧Q)s

Ps

∧E (P ∧Q)s

Qs

∨I Ps

(P ∨Q)s

∨I Ps

(Q ∨ P )s

⊃I Ps

Qs

(P ⊃ Q)s

⊃E (P ⊃ Q)s
Ps

Qs

∨E (P ∨Q)s
Ps

Rt

Qs

Rt

Rt

≡I Ps

Qs

Qs

Ps

(P ≡ Q)s

≡E (P ≡ Q)s
Ps

Qs

≡E (P ≡ Q)s
Qs

Ps

2There is no uniformity about how to do natural deduction in modal logic. Most avoid
subscripts altogether. Another option uses subscripts of the sort i.j . . . k (cf. prefixes on
tableaux in [2]); the result is elegant, but not so flexible as this account inspired by Priest,
and we will need the flexibility, as we approach increasingly complex systems.

14



For K,

�I s.t

Pt

�Ps
where t does not appear in
any undischarged premise
or assumption

�E �Ps
s.t

Pt

♦I Pt
s.t

♦Ps

♦E ♦Ps
s.t

Pt

Qu

Qu
where t does not appear in
any undischarged premise
or assumption and is not u

For Kt,

[F]I s.t

Pt
[F]Ps

where t does not appear in
any undischarged premise
or assumption

[F]E [F]Ps
s.t

Pt

〈F〉I Pt
s.t

〈F〉Ps

〈F〉E 〈F〉Ps
s.t

Pt

Qu

Qu
where t does not appear in
any undischarged premise
or assumption and is not u

[P]I s.t

Ps
[P]Pt

where s does not appear in
any undischarged premise
or assumption

[P]E [P]Pt
s.t

Ps

〈P〉I Ps
s.t

〈P〉Pt

〈P〉E 〈P〉Pt
s.t

Ps

Qu

Qu
where s does not appear in
any undischarged premise
or assumption and is not u

These are the rules of NK(t). Other systems NK
(t)
α add from the follow-

ing, for access manipulation, according to constraints in α. Where A(i) is
any expression in which i appears, and A(j) is the same expression with j
substituted for i,

AMη s.t

Pu

Pu
where t does not appear in any
undischarged premise or assump-
tion and is not u

AMρ

s.s

AMσ s.t

t.s

15



AMτ s.t

t.u

s.u

AMη′ s.t

Pu

Pu
where s does not appear in any
undischarged premise or assump-
tion and is not u

AMδ s.t

s.a

a.t

Qu

Qu
where a does not appear in any
undischarged premise or assump-
tion and is not u

=E s = t t = s
A(s) A(s)

A(t) A(t)

AMϕ r.s

r.t

s.t

Qu

s = t

Qu

t.s

Qu

Qu

AMβ s.r

t.r

s.t

Qu

s = t

Qu

t.s

Qu

Qu

AMρ has no premise. In these systems, every subscript is 0, appears in
a premise, or appears in the t-place of an accessible assumption for �I, ♦E,
[F]I, 〈F〉E, [P]I, 〈P〉E, AMη, AMη′, AMδ, AMϕ, or AMβ. Where Γ is a set of
unsubscripted formulas, let Γ0 be those same formulas, each with subscript
0. Then,

NK
(t)
α Γ

ǸK
(t)
α

A iff there is an NK
(t)
α derivation of A0 from the members of

Γ0.

Derived rules carry over from NCL as one would expect, with subscripts
constant throughout. Thus, e.g.,

MT (P ⊃ Q)s
¬Qs

¬Ps

Impl (P ⊃ Q)s / . (¬P ∨Q)s
(¬P ⊃ Q)s / . (P ∨Q)s

Allow also the additional rule for modal negation and tense modal negation,

16



MN �Ps / . ¬♦¬Ps ¬�Ps / . ♦¬Ps
♦Ps / . ¬�¬Ps ¬♦Ps / . �¬Ps

TMN [F]Ps / . ¬〈F〉¬Ps ¬[F]Ps / . 〈F〉¬Ps
〈F〉Ps / . ¬[F]¬Ps ¬〈F〉Ps / . [F]¬Ps
[P]Ps / . ¬〈P〉¬Ps ¬[P]Ps / . 〈P〉¬Ps
〈P〉Ps / . ¬[P]¬Ps ¬〈P〉Ps / . [P]¬Ps

System NKυ. For NKυ, eliminate expressions of the sort s.t and rules
for access manipulation. Let > be an arbitrary tautology (say, p ⊃ p). Then
for �I, �E, ♦I and ♦E, substitute,

�Iυ >t

Pt

�Ps
where t does not appear in
any undischarged premise
or assumption

�Eυ �Ps

Pt

♦Iυ Pt

♦Ps

♦Eυ ♦Ps
Pt

Qu

Qu
where t does not appear in
any undischarged premise
or assumption and is not u

Examples. Here are derivations to exhibit left-hand forms of the rule for
modal negation as derived in NK (and so any NKα).

¬♦¬P ǸK �P

1 ¬♦¬P0 P

2 0.1 A (g, �I)

3 ¬P1 A (c, ¬E)

4 ♦¬P0 2,3 ♦I

5 ¬♦¬P0 1 R

6 P1 3-5 ¬E

7 �P0 2-6 �I

�P ǸK ¬♦¬P

1 �P0 P

2 ♦¬P0 A (c, ¬I)

3 0.1 A (g, 2 ♦E)

4 ¬P1

5 ♦¬P0 A (c, ¬I)

6 ¬P1 4 R

7 P1 1,3 �E

8 ¬♦¬P0 5-7 ¬I

9 ¬♦¬P0 2,3-8 ♦E

10 ♦¬P0 2 R

11 ¬♦¬P0 2-10 ¬I
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¬�¬P ǸK ♦P

1 ¬�¬P0 P

2 ¬♦P0 A (c, ¬E)

3 0.1 A (g, �I)

4 P1 A (c, ¬I)

5 ♦P0 3,4 ♦I

6 ¬♦P0 2 R

7 ¬P1 4-6 ¬I

8 �¬P0 3-7 �I

9 ¬�¬P0 1 R

10 ♦P0 2-9 ¬E

♦P ǸK ¬�¬P

1 ♦P0 P

2 0.1 A (g, 1 ♦E)

3 P1

4 �¬P0 A (c, ¬I)

5 ¬P1 2,4 �E

6 P1 3 R

7 ¬�¬P0 4-6 ¬I

8 ¬�¬P0 1,2-7 ♦E

And some derivations in some of the other other systems,

ǸKη �P ⊃ ♦P

1 �P0 A (g, ⊃I)

2 0.1 A (g, AMη)

3 P1 1,2 �E

4 ♦P0 2,3 ♦I

5 ♦P0 2-4 AMη

6 (�P ⊃ ♦P )0 1-5 ⊃I

ǸKρ �P ⊃ P

1 �P0 A (g, ⊃I)

2 0.0 AMρ

3 P0 1,2 �E

4 (�P ⊃ P )0 1-3 ⊃I

ǸKσ P ⊃ �♦P

1 P0 A (g, ⊃I)

2 0.1 A (g, �I)

3 1.0 2 AMσ

4 ♦P1 1,3 ♦I

5 �♦P0 2-4 �I

6 (P ⊃ �♦P )0 1-5 ⊃I

ǸKτ �P ⊃ ��P

1 �P0 A (g, ⊃I)

2 0.1 A (g, �I)

3 1.2 A (g, �I)

4 0.2 2,3 AMτ

5 P2 1,4 �E

6 �P1 3-5 �I

7 ��P0 2-6 �I

8 (�P ⊃ ��P )0 1-7 ⊃I

18



ǸKστ ♦P ⊃ �♦P

1 ♦P0 A (g, ⊃I)

2 0.1 A (g, 1 ♦E)

3 P1

4 0.2 A (g, �I)

5 2.0 4 AMσ

6 2.1 5,2 AMτ

7 ♦P2 3,6 ♦I

8 �♦P0 4-7 �I

9 �♦P0 1,2-8 ♦E

10 (♦P ⊃ �♦P )0 1-9 ⊃I

ǸKυ ♦P ⊃ �♦P

1 ♦P0 A (g, ⊃I)

2 P1 A (g, 1 ♦E)

3 >2 A (g, �I)

4 ♦P2 2 ♦I

5 �♦P0 3-4 �I

6 �♦P0 1,2-5 ♦E

7 (♦P ⊃ �♦P )0 1-6 ⊃I

[P][P]A
ǸKtδ

[P]A

1 [P][P]A0 P

2 1.0 A (g, [P]I)

3 1.2 A (g, AMδ)

4 2.0

5 [P]A2 1,4 [P]E

6 A1 5,3 [P]E

7 A1 2,3-6 AMδ

8 [P]A0 2-7 [P]I

1 〈F〉A0 P

2 〈F〉B0 P

3 [F](A ⊃ [F]A)0 P

4 [F](B ⊃ [F]B)0 P

5 0.1 A (g, 1〈F〉E)

6 A1

7 (A ⊃ [F]A)1 3,5 [F]E

8 [F]A1 7,6 ⊃E

9 0.2 A (g, 2〈F〉E)

10 B2

11 (B ⊃ [F]B)2 2,9 [F]E

12 [F]B2 11,10 ⊃E

13 1.2 A (g, 5,9 AMϕ)

14 A2 8,13 [F]E

15 (A ∧B)2 10,14 ∧I

16 〈F〉(A ∧B)0 9,15 〈F〉I

17 1 = 2 A (g, 5,9 AMϕ)

18 A2 6,17 =E

19 (A ∧B)2 18,10 ∧I

20 〈F〉(A ∧B)0 9,19 〈F〉I

21 2.1 A (g, 5,9 AMϕ)

22 B1 12,21 [F]E

23 (A ∧B)1 6,22 ∧I

24 〈F〉(A ∧B)0 5,23 〈F〉I

25 〈F〉(A ∧B)0 5,9,13-16,17-20,21-24 AMϕ

26 〈F〉(A ∧B)0 2,9-25 〈F〉E

27 〈F〉(A ∧B)0 1,5-26 〈F〉E
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2.3 Soundness and Completeness

Preliminaries (excluding NKυ): Begin with generalized notions of valid-
ity. For a model 〈W,R, v〉, let m be a map from subscripts into W . Say
〈W,R, v〉m is 〈W,R, v〉 with map m. Then, where Γ is a set of expressions of
our language for derivations, vm(Γ) = 1 iff for each As ∈ Γ, vm(s)(A) = 1, for
each s.t ∈ Γ, 〈m(s),m(t)〉 ∈ R, and for each s = t ∈ Γ, m(s) = m(t). Now
expand notions of validity to include subscripted formulas, and alternate
expressions as indicated in double brackets.

VK
(t)∗
α Γ |=∗

K
(t)
α

As [[s.t / s = t]] iff there is no K
(t)
α interpretation 〈W,R, v〉m

such that vm(Γ) = 1 but vm(s)(A) = 0 [[〈m(s),m(t)〉 6∈ R / m(s) 6=
m(t)]].

NK
(t)∗
α Γ `∗

NK
(t)
α

As [[s.t / s = t]] iff there is an NK
(t)
α derivation of As

[[s.t / s = t]] from the members of Γ.

These notions reduce to the standard ones when all the members of Γ and
A have subscript 0 (and so do not include expressions of the sort s.t or

s = t). This is obvious for NK
(t)∗
α . In the other case, there is a 〈W,R, v〉m

that makes all the members of Γ0 true and A0 false just in case there is a
world in 〈W,R, v〉 that makes the unsubscripted members of Γ true and A
false. For the following, cases omitted are like ones worked, and so left to
the reader.

Theorem 2.1 NK
(t)
α is sound: If Γ

ǸK
(t)
α

A then Γ |=
K
(t)
α

A.

L2.1 If Γ ⊆ Γ′ and Γ |=∗
K
(t)
α

Ps [[s.t / s = t]], then Γ′ |=∗
K
(t)
α

Ps [[s.t / s = t]].

Suppose Γ ⊆ Γ′ and Γ |=∗
K
(t)
α

Ps [[s.t / s = t]], but Γ′ 6|=∗
K
(t)
α

Ps [[s.t / s =

t]]. From the latter, by VK
(t)∗
α , there is some K

(t)
α interpretation

〈W,R, v〉m such that vm(Γ′) = 1 but vm(s)(P ) = 0 [[〈m(s),m(t)〉 6∈
R / m(s) 6= m(t)]]. But since vm(Γ′) = 1 and Γ ⊆ Γ′, vm(Γ) = 1;
so vm(Γ) = 1 but vm(s)(P ) = 0 [[〈m(s),m(t)〉 6∈ R / m(s) 6= m(t)]];

so by VK
(t)∗
α , Γ 6|=∗

K
(t)
α

Ps [[s.t / s = t]]. This is impossible; reject the

assumption: if Γ ⊆ Γ′ and Γ |=∗
K
(t)
α

Ps [[s.t / s = t]], then Γ′ |=∗
K
(t)
α

Ps

[[s.t / s = t]].
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Main result: For each line in a derivation let Pi be the expression on line i
and Γi be the set of all premises and assumptions whose scope includes line
i. We set out to show “generalized” soundness: if Γ `∗

NK
(t)
α

P then Γ |=∗
K
(t)
α

P.

As above, this reduces to the standard result when P and all the members
of Γ are formulas with subscript 0. Suppose Γ `∗

NK
(t)
α

P. Then there is a

derivation of P from premises in Γ where P appears under the scope of the
premises alone. By induction on line number of this derivation, we show
that for each line i of this derivation, Γi |=∗

K
(t)
α

Pi. The case when Pi = P is

the desired result.

Basis: P1 is a premise or an assumption As [[s.t / s = t]]. Then Γ1 = {As}
[[{s.t} / {s = t}]]; so for any 〈W,R, v〉m, vm(Γ1) = 1 iff vm(s)(A) = 1
[[〈m(s),m(t)〉 ∈ R / m(s) = m(t)]]; so there is no 〈W,R, v〉m such
that vm(Γ1) = 1 but vm(s)(A) = 0 [[〈m(s),m(t)〉 6∈ R /m(s) 6= m(t)]].

So by VK
(t)∗
α , Γ1 |=∗

K
(t)
α

As [[s.t / s = t]], where this is just to say,

Γ1 |=∗
K
(t)
α

P1.

Assp: For any i, 1 ≤ i < k,Γi |=∗
K
(t)
α

Pi.

Show: Γk |=∗
K
(t)
α

Pk.

Pk is either a premise, an assumption, or arises from previous lines
by R, ⊃I, ⊃E, ∧I, ∧E, ¬I, ¬E, ∨I, ∨E, ≡I, ≡E, or, depending on
the system,�I, [F]I, [P]I, �E, [F]E, [P]E, ♦I, 〈F〉I, 〈P〉I, ♦E, 〈F〉E, 〈P〉E,
AMη, AMη′, AMρ, AMσ, AMτ , AMδ, =E, AMϕ, or AMβ. If Pk is
a premise or an assumption, then as in the basis, Γk |=∗

K
(t)
α

Pk. So

suppose Pk arises by one of the rules.

(R)

(⊃I)

(⊃E) If Pk arises by ⊃E, then the picture is like this,

i (A ⊃ B)s
j As

k Bs

where i, j < k and Pk is Bs. By assumption, Γi |=∗
K
(t)
α

(A ⊃ B)s and

Γj |=∗
K
(t)
α

As; but by the nature of access, Γi ⊆ Γk and Γj ⊆ Γk; so
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by L2.1, Γk |=∗
K
(t)
α

(A ⊃ B)s and Γk |=∗
K
(t)
α

As. Suppose Γk 6|=∗
K
(t)
α

Bs;

then by VK
(t)∗
α , there is some K

(t)
α interpretation 〈W,R, v〉m such

that vm(Γk) = 1 but vm(s)(B) = 0; since vm(Γk) = 1, by VK
(t)∗
α ,

vm(s)(A ⊃ B) = 1 and vm(s)(A) = 1; from the former, by TK(⊃),
vm(s)(A) = 0 or vm(s)(B) = 1; so vm(s)(B) = 1. This is impossible;
reject the assumption: Γk |=∗

K
(t)
α

Bs, which is to say, Γk |=∗
K
(t)
α

Pk.

(∧I)

(∧E)

(¬I) If Pk arises by ¬I, then the picture is like this,

As

i Bt
j ¬Bt
k ¬As

where i, j < k and Pk is ¬As. By assumption, Γi |=∗
K
(t)
α

Bt and

Γj |=∗
K
(t)
α

¬Bt; but by the nature of access, Γi ⊆ Γk ∪ {As} and Γj ⊆
Γk ∪ {As}; so by L2.1, Γk ∪ {As} |=∗

K
(t)
α

Bt and Γk ∪ {As} |=∗
K
(t)
α

¬Bt.

Suppose Γk 6|=∗
K
(t)
α

¬As; then by VK
(t)∗
α , there is a K

(t)
α interpretation

〈W,R, v〉m such that vm(Γk) = 1 but vm(s)(¬A) = 0; so by TK(¬),
vm(s)(A) = 1; so vm(Γk) = 1 and vm(s)(A) = 1; so vm(Γk∪{As}) = 1;

so by VK
(t)∗
α , vm(t)(B) = 1 and vm(t)(¬B) = 1; from the latter, by

TK(¬), vm(t)(B) = 0. This is impossible; reject the assumption:
Γk |=∗

K
(t)
α

¬As, which is to say, Γk |=∗
K
(t)
α

Pk.

(¬E)

(∨I)

(∨E) If Pk arises by ∨E, then the picture is like this,
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h (A ∨B)s
As

i Ct

Bs

j Ct

k Ct

where h, i, j < k and Pk is Ct. By assumption, Γh |=∗
K
(t)
α

(A ∨ B)s,

Γi |=∗
K
(t)
α

Ct and Γj |=∗
K
(t)
α

Ct; but by the nature of access, Γh ⊆ Γk,

Γi ⊆ Γk ∪ {As} and Γj ⊆ Γk ∪ {Bs}; so by L2.1, Γk |=∗
K
(t)
α

(A ∨ B)s,

Γk ∪ {As} |=∗
K
(t)
α

Ct and Γk ∪ {Bs} |=∗
K
(t)
α

Ct. Suppose Γk 6|=∗
K
(t)
α

Ct;

then by VK
(t)∗
α , there is some K

(t)
α interpretation 〈W,R, v〉m such

that vm(Γk) = 1 but vm(t)(C) = 0. Since vm(Γk) = 1, by VK
(t)∗
α ,

vm(s)(A ∨ B) = 1; so by TK(∨), vm(s)(A) = 1 or vm(s)(B) = 1.
Suppose, for the moment, that vm(s)(A) = 1; then vm(Γk) = 1 and

vm(s)(A) = 1; so vm(Γk ∪{As}) = 1; so by VK
(t)∗
α , vm(t)(C) = 1; this

is impossible; reject the assumption: vm(s)(A) 6= 1; so vm(s)(B) = 1;

so vm(Γk) = 1 and vm(s)(B) = 1; so vm(Γk∪{Bs}) = 1; so by VK
(t)∗
α ,

vm(t)(C) = 1; this is impossible; reject the assumption: Γk |=∗
K
(t)
α

Ct,

which is to say, Γk |=∗
K
(t)
α

Pk.

(≡I)

(≡E)

(�I) If Pk arises by �I, then the picture is like this,

s.t

j At

k �As

where j < k, t does not appear in any member of Γk (in any undis-
charged premise or assumption), and Pk is �As. By assumption,
Γj |=∗

K
(t)
α

At; but by the nature of access, Γj ⊆ Γk ∪ {s.t}; so by

L2.1, Γk ∪ {s.t} |=∗
K
(t)
α

At. Suppose Γk 6|=∗
K
(t)
α

�As; then by VK
(t)∗
α ,

there is a K
(t)
α interpretation 〈W,R, v〉m such that vm(Γk) = 1 but
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vm(s)(�A) = 0; so by TK(�), there is some w ∈W such that m(s)Rw
and vw(A) = 0. Now consider a map m′ like m except that m′(t) =
w, and consider 〈W,R, v〉m′ ; since t does not appear in Γk, it re-
mains that vm′(Γk) = 1; and since m′(t) = w and m′(s) = m(s),

〈m′(s),m′(t)〉 ∈ R; so vm′(Γk ∪ {s.t}) = 1; so by VK
(t)∗
α , vm′(t)(A) =

1. But m′(t) = w; so vw(A) = 1. This is impossible; reject the
assumption: Γk |=∗

K
(t)
α

�As, which is to say, Γk |=∗
K
(t)
α

Pk.

([F]I)

([P]I) If Pk arises by [P]I, then the picture is like this,

s.t

j As

k [P]At

where j < k, s does not appear in any member of Γk (in any undis-
charged premise or assumption), and Pk is [P]At. By assumption,
Γj |=∗

K
(t)
α

As; but by the nature of access, Γj ⊆ Γk ∪ {s.t}; so by

L2.1, Γk ∪ {s.t} |=∗
K
(t)
α

As. Suppose Γk 6|=∗
K
(t)
α

[P]At; then by VK
(t)∗
α ,

there is a K
(t)
α interpretation 〈W,R, v〉m such that vm(Γk) = 1 but

vm(t)([P]A) = 0; so by TK([P]), there is some w ∈ W such that
wRm(t) and vw(A) = 0. Now consider a map m′ like m except
that m′(s) = w, and consider 〈W,R, v〉m′ ; since s does not ap-
pear in Γk, it remains that vm′(Γk) = 1; and since m′(s) = w and

m′(t) = m(t), 〈m′(s),m′(t)〉 ∈ R; so vm′(Γk∪{s.t}) = 1; so by VK
(t)∗
α ,

vm′(s)(A) = 1. But m′(s) = w; so vw(A) = 1. This is impossible;
reject the assumption: Γk |=∗

K
(t)
α

[P]At, which is to say, Γk |=∗
K
(t)
α

Pk.

(�E) If Pk arises by �E, then the picture is like this,

i �As
j s.t

k At

where i, j < k and Pk is At. By assumption, Γi |=∗
K
(t)
α

�As and

Γj |=∗
K
(t)
α

s.t; but by the nature of access, Γi ⊆ Γk and Γj ⊆ Γk;

so by L2.1, Γk |=∗
K
(t)
α

�As and Γk |=∗
K
(t)
α

s.t. Suppose Γk 6|=∗
K
(t)
α

At;
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then by VK
(t)∗
α , there is some K

(t)
α interpretation 〈W,R, v〉m such

that vm(Γk) = 1 but vm(t)(A) = 0; since vm(Γk) = 1, by VK
(t)∗
α ,

vm(s)(�A) = 1 and 〈m(s),m(t)〉 ∈ R; from the first of these, by
TK(�), any w such that m(s)Rw has vw(A) = 1; so vm(t)(A) = 1.
This is impossible; reject the assumption: Γk |=∗

K
(t)
α

At, which is to

say, Γk |=∗
K
(t)
α

Pk.

([F]E)

([P]E) If Pk arises by [P]E, then the picture is like this,

i [P]At
j s.t

k As

where i, j < k and Pk is As. By assumption, Γi |=∗
K
(t)
α

[P]At and

Γj |=∗
K
(t)
α

s.t; but by the nature of access, Γi ⊆ Γk and Γj ⊆ Γk;

so by L2.1, Γk |=∗
K
(t)
α

[P]At and Γk |=∗
K
(t)
α

s.t. Suppose Γk 6|=∗
K
(t)
α

As;

then by VK
(t)∗
α , there is some K

(t)
α interpretation 〈W,R, v〉m such

that vm(Γk) = 1 but vm(s)(A) = 0; since vm(Γk) = 1, by VK
(t)∗
α ,

vm(t)([P]A) = 1 and 〈m(s),m(t)〉 ∈ R; from the first of these, by
TK([P]), any w such that wRm(t) has vw(A) = 1; so vm(s)(A) = 1.
This is impossible; reject the assumption: Γk |=∗

K
(t)
α

As, which is to

say, Γk |=∗
K
(t)
α

Pk.

(♦I)

(〈F〉I)

(〈P〉I)

(♦E) If Pk arises by ♦E, then the picture is like this,

i ♦As
At
s.t

j Bu

k Bu

where i, j < k, t does not appear in any member of Γk (in any undis-
charged premise or assumption) and is not u, and Pk is Bu. By
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assumption, Γi |=∗
K
(t)
α

♦As and Γj |=∗
K
(t)
α

Bu; but by the nature of ac-

cess, Γi ⊆ Γk and Γj ⊆ Γk ∪ {At, s.t}; so by L2.1, Γk |=∗
K
(t)
α

♦As

and Γk ∪ {At, s.t} |=∗
K
(t)
α

Bu. Suppose Γk 6|=∗
K
(t)
α

Bu; then by VK
(t)∗
α ,

there is a K
(t)
α interpretation 〈W,R, v〉m such that vm(Γk) = 1 but

vm(u)(B) = 0; since vm(Γk) = 1, by VK
(t)∗
α , vm(s)(♦A) = 1; so by

TK(♦), there is some w ∈ W such that m(s)Rw and vw(A) = 1.
Now consider a map m′ like m except that m′(t) = w, and con-
sider 〈W,R, v〉m′ ; since t does not appear in Γk, it remains that
vm′(Γk) = 1; and since m′(s) = m(s) and m′(t) = w, vm′(t)(A) = 1

and 〈m′(s),m′(t)〉 ∈ R; so vm′(Γk ∪ {At, s.t}) = 1; so by VK
(t)∗
α ,

vm′(u)(B) = 1. But since t 6= u, m′(u) = m(u); so vm(u)(B) = 1.
This is impossible; reject the assumption: Γk |=∗

K
(t)
α

Bu, which is to

say, Γk |=∗
K
(t)
α

Pk.

(〈F〉E)

(〈P〉E) If Pk arises by 〈P〉E, then the picture is like this,

i 〈P〉At
s.t

As

j Bu

k Bu

where i, j < k, s does not appear in any member of Γk (in any
undischarged premise or assumption) and is not u, and Pk is Bu.
By assumption, Γi |=∗

K
(t)
α

〈P〉At and Γj |=∗
K
(t)
α

Bu; but by the nature of

access, Γi ⊆ Γk and Γj ⊆ Γk∪{s.t, As}; so by L2.1, Γk |=∗
K
(t)
α

〈P〉At and

Γk∪{s.t, As} |=∗
K
(t)
α

Bu. Suppose Γk 6|=∗
K
(t)
α

Bu; then by VK
(t)∗
α , there is

aK
(t)
α interpretation 〈W,R, v〉m such that vm(Γk) = 1 but vm(u)(B) =

0; since vm(Γk) = 1, by VK
(t)∗
α , vm(t)(〈P〉A) = 1; so by TK(〈P〉), there

is some w ∈ W such that wRm(t) and vw(A) = 1. Now consider a
map m′ like m except that m′(s) = w, and consider 〈W,R, v〉m′ ;
since s does not appear in Γk, it remains that vm′(Γk) = 1; and since
m′(t) = m(t) and m′(s) = w, vm′(s)(A) = 1 and 〈m′(s),m′(t)〉 ∈ R;

so vm′(Γk ∪ {s.t, As}) = 1; so by VK
(t)∗
α , vm′(u)(B) = 1. But since
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s 6= u, m′(u) = m(u); so vm(u)(B) = 1. This is impossible; reject the
assumption: Γk |=∗

K
(t)
α

Bu, which is to say, Γk |=∗
K
(t)
α

Pk.

(AMη) If Pk arises by AMη, then the picture is like this,

s.t

j Au

k Au

where j < k, t does not appear in any member of Γk (in any undis-
charged premise or assumption) and is not u, and Pk is Au. Where

this rule is included in NK
(t)
α , K

(t)
α includes condition η. By assump-

tion, Γj |=∗
K
(t)
α

Au; but by the nature of access, Γj ⊆ Γk ∪ {s.t}; so

by L2.1, Γk ∪ {s.t} |=∗
K
(t)
α

Au. Suppose Γk 6|=∗
K
(t)
α

Au; then by VK
(t)∗
α ,

there is a K
(t)
α interpretation 〈W,R, v〉m such that vm(Γk) = 1 but

vm(u)(A) = 0. By condition η, there is a w ∈ W such that m(s)Rw;
consider a map m′ like m except that m′(t) = w, and consider
〈W,R, v〉m′ ; since t does not appear in Γk, it remains that vm′(Γk) =
1; and since m′(s) = m(s) and m′(t) = w, 〈m′(s),m′(t)〉 ∈ R; so

vm′(Γk ∪ {s.t}) = 1; so by VK
(t)∗
α , vm′(u)(A) = 1. But since t 6= u,

m′(u) = m(u); so vm(u)(A) = 1. This is impossible; reject the as-
sumption: Γk |=∗

K
(t)
α

Au, which is to say, Γk |=∗
K
(t)
α

Pk.

(AMη′)

(AMρ) If Pk arises by AMρ, then the picture is like this,

k s.s

where Pk is s.s. Where this rule is in NK
(t)
α , K

(t)
α includes condition

ρ. Suppose Γk 6|=∗
K
(t)
α

s.s; then by VK
(t)∗
α , there is some K

(t)
α interpre-

tation 〈W,R, v〉m such that vm(Γk) = 1 but 〈m(s),m(s)〉 6∈ R. But
by condition ρ, for any x ∈W , 〈x, x〉 ∈ R; so 〈m(s),m(s)〉 ∈ R. This
is impossible; reject the assumption: Γk |=∗

K
(t)
α

s.s, which is to say,

Γk |=∗
K
(t)
α

Pk.

(AMσ) If Pk arises by AMσ, then the picture is like this,
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j s.t

k t.s

where j < k and Pk is t.s. Where this rule is in NK
(t)
α , K

(t)
α in-

cludes condition σ. By assumption, Γj |=∗
K
(t)
α

s.t; but by the nature

of access, Γj ⊆ Γk; so by L2.1, Γk |=∗
K
(t)
α

s.t. Suppose Γk 6|=∗
K
(t)
α

t.s;

then by VK
(t)∗
α , there is some K

(t)
α interpretation 〈W,R, v〉m such

that vm(Γk) = 1 but 〈m(t),m(s)〉 6∈ R; since vm(Γk) = 1, by VK
(t)∗
α ,

〈m(s),m(t)〉 ∈ R; and by condition σ, for any 〈x, y〉 ∈ R, 〈y, x〉 ∈ R;
so 〈m(t),m(s)〉 ∈ R. This is impossible; reject the assumption:
Γk |=∗

K
(t)
α

t.s, which is to say, Γk |=∗
K
(t)
α

Pk.

(AMτ) If Pk arises by AMτ , then the picture is like this,

i s.t

j t.u

k s.u

where i, j < k and Pk is s.u. Where this rule is in NK
(t)
α , K

(t)
α

includes condition τ . By assumption, Γi |=∗
K
(t)
α

s.t and Γj |=∗
K
(t)
α

t.u;

but by the nature of access, Γi ⊆ Γk and Γj ⊆ Γk; so by L2.1,

Γk |=∗
K
(t)
α

s.t and Γk |=∗
K
(t)
α

t.u. Suppose Γk 6|=∗
K
(t)
α

s.u; then by VK
(t)∗
α ,

there is some K
(t)
α interpretation 〈W,R, v〉m such that vm(Γk) = 1 but

〈m(s),m(u)〉 6∈ R; since vm(Γk) = 1, by VK
(t)∗
α , 〈m(s),m(t)〉 ∈ R

and 〈m(t),m(u)〉 ∈ R; and by condition τ , for any 〈x, y〉, 〈y, z〉 ∈
R, 〈x, z〉 ∈ R; so 〈m(s),m(u)〉 ∈ R. This is impossible; reject the
assumption: Γk |=∗

K
(t)
α

s.u, which is to say, Γk |=∗
K
(t)
α

Pk.

(AMδ) If Pk arises by AMδ, then the picture is like this,

i s.t

s.a

a.t

j Au
k Au

where i, j < k, a does not appear in any member of Γk (in any
undischarged premise or assumption) and is not u, and Pk is Au.
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Where this rule is included in NK
(t)
α , K

(t)
α includes condition δ. By

assumption, Γi |=∗
K
(t)
α

s.t and Γj |=∗
K
(t)
α

Au; but by the nature of access,

Γi ⊆ Γk and Γj ⊆ Γk ∪ {s.a, a.t}; so by L2.1, Γk |=∗
K
(t)
α

s.t and

Γk∪{s.a, a.t} |=∗
K
(t)
α

Au. Suppose Γk 6|=∗
K
(t)
α

Au; then by VK
(t)∗
α , there is

aK
(t)
α interpretation 〈W,R, v〉m such that vm(Γk) = 1 but vm(u)(A) =

0; since vm(Γk) = 1, by VK
(t)∗
α , 〈m(s),m(t)〉 ∈ R; and by condition

δ, if 〈x, y〉 ∈ R then for some z, 〈x, z〉 ∈ R and 〈z, y〉 ∈ R; so
there is a w ∈ W such that m(s)Rw and wRm(t); consider a map
m′ like m except that m′(a) = w, and consider 〈W,R, v〉m′ ; since
a does not appear in Γk, it remains that vm′(Γk) = 1; and since
m′(s) = m(s), m′(a) = w, and m′(t) = m(t), 〈m′(s),m′(a)〉 ∈ R

and 〈m′(a),m′(t)〉 ∈ R; so vm′(Γk ∪ {s.a, a.t}) = 1; so by VK
(t)∗
α ,

vm′(u)(A) = 1. But since a 6= u, m′(u) = m(u); so vm(u)(A) = 1.
This is impossible; reject the assumption: Γk |=∗

K
(t)
α

Au, which is to

say, Γk |=∗
K
(t)
α

Pk.

(=E) If Pk arises by =E, then the picture is like this,

i s = t
j A(s)

k A(t)

or

i t = s
j A(s)

k A(t)

where i, j < k and Pk is A(t) in both cases. By assumption, Γi |=∗
K
(t)
α

s = t / t = s and Γj |=∗
K
(t)
α

A(s); but by the nature of access, Γi ⊆ Γk

and Γj ⊆ Γk; so by L2.1, Γk |=∗
K
(t)
α

s = t / t = s and Γk |=∗
K
(t)
α

A(s). In

both cases, A(s) is of the sort, Au, u = v or u.v where one u or v is

s. Suppose A(s) is As and Γk 6|=∗
K
(t)
α

At; then by VK
(t)∗
α , there is some

K
(t)
α interpretation 〈W,R, v〉m such that vm(Γk) = 1 but vm(t)(A) =

0; since vm(Γk) = 1, by VK
(t)∗
α , m(s) = m(t) / m(t) = m(s) and

vm(s)(A) = 1; but since m(s) = m(t) / m(t) = m(s), vm(t)(A) = 1.
This is impossible; reject the assumption: Γk |=∗

K
(t)
α

A(t), which is to

say, Γk |=∗
K
(t)
α

Pk. And similarly in the other cases.

(AMϕ) If Pk arises by AMϕ, then the picture is like this,
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f r.s

g r.t

s.t

h Au

s = t

i Au

t.s

j Au
k Au

where f, g, h, i, j < k and Pk is Au. Where this rule is included

in NK
(t)
α , K

(t)
α includes condition ϕ. By assumption, Γf |=∗

K
(t)
α

r.s,

Γg |=∗
K
(t)
α

r.t, Γh |=∗
K
(t)
α

Au, Γi |=∗
K
(t)
α

Au, and Γj |=∗
K
(t)
α

Au; but by

the nature of access, Γf ⊆ Γk, Γg ⊆ Γk, Γh ⊆ Γk ∪ {s.t}, Γi ⊆
Γk∪{s = t}, and Γj ⊆ Γk∪{t.s}; so by L2.1, Γk |=∗

K
(t)
α

r.s, Γk |=∗
K
(t)
α

r.t,

Γk ∪ {s.t} |=∗
K
(t)
α

Au, Γk ∪ {s = t} |=∗
K
(t)
α

Au, and Γk ∪ {t.s} |=∗
K
(t)
α

Au.

Suppose Γk 6|=∗
K
(t)
α

Au; then by VK
(t)∗
α , there is a K

(t)
α interpretation

〈W,R, v〉m such that vm(Γk) = 1 but vm(u)(A) = 0; since vm(Γk) = 1,

by VK
(t)∗
α , 〈m(r),m(s)〉 ∈ R and 〈m(r),m(t)〉 ∈ R; and by condi-

tion ϕ, if 〈x, y〉 ∈ R and 〈x, z〉 ∈ R then either 〈y, z〉 ∈ R, y = z,
or 〈z, y〉 ∈ R; so either (i) m(s)Rm(t), (ii) m(s) = m(t), or (iii)
m(t)Rm(s). Suppose (i) m(s)Rm(t); then vm(Γk ∪ {s.t}) = 1; so by

VK
(t)∗
α , vm(u)(A) = 1. Suppose (ii) m(s) = m(t); then vm(Γk ∪ {s =

t}) = 1; so by VK
(t)∗
α , vm(u)(A) = 1. Suppose (iii) m(t)Rm(s);

then vm(Γk ∪ {t.s}) = 1; so by VK
(t)∗
α , vm(u)(A) = 1. In any case,

vm(u)(A) = 1. This is impossible; reject the original assumption:
Γk |=∗

K
(t)
α

Au, which is to say, Γk |=∗
K
(t)
α

Pk.

(AMβ)

———
For any i, Γi |=∗

K
(t)
α

Pi.

The argument for NKυ is similar (simpler) and so omitted.
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Theorem 2.2 NK
(t)
α is complete: if Γ |=

K
(t)
α

A then Γ
ǸK

(t)
α

A.

Suppose Γ |=
K
(t)
α

A; then Γ0 |=∗
K
(t)
α

A0; we show that Γ0 `∗
NK

(t)
α

A0. Again,

this reduces to the standard notion. The method of our proof has advan-
tages (especially for the quantificational case) over standard approaches to
completeness for modal logic. Roughly, we construct a single set which is
maximal and consistent relative to subscripted formulas, and use this to
specify the model. The resultant proof is thus kept structurally parallel to
the classical case. For the following, fix on some particular constraint(s) α.
Then definitions of consistency etc. are relative to it.

Con Γ is consistent iff there is no As such that Γ `∗
NK

(t)
α

As and Γ `∗
NK

(t)
α

¬As.

L2.2 If s is 0 or appears in Γ, and Γ 6`∗
NK

(t)
α

¬Ps, then Γ∪{Ps} is consistent.

Suppose s is 0 or appears in Γ and Γ 6`∗
NK

(t)
α

¬Ps but Γ ∪ {Ps} is

inconsistent. Then there is some At such that Γ ∪ {Ps} `∗
NK

(t)
α

At and

Γ ∪ {Ps} `∗
NK

(t)
α

¬At. But then we can argue,

1 Γ

2 Ps A (c, ¬I)

3 At from Γ ∪ {Ps}
4 ¬At from Γ ∪ {Ps}
5 ¬Ps 2-4 ¬I

where the assumption is allowed insofar as s is either 0 or appears in
Γ; so Γ `∗

NK
(t)
α

¬Ps. But this is impossible; reject the assumption: if s

is 0 or introduced in Γ and Γ 6`∗
NK

(t)
α

¬Ps, then Γ ∪ {Ps} is consistent.

L2.3 There is an enumeration of all the subscripted formulas, P1 P2 . . .

Proof by construction: Order non-subscripted formulas A, B, C . . .
in the usual way. Then form a grid with formulas A, B, C . . . ordered
across the top, and subscripts 1, 2, 3 . . . down the side.

A1 → B1 C1

↙ ↗
A2 B2 C2

↓ ↗
A3 B3 C3

...

. . .
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Order the members of the resultant grid, A1, B1, A2 . . . moving along
the arrows from the upper left corner, down and to the right.3

In addition, there is an enumeration of these formulas with access
relations s.t, with pairs of the sort s.t / u.v, and with expressions of
the sort s = t.

Proof by construction.

Max Γ is s-maximal iff for any As either Γ `∗
NK

(t)
α

As or Γ `∗
NK

(t)
α

¬As.

Sgt Γ is a scapegoat set iff for every formula of the form ¬�As, if Γ `∗
NK

(t)
α

¬�As then there is some t such that Γ `∗
NK

(t)
α

s.t and Γ `∗
NK

(t)
α

¬At; and

similarly for every formula of the form ¬[F]As; but for every formula
of the form ¬[P]As, if Γ `∗

NK
(t)
α

¬[P]As then there is some t such that

Γ `∗
NK

(t)
α

t.s and Γ `∗
NK

(t)
α

¬At.

Γ is a scapegoat set for AMδ iff for any access relation s.t, if Γ `∗
NK

(t)
α

s.t, then there is a u such that Γ `∗
NK

(t)
α

s.u and Γ `∗
NK

(t)
α

u.t.

Γ is a scapegoat set for AMϕ iff for any access relation r.s / r.t,
if Γ `∗

NK
(t)
α

r.s and Γ `∗
NK

(t)
α

r.t, then Γ `∗
NK

(t)
α

s.t, Γ `∗
NK

(t)
α

s = t, or

Γ `∗
NK

(t)
α

t.s.

Similarly for AMβ.

C(Γ′) For Γ with unsubscripted formulas and the corresponding Γ0, we con-
struct Γ′ as follows. Set Ω0 = Γ0. By L2.3, there is an enumeration,
P1,P2 . . . of all the subscripted formulas, together with all the access

relations s.t if δ is in K
(t)
α , along with pairs s.t / u.v and expressions

s = t if ϕ or β are in K
(t)
α ; let E0 be this enumeration. Then for

the first expression P in Ei−1 such that all its subscripts are 0 or
introduced in Ωi−1, let Ei be like Ei−1 but without P, and set,

3As for rational numbers; see, e.g., [6, §2.1.1].
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(i) Ωi = Ωi−1 if Ωi−1 ∪ {P} is inconsistent
Ωi∗ = Ωi−1 ∪ {P} if Ωi−1 ∪ {P} is consistent

and
(ii) Ωi = Ωi∗ if P is not of the form ¬�As,

¬[F]As, ¬[P]As, s.t, r.s / r.t,
or s.r / t.r

(iii) Ωi = Ωi∗ ∪ {s.u,¬Pu} if P is of the form ¬�As or
¬[F]As

(iv) Ωi = Ωi∗ ∪ {u.s,¬Pu} if P is of the form ¬[P]As

(v) Ωi = Ωi∗ ∪ {s.u, u.t} if P is of the form s.t
(vi) Ωi = Ωi∗ ∪ {s.t} if P is of the form r.s / r.t or

s.r /t.r and Ωi∗ ∪{s.t} is con-
sistent;

otherwise
Ωi = Ωi∗ ∪ {s = t} if P is of the form r.s / r.t or

s.r / t.r and Ωi∗ ∪ {s = t} is
consistent;

otherwise
Ωi = Ωi∗ ∪ {t.s} if P is of the form r.s / r.t or

s.r / t.r

-where u is the first subscript not introduced in Ωi∗

then
Γ′ =

⋃
i≥0 Ωi

Note that there is always sure to be a subscript u not in Ωi∗ insofar
as there are infinitely many subscripts, and at any stage only finitely
many formulas are added – the only subscripts in the initial Ω0 being
0. Suppose s is introduced in Γ′; then there is some Ωi in which it is
first introduced; and any formula Pj in the original enumeration that
has subscript s is sure to be “considered” for inclusion at a subsequent
stage.

L2.4 For any s included in Γ′, Γ′ is s-maximal.

Suppose s is included in Γ′ but Γ′ is not s-maximal. Then there is
some As such that Γ′ 6`∗

NK
(t)
α

As and Γ′ 6`∗
NK

(t)
α

¬As. For any i, each

member of Ωi−1 is in Γ′; so if Ωi−1 `∗
NK

(t)
α

¬As then Γ′ `∗
NK

(t)
α

¬As;
but Γ′ 6`∗

NK
(t)
α

¬As; so Ωi−1 6`∗
NK

(t)
α

¬As; so since s is included in Γ′,

there is a stage in the construction that sets Ωi∗ = Ωi−1 ∪ {As}; so
by construction, As ∈ Γ′; so Γ′ `∗

NK
(t)
α

As. This is impossible; reject

the assumption: Γ′ is s-maximal.

L2.5 If Γ0 is consistent, then each Ωi is consistent.
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Suppose Γ0 is consistent.

Basis: Ω0 = Γ0 and Γ0 is consistent; so Ω0 is consistent.

Assp: For any i, 0 ≤ i < k, Ωi is consistent.

Show: Ωk is consistent.

Ωk is either (i) Ωk−1, (ii) Ωk∗ = Ωk−1 ∪ {P}, (iii) Ωk∗ ∪
{s.u,¬Pu}, (iv) Ωk∗ ∪ {u.s,¬Pu}, (v) Ωk∗ ∪ {s.u, u.t}, (vi)
Ωk∗ ∪ {s.t} or Ωk∗ ∪ {s = t} or Ωk∗ ∪ {t.s}.

(i) Suppose Ωk is Ωk−1. By assumption, Ωk−1 is consistent; so Ωk

is consistent.

(ii) Suppose Ωk is Ωk∗ = Ωk−1∪{P}. Then by construction, Ωk−1∪
{P} is consistent; so Ωk is consistent.

(iii) Suppose Ωk is Ωk∗ ∪ {s.u,¬Pu}. In this case, as above, Ωk∗ is
consistent and by construction, ¬�Ps ∈ Ωk∗ or ¬[F]Ps ∈ Ωk∗ .
Suppose Ωk is inconsistent. Then there are Av and ¬Av such
that Ωk∗∪{s.u,¬Pu} `∗

NK
(t)
α

Av and Ωk∗∪{s.u,¬Pu} `∗
NK

(t)
α

¬Av.
So, for the first case, reason as follows,

1 Ωk∗

2 s.u A (g, �I)

3 ¬Pu A (c, ¬E)

4 Av from Ωk∗ ∪ {s.u,¬Pu}
5 ¬Av from Ωk∗ ∪ {s.u,¬Pu}
6 Pu 3-5 ¬E

7 �Ps 2-6 �I

where, by construction, u is not in Ωk∗ . So Ωk∗ `∗
NK

(t)
α

�Ps; but

¬�Ps ∈ Ωk∗ ; so Ωk∗ `∗
NK

(t)
α

¬�Ps; so Ωk∗ is inconsistent. This

is impossible; reject the assumption: Ωk is consistent. And
similarly if ¬[F]Ps ∈ Ωk∗ .

(iv) Suppose Ωk is Ωk∗ ∪ {u.s,¬Pu}. In this case, as above, Ωk∗
is consistent and by construction, ¬[P]Ps ∈ Ωk∗ . Suppose Ωk

is inconsistent. Then there are Av and ¬Av such that Ωk∗ ∪
{u.s,¬Pu} `∗

NK
(t)
α

Av and Ωk∗∪{u.s,¬Pu} `∗
NK

(t)
α

¬Av. So reason

as follows,
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1 Ωk∗

2 u.s A (g, [P]I)

3 ¬Pu A (c, ¬E)

4 Av from Ωk∗ ∪ {u.s,¬Pu}
5 ¬Av from Ωk∗ ∪ {u.s,¬Pu}
6 Pu 3-5 ¬E

7 [P]Ps 2-6 [P]I

where, by construction, u is not in Ωk∗ . So Ωk∗ `∗
NK

(t)
α

[P]Ps;

but ¬[P]Ps ∈ Ωk∗ ; so Ωk∗ `∗
NK

(t)
α

¬[P]Ps; so Ωk∗ is inconsistent.

This is impossible; reject the assumption: Ωk is consistent.

(v) Suppose Ωk is Ωk∗ ∪ {s.u, u.t}. In this case, as above, Ωk∗

is consistent and by construction, s.t ∈ Ωk∗ . Suppose Ωk is
inconsistent. Then there are Av and ¬Av such that Ωk∗ ∪
{s.u, u.t} `∗

NK
(t)
α

Av and Ωk∗ ∪ {s.u, u.t} `∗
NK

(t)
α

¬Av. So reason

as follows,

1 Ωk∗

2 s.t from Ωk∗

3 s.u A (g, AMδ)

4 u.t A (g, AMδ)

5 ¬(A ∧ ¬A)w A (c, ¬E)

6 Av from Ωk∗ ∪ {s.u, u.t}
7 ¬Av from Ωk∗ ∪ {s.u, u.t}
8 (A ∧ ¬A)w 5-7 ¬E

9 (A ∧ ¬A)w 2, 3-8 AMδ

10 Aw 9 ∧E

11 ¬Aw 9 ∧E

where, by construction, u is not in Ωk∗ and u is not w. So
Ωk∗ `∗

NK
(t)
α

Aw and Ωk∗ `∗
NK

(t)
α

¬Aw; so Ωk∗ is inconsistent. This

is impossible; reject the assumption: Ωk is consistent.

(vi) Suppose Ωk is Ωk∗∪{s.t} or Ωk∗∪{s = t} or Ωk∗∪{t.s}. In any
case, as above, Ωk∗ is consistent and by construction, r.s/r.t ∈
Ωk∗ or s.r / t.r ∈ Ωk∗ . In the first case, by construction,
Ωk∗ ∪ {s.t} is consistent; so Ωk is consistent. In the second
case, by construction again, Ωk∗ ∪ {s = t} is consistent; so Ωk

is consistent. If the third case, then Ωk∗ ∪{s.t} is inconsistent
and Ωk∗ ∪ {s = t} is inconsistent. Suppose Ωk is inconsistent.
Then there are Au, ¬Au, Bv, ¬Bv, Cw, and ¬Cw such that
Ωk∗ ∪ {s.t} `∗

NK
(t)
α

Au and Ωk∗ ∪ {s.t} `∗
NK

(t)
α

¬Au, Ωk∗ ∪ {s =
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t} `∗
NK

(t)
α

Bv and Ωk∗ ∪{s = t} `∗
NK

(t)
α

¬Bv, and Ωk∗ ∪{t.s} `∗
NK

(t)
α

Cw and Ωk∗ ∪ {t.s} `∗
NK

(t)
α

¬Cw. So reason as follows,

1 Ωk∗

2 r.s from Ωk∗

3 r.t from Ωk∗

4 s.t A (g, AMϕ)

5 ¬(D ∧ ¬D)x A (c, ¬E)

6 Au from Ωk∗ ∪ {s.t}
7 ¬Au from Ωk∗ ∪ {s.t}
8 (D ∧ ¬D)x 5-7 ¬E

9 s = t A (g, AMϕ)

10 ¬(D ∧ ¬D)x A (c, ¬E)

11 Bv from Ωk∗ ∪ {s = t}
12 ¬Bv from Ωk∗ ∪ {s = t}
13 (D ∧ ¬D)x 10-12 ¬E

14 t.s A (g, AMϕ)

15 ¬(D ∧ ¬D)x A (c, ¬E)

16 Cw from Ωk∗ ∪ {t.s}
17 ¬Cw from Ωk∗ ∪ {t.s}
18 (D ∧ ¬D)x 15-17 ¬E

19 (D ∧ ¬D)x 2,3,4-8,9-13,14-18 AMϕ

20 Dx 19 ∧E

21 ¬Dx 19 ∧E

So Ωk∗ `∗
NK

(t)
α

Dx and Ωk∗ `∗
NK

(t)
α

¬Dx. Similar reasoning follows

for s.r / t.r ∈ Ωk∗ with the rule AMβ; so Ωk∗ is inconsistent.
This is impossible; reject the assumption: Ωk is consistent.

———
For any i, Ωi is consistent.

L2.6 If Γ0 is consistent, then Γ′ is consistent.

Suppose Γ0 is consistent, but Γ′ is not; from the latter, there is some
Ps such that Γ′ `∗

NK
(t)
α

Ps and Γ′ `∗
NK

(t)
α

¬Ps. Consider derivations D1

and D2 of these results, and the premises Pi . . .Pj of these deriva-
tions. By construction, there is an Ωk with each of these premises as
a member; so D1 and D2 are derivations from Ωk; so Ωk is not con-
sistent. But since Γ0 is consistent, by L2.5, Ωk is consistent. This
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is impossible; reject the assumption: if Γ0 is consistent then Γ′ is
consistent.

L2.7 If Γ0 is consistent, then Γ′ is a scapegoat set.

Suppose Γ0 is consistent and Γ′ `∗
NK

(t)
α

¬�Ps. By L2.6, Γ′ is consistent;

and by the constraints on subscripts, s is included in Γ′. Since Γ′ is
consistent, Γ′ 6`∗

NK
(t)
α

¬¬�Ps; so there is a stage in the construction

process where Ωi∗ = Ωi−1 ∪ {¬�Ps} and Ωi = Ωi∗ ∪ {s.t,¬Pt}; so by
construction, s.t ∈ Γ′ and ¬Pt ∈ Γ′; so Γ′ `∗

NK
(t)
α

s.t and Γ′ `∗
NK

(t)
α

¬Pt.
(Similarly for [F] and [P].) So Γ′ is a scapegoat set.

For AMδ. Suppose Γ0 is consistent and Γ′ `∗
NK

(t)
α

s.t. By L2.6, Γ′ is

consistent; and by the constraints on subscripts, s and t are intro-
duced in Γ′. Since Γ′ `∗

NK
(t)
α

s.t, Γ′ has just the same consequences

as Γ′ ∪ {s.t}; so Γ′ ∪ {s.t} is consistent, and for any Ωj , Ωj ∪ {s.t}
is consistent. So there is a stage in the construction process where
Ωi∗ = Ωi−1 ∪ {s.t} and Ωi = Ωi∗ ∪ {s.u, u.t}; so by construction,
s.u, u.t ∈ Γ′; so there is a u such that Γ′ `∗

NK
(t)
α

s.u and Γ′ `∗
NK

(t)
α

u.t.

So Γ′ is a scapegoat set for AMδ.

For AMϕ. Suppose Γ0 is consistent, Γ′ `∗
NK

(t)
α

r.s, and Γ′ `∗
NK

(t)
α

r.t.

By L2.6, Γ′ is consistent; and by the constraints on subscripts, r,
s, and t are introduced in Γ′. Since Γ′ `∗

NK
(t)
α

r.s and Γ′ `∗
NK

(t)
α

r.t, Γ′

has just the same consequences as Γ′ ∪ {r.s / r.t}; so Γ′ ∪ {r.s / r.t}
is consistent, and for any Ωj , Ωj ∪ {r.s / r.t} is consistent. So there
is a stage in the construction process where Ωi∗ = Ωi−1 ∪ {r.s / r.t}
and Ωi = Ωi∗ ∪ {s.t}, Ωi = Ωi∗ ∪ {s = t}, or Ωi = Ωi∗ ∪ {t.s}; so
by construction, s.t ∈ Γ′, s = t ∈ Γ′, or t.s ∈ Γ′; so Γ′ `∗

NK
(t)
α

s.t,

Γ′ `∗
NK

(t)
α

s = t, or Γ′ `∗
NK

(t)
α

t.s. So Γ′ is a scapegoat set for AMϕ.

Similarly for AMβ.

C(I) We construct an interpretation I = 〈W,R, v〉 based on Γ′ as follows.
Let W have a member ws corresponding to each subscript s included
in Γ′, except that if Γ′ `∗

NK
(t)
α

s = t, then ws = wt (we might do this, in

the usual way, by beginning with equivalence classes on subscripts).
Then set 〈ws, wt〉 ∈ R iff Γ′ `∗

NK
(t)
α

s.t and vws(p) = 1 iff Γ′ `∗
NK

(t)
α

ps.
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L2.8 If Γ0 is consistent then for 〈W,R, v〉 constructed as above, and for
any s included in Γ′, vws(A) = 1 iff Γ′ `∗

NK
(t)
α

As.

Suppose Γ0 is consistent and s is included in Γ′. By L2.4, Γ′ is s-
maximal. By L2.6 and L2.7, Γ′ is consistent and a scapegoat set.
Now by induction on the number of operators in As,

Basis: If As has no operators, then it is a parameter ps and by
construction, vws(p) = 1 iff Γ′ `∗

NK
(t)
α

ps. So vws(A) = 1 iff

Γ′ `∗
NK

(t)
α

As.

Assp: For any i, 0 ≤ i < k, if As has i operators, then vws(A) = 1 iff
Γ′ `∗

NK
(t)
α

As.

Show: If As has k operators, then vws(A) = 1 iff Γ′ `∗
NK

(t)
α

As.

If As has k operators, then it is of the form ¬Ps, (P ⊃ Q)s,
(P ∧Q)s, (P ∨Q)s, (P ≡ Q)s, �Ps, ♦Ps, [F]Ps, 〈F〉Ps, [P]Ps, or
〈P〉Ps where P and Q have < k operators.

(¬) As is ¬Ps. (i) Suppose vws(A) = 1; then vws(¬P ) = 1; so
by TK(¬), vws(P ) = 0; so by assumption, Γ′ 6`∗

NK
(t)
α

Ps; so by

s-maximality, Γ′ `∗
NK

(t)
α

¬Ps, where this is to say, Γ′ `∗
NK

(t)
α

As.

(ii) Suppose Γ′ `∗
NK

(t)
α

As; then Γ′ `∗
NK

(t)
α

¬Ps; so by consistency,

Γ′ 6`∗
NK

(t)
α

Ps; so by assumption, vws(P ) = 0; so by TK(¬),
vws(¬P ) = 1, where this is to say, vws(A) = 1. So vws(A) = 1
iff Γ′ `∗

NK
(t)
α

As.

(⊃) As is (P ⊃ Q)s. (i) Suppose vws(A) = 1 but Γ′ 6`∗
NK

(t)
α

As; then

vws(P ⊃ Q) = 1 but Γ′ 6`∗
NK

(t)
α

(P ⊃ Q)s. From the latter,

by s-maximality, Γ′ `∗
NK

(t)
α

¬(P ⊃ Q)s; from this it follows,

by simple derivations, that Γ′ `∗
NK

(t)
α

Ps and Γ′ `∗
NK

(t)
α

¬Qs; so

by consistency, Γ′ 6`∗
NK

(t)
α

Qs; so by assumption, vws(P ) = 1

and vws(Q) = 0; so by TK(⊃), vws(P ⊃ Q) = 0. This is
impossible; reject the assumption: if vws(A) = 1 then Γ′ `∗

NK
(t)
α

As.

(ii) Suppose Γ′ `∗
NK

(t)
α

As but vws(A) = 0; then Γ′ `∗
NK

(t)
α

(P ⊃
Q)s but vws(P ⊃ Q) = 0. From the latter, by TK(⊃),
vws(P ) = 1 and vws(Q) = 0; so by assumption, Γ′ `∗

NK
(t)
α

Ps

and Γ′ 6`∗
NK

(t)
α

Qs; but since Γ′ `∗
NK

(t)
α

(P ⊃ Q)s and Γ′ `∗
NK

(t)
α

Ps,
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by (⊃E), Γ′ `∗
NK

(t)
α

Qs. This is impossible; reject the assump-

tion: if Γ′ `∗
NK

(t)
α

As, then vws(A) = 1. So vws(A) = 1 iff

Γ′ `∗
NK

(t)
α

As.

(∧)

(∨)

(≡)

(�) As is �Ps. (i) Suppose vws(A) = 1 but Γ′ 6`∗
NK

(t)
α

As; then

vws(�P ) = 1 but Γ′ 6`∗
NK

(t)
α

�Ps. From the latter, by s-maxi-

mality, Γ′ `∗
NK

(t)
α

¬�Ps; so, since Γ′ is a scapegoat set, there

is some t such that Γ′ `∗
NK

(t)
α

s.t and Γ′ `∗
NK

(t)
α

¬Pt; from the

first, by construction, 〈ws, wt〉 ∈ R; and from the second, by
consistency, Γ′ 6`∗

NK
(t)
α

Pt; so by assumption, vwt(P ) = 0; but

wsRwt; so by TK(�), vws(�P ) = 0. This is impossible; reject
the assumption: if vws(A) = 1, then Γ′ `∗

NK
(t)
α

As.

(ii) Suppose Γ′ `∗
NK

(t)
α

As but vws(A) = 0; then Γ′ `∗
NK

(t)
α

�Ps

but vws(�P ) = 0. From the latter, by TK(�), there is some
wt ∈ W such that wsRwt and vwt(P ) = 0; so by assumption,
Γ′ 6`∗

NK
(t)
α

Pt; but since wsRwt, by construction, Γ′ `∗
NK

(t)
α

s.t; so

by (�E), Γ′ `∗
NK

(t)
α

Pt. This is impossible; reject the assumption:

if Γ′
ǸK

(t)
α

As then vws(A) = 1. So vws(A) = 1 iff Γ′ `∗
NK

(t)
α

As.

([F])

([P]) As is [P]Ps. (i) Suppose vws(A) = 1 but Γ′ 6`∗
NK

(t)
α

As; then

vws([P]P ) = 1 but Γ′ 6`∗
NK

(t)
α

[P]Ps. From the latter, by s-maxi-

mality, Γ′ `∗
NK

(t)
α

¬[P]Ps; so, since Γ′ is a scapegoat set, there

is some t such that Γ′ `∗
NK

(t)
α

t.s and Γ′ `∗
NK

(t)
α

¬Pt; from the

first, by construction, 〈wt, ws〉 ∈ R; and from the second, by
consistency, Γ′ 6`∗

NK
(t)
α

Pt; so by assumption, vwt(P ) = 0; but

wtRws; so by TK([P]), vws([P]P ) = 0. This is impossible;
reject the assumption: if vws(A) = 1, then Γ′ `∗

NK
(t)
α

As.

(ii) Suppose Γ′ `∗
NK

(t)
α

As but vws(A) = 0; then Γ′ `∗
NK

(t)
α

[P]Ps

but vws([P]P ) = 0. From the latter, by TK([P]), there is some
wt ∈ W such that wtRws and vwt(P ) = 0; so by assumption,
Γ′ 6`∗

NK
(t)
α

Pt; but since wtRws, by construction, Γ′ `∗
NK

(t)
α

t.s;
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so by ([P]E), Γ′ `∗
NK

(t)
α

Pt. This is impossible; reject the as-

sumption: if Γ′
ǸK

(t)
α

As then vws(A) = 1. So vws(A) = 1 iff

Γ′ `∗
NK

(t)
α

As.

(♦) As is ♦Ps. (i) Suppose vws(A) = 1; then vws(♦P ) = 1; so by
TK(♦), there is some wt ∈W such that wsRwt and vwt(P ) =
1; so by assumption, Γ′ `∗

NK
(t)
α

Pt; but since wsRwt, by con-

struction, Γ′ `∗
NK

(t)
α

s.t; so by (♦I), Γ′ `∗
NK

(t)
α

♦Ps; so Γ′ `∗
NK

(t)
α

As.

(ii)Suppose Γ′ `∗
NK

(t)
α

As; then Γ′ `∗
NK

(t)
α

♦Ps; so by (MN),

Γ′ `∗
NK

(t)
α

¬�¬Ps; so, since Γ′ is a scapegoat set, there is some

t such that Γ′ `∗
NK

(t)
α

s.t and Γ′ `∗
NK

(t)
α

¬¬Pt; so by (DN),

Γ′ `∗
NK

(t)
α

Pt; so by assumption, vwt(P ) = 1; but Γ′ `∗
NK

(t)
α

s.t;

so by construction, wsRwt; so by TK(♦), vws(♦P ) = 1; so
vws(A) = 1. So vws(A) = 1 iff Γ′ `∗

NK
(t)
α

As.

(〈F〉)

(〈P〉) As is 〈P〉Ps. (i) Suppose vws(A) = 1; then vws(〈P〉P ) = 1;
so by TK(〈P〉), there is some wt ∈ W such that wtRws and
vwt(P ) = 1; so by assumption, Γ′ `∗

NK
(t)
α

Pt; but since wtRws,

by construction, Γ′ `∗
NK

(t)
α

t.s; so by (〈P〉I), Γ′ `∗
NK

(t)
α

〈P〉Ps; so

Γ′ `∗
NK

(t)
α

As.

(ii)Suppose Γ′ `∗
NK

(t)
α

As; then Γ′ `∗
NK

(t)
α

〈P〉Ps; so by (TMN),

Γ′ `∗
NK

(t)
α

¬[P]¬Ps; so, since Γ′ is a scapegoat set, there is some

t such that Γ′ `∗
NK

(t)
α

t.s and Γ′ `∗
NK

(t)
α

¬¬Pt; so by (DN),

Γ′ `∗
NK

(t)
α

Pt; so by assumption, vwt(P ) = 1; but Γ′ `∗
NK

(t)
α

t.s;

so by construction, wtRws; so by TK(〈P〉), vws(♦P ) = 1; so
vws(A) = 1. So vws(A) = 1 iff Γ′ `∗

NK
(t)
α

As.

———
For any As, vws(A) = 1 iff Γ′ `∗

NK
(t)
α

As.

L2.9 If Γ0 is consistent, then 〈W,R, v〉 constructed as above is a K
(t)
α in-

terpretation.

In each case, we need to show that the interpretation meets the con-
dition(s) α. Suppose Γ0 is consistent.

(η) Suppose α includes condition η and ws ∈ W . Then, by con-
struction, s is a subscript in Γ′; so by reasoning as follows,
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1 Γ′

2 s.t A (g, AMη)

3 >t > is a tautology

4 ♦>s 2,3 ♦I

5 ♦>s 2-4 AMη

6 ¬�¬>s 5 MN

Γ′ `∗
NK

(t)
α

¬�¬>s; but by L2.7, Γ′ is a scapegoat set; so there

is a t such that Γ′ `∗
NK

(t)
α

s.t; so by construction, 〈ws, wt〉 ∈ R
and η is satisfied.

(η′)

(ρ) Suppose α includes condition ρ and ws ∈ W . Then by con-
struction, s is a subscript in Γ′; so by (AMρ), Γ′ `∗

NK
(t)
α

s.s; so

by construction, 〈ws, ws〉 ∈ R and ρ is satisfied.

(σ) Suppose α includes condition σ and 〈ws, wt〉 ∈ R. Then by
construction, Γ′ `∗

NK
(t)
α

s.t so by (AMσ), Γ′ `∗
NK

(t)
α

t.s; so by

construction, 〈wt, ws〉 ∈ R and σ is satisfied.

(τ) Suppose α includes condition τ and 〈ws, wt〉, 〈wt, wu〉 ∈ R.
Then by construction, Γ′ `∗

NK
(t)
α

s.t and Γ′ `∗
NK

(t)
α

t.u; so by

(AMτ), Γ′ `∗
NK

(t)
α

s.u; so by construction, 〈ws, wu〉 ∈ R and τ

is satisfied.

(δ) Suppose α includes condition δ and 〈ws, wt〉 ∈ R; then by
construction, Γ′ `∗

NK
(t)
α

s.t; so, since Γ′ is a AMδ scapegoat

set, there is a u such that Γ′ `∗
NK

(t)
α

s.u and Γ′ `∗
NK

(t)
α

u.t; so

by construction, 〈ws, wu〉 ∈ R and 〈wu, wt〉 ∈ R. So AMδ is
satisfied.

(ϕ) Suppose α includes condition ϕ and 〈wr, ws〉, 〈wr, wt〉 ∈ R;
then by construction, Γ′ `∗

NK
(t)
α

r.s and Γ′ `∗
NK

(t)
α

r.t; so, since

Γ′ is a AMϕ scapegoat set, Γ′ `∗
NK

(t)
α

s.t, Γ′ `∗
NK

(t)
α

s = t, or

Γ′ `∗
NK

(t)
α

t.s; so by construction, 〈ws, wt〉 ∈ R, ws = wt, or

〈wt, ws〉 ∈ R. So AMϕ is satisfied.

(β)

Map For any ws ∈W , set m(s) = ws; otherwise m(s) is arbitrary.

L2.10 If Γ0 is consistent, then vm(Γ0) = 1.
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Suppose Γ0 is consistent and A0 ∈ Γ0; then by construction, A0 ∈ Γ′;
so Γ′ `∗

NK
(t)
α

A0; so since Γ0 is consistent, by L2.8, vw0(A) = 1. And

similarly for any A0 ∈ Γ0. But m(0) = w0; so vm(Γ0) = 1.

Main result: Suppose Γ |=
K
(t)
α

A but Γ 6
ǸK

(t)
α

A. Then Γ0 |=∗
K
(t)
α

A0 but

Γ0 6`∗
NK

(t)
α

A0. By (DN), if Γ0 `∗
NK

(t)
α

¬¬A0, then Γ0 `∗
NK

(t)
α

A0; so Γ0 6`∗
NK

(t)
α

¬¬A0; so by L2.2, Γ0 ∪ {¬A0} is consistent; so by L2.9 and L2.10, there

is a K
(t)
α interpretation 〈W,R, v〉m constructed as above such that vm(Γ0 ∪

{¬A0}) = 1; so vm(0)(¬A) = 1; so by TK(¬), vm(0)(A) = 0; so vm(Γ0) = 1
and vm(0)(A) = 0; so by VKα∗, Γ0 6|=∗

K
(t)
α

A0. This is impossible; reject the

assumption: if Γ |=
K
(t)
α

A, then Γ
ǸK

(t)
α

A.

The argument for NKυ is similar, and so omitted.

3 Non-Normal Modal Logics: Nα, Lα (ch. 4)

3.1 Language / Semantic Notions

LXα Allow X to be either N or L, depending on context, where for both
Nα and Lα, the basic language is the same as for Kα. The vo-
cabulary consists of propositional parameters p0, p1 . . . with the
operators, ¬, ∧, ∨, ⊃, ≡, � and ♦. Each propositional parameter is
a formula; if A and B are formulas, so are ¬A, (A ∧ B), (A ∨ B),
(A ⊃ B), (A ≡ B), �A and ♦A. In addition, we introduce (A −3 B)
as an abbreviation for �(A ⊃ B).

IXα An interpretation is 〈W,N,R, v〉 where N ⊆ W . N is the set of
normal worlds. Constraints on access are as for Kα. Thus, where α
is empty or indicates some combination of the following constraints,

η For any x, there is a y such that xRy extendability
ρ for all x, xRx reflexivity
σ for all x, y, if xRy then yRx symmetry
τ for all x, y, z, if xRy and yRz then xRz transitivity

〈W,N,R, v〉 is an Xα interpretation when R meets the constraints
from α.

INα Furthermore, an Nα interpretation, specifically, is one in which v is
a function such that for any w ∈ W and p, vw(p) = 1 or vw(p) = 0,
as usual, but for any w 6∈ N and P of the form �A, vw(P ) = 0; and
for any w 6∈ N and P of the form ♦A, vw(P ) = 1.
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ILα However, an Lα interpretation, specifically, is one in which v is a
function such that for any w ∈ W and p, vw(p) = 1 or vw(p) = 0, as
usual, but for any w 6∈ N and P of the form �A or ♦A, vw(P ) = 1 or
vw(P ) = 0 (Truth values for modal formulas are arbitrarily assigned
at non-normal worlds).

TX then applies for expressions not assigned a value directly.

TX For complex expressions,

(¬) vw(¬A) = 1 if vw(A) = 0, and 0 otherwise.

(∧) vw(A ∧B) = 1 if vw(A) = 1 and vw(B) = 1, and 0 otherwise.

(∨) vw(A ∨B) = 1 if vw(A) = 1 or vw(B) = 1, and 0 otherwise.

(⊃) vw(A ⊃ B) = 1 if vw(A) = 0 or vw(B) = 1, and 0 otherwise.

(≡) vw(A ≡ B) = 1 if vw(A) = vw(B), and 0 otherwise.

(♦) vw(♦A) = 1 (w ∈ N) if some x ∈W such that wRx has vx(A) =
1, and 0 otherwise.

(�) vw(�A) = 1 (w ∈ N) if all x ∈W such that wRx have vx(A) =
1, and 0 otherwise.

For a set Γ of formulas, vw(Γ) = 1 iff vw(A) = 1 for each A ∈ Γ; then,

VXα Γ |=Xα A iff there is no Xα interpretation 〈W,N,R, v〉 and w ∈ N
such that vw(Γ) = 1 and vw(A) = 0.

3.2 Natural Derivations: NNα, NLα

All the rules are as in NKα except that, for NNα, whenever a subscript s.t
is introduced for �I or ♦E, either s is 0 or there is an additional premise of
the sort �As or ¬♦As; and, for NLα, whenever s.t is introduced for �I, �E,
♦I, or ♦E, s is just 0. The resulting change on these rules is small.

NNα

�INα s.t

Pt

�Ps
where s is 0 or appears in some accessible
�As or ¬♦As; and t does not appear in any
undischarged premise or assumption

♦ENα ♦Ps
s.t

Pt

Qu

Qu
where s is 0 or appears in some accessible
�As or ¬♦As; and t does not appear in any
undischarged premise or assumption and is
not u
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NLα

�ILα s.t

Pt

�Ps
where s is 0; and t does not appear in any
undischarged premise or assumption

�ELα �Ps
s.t

Pt
where s is 0

♦ILα Pt
s.t

♦Ps
where s is 0

♦ELα ♦Ps
s.t

Pt

Qu

Qu
where s is 0; and t does not appear in any
undischarged premise or assumption and is
not u

Derived rules carry over from NKα. Note that MN remains as well (but
restricted to subscript 0 in the L systems). In addition, the following are
derived rules for −3I and −3E in NKα, NNα and NLα.

−3I s.t

Pt

Qt

(P −3 Q)s
constraints on s and t as for the correspond-
ing NL, NN or NK �I rule.

−3E (P −3 Q)s
s.t

Pt

Qt

Examples. We exhibit the new restrictions by considering derivations to
show one part of MN, that ♦Ps ǸNα ¬�¬Ps. In the case where s 6= 0, the
derivation on the left violates the NN restriction on ♦E in its last line.

1 ♦Ps P

2 s.t A (g, 1 ♦E)

3 Pt

4 �¬Ps A (c, ¬I)

5 ¬Pt 2,4 �E

6 Pt 3 R

7 ¬�¬Ps 4-6 ¬I

8 ¬�¬Ps 1,2-7 ♦E

1 ♦Ps P

2 �¬Ps A (c, ¬I)

3 s.t A (g, 1 ♦E)

4 Pt

5 �¬Ps A (c, ¬I)

6 ¬Pt 3,5 �E

7 Pt 4 R

8 ¬�¬Ps 5-7 ¬I

9 ¬�¬Ps 2,1,3-8 ♦E

10 �¬Ps 2 R

11 ¬�¬Ps 2-10 ¬I
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Supposing s is 0, each derivation is fine in NN and NL. However, if s is
other than 0, on the left, (8) is automatically bad in NL and violates the
NN restriction on ♦E, insofar as there is no accessible �Ps or ¬♦Ps. On the
right, the derivation works in NN even when s 6= 0, insofar as we make the
assumption for ¬I prior to that for ♦E. Note that, in this case, we cite the
line with �As for ♦E. Insofar as s 6= 0, the derivation would not do for NL.

3.3 Soundness and Completeness

Preliminaries: Begin with generalized notions of validity. For a model
〈W,N,R, v〉, let m be a map from subscripts into W such that m(0) is
some member of N . Say 〈W,N,R, v〉m is 〈W,N,R, v〉 with map m. Then,
where Γ is a set of expressions of our language for derivations, vm(Γ) = 1 iff
for each As ∈ Γ, vm(s)(A) = 1, and for each s.t ∈ Γ, 〈m(s),m(t)〉 ∈ R. Now
expand notions of validity to include subscripted formulas, and alternate
expressions as indicated in double brackets.

VXα∗ Γ |=∗Xα As [[s.t]] iff there is no Xα interpretation 〈W,N,R, v〉m such
that vm(Γ) = 1 but vm(s)(A) = 0 [[〈m(s),m(t)〉 6∈ R]].

NXα∗ Γ `∗NXα As [[s.t]] iff there is an NXα derivation of As [[s.t]] from the
members of Γ.

These notions reduce to the standard ones when all the members of Γ and
A have subscript 0 (and so do not include expressions of the sort s.t). This
is obvious for NXα∗. In the other case, there is a 〈W,N,R, v〉m and w ∈ N
that makes all the members of Γ0 true and A0 false just in case there is a
world in N that makes the unsubscripted members of Γ true and A false.
For the following, cases omitted are like ones worked, and so left to the
reader.

Theorem 3.1 NXα is sound: If Γ ǸXα A then Γ |=Xα A.

L3.1 If Γ ⊆ Γ′ and Γ |=∗Xα Ps [[s.t]], then Γ′ |=∗Xα Ps [[s.t]].

Reasoning parallel to that for L2.1 of NKα.

Main result: For each line in a derivation let Pi be the expression on line i
and Γi be the set of all premises and assumptions whose scope includes line
i. We set out to show “generalized” soundness: if Γ `∗NXα P then Γ |=∗Xα P.
Suppose Γ `∗NXα P. Then there is a derivation of P from premises in Γ where
P appears under the scope of the premises alone. By induction on line
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number of this derivation, we show that for each line i of this derivation,
Γi |=∗Xα Pi. The case when Pi = P is the desired result.

Basis: P1 is a premise or an assumption As [[s.t]]. Then Γ1 = {As} [[{s.t}]];
so for any 〈W,N,R, v〉m, vm(Γ1) = 1 iff vm(s)(A) = 1 [[〈m(s),m(t)〉 ∈
R]]; so there is no 〈W,N,R, v〉m such that vm(Γ1) = 1 but vm(s)(A) =
0 [[〈m(s),m(t)〉 6∈ R]]. So by VXα∗, Γ1 |=∗Xα As [[s.t]], where this is
just to say, Γ1 |=∗Xα P1.

Assp: For any i, 1 ≤ i < k,Γi |=∗Xα Pi.

Show: Γk |=∗Xα Pk.

Pk is either a premise, an assumption, or arises from previous lines
by R, ⊃I, ⊃E, ∧I, ∧E, ¬I, ¬E, ∨I, ∨E, ≡I, ≡E, �INα , �E, ♦I, ♦ENα ,
�ILα , �ELα , ♦ILα , ♦ELα or, depending on the system, AMη, AMρ,
AMσ or AMτ . If Pk is a premise or an assumption, then as in the
basis, Γk |=∗Xα Pk. So suppose Pk arises by one of the rules.

(R)

(⊃I)

(⊃E) If Pk arises by ⊃E, then the picture is like this,

i (A ⊃ B)s
j As

k Bs

where i, j < k and Pk is Bs. By assumption, Γi |=∗Xα (A ⊃ B)s and
Γj |=∗Xα As; but by the nature of access, Γi ⊆ Γk and Γj ⊆ Γk; so
by L3.1, Γk |=∗Xα (A ⊃ B)s and Γk |=∗Xα As. Suppose Γk 6|=∗Xα Bs;
then by VXα∗, there is some Xα interpretation 〈W,N,R, v〉m such
that vm(Γk) = 1 but vm(s)(B) = 0; since vm(Γk) = 1, by VXα∗,
vm(s)(A ⊃ B) = 1 and vm(s)(A) = 1; from the former, by TX(⊃),
vm(s)(A) = 0 or vm(s)(B) = 1; so vm(s)(B) = 1. This is impossible;
reject the assumption: Γk |=∗Xα Bs, which is to say, Γk |=∗Xα Pk.

(∧I)

(∧E)

(¬I) If Pk arises by ¬I, then the picture is like this,
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As

i Bt
j ¬Bt
k ¬As

where i, j < k and Pk is ¬As. By assumption, Γi |=∗Xα Bt and Γj |=∗Xα
¬Bt; but by the nature of access, Γi ⊆ Γk∪{As} and Γj ⊆ Γk∪{As};
so by L3.1, Γk∪{As} |=∗Xα Bt and Γk∪{As} |=∗Xα ¬Bt. Suppose Γk 6|=∗Xα
¬As; then by VXα∗, there is an Xα interpretation 〈W,N,R, v〉m such
that vm(Γk) = 1 but vm(s)(¬A) = 0; so by TX(¬), vm(s)(A) = 1;
so vm(Γk) = 1 and vm(s)(A) = 1; so vm(Γk ∪ {As}) = 1; so by
VXα∗, vm(t)(B) = 1 and vm(t)(¬B) = 1; from the latter, by TX(¬),
vm(t)(B) = 0. This is impossible; reject the assumption: Γk |=∗Xα ¬As,
which is to say, Γk |=∗Xα Pk.

(¬E)

(∨I)

(∨E)

(≡I)

(≡E)

(�INα) If Pk arises by �INα, then the picture is like this,

s.t

j At

k �As

where j < k, s is 0 or introduced in some accessible �Ps or ¬♦Ps, t
does not appear in any member of Γk (in any undischarged premise
or assumption), and Pk is �As. By assumption, Γj |=∗Xα At; but by
the nature of access, Γj ⊆ Γk ∪ {s.t}; so by L3.1, Γk ∪ {s.t} |=∗Xα At.
Suppose Γk 6|=∗Xα �As; then by VXα∗, there is an Xα interpretation,
specifically anNα interpretation, 〈W,N,R, v〉m such that vm(Γk) = 1
but vm(s)(�A) = 0. If s is 0, then m(s) ∈ N ; if s is introduced in
some �Ps on accessible line j, then by assumption, Γj |=∗Xα �Ps; but
by the nature of access, Γj ⊆ Γk; so by L3.1, Γk |=∗Xα �Ps; so by
VXα∗, vm(s)(�P ) = 1; so, since 〈W,N,R, v〉m is an Nα interpreta-
tion, m(s) ∈ N ; if s is introduced in some ¬♦Ps on an accessible line
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j, then by assumption, Γj |=∗Xα ¬♦Ps; but by the nature of access,
Γj ⊆ Γk; so by L3.1, Γk |=∗Xα ¬♦Ps; so by VXα∗, vm(s)(¬♦P ) = 1; so
by TX(¬), vm(s)(♦P ) = 0; so, since 〈W,N,R, v〉m is an Nα interpre-
tation, m(s) ∈ N ; in any case, then, m(s) ∈ N . So by TX(�), there
is some w ∈ W such that m(s)Rw and vw(A) = 0. Now consider a
map m′ like m except that m′(t) = w, and consider 〈W,N,R, v〉m′ ;
since t does not appear in Γk, it remains that vm′(Γk) = 1; and since
m′(t) = w and m′(s) = m(s), 〈m′(s),m′(t)〉 ∈ R; so vm′(Γk∪{s.t}) =
1; so by VXα∗, vm′(t)(A) = 1. But m′(t) = w; so vw(A) = 1. This
is impossible; reject the assumption: Γk |=∗Xα �As, which is to say,
Γk |=∗Xα Pk.

(�E) If Pk arises by �E, then the picture is like this,

i �As
j s.t

k At

where i, j < k and Pk is At. By assumption, Γi |=∗Xα �As and Γj |=∗Xα
s.t; but by the nature of access, Γi ⊆ Γk and Γj ⊆ Γk; so by L3.1,
Γk |=∗Xα �As and Γk |=∗Xα s.t. Suppose Γk 6|=∗Xα At; then by VXα∗,
there is some Xα interpretation, specifically an Nα interpretation,
〈W,N,R, v〉m such that vm(Γk) = 1 but vm(t)(A) = 0; since vm(Γk) =
1, by VXα∗, vm(s)(�A) = 1 and 〈m(s),m(t)〉 ∈ R; from the first of
these, since 〈W,N,R, v〉m is an Nα interpretation, m(s) ∈ N , and so,
by TX(�), any w such that m(s)Rw has vw(A) = 1; so vm(t)(A) = 1.
This is impossible; reject the assumption: Γk |=∗Xα At, which is to say,
Γk |=∗Xα Pk.

(♦I)

(♦ENα) If Pk arises by ♦ENα, then the picture is like this,

i ♦As
At
s.t

j Bu

k Bu

where i, j < k, s is 0 or introduced in some accessible �Ps or ¬♦Ps, t
does not appear in any member of Γk (in any undischarged premise or
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assumption) and is not u, and Pk is Bu. By assumption, Γi |=∗Xα ♦As
and Γj |=∗Xα Bu; but by the nature of access, Γi ⊆ Γk and Γj ⊆
Γk ∪ {At, s.t}; so by L3.1, Γk |=∗Xα ♦As and Γk ∪ {At, s.t} |=∗Xα Bu.
Suppose Γk 6|=∗Xα Bu; then by VXα∗, there is an Xα interpretation,
specifically anNα interpretation, 〈W,N,R, v〉m such that vm(Γk) = 1
but vm(u)(B) = 0. If s is 0, then m(s) ∈ N ; if s is introduced in
some �Ps on accessible line h, then by assumption, Γh |=∗Xα �Ps; but
by the nature of access, Γh ⊆ Γk; so by L3.1, Γk |=∗Xα �Ps; so by
VXα∗, vm(s)(�P ) = 1; so, since 〈W,N,R, v〉m is an Nα interpreta-
tion, m(s) ∈ N ; if s is introduced in some ¬♦Ps on an accessible line
h, then by assumption, Γh |=∗Xα ¬♦Ps; but by the nature of access,
Γh ⊆ Γk; so by L3.1, Γk |=∗Xα ¬♦Ps; so by VXα∗, vm(s)(¬♦P ) = 1; so
by TX(¬), vm(s)(♦P ) = 0; so, since 〈W,N,R, v〉m is an Nα interpre-
tation, m(s) ∈ N ; in any case, then, m(s) ∈ N . Since vm(Γk) = 1,
by VXα∗, vm(s)(♦A) = 1; so, since m(s) ∈ N , by TX(♦), there is
some w ∈ W such that m(s)Rw and vw(A) = 1. Now consider a
map m′ like m except that m′(t) = w, and consider 〈W,N,R, v〉m′ ;
since t does not appear in Γk, it remains that vm′(Γk) = 1; and since
m′(s) = m(s) and m′(t) = w, vm′(t)(A) = 1 and 〈m′(s),m′(t)〉 ∈ R;
so vm′(Γk ∪ {At, s.t}) = 1; so by VXα∗, vm′(u)(B) = 1. But since
t 6= u, m′(u) = m(u); so vm(u)(B) = 1. This is impossible; reject the
assumption: Γk |=∗Xα Bu, which is to say, Γk |=∗Xα Pk.

(�ILα) If Pk arises by �ILα, then the picture is like this,

s.t

j At

k �As

where j < k, s is 0, t does not appear in any member of Γk (in any
undischarged premise or assumption), and Pk is �As. By assumption,
Γj |=∗Xα At; but by the nature of access, Γj ⊆ Γk ∪ {s.t}; so by
L3.1, Γk ∪ {s.t} |=∗Xα At. Suppose Γk 6|=∗Xα �As; then by VXα∗,
there is an Xα interpretation 〈W,N,R, v〉m such that vm(Γk) = 1
but vm(s)(�A) = 0. Since s is 0, m(s) ∈ N . So by TX(�), there
is some w ∈ W such that m(s)Rw and vw(A) = 0. Now consider a
map m′ like m except that m′(t) = w, and consider 〈W,N,R, v〉m′ ;
since t does not appear in Γk, it remains that vm′(Γk) = 1; and since
m′(t) = w and m′(s) = m(s), 〈m′(s),m′(t)〉 ∈ R; so vm′(Γk∪{s.t}) =
1; so by VXα∗, vm′(t)(A) = 1. But m′(t) = w; so vw(A) = 1. This
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is impossible; reject the assumption: Γk |=∗Xα �As, which is to say,
Γk |=∗Xα Pk.

(�ELα) If Pk arises by �ELα, then the picture is like this,

i �As
j s.t

k At

where i, j < k, s is 0, and Pk is At. By assumption, Γi |=∗Xα �As and
Γj |=∗Xα s.t; but by the nature of access, Γi ⊆ Γk and Γj ⊆ Γk; so by
L3.1, Γk |=∗Xα �As and Γk |=∗Xα s.t. Suppose Γk 6|=∗Xα At; then by VXα∗,
there is some Xα interpretation 〈W,R, v〉m such that vm(Γk) = 1
but vm(t)(A) = 0; since vm(Γk) = 1, by VXα∗, vm(s)(�A) = 1 and
〈m(s),m(t)〉 ∈ R; from the first of these, since s is 0 and so m(s) ∈ N ,
by TX(�), any w such that m(s)Rw has vw(A) = 1; so vm(t)(A) = 1.
This is impossible; reject the assumption: Γk |=∗Xα At, which is to say,
Γk |=∗Xα Pk.

(♦ILα)

(♦ELα) If Pk arises by ♦ELα, then the picture is like this,

i ♦As
At
s.t

j Bu

k Bu

where i, j < k, s is 0, t does not appear in any member of Γk (in
any undischarged premise or assumption) and is not u, and Pk is Bu.
By assumption, Γi |=∗Xα ♦As and Γj |=∗Xα Bu; but by the nature of
access, Γi ⊆ Γk and Γj ⊆ Γk ∪ {At, s.t}; so by L3.1, Γk |=∗Xα ♦As
and Γk ∪ {At, s.t} |=∗Xα Bu. Suppose Γk 6|=∗Xα Bu; then by VXα∗,
there is an Xα interpretation 〈W,N,R, v〉m such that vm(Γk) = 1
but vm(u)(B) = 0. Since s is 0, m(s) ∈ N . Since vm(Γk) = 1,
by VXα∗, vm(s)(♦A) = 1; so, since m(s) ∈ N , by TX(♦), there is
some w ∈ W such that m(s)Rw and vw(A) = 1. Now consider a
map m′ like m except that m′(t) = w, and consider 〈W,N,R, v〉m′ ;
since t does not appear in Γk, it remains that vm′(Γk) = 1; and since
m′(s) = m(s) and m′(t) = w, vm′(t)(A) = 1 and 〈m′(s),m′(t)〉 ∈ R;
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so vm′(Γk ∪ {At, s.t}) = 1; so by VXα∗, vm′(u)(B) = 1. But since
t 6= u, m′(u) = m(u); so vm(u)(B) = 1. This is impossible; reject the
assumption: Γk |=∗Xα Bu, which is to say, Γk |=∗Xα Pk.

(AMη) If Pk arises by AMη, then the picture is like this,

s.t

j Au

k Au

where j < k, t does not appear in any member of Γk (in any undis-
charged premise or assumption) and is not u, and Pk is Au. Where
this rule is included in NXα, Xα includes condition η. By assump-
tion, Γj |=∗Xα Au; but by the nature of access, Γj ⊆ Γk ∪ {s.t}; so
by L3.1, Γk ∪ {s.t} |=∗Xα Au. Suppose Γk 6|=∗Xα Au; then by VXα∗,
there is an Xα interpretation 〈W,N,R, v〉m such that vm(Γk) = 1
but vm(u)(A) = 0. By condition η, there is a w ∈ W such that
m(s)Rw; consider a map m′ like m except that m′(t) = w, and con-
sider 〈W,N,R, v〉m′ ; since t does not appear in Γk, it remains that
vm′(Γk) = 1; and since m′(s) = m(s) and m′(t) = w, 〈m′(s),m′(t)〉 ∈
R; so vm′(Γk ∪ {s.t}) = 1; so by VXα∗, vm′(u)(A) = 1. But since
t 6= u, m′(u) = m(u); so vm(u)(A) = 1. This is impossible; reject the
assumption: Γk |=∗Xα Au, which is to say, Γk |=∗Xα Pk.

(AMρ)

(AMσ)

(AMτ) If Pk arises by AMτ , then the picture is like this,

i s.t

j t.u

k s.u

where i, j < k and Pk is s.u. Where this rule is in NXα, Xα includes
condition τ . By assumption, Γi |=∗Xα s.t and Γj |=∗Xα t.u; but by
the nature of access, Γi ⊆ Γk and Γj ⊆ Γk; so by L3.1, Γk |=∗Xα
s.t and Γk |=∗Xα t.u. Suppose Γk 6|=∗Xα s.u; then by VXα∗, there is
some Xα interpretation 〈W,N,R, v〉m such that vm(Γk) = 1 but
〈m(s),m(u)〉 6∈ R; since vm(Γk) = 1, by VXα∗, 〈m(s),m(t)〉 ∈ R
and 〈m(t),m(u)〉 ∈ R; and by condition τ , for any 〈x, y〉, 〈y, z〉 ∈
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R, 〈x, z〉 ∈ R; so 〈m(s),m(u)〉 ∈ R. This is impossible; reject the
assumption: Γk |=∗Xα s.u, which is to say, Γk |=∗Xα Pk.

———
For any i, Γi |=∗Xα Pi.

Theorem 3.2 NXα is complete: if Γ |=Xα A then Γ ǸXα A.

Suppose Γ |=Xα A; then Γ0 |=∗Xα A0; we show that Γ0 `∗NXα A0. Again, this
reduces to the standard notion. For the following, fix on some particular
constraint(s) α. Then definitions of consistency etc. are relative to it.

Con Γ is consistent iff there is no As such that Γ `∗NXα As and Γ `∗NXα
¬As.

L3.2 If s is 0 or appears in Γ, and Γ 6`∗NXα ¬Ps, then Γ∪ {Ps} is consistent.

Suppose s is 0 or appears in Γ and Γ 6`∗NXα ¬Ps but Γ ∪ {Ps} is
inconsistent. Then there is some At such that Γ ∪ {Ps} `∗NXα At and
Γ ∪ {Ps} `∗NXα ¬At. But then we can argue,

1 Γ

2 Ps A (c, ¬I)

3 At from Γ ∪ {Ps}
4 ¬At from Γ ∪ {Ps}
5 ¬Ps 2-4 ¬I

where the assumption is allowed insofar as s is either 0 or appears in
Γ; so Γ `∗NXα ¬Ps. But this is impossible; reject the assumption: if s
is 0 or introduced in Γ and Γ 6`∗NXα ¬Ps, then Γ ∪ {Ps} is consistent.

L3.3 There is an enumeration of all the subscripted formulas, P1 P2 . . .

Proof by construction as for L2.3 of NKα.

Max Γ is s-maximal iff for any As either Γ `∗NXα As or Γ `∗NXα ¬As.

SgtNα Γ is an Nα scapegoat set iff for every formula of the form (�P ∧
¬�A)s, if Γ `∗NNα (�P ∧¬�A)s then there is some t such that Γ `∗NNα s.t
and Γ `∗NNα ¬At.

SgtLα Γ is an Lα scapegoat set iff for every formula of the form ¬�A0, if
Γ `∗NLα ¬�A0 then there is some t such that Γ `∗NLα 0.t and Γ `∗NLα ¬At.
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C(Γ′)Nα For Γ with unsubscripted formulas and the corresponding Γ0, we
construct Γ′ as follows. Set Ω0 = Γ0. By L3.3, there is an enumera-
tion, P1,P2 . . . of all the subscripted formulas; let E0 be this enumer-
ation. Then for the first As in Ei−1 such that s is 0 or included in
Ωi−1, let Ei be like Ei−1 but without As, and set,

(i) Ωi = Ωi−1 if Ωi−1 `∗NNα ¬As

Ωi∗ = Ωi−1 ∪ {As} if Ωi−1 6`∗NNα ¬As

and
(ii) Ωi = Ωi∗ if As is not of the form (�Q ∧ ¬�Ps)
(iii) Ωi = Ωi∗ ∪ {s.t,¬Pt} if As is of the form (�Q ∧ ¬�P )s

-where t is the first subscript not included in Ωi∗

then
Γ′ =

⋃
i≥0 Ωi

C(Γ′)Lα For Γ with unsubscripted formulas and the corresponding Γ0, we
construct Γ′ as follows. Set Ω0 = Γ0. By L3.3, there is an enumera-
tion, P1,P2 . . . of all the subscripted formulas; let E0 be this enumer-
ation. Then for the first As in Ei−1 such that s is 0 or included in
Ωi−1, let Ei be like Ei−1 but without As, and set,

(i) Ωi = Ωi−1 if Ωi−1 `∗NLα ¬As

Ωi∗ = Ωi−1 ∪ {As} if Ωi−1 6`∗NLα ¬As

and
(ii) Ωi = Ωi∗ if As is not of the form ¬�P0

(iii) Ωi = Ωi∗ ∪ {0.t,¬Pt} if As is of the form ¬�P0

-where t is the first subscript not included in Ωi∗

then
Γ′ =

⋃
i≥0 Ωi

Note that there is always sure to be a subscript t not in Ωi∗ insofar
as there are infinitely many subscripts, and at any stage only finitely
many formulas are added – the only subscripts in the initial Ω0 being
0. Suppose s is introduced in Γ′; then there is some Ωi in which it is
first introduced; and any formula Pj in the original enumeration that
has subscript s is sure to be “considered” for inclusion at a subsequent
stage.

L3.4 For any s included in Γ′, Γ′ is s-maximal.

Suppose s is included in Γ′ but Γ′ is not s-maximal. Then there is
some As such that Γ′ 6`∗NXα As and Γ′ 6`∗NXα ¬As. For any i, each
member of Ωi−1 is in Γ′; so if Ωi−1 `∗NXα ¬As then Γ′ `∗NXα ¬As; but
Γ′ 6`∗NXα ¬As; so Ωi−1 6`∗NXα ¬As; so since s is included in Γ′, there
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is a stage in the construction that sets Ωi∗ = Ωi−1 ∪ {As}; so by
construction, As ∈ Γ′; so Γ′ `∗NXα As. This is impossible; reject the
assumption: Γ′ is s-maximal.

L3.5Nα If Γ0 is consistent, then each Ωi is consistent.

Suppose Γ0 is consistent.

Basis: Ω0 = Γ0 and Γ0 is consistent; so Ω0 is consistent.

Assp: For any i, 0 ≤ i < k, Ωi is consistent.

Show: Ωk is consistent.

Ωk is either (i) Ωk−1, or (ii) Ωk∗ = Ωk−1 ∪ {As} or (iii) Ωk∗ ∪
{s.t,¬Pt}.

(i) Suppose Ωk is Ωk−1. By assumption, Ωk−1 is consistent; so Ωk

is consistent.

(ii) Suppose Ωk is Ωk∗ = Ωk−1 ∪ {As}. Then by construction, s is
0 or in Ωk−1 and Ωk−1 6`∗NNα ¬As; so by L3.2, Ωk−1 ∪ {As} is
consistent; so Ωk is consistent.

(iii) Suppose Ωk is Ωk∗ ∪ {s.t,¬Pt}. In this case, as above, Ωk∗ is
consistent and by construction, (�Q ∧ ¬�P )s ∈ Ωk∗ . Suppose
Ωk is inconsistent. Then there are Au and ¬Au such that
Ωk∗ ∪ {s.t,¬Pt} `∗NNα Au and Ωk∗ ∪ {s.t,¬Pt} `∗NNα ¬Au. So
reason as follows,

1 Ωk∗

2 (�Q ∧ ¬�P )s from Ωk∗

3 �Qs 2 ∧E

4 s.t A (g, �INα)

5 ¬Pt A (c, ¬E)

6 Au from Ωk∗ ∪ {s.t,¬Pt}
7 ¬Au from Ωk∗ ∪ {s.t,¬Pt}
8 Pt 5-7 ¬E

9 �Ps 3,4-8 �INα

where, by construction, t is not in Ωk∗ . So Ωk∗ `∗NNα �Ps; but
(�Q ∧ ¬�P )s ∈ Ωk∗ ; so with (∧E), Ωk∗ `∗NNα ¬�Ps; so Ωk∗ is
inconsistent. This is impossible; reject the assumption: Ωk is
consistent.

———
For any i, Ωi is consistent.
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L3.5Lα If Γ0 is consistent, then each Ωi is consistent.

Suppose Γ0 is consistent.

Basis: Ω0 = Γ0 and Γ0 is consistent; so Ω0 is consistent.

Assp: For any i, 0 ≤ i < k, Ωi is consistent.

Show: Ωk is consistent.

Ωk is either (i) Ωk−1, or (ii) Ωk∗ = Ωk−1 ∪ {As} or (iii) Ωk∗ ∪
{0.t,¬Pt}.

(i) Suppose Ωk is Ωk−1. By assumption, Ωk−1 is consistent; so Ωk

is consistent.

(ii) Suppose Ωk is Ωk∗ = Ωk−1 ∪ {As}. Then by construction, s is
0 or in Ωk−1 and Ωk−1 6`∗NLα ¬As; so by L3.2, Ωk−1 ∪ {As} is
consistent; so Ωk is consistent.

(iii) Suppose Ωk is Ωk∗ ∪ {0.t,¬Pt}. In this case, as above, Ωk∗
is consistent and by construction, ¬�P0 ∈ Ωk∗ . Suppose Ωk

is inconsistent. Then there are Au and ¬Au such that Ωk∗ ∪
{0.t,¬Pt} `∗NLα Au and Ωk∗ ∪{0.t,¬Pt} `∗NLα ¬Au. So reason as
follows,

1 Ωk∗

2 0.t A (g, �ILα)

3 ¬Pt A (c, ¬E)

4 Au from Ωk∗ ∪ {0.t,¬Pt}
5 ¬Au from Ωk∗ ∪ {0.t,¬Pt}
6 Pt 3-5 ¬E

7 �Ps 2-6 �ILα

where, by construction, t is not in Ωk∗ . So Ωk∗ `∗NLα �Ps; but
¬�P0 ∈ Ωk∗ ; so Ωk∗ `∗NLα ¬�P0; so Ωk∗ is inconsistent. This is
impossible; reject the assumption: Ωk is consistent.

———
For any i, Ωi is consistent.

L3.6 If Γ0 is consistent, then Γ′ is consistent.

Suppose Γ0 is consistent, but Γ′ is not; from the latter, there is some
Ps such that Γ′ `∗NXα Ps and Γ′ `∗NXα ¬Ps. Consider derivations D1 and
D2 of these results, and the premises Pi . . .Pj of these derivations. By
construction, there is an Ωk with each of these premises as a member;
so D1 and D2 are derivations from Ωk; so Ωk is not consistent. But
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since Γ0 is consistent, by L3.5, Ωk is consistent. This is impossible;
reject the assumption: if Γ0 is consistent then Γ′ is consistent.

L3.7Nα If Γ0 is consistent, then Γ′ is an Nα scapegoat set.

Suppose Γ0 is consistent and Γ′ `∗NNα (�Q ∧ ¬�P )s. By L3.6, Γ′ is
consistent; and by the constraints on subscripts, s is included in Γ′.
Since Γ′ is consistent, Γ′ 6`∗NNα ¬(�Q ∧ ¬�P )s; so there is a stage in
the construction process where Ωi∗ = Ωi−1 ∪ {(�Q ∧ ¬�P )s} and
Ωi = Ωi∗ ∪ {s.t,¬Pt}; so by construction, s.t ∈ Γ′ and ¬Pt ∈ Γ′; so
Γ′ `∗NNα s.t and Γ′ `∗NNα ¬Pt. So Γ′ is an Nα scapegoat set.

L3.7Lα If Γ0 is consistent, then Γ′ is an Lα scapegoat set.

Suppose Γ0 is consistent and Γ′ `∗NLα ¬�P0. By L3.6, Γ′ is consistent;
and subscript 0 is included in Γ′. Since Γ′ is consistent, Γ′ 6`∗NLα ¬¬�P0;
so there is a stage in the construction process where Ωi∗ = Ωi−1 ∪
{¬�P0} and Ωi = Ωi∗ ∪ {0.t,¬Pt}; so by construction, 0.t ∈ Γ′ and
¬Pt ∈ Γ′; so Γ′ `∗NLα 0.t and Γ′ `∗NLα ¬Pt. So Γ′ is an Lα scapegoat set.

C(I)Nα We construct an interpretation I = 〈W,N,R, v〉 based on Γ′ as
follows. Let W have a member ws corresponding to each subscript
s included in Γ′. Then set ws ∈ N iff there is some Q such that
Γ′ `∗NNα �Qs; for any ws 6∈ N and any A of the form �P or ♦P , set
vws(�P ) = 0 and vws(♦P ) = 1; set R = {〈ws, ws〉 | ws ∈ (W −N)} ∪
{〈ws, wt〉 | Γ′ `∗NNα s.t}; and vws(p) = 1 iff Γ′ `∗NNα ps.
Note that w0 ∈ N : By a simple derivation, `∗NXα �>0; so Γ′ `∗NXα �>0;
so w0 ∈ N .

C(I)Lα We construct an interpretation I = 〈W,N,R, v〉 based on Γ′ as
follows. Let W have a member ws corresponding to each subscript
s included in Γ′. Then set ws ∈ N iff s is 0; for any ws 6∈ N and
any A of the form �P or ♦P , set vws(A) = 1 iff Γ′ `∗NLα As; set
R = {〈ws, ws〉|ws ∈ (W−N)}∪{〈ws, wt〉|Γ′ `∗NLα s.t}; and vws(p) = 1
iff Γ′ `∗NLα ps.

L3.8 If Γ0 is consistent then for 〈W,N,R, v〉 constructed as above, and for
any s included in Γ′, vws(A) = 1 iff Γ′ `∗NXα As.
Suppose Γ0 is consistent and s is included in Γ′. By L3.4, Γ′ is s-
maximal. By L3.6 and L3.7, Γ′ is consistent and an Xα scapegoat
set. Now by induction on the number of operators in As,
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Basis: If As has no operators, then it is a parameter ps and by
construction, vws(p) = 1 iff Γ′ `∗NXα ps. So vws(A) = 1 iff
Γ′ `∗NXα As.

Assp: For any i, 0 ≤ i < k, if As has i operators, then vws(A) = 1 iff
Γ′ `∗NXα As.

Show: If As has k operators, then vws(A) = 1 iff Γ′ `∗NXα As.
If As has k operators, then it is of the form ¬Ps, (P ⊃ Q)s,
(P ∧Q)s, (P ∨Q)s, (P ≡ Q)s, �Ps or ♦Ps where P and Q have
< k operators.

(¬) As is ¬Ps. (i) Suppose vws(A) = 1; then vws(¬P ) = 1; so
by TX(¬), vws(P ) = 0; so by assumption, Γ′ 6`∗NXα Ps; so by
s-maximality, Γ′ `∗NXα ¬Ps, where this is to say, Γ′ `∗NXα As.
(ii) Suppose Γ′ `∗NXα As; then Γ′ `∗NXα ¬Ps; so by consistency,
Γ′ 6`∗NXα Ps; so by assumption, vws(P ) = 0; so by TX(¬),
vws(¬P ) = 1, where this is to say, vws(A) = 1. So vws(A) = 1
iff Γ′ `∗NXα As.

(⊃) As is (P ⊃ Q)s. (i) Suppose vws(A) = 1 but Γ′ 6`∗NXα As; then
vws(P ⊃ Q) = 1 but Γ′ 6`∗NXα (P ⊃ Q)s. From the latter, by s-
maximality, Γ′ `∗NXα ¬(P ⊃ Q)s; from this it follows, by simple
derivations, that Γ′ `∗NXα Ps and Γ′ `∗NXα ¬Qs; so by consistency,
Γ′ 6`∗NXα Qs; so by assumption, vws(P ) = 1 and vws(Q) = 0; so
by TX(⊃), vws(P ⊃ Q) = 0. This is impossible; reject the
assumption: if vws(A) = 1 then Γ′ `∗NXα As.
(ii) Suppose Γ′ `∗NXα As but vws(A) = 0; then Γ′ `∗NXα (P ⊃ Q)s
but vws(P ⊃ Q) = 0. From the latter, by TX(⊃), vws(P ) = 1
and vws(Q) = 0; so by assumption, Γ′ `∗NXα Ps and Γ′ 6`∗NXα Qs;
but since Γ′ `∗NXα (P ⊃ Q)s and Γ′ `∗NXα Ps, by (⊃E), Γ′ `∗NXα
Qs. This is impossible; reject the assumption: if Γ′ `∗NXα As,
then vws(A) = 1. So vws(A) = 1 iff Γ′ `∗NXα As.

(∧)

(∨)

(≡)

(�)Nα As is �Ps. (i) Suppose vws(A) = 1 but Γ′ 6`∗NNα As; then
vws(�P ) = 1 but Γ′ 6`∗NNα �Ps. From the former, by construc-
tion, ws ∈ N ; so by construction, there is some Q such that
Γ′ `∗NNα �Qs; from the latter, by s-maximality, Γ′ `∗NNα ¬�Ps; so
by (∧I), Γ′ `∗NNα (�Q∧¬�P )s; so, since Γ′ is an Nα scapegoat
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set, there is some t such that Γ′ `∗NNα s.t and Γ′ `∗NNα ¬Pt; from
the first, by construction, 〈ws, wt〉 ∈ R; and from the second,
by consistency, Γ′ 6`∗NNα Pt; so by assumption, vwt(P ) = 0; but
wsRwt; so by TX(�), vws(�P ) = 0. This is impossible; reject
the assumption: if vws(A) = 1, then Γ′ `∗NNα As.
(ii) Suppose Γ′ `∗NNα As but vws(A) = 0; then Γ′ `∗NNα �Ps but
vws(�P ) = 0. From the former, by construction, ws ∈ N ; so
with the latter, by TX(�), there is some wt ∈ W such that
wsRwt and vwt(P ) = 0; so by assumption, Γ′ 6`∗NNα Pt; but
since wsRwt and ws ∈ N , by construction, Γ′ `∗NNα s.t; so by
(�ENα), Γ′ `∗NNα Pt. This is impossible; reject the assumption:
if Γ′ ǸNα As then vws(A) = 1. So vws(A) = 1 iff Γ′ `∗NNα As.

(�)Lα As is �Ps. If ws 6∈ N , then by construction, vws(A) = 1 iff
Γ′ `∗NLα As. So suppose ws ∈ N ; then by construction, s is 0.
(i) Suppose vw0(A) = 1 but Γ′ 6`∗NLα A0; then vw0(�P ) = 1 but
Γ′ 6`∗NLα �P0. From the latter, by s-maximality, Γ′ `∗NLα ¬�P0;
so, since Γ′ is an Lα scapegoat set, there is some t such that
Γ′ `∗NLα 0.t and Γ′ `∗NLα ¬Pt; from the first, by construction,
〈w0, wt〉 ∈ R; and from the second, by consistency, Γ′ 6`∗NLα Pt;
so by assumption, vwt(P ) = 0; but w0Rwt; so by TX(�),
vw0(�P ) = 0. This is impossible; reject the assumption: if
vw0(A) = 1, then Γ′ `∗NLα A0.

(ii) Suppose Γ′ `∗NLα A0 but vw0(A) = 0; then Γ′ `∗NLα �P0

but vw0(�P ) = 0. w0 ∈ N ; so with the latter, by TX(�),
there is some wt ∈ W such that w0Rwt and vwt(P ) = 0; so
by assumption, Γ′ 6`∗NLα Pt; but since w0Rwt and w0 ∈ N , by
construction, Γ′ `∗NLα 0.t; so by (�ELα), Γ′ `∗NLα Pt. This is
impossible; reject the assumption: if Γ′ ǸLα A0 then vw0(A) =
1. So vws(A) = 1 iff Γ′ `∗NLα As.

(♦)Nα As is ♦Ps. (i) Suppose vws(A) = 1 but Γ′ 6`∗NNα As; then
vws(♦P ) = 1 but Γ′ 6`∗NNα ♦Ps; from the latter, by s-maximality,
Γ′ `∗NNα ¬♦Ps; so by (MN), Γ′ `∗NNα �¬Ps; so by construction,
ws ∈ N ; so, with the former, by TX(♦), there is some wt ∈W
such that wsRwt and vwt(P ) = 1; so by assumption, Γ′ `∗NNα Pt;
but since wsRwt and ws ∈ N , by construction, Γ′ `∗NNα s.t; so
by (♦INα), Γ′ `∗NNα ♦Ps. This is impossible; reject the assump-
tion: if vws(A) = 1 then Γ′ `∗NNα As.
(ii) Suppose Γ′ `∗NNα As but vws(A) = 0; then Γ′ `∗NNα ♦Ps
but vws(♦P ) = 0. From the latter, by construction, ws ∈ N ;
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so by construction, there is some Q such that Γ′ `∗NNα �Qs;
from the former, by (MN), Γ′ `∗NNα ¬�¬Ps; so by (∧I), Γ′ `∗NNα
(�Q ∧ ¬�¬P )s; so, since Γ′ is an Nα scapegoat set, there is
some t such that Γ′ `∗NNα s.t and Γ′ `∗NNα ¬¬Pt; from the first, by
construction, 〈ws, wt〉 ∈ R; from the second, by (DN), Γ′ `∗NNα
Pt; so by assumption, vwt(P ) = 1; so since wsRwt by TX(♦),
vws(♦P ) = 1. This is impossible; reject the assumption: if
vws(A) = 1 then Γ′ `∗NNα As. So vws(A) = 1 iff Γ′ `∗NNα As.

(♦)Lα As is ♦Ps. If ws 6∈ N , then by construction, vws(A) = 1 iff
Γ′ `∗NLα As. So suppose ws ∈ N ; then by construction, s is 0.
(i) Suppose vw0(A) = 1 but Γ′ 6`∗NLα A0; then vw0(♦P ) = 1 but
Γ′ 6`∗NLα ♦P0; from the latter, by s-maximality, Γ′ `∗NLα ¬♦P0;
Since w0 ∈ N , with the former, by TX(♦), there is some
wt ∈ W such that w0Rwt and vwt(P ) = 1; so by assumption,
Γ′ `∗NLα Pt; but since w0Rwt and w0 ∈ N , by construction,
Γ′ `∗NLα 0.t; so by (♦ILα), Γ′ `∗NLα ♦P0. This is impossible; reject
the assumption: if vw0(A) = 1 then Γ′ `∗NLα A0.

(ii) Suppose Γ′ `∗NLα A0 but vw0(A) = 0; then Γ′ `∗NLα ♦P0 but
vw0(♦P ) = 0. From the former, by (MN), Γ′ `∗NLα ¬�¬P0;
so, since Γ′ is an Lα scapegoat set, there is some t such that
Γ′ `∗NLα 0.t and Γ′ `∗NLα ¬¬Pt; from the first, by construction,
〈w0, wt〉 ∈ R; from the second, by (DN), Γ′ `∗NLα Pt; so by
assumption, vwt(P ) = 1; so since w0Rwt by TX(♦), vw0(♦P ) =
1. This is impossible; reject the assumption: if vw0(A) = 1
then Γ′ `∗NLα A0. So vws(A) = 1 iff Γ′ `∗NLα As.

———
For any As, vws(A) = 1 iff Γ′ `∗NXα As.

L3.9 If Γ0 is consistent, then 〈W,N,R, v〉 constructed as above is an Xα
interpretation.

In each case, we need to show that the interpretation meets the con-
dition(s) α. Suppose Γ0 is consistent.

(η)Nα Suppose α includes condition η and ws ∈W . If ws 6∈ N , then
by construction, 〈ws, ws〉 ∈ R and η is satisfied. So suppose
ws ∈ N . Then by construction, there is some Q such that
Γ′ `∗NNα �Qs; so by reasoning as follows,
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1 Γ′

2 �Qs from Γ′

3 s.t A (g, AMη)

4 >t > is a tautology

5 ♦>s 3,4 ♦I

6 ♦>s 3-5 AMη

7 ¬�¬>s 6 MN

8 (�Q ∧ ¬�¬>)s 2,7 ∧I

Γ′ `∗NNα (�Q ∧ ¬�¬>)s; but by L3.7, Γ′ is an Nα scapegoat
set; so there is a t such that Γ′ `∗NNα s.t; so by construction,
〈ws, wt〉 ∈ R and η is satisfied.

(η)Lα Suppose α includes condition η and ws ∈W . If ws 6∈ N , then
by construction, 〈ws, ws〉 ∈ R and η is satisfied. So suppose
ws ∈ N . Then by construction, s is 0; so by reasoning as
follows,

1 Γ′

2 0.t A (g, AMη)

3 >t > is a tautology

4 ♦>0 3,4 ♦I

6 ♦>0 3-5 AMη

5 ¬�¬>0 6 MN

Γ′ `∗NLα ¬�¬>0; but by L3.7, Γ′ is a Lα scapegoat set; so there
is a t such that Γ′ `∗NLα 0.t; so by construction, 〈w0, wt〉 ∈ R
and η is satisfied.

(ρ) Suppose α includes condition ρ and ws ∈ W . Then by con-
struction, s is a subscript in Γ′; so by (AMρ), Γ′ `∗NXα s.s; so
by construction, 〈ws, ws〉 ∈ R and ρ is satisfied.

(σ) Suppose α includes condition σ and 〈ws, wt〉 ∈ R. If ws = wt
then σ is satisfied automatically. So suppose ws 6= wt; then
by construction, Γ′ `∗NXα s.t; so by (AMσ), Γ′ `∗NXα t.s; so by
construction, 〈wt, ws〉 ∈ R and σ is satisfied.

(τ) Suppose α includes condition τ and 〈ws, wt〉, 〈wt, wu〉 ∈ R. If
ws = wt or wt = wu, then τ is satisfied automatically. So sup-
pose ws 6= wt and wt 6= wu; then by construction, Γ′ `∗NXα s.t
and Γ′ `∗NXα t.u; so by (AMτ), Γ′ `∗NXα s.u; so by construction,
〈ws, wu〉 ∈ R and τ is satisfied.

Map For any ws ∈W , set m(s) = ws; otherwise m(s) is arbitrary.
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L3.10 If Γ0 is consistent, then vm(Γ0) = 1.

Suppose Γ0 is consistent and A0 ∈ Γ0; then by construction, A0 ∈ Γ′;
so Γ′ `∗NXα A0; so since Γ0 is consistent, by L3.8, vw0(A) = 1. And
similarly for any A0 ∈ Γ0. But m(0) = w0; so vm(Γ0) = 1.

Main result: Suppose Γ |=Xα A but Γ 6 ǸXα A. Then Γ0 |=∗Xα A0 but
Γ0 6`∗NXα A0. By (DN), if Γ0 `∗NXα ¬¬A0, then Γ0 `∗NXα A0; so Γ0 6`∗NXα ¬¬A0; so
by L3.2, Γ0∪{¬A0} is consistent; so by L3.9 and L3.10, there is an Xα in-
terpretation 〈W,N,R, v〉m constructed as above such that vm(Γ0∪{¬A0}) =
1; so vm(0)(¬A) = 1; so by TX(¬), vm(0)(A) = 0; so vm(Γ0) = 1 and
vm(0)(A) = 0; so by VXα∗, Γ0 6|=∗Xα A0. This is impossible; reject the as-
sumption: if Γ |=Xα A, then Γ ǸXα A.

4 Conditional Logics: Cx (ch. 5)

4.1 Language / Semantic Notions

LCx The vocabulary consists of propositional parameters p0, p1 . . . with
the operators, ¬, ∧, ∨, ⊃, ≡, �, ♦ and >. Each propositional param-
eter is a formula; if A and B are formulas, so are ¬A, (A ∧ B),
(A ∨B), (A ⊃ B), (A ≡ B), �A, ♦A and (A > B).

ICx Where = is the set of all formulas in the language, an interpre-
tation is 〈W, {RA | A ∈ =}, v〉 where W is a set of worlds, and
v assigns 0 or 1 to parameters at worlds. The middle term is a
set of access relations: for any formula A, there is an access rela-
tion RA which says which worlds are A-accessible from any w. Say
fA(w) = {x ∈W |wRAx}, and [A] = {w |vw(A) = 1}. Then, where x
is empty or indicates some combination of the following constraints,

(1) fA(w) ⊆ [A]

(2) If w ∈ [A], then w ∈ fA(w)

(3) If [A] 6= φ, then fA(w) 6= φ

(4) If fA(w) ⊆ [B] and fB(w) ⊆ [A], then fA(w) = fB(w)

(5) If fA(w) ∩ [B] 6= φ, then fA∧B(w) ⊆ fA(w)

(6) If x ∈ fA(w) and y ∈ fA(w), then x = y

(7) If x ∈ [A], and y ∈ fA(x), then x = y
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〈W, {RA | A ∈ =}, v〉 is a Cx interpretation when it meets the con-
straints from x. System C has none of the extra constraints; C+ is
C with constraints (1) - (2); CS is C with constraints (1) - (5); C1
is C with constraints (1) - (5) and (7); C2 is C with constraints (1)
- (5) and (6).

TC For complex expressions,

(¬) vw(¬A) = 1 if vw(A) = 0, and 0 otherwise.

(∧) vw(A ∧B) = 1 if vw(A) = 1 and vw(B) = 1, and 0 otherwise.

(∨) vw(A ∨B) = 1 if vw(A) = 1 or vw(B) = 1, and 0 otherwise.

(⊃) vw(A ⊃ B) = 1 if vw(A) = 0 or vw(B) = 1, and 0 otherwise.

(≡) vw(A ≡ B) = 1 if vw(A) = vw(B), and 0 otherwise.

(♦)υ vw(♦A) = 1 if some x ∈W has vx(A) = 1, and 0 otherwise.

(�)υ vw(�A) = 1 if all x ∈W have vx(A) = 1, and 0 otherwise.

(>) vw(A > B) = 1 iff all x ∈W such that wRAx have vx(B) = 1.

For a set Γ of formulas, vw(Γ) = 1 iff vw(A) = 1 for each A ∈ Γ; then,

VCx Γ |=Cx A iff there is no Cx interpretation 〈W, {RA | A ∈ =}, v〉 and
w ∈W such that vw(Γ) = 1 and vw(A) = 0.

4.2 Natural Derivations: NCx

Derivation systems NCx take over ¬, ⊃, ∧, ∨, ≡, � and ♦ rules from NKυ.
Thus modal rules are,

�Iυ >t

Pt

�Ps
where t does not appear in any undischarged
premise or assumption

♦Eυ ♦Ps
Pt

Qu

Qu
where t does not appear in any undischarged
premise or assumption and is not u

�Eυ �Ps

Pt

♦Iυ Pt

♦Ps

For >, let there be new subscripted expressions of the sort As/t – which
intuitively say wsRAwt. Expressions of this sort do not interact with other
formulas except as follows (and so do not interact with rules of NKυ):
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>I Ps/t

Qt

(P > Q)s
where t does not appear in any undischarged
premise or assumption

6>E ¬(P > Q)s
Ps/t
¬Qt

Ru

Ru
where t does not appear in any undischarged
premise or assumption and is not u

>E (P > Q)s
Ps/t

Qt

6>I Ps/t
¬Qt

¬(P > Q)s

Corresponding to constraints (1) - (7) are AMP1, AMP2, AMS1, AMS2, AMS3,
AMRS, and two forms of AMDL. For AMRS A(t) is an expression of the sort
Qt, Qt/v, Qv/t or Qt/t with a subscript t, and A(u) is like A(t) except that
some instance(s) of t are replaced by u. And similarly for AMDL.

AMP1 Ps/t

Pt

AMP2 Pt

Pt/t

AMS1 ♦Ps
Ps/t

Qu

Qu
where t does not appear in
any undischarged premise
or assumption and is not u

AMS2 (P > Q)s
(Q > P )s
Ps/t

Qs/t

AMS3 ¬(P > ¬Q)s
(P ∧Q)s/t

Ps/t

AMRS Ps/t
Ps/u
A(t)

A(u)

AMDL Ps Ps
Ps/t Ps/t
A(t) A(s)

A(s) A(t)

In these systems, every subscript is 0, appears in a premise, or appears in
the t-place of an assumption for �Iυ, ♦Eυ, >I, 6>E or AMS1. Intuitively there
are plus rules, rules for the sphere conception, and rules for the Stalnaker
and Lewis alternatives. NC includes just the rules of NKυ plus >I, >E, 6>I
and 6>E (but, as below, the latter two are derived). Then,

NC+ has the rules of NC plus AMP1, AMP2

NCS has the rules of NC plus AMP1, AMP2, AMS1, AMS2, AMS3

NC1 has the rules of NC plus AMP1, AMP2, AMS1, AMS2, AMS3, AMDL
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NC2 has the rules of NC plus AMP1, AMP2, AMS1, AMS2, AMS3, AMRS

Derived rules carry over from NKα. Where Γ is a set of unsubscripted
formulas, let Γ0 be those same formulas each with subscript 0. Then,

NCx Γ ǸCx A iff there is an NCx derivation of A0 from Γ0.

Examples. As first examples, 6>I and 6>E are derived rules in NC, and so
in any NCx.

6>I

1 Ps/t P

2 ¬Qt P

3 (P > Q)s A (c, ¬I)

4 Qt 1,3 >E

5 ¬Qt 2 R

6 ¬(P > Q)s 3-5 ¬I

6>E

1 ¬(P > Q)s P

2 ¬Ru A (c, ¬E)

3 Ps/t A (g, >I)

4 ¬Qt A (c, ¬E)

... from 1,3,4

5 Ru as for 6>E

6 ¬Ru 2 R

7 Qt 4-6 ¬E

8 (P > Q)s 3-7 >I

9 ¬(P > Q)s 1 R

10 Ru 2-9 ¬E

As final examples, here is a case in NCS using AMS3 and then again in NC2
but without appeal to AMS3 (so that AMS3 is not necessary in NC2 for the
result). This last case is a bit messy, but should nicely illustrate use of the
rules.
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A > B,¬(A > ¬C) ǸCS (A ∧ C) > B

1 (A > B)0 P

2 ¬(A > ¬C)0 P

3 (A ∧ C)0/1 A (g, >I)

4 A0/1 2,3 AMS3

5 B1 1,4 >E

6 [(A ∧ C) > B]0 3-5 >I

A > B,¬(A > ¬C) ǸC2 (A ∧ C) > B

1 (A > B)0 P

2 ¬(A > ¬C)0 P

3 A0/1 A (g, 2 6>E)

4 ¬¬C1

5 (A ∧ C)0/2 A (g, >I)

6 (A ∧ C)0/3 A (g, >I)

7 (A ∧ C)3 6 AMP1

8 A3 7 ∧E

9 [(A ∧ C) > A]0 6-8 >I

10 A0/3 A (g, >I)

11 A3 10 AMP1

12 ¬¬C3 3,10,4 AMRS

13 C3 12 DN

14 (A ∧ C)3 11,13 ∧I

15 [A > (A ∧ C)]0 10-14 >I

16 A0/2 9,15,5 AMS2

17 B2 1,16 >E

18 [(A ∧ C) > B]0 5-17 >I

19 [(A ∧ C) > B]0 2,3-18 6>E

The derivation on the left is a simple application of AMS3. On the right, we
go for the final goal by 6>E.4 The real work is getting A0/2 so that we can
use >E with (1). And we go for this by getting the conditionals that feed
into AMS2, given that we already have (A ∧ C)0/2.

4.3 Soundness and Completeness

Preliminaries: Begin with generalized notions of validity. For a model
〈W, {RA |A ∈ =}, v〉, let m be a map from subscripts into W . Say 〈W, {RA |
A ∈ =}, v〉m is 〈W, {RA |A ∈ =}, v〉 with map m. Then, where Γ is a set of
expressions of our language for derivations, vm(Γ) = 1 iff for each As ∈ Γ,
vm(s)(A) = 1, and for each As/t ∈ Γ, m(t) ∈ fA(m(s)). Now expand no-
tions of validity to include subscripted formulas, and alternate expressions
as indicated in double brackets.

VCx* Γ |=∗Cx As [[As/t]] iff there is no Cx interpretation 〈W, {RA|A ∈ =}, v〉m
such that vm(Γ) = 1 but vm(s)(A) = 0 [[m(t) 6∈ fA(m(s))]].

4As, given strategies from [6, chapter 6], we would jump on ∨E, ∃E or ♦E when avail-
able.
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NCx* Γ `∗NCx As [[As/t]] iff there is an NCx derivation of As [[As/t]] from the
members of Γ.

These notions reduce to the standard ones when all the members of Γ and A
have subscript 0 (and so do not include expressions of the sort As/t). This
is obvious for NCx*. In the other case, there is a 〈W, {RA | A ∈ =}, v〉m
and w ∈W that makes all the members of Γ0 true and A0 false just in case
there is a world in W that makes the unsubscripted members of Γ true and
A false. For the following, cases omitted are like ones worked, and so left to
the reader.

Theorem 4.1 NCx is sound: If Γ ǸCx A then Γ |=Cx A.

L4.1 If Γ ⊆ Γ′ and Γ |=∗Cx Ps [[Ps/t]], then Γ′ |=∗Cx Ps [[Ps/t]].

Reasoning parallel to that for L2.1 of NKα.

Main result: For each line in a derivation let Pi be the expression on line i
and Γi be the set of all premises and assumptions whose scope includes line
i. We set out to show “generalized” soundness: if Γ `∗NCx P then Γ |=∗Cx P.
Suppose Γ `∗NCx P. Then there is a derivation of P from premises in Γ where P
appears under the scope of the premises alone. By induction on line number
of this derivation, we show that for each line i of this derivation, Γi |=∗Cx Pi.
The case when Pi = P is the desired result.

Basis: P1 is a premise or an assumption As [[As/t]]. Then Γ1 = {As}
[[{As/t}]]; so for any 〈W, {RA |A ∈ =}, v〉m, vm(Γ1) = 1 iff vm(s)(A) =
1 [[m(t) ∈ fA(m(s))]]; so there is no 〈W, {RA | A ∈ =}, v〉m such that
vm(Γ1) = 1 but vm(s)(A) = 0 [[m(t) 6∈ fA(m(s))]]. So by VCx*,
Γ1 |=∗Cx As [[As/t]], where this is just to say, Γ1 |=∗Cx P1.

Assp: For any i, 1 ≤ i < k,Γi |=∗Cx Pi.

Show: Γk |=∗Cx Pk.
Pk is either a premise, an assumption, or arises from previous lines
by R, ⊃I, ⊃E, ∧I, ∧E, ¬I, ¬E, ∨I, ∨E, ≡I, ≡E, �Iυ, �Eυ, ♦Iυ, ♦Eυ,
>I, >E or, depending on the system, AMP1, AMP2, AMS1, AMS2,
AMS3, AMRS or AMDL. If Pk is a premise or an assumption, then as
in the basis, Γk |=∗Cx Pk. So suppose Pk arises by one of the rules.

(R)

(⊃I)
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(⊃E) If Pk arises by ⊃E, then the picture is like this,

i (A ⊃ B)s
j As

k Bs

where i, j < k and Pk is Bs. By assumption, Γi |=∗Cx (A ⊃ B)s and
Γj |=∗Cx As; but by the nature of access, Γi ⊆ Γk and Γj ⊆ Γk; so by
L4.1, Γk |=∗Cx (A ⊃ B)s and Γk |=∗Cx As. Suppose Γk 6|=∗Cx Bs; then by
VCx*, there is some Cx interpretation 〈W, {RA | A ∈ =}, v〉m such
that vm(Γk) = 1 but vm(s)(B) = 0; since vm(Γk) = 1, by VCx*,
vm(s)(A ⊃ B) = 1 and vm(s)(A) = 1; from the former, by TC(⊃),
vm(s)(A) = 0 or vm(s)(B) = 1; so vm(s)(B) = 1. This is impossible;
reject the assumption: Γk |=∗Cx Bs, which is to say, Γk |=∗Cx Pk.

(∧I)

(∧E)

(¬I) If Pk arises by ¬I, then the picture is like this,

As

i Bt
j ¬Bt
k ¬As

where i, j < k and Pk is ¬As. By assumption, Γi |=∗Cx Bt and Γj |=∗Cx
¬Bt; but by the nature of access, Γi ⊆ Γk∪{As} and Γj ⊆ Γk∪{As};
so by L4.1, Γk ∪ {As} |=∗Cx Bt and Γk ∪ {As} |=∗Cx ¬Bt. Suppose
Γk 6|=∗Cx ¬As; then by VCx*, there is a Cx interpretation 〈W, {RA|A ∈
=}, v〉m such that vm(Γk) = 1 but vm(s)(¬A) = 0; so by TC(¬),
vm(s)(A) = 1; so vm(Γk) = 1 and vm(s)(A) = 1; so vm(Γk∪{As}) = 1;
so by VCx*, vm(t)(B) = 1 and vm(t)(¬B) = 1; from the latter, by
TC(¬), vm(t)(B) = 0. This is impossible; reject the assumption:
Γk |=∗Cx ¬As, which is to say, Γk |=∗Cx Pk.

(¬E)

(∨I)

(∨E)

(≡I)
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(≡E)

(�Iυ) If Pk arises by �Iυ, then the picture is like this,

>t

i At

k �As

where i < k, t does not appear in any member of Γk (in any undis-
charged premise or assumption), and Pk is �As. By assumption,
Γi |=∗Cx At; but by the nature of access, Γi ⊆ Γk ∪ {>t}; so by L4.1,
Γk ∪ {>t} |=∗Cx At. Suppose Γk 6|=∗Cx �As; then by VCx*, there is
a Cx interpretation 〈W, {RA | A ∈ =}, v〉m such that vm(Γk) = 1
but vm(s)(�A) = 0; so by TC(�)υ, there is some w ∈ W such that
vw(A) = 0. Now consider a map m′ like m except that m′(t) = w,
and consider 〈W, {RA | A ∈ =}, v〉m′ ; since t does not appear in Γk,
it remains that vm′(Γk) = 1; and, as at any world, vm′(t)(>) = 1; so
vm′(Γk ∪ {>t}) = 1; so by VCx*, vm′(t)(A) = 1. But m′(t) = w; so
vw(A) = 1. This is impossible; reject the assumption: Γk |=∗Cx �As,
which is to say, Γk |=∗Cx Pk.

(�Eυ) If Pk arises by �Eυ, then the picture is like this,

i �As

k At

where i < k and Pk is At. By assumption, Γi |=∗Cx �As; but by the
nature of access, Γi ⊆ Γk; so by L4.1, Γk |=∗Cx �As. Suppose Γk 6|=∗Cx
At; then by VCx*, there is some Cx interpretation 〈W, {RA | A ∈
=}, v〉m such that vm(Γk) = 1 but vm(t)(A) = 0; since vm(Γk) = 1,
by VCx*, vm(s)(�A) = 1; so by TC(�)υ, any w has vw(A) = 1; so
vm(t)(A) = 1. This is impossible; reject the assumption: Γk |=∗Cx At,
which is to say, Γk |=∗Cx Pk.

(♦Iυ)

(♦Eυ) If Pk arises by ♦Eυ, then the picture is like this,

i ♦As
At

j Bu

k Bu
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where i, j < k, t does not appear in any member of Γk (in any undis-
charged premise or assumption) and is not u, and Pk is Bu. By
assumption, Γi |=∗Cx ♦As and Γj |=∗Cx Bu; but by the nature of access,
Γi ⊆ Γk and Γj ⊆ Γk∪{At}; so by L4.1, Γk |=∗Cx ♦As and Γk∪{At} |=∗Cx
Bu. Suppose Γk 6|=∗Cx Bu; then by VCx*, there is a Cx interpretation
〈W, {RA |A ∈ =}, v〉m such that vm(Γk) = 1 but vm(u)(B) = 0. Since
vm(Γk) = 1, by VCx*, vm(s)(♦A) = 1; so by TC(♦)υ, there is some
w ∈ W such that vw(A) = 1. Now consider a map m′ like m except
that m′(t) = w, and consider 〈W, {RA | A ∈ =}, v〉m′ ; since t does
not appear in Γk, it remains that vm′(Γk) = 1; and since m′(t) = w,
vm′(t)(A) = 1; so vm′(Γk ∪ {At}) = 1; so by VCx*, vm′(u)(B) = 1.
But since t 6= u, m′(u) = m(u); so vm(u)(B) = 1. This is impossible;
reject the assumption: Γk |=∗Cx Bu, which is to say, Γk |=∗Cx Pk.

(>I) If Pk arises by >I, then the picture is like this,

As/t

i Bt

k (A > B)s

where i < k, t does not appear in any member of Γk (in any undis-
charged premise or assumption), and Pk is (A > B)s. By assumption,
Γi |=∗Cx Bt; but by the nature of access, Γi ⊆ Γk ∪ {As/t}; so by L4.1,
Γk ∪ {As/t} |=∗Cx Bt. Suppose Γk 6|=∗Cx (A > B)s; then by VCx*, there
is a Cx interpretation 〈W, {RA | A ∈ =}, v〉m such that vm(Γk) = 1
but vm(s)(A > B) = 0; so by TC(>), there is some w ∈W such that
m(s)RAw but vw(B) = 0. Now consider a map m′ like m except
that m′(t) = w, and consider 〈W, {RA | A ∈ =}, v〉m′ ; since t does
not appear in Γk, it remains that vm′(Γk) = 1; and since m′(t) = w
and m′(s) = m(s), 〈m′(s),m′(t)〉 ∈ RA; so vm′(Γk ∪ {As/t}) = 1; so
by VCx*, vm′(t)(B) = 1. But m′(t) = w; so vw(B) = 1. This is
impossible; reject the assumption: Γk |=∗Cx (A > B)s, which is to say,
Γk |=∗Cx Pk.

(>E) If Pk arises by >E, then the picture is like this,

i (A > B)s
j As/t

k Bt

where i, j < k and Pk is Bt. By assumption, Γi |=∗Cx (A > B)s and
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Γj |=∗Cx As/t; but by the nature of access, Γi ⊆ Γk and Γj ⊆ Γk;
so by L4.1, Γk |=∗Cx (A > B)s and Γk |=∗Cx As/t. Suppose Γk 6|=∗Cx
Bt; then by VCx*, there is some Cx interpretation 〈W, {RA | A ∈
=}, v〉m such that vm(Γk) = 1 but vm(t)(B) = 0; since vm(Γk) = 1, by
VCx*, vm(s)(A > B) = 1 and 〈m(s),m(t)〉 ∈ RA; from the former,
by TC(>), any w ∈ W such that m(s)RAw has vw(B) = 1; so
vm(t)(B) = 1. This is impossible; reject the assumption: Γk |=∗Cx Bt,
which is to say, Γk |=∗Cx Pk.

(AMP1) If Pk arises by AMP1, then the picture is like this,

i As/t

k At

where i < k and Pk is At. Where this rule is in NCx, Cx includes
condition (1). By assumption, Γi |=∗Cx As/t; but by the nature of
access, Γi ⊆ Γk; so by L4.1, Γk |=∗Cx As/t. Suppose Γk 6|=∗Cx At; then
by VCx*, there is some Cx interpretation 〈W, {RA | A ∈ =}, v〉m
such that vm(Γk) = 1 but vm(t)(A) = 0; since vm(Γk) = 1, by VCx*,
m(t) ∈ fA(m(s)); so by condition (1), m(t) ∈ [A]; so vm(t)(A) = 1.
This is impossible; reject the assumption: Γk |=∗Cx At, which is to say,
Γk |=∗Cx Pk.

(AMP2) If Pk arises by AMP2, then the picture is like this,

i At

k At/t

where i < k and Pk is At/t. Where this rule is in NCx, Cx includes
condition (2). By assumption, Γi |=∗Cx At; but by the nature of access,
Γi ⊆ Γk; so by L4.1, Γk |=∗Cx At. Suppose Γk 6|=∗Cx At/t; then by
VCx*, there is some Cx interpretation 〈W, {RA | A ∈ =}, v〉m such
that vm(Γk) = 1 but m(t) 6∈ fA(m(t)); since vm(Γk) = 1, by VCx*,
vm(t)(A) = 1; so m(t) ∈ [A]; so by condition (2), m(t) ∈ fA(m(t)).
This is impossible; reject the assumption: Γk |=∗Cx At/t, which is to
say, Γk |=∗Cx Pk.

(AMS1) If Pk arises by AMS1, then the picture is like this,
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i ♦As
As/t

j Bu

k Bu

where i, j < k, t does not appear in any member of Γk (in any
undischarged premise or assumption) and is not u, and Pk is Bu.
Where this rule is in NCx, Cx includes condition (3). By assumption,
Γi |=∗Cx ♦As and Γj |=∗Cx Bu; but by the nature of access, Γi ⊆ Γk and
Γj ⊆ Γk ∪ {As/t}; so by L4.1, Γk |=∗Cx ♦As and Γk ∪ {As/t} |=∗Cx Bu.
Suppose Γk 6|=∗Cx Bu; then by VCx*, there is a Cx interpretation
〈W, {RA | A ∈ =}, v〉m such that vm(Γk) = 1 but vm(u)(B) = 0.
Since vm(Γk) = 1, by VCx*, vm(s)(♦A) = 1; so by TC(♦)υ, there
is some w ∈ W such that vw(A) = 1; so w ∈ [A] and [A] 6= φ;
so by condition (3), fA(m(s)) 6= φ; so there is some x ∈ fA(m(s)).
Now consider a map m′ like m except that m′(t) = x, and con-
sider 〈W, {RA | A ∈ =}, v〉m′ ; since t does not appear in Γk, it re-
mains that vm′(Γk) = 1; and since m′(t) = x and m′(s) = m(s),
m′(t) ∈ fA(m′(s)); so vm′(Γk) = 1 and 〈m′(s),m′(t)〉 ∈ RA; so
vm′(Γk ∪ {As/t}) = 1; so by VCx*, vm′(u)(B) = 1. But since t 6= u,
m′(u) = m(u); so vm(u)(B) = 1. This is impossible; reject the as-
sumption: Γk |=∗Cx Bu, which is to say, Γk |=∗Cx Pk.

(AMS2) If Pk arises by AMS2, then the picture is like this,

h (A > B)s
i (B > A)s
j As/t

k Bs/t

where h, i, j < k and Pk is Bs/t. Where this rule is in NCx, Cx
includes condition (4). By assumption, Γh |=∗Cx (A > B)s, Γi |=∗Cx
(B > A)s and Γj |=∗Cx As/t; but by the nature of access, Γh ⊆ Γk,
Γi ⊆ Γk and Γj ⊆ Γk; so by L4.1, Γk |=∗Cx (A > B)s, Γk |=∗Cx (B > A)s,
and Γk |=∗Cx As/t. Suppose Γk 6|=∗Cx Bs/t; then by VCx*, there is
some Cx interpretation 〈W, {RA | A ∈ =}, v〉m such that vm(Γk) =
1 but m(t) 6∈ fB(m(s)); since vm(Γk) = 1, by VCx*, vm(s)(A >
B) = 1, vm(s)(B > A) = 1; and m(t) ∈ fA(m(s)). Suppose w ∈
fA(m(s)); then m(s)RAw and since vm(s)(A > B) = 1, by TC(>),
vw(B) = 1; so w ∈ [B] and, generalizing, we have that fA(m(s)) ⊆
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[B]. Suppose w ∈ fB(m(s)); then m(s)RBw and since vm(s)(B >
A) = 1, by TC(>), vw(A) = 1; so w ∈ [A] and, generalizing, we have
that fB(m(s)) ⊆ [A]. So fA(m(s)) ⊆ [B] and fB(m(s)) ⊆ [A]; so
by condition (4), fA(m(s)) = fB(m(s)); thus since m(t) ∈ fA(m(s)),
m(t) ∈ fB(m(s)). This is impossible; reject the assumption: Γk |=∗Cx
Bs/t, which is to say, Γk |=∗Cx Pk.

(AMS3) If Pk arises by AMS3, then the picture is like this,

i ¬(A > ¬B)s
j (A ∧B)s/t

k As/t

where i, j < k and Pk is As/t. Where this rule is in NCx, Cx includes
condition (5). By assumption, Γi |=∗Cx ¬(A > ¬B)s and Γj |=∗Cx (A ∧
B)s/t; but by the nature of access, Γi ⊆ Γk and Γj ⊆ Γk; so by
L4.1, Γk |=∗Cx ¬(A > ¬B)s, and Γk |=∗Cx (A ∧ B)s/t. Suppose Γk 6|=∗Cx
As/t; then by VCx*, there is some Cx interpretation 〈W, {RA | A ∈
=}, v〉m such that vm(Γk) = 1 but m(t) 6∈ fA(m(s)); since vm(Γk) =
1, by VCx*, vm(s)(¬(A > ¬B)) = 1, and m(t) ∈ fA∧B(m(s)). Since
vm(s)(¬(A > ¬B)) = 1, by TC(¬), vm(s)(A > ¬B) = 0; so by
TC(>), there is some w ∈ W such that m(s)RAw and vw(¬B) = 0;
so by TC(¬), vw(B) = 1; but w ∈ fA(m(s)); so fA(m(s)) ∩ [B] 6= φ;
so by condition (5), fA∧B(m(s)) ⊆ fA(m(s)); so m(t) ∈ fA(m(s)).
This is impossible; reject the assumption: Γk |=∗Cx As/t, which is to
say, Γk |=∗Cx Pk.

(AMRS) If Pk arises by AMRS, then the picture is like this,

h As/t
i As/u
j Q(t)

k Q(u)

where h, i, j < k and Pk is Q(u). Suppose Q(t) is some Bt and Q(u)

is Bu. Where this rule is in NCx, Cx includes condition (6). By
assumption, Γh |=∗Cx As/t, Γi |=∗Cx As/u and Γj |=∗Cx Bt; but by the
nature of access, Γh ⊆ Γk, Γi ⊆ Γk and Γj ⊆ Γk; so by L4.1, Γk |=∗Cx
As/t, Γk |=∗Cx As/u, and Γk |=∗Cx Bt. Suppose Γk 6|=∗Cx Bu; then by
VCx*, there is some Cx interpretation 〈W, {RA | A ∈ =}, v〉m such
that vm(Γk) = 1 but vm(u)(B) = 0; since vm(Γk) = 1, by VCx*,
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m(t) ∈ fA(m(s)), m(u) ∈ fA(m(s)), and vm(t)(B) = 1. With the
first two of these, by condition (6), m(t) = m(u); so vm(u)(B) = 1.
This is impossible; reject the assumption: Γk |=∗Cx Bu, which is to say,
Γk |=∗Cx Pk. And similarly when Q(t) is Bt/v, Bv/t, or Bt/t.

(AMDL) If Pk arises by AMDL, then the picture is like this,

h As
i As/t
j Q(t)

k Q(s)

or h As
i As/t
j Q(s)

k Q(t)

where h, i, j < k and, in the left-hand case, Pk is Q(s). Suppose Q(t)

is of the sort Bt/v and Q(s) is Bs/v. Where this rule is in NCx, Cx
includes condition (7). By assumption, Γh |=∗Cx As, Γi |=∗Cx As/t and
Γj |=∗Cx Bt/v; but by the nature of access, Γh ⊆ Γk, Γi ⊆ Γk and
Γj ⊆ Γk; so by L4.1, Γk |=∗Cx As, Γk |=∗Cx As/t, and Γk |=∗Cx Bt/v. Sup-
pose Γk 6|=∗Cx Bs/v; then by VCx*, there is some Cx interpretation
〈W, {RA |A ∈ =}, v〉m such that vm(Γk) = 1 but 〈m(s),m(v)〉 6∈ RB;
since vm(Γk) = 1, by VCx*, vm(s)(A) = 1, m(t) ∈ fA(m(s)), and
〈m(t),m(v)〉 ∈ RB. From the first of these, m(s) ∈ [A]; so by con-
dition (7), m(s) = m(t); so 〈m(s),m(v)〉 ∈ RB. This is impossible;
reject the assumption: Γk |=∗Cx Bs/v which is to say, Γk |=∗Cx Pk. And
similarly when Q(t) is Bt, Bv/t or Bt/t. And similarly in the right-hand
case.

———
For any i, Γi |=∗Cx Pi.

Theorem 4.2 NCx is complete: if Γ |=Cx A then Γ ǸCx A.

Suppose Γ |=Cx A; then Γ0 |=∗Cx A0; we show that Γ0 `∗NCx A0. Again, this
reduces to the standard notion. For the following, fix on some particular
constraint(s) x. Then definitions of consistency etc. are relative to it.

Con Γ is consistent iff there is no As such that Γ `∗NCx As and Γ `∗NCx ¬As.

L4.2 If s is 0 or appears in Γ, and Γ 6`∗NCx ¬Ps, then Γ∪ {Ps} is consistent.

Reasoning parallel to L2.2 for NKα.

L4.3 There is an enumeration of all the subscripted formulas, P1 P2 . . .

Proof by construction as for L2.3 for NKα.
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Max Γ is s-maximal iff for any As either Γ `∗NCx As or Γ `∗NCx ¬As.

Sgt Γ is a scapegoat set for � iff for every formula of the form ¬�As, if
Γ `∗NCx ¬�As then there is some t such that Γ `∗NCx ¬At.
Γ is a scapegoat set for > iff for any formula of the form ¬(A > B)s,
if Γ `∗NCx ¬(A > B)s then there is some t such that Γ `∗NCx As/t and
Γ `∗NCx ¬Bt.

C(Γ′) For Γ with unsubscripted formulas and the corresponding Γ0, we con-
struct Γ′ as follows. Set Ω0 = Γ0. By L4.3, there is an enumeration,
P1,P2 . . . of all the subscripted formulas; let E0 be this enumeration.
Then for the first As in Ei−1 such that s is 0 or included in Ωi−1, let
Ei be like Ei−1 but without As, and set,

Ωi = Ωi−1 if Ωi−1 `∗NCx ¬As

Ωi∗ = Ωi−1 ∪ {As} if Ωi−1 6`∗NCx ¬As

and
Ωi = Ωi∗ if As is not of the form ¬�Ps or ¬(P > Q)s
Ωi = Ωi∗ ∪ {¬Pt} if As is of the form ¬�Ps

Ωi = Ωi∗ ∪ {Ps/t,¬Qt} if As is of the form ¬(P > Q)s

-where t is the first subscript not included in Ωi∗

then
Γ′ =

⋃
i≥0 Ωi

Note that there is always sure to be a subscript t not in Ωi∗ insofar
as there are infinitely many subscripts, and at any stage only finitely
many formulas are added – the only subscripts in the initial Ω0 being
0. Suppose s is introduced in Γ′; then there is some Ωi in which it is
first introduced; and any formula Pj in the original enumeration that
has subscript s is sure to be “considered” for inclusion at a subsequent
stage.

L4.4 For any s included in Γ′, Γ′ is s-maximal.

Reasoning parallel to L2.4 for NKα.

L4.5 If Γ0 is consistent, then each Ωi is consistent.

Suppose Γ0 is consistent.

Basis: Ω0 = Γ0 and Γ0 is consistent; so Ω0 is consistent.

Assp: For any i, 0 ≤ i < k, Ωi is consistent.

Show: Ωk is consistent.

Ωk is either (i) Ωk−1, (ii) Ωk∗ = Ωk−1∪{As}, (iii) Ωk∗ ∪{¬Pt}
or (iv) Ωk∗ ∪ {Ps/t,¬Qt}.
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(i) Suppose Ωk is Ωk−1. By assumption, Ωk−1 is consistent; so Ωk

is consistent.

(ii) Suppose Ωk is Ωk∗ = Ωk−1 ∪ {As}. Then by construction, s is
0 or in Ωk−1 and Ωk−1 6`∗NCx ¬As; so by L4.2, Ωk−1 ∪ {As} is
consistent; so Ωk is consistent.

(iii) Suppose Ωk is Ωk∗ ∪ {¬Pt}. In this case, as above, Ωk∗ is
consistent and by construction, ¬�Ps ∈ Ωk∗ . Suppose Ωk is
inconsistent. Then there are Au and ¬Au such that Ωk∗ ∪
{¬Pt} `∗NCx Au and Ωk∗∪{¬Pt} `∗NCx ¬Au. So reason as follows,

1 Ωk∗

2 >t A (g, �Iυ)

3 ¬Pt A (c, ¬E)

4 Au from Ωk∗ ∪ {¬Pt}
5 ¬Au from Ωk∗ ∪ {¬Pt}
6 Pt 3-5 ¬E

7 �Ps 2-6 �Iυ

where, by construction, t is not in Ωk∗ . So Ωk∗ `∗NCx �Ps; but
¬�Ps ∈ Ωk∗ ; so Ωk∗ `∗NCx ¬�Ps; so Ωk∗ is inconsistent. This is
impossible; reject the assumption: Ωk is consistent.

(iv) Suppose Ωk is Ωk∗ ∪ {Ps/t,¬Qt}. In this case, as above, Ωk∗
is consistent and by construction, ¬(P > Q)s ∈ Ωk∗ . Suppose
Ωk is inconsistent. Then there are Au and ¬Au such that
Ωk∗ ∪ {Ps/t,¬Qt} `∗NCx Au and Ωk∗ ∪ {Ps/t,¬Qt} `∗NCx ¬Au. So
reason as follows,

1 Ωk∗

2 Ps/t A (g, >I)

3 ¬Qt A (c, ¬E)

4 Au from Ωk∗ ∪ {Ps/t,¬Qt}
5 ¬Au from Ωk∗ ∪ {Ps/t,¬Qt}
6 Qt 3-5 ¬E

7 (P > Q)s 2-6 >I

where, by construction, t is not in Ωk∗ . So Ωk∗ `∗NCx (P > Q)s;
but ¬(P > Q)s ∈ Ωk∗ ; so Ωk∗ `∗NCx ¬(P > Q)s; so Ωk∗ is
inconsistent. This is impossible; reject the assumption: Ωk is
consistent.

———
For any i, Ωi is consistent.
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L4.6 If Γ0 is consistent, then Γ′ is consistent.

Reasoning parallel to L2.6 for NKα.

L4.7 If Γ0 is consistent, then Γ′ is a scapegoat set for � and >.

For �. Suppose Γ0 is consistent and Γ′ `∗NCx ¬�Ps. By L4.6, Γ′

is consistent; and by the constraints on subscripts, s is included in
Γ′. Since Γ′ is consistent, Γ′ 6`∗NCx ¬¬�Ps; so there is a stage in the
construction process where Ωi∗ = Ωi−1 ∪ {¬�Ps} and Ωi = Ωi∗ ∪
{¬Pt}; so by construction, ¬Pt ∈ Γ′; so Γ′ `∗NCx ¬Pt. So Γ′ is a
scapegoat set for �.

For >. Suppose Γ0 is consistent and Γ′ `∗NCx ¬(P > Q)s. By L4.6,
Γ′ is consistent; and by the constraints on subscripts, s is included
in Γ′. Since Γ′ is consistent, Γ′ 6`∗NCx ¬¬(P > Q)s; so there is a stage
in the construction process where Ωi∗ = Ωi−1 ∪ {¬(P > Q)s} and
Ωi = Ωi∗ ∪ {Ps/t,¬Qt}; so by construction, Ps/t ∈ Γ′ and ¬Qt ∈ Γ′;
so Γ′ `∗NCx Ps/t and Γ′ `∗NCx ¬Qt. So Γ′ is a scapegoat set for >.

C(I) We construct an interpretation I = 〈W, {RA |A ∈ =}, v〉 based on Γ′

as follows. Let W have a member ws corresponding to each subscript
s included in Γ′, except that in C1, if there is some A such that
Γ′ `∗NC1 As and Γ′ `∗NC1 As/t then ws = wt, and in C2, if there is some
A such that Γ′ `∗NC2 As/t and Γ′ `∗NC2 As/u then wt = wu (we could
do this, in the usual way, by establishing equivalence classes from
members of W ). Then 〈ws, wt〉 ∈ RA iff Γ′ `∗NCx As/t; and vws(p) = 1
iff Γ′ `∗NCx ps.
Note that the specification is consistent for C1 and C2 : Say P(s) is
some ps, Ps/v, Pv/s or Ps/s. (i) Suppose ws = wt and Γ′ `∗NC1 P(s).
Since ws = wt there is some A such that Γ′ `∗NC1 As and Γ′ `∗NC1 As/t;
so by AMDL, Γ′ `∗NC1 P(t). And similarly if ws = wt and Γ′ `∗NC1 P(t),
then Γ′ `∗NC1 P(s). (ii) Suppose wt = wu and Γ′ `∗NC2 P(t). Since
wt = wu, there is some A such that Γ′ `∗NC2 As/t and Γ′ `∗NC2 As/u; so
by AMRS, Γ′ `∗NC2 P(u). And similarly if wt = wu and Γ′ `∗NC2 P(u),
then Γ′ `∗NC2 P(t).

L4.8 If Γ0 is consistent then for 〈W, {RA |A ∈ =}, v〉 constructed as above,
and for any s included in Γ′, vws(A) = 1 iff Γ′ `∗NCx As.
Suppose Γ0 is consistent and s is included in Γ′. By L4.4, Γ′ is s-
maximal. By L4.6 and L4.7, Γ′ is consistent and a scapegoat set for
� and >. Now by induction on the number of operators in As,
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Basis: If As has no operators, then it is a parameter ps and by
construction, vws(p) = 1 iff Γ′ `∗NCx ps. So vws(A) = 1 iff
Γ′ `∗NCx As.

Assp: For any i, 0 ≤ i < k, if As has i operators, then vws(A) = 1 iff
Γ′ `∗NCx As.

Show: If As has k operators, then vws(A) = 1 iff Γ′ `∗NCx As.
If As has k operators, then it is of the form ¬Ps, (P ⊃ Q)s,
(P ∧Q)s, (P ∨Q)s, (P ≡ Q)s, �Ps, ♦Ps or (P > Q)s where P
and Q have < k operators.

(¬) As is ¬Ps. (i) Suppose vws(A) = 1; then vws(¬P ) = 1; so
by TC(¬), vws(P ) = 0; so by assumption, Γ′ 6`∗NCx Ps; so by
s-maximality, Γ′ `∗NCx ¬Ps, where this is to say, Γ′ `∗NCx As.
(ii) Suppose Γ′ `∗NCx As; then Γ′ `∗NCx ¬Ps; so by consistency,
Γ′ 6`∗NCx Ps; so by assumption, vws(P ) = 0; so by TC(¬),
vws(¬P ) = 1, where this is to say, vws(A) = 1. So vws(A) = 1
iff Γ′ `∗NCx As.

(⊃)

(∧)

(∨)

(≡)

(�) As is �Ps. (i) Suppose vws(A) = 1 but Γ′ 6`∗NCx As; then
vws(�P ) = 1 but Γ′ 6`∗NCx �Ps. From the latter, by s-maxi-
mality, Γ′ `∗NCx ¬�Ps; so, since Γ′ is a scapegoat set for �, there
is some t such that Γ′ `∗NCx ¬Pt; so by consistency, Γ′ 6`∗NCx Pt;
so by assumption, vwt(P ) = 0; so by TC(�)υ, vws(�P ) = 0.
This is impossible; reject the assumption: if vws(A) = 1, then
Γ′ `∗NCx As.
(ii) Suppose Γ′ `∗NCx As but vws(A) = 0; then Γ′ `∗NCx �Ps but
vws(�P ) = 0. From the the latter, by TC(�)υ, there is some
wt ∈ W such that vwt(P ) = 0; so by assumption, Γ′ 6`∗NCx Pt;
but since wt ∈ W , by construction, t appears in Γ′ so by
(�Eυ), Γ′ `∗NCx Pt. This is impossible; reject the assumption:
if Γ′ ǸCx As then vws(A) = 1. So vws(A) = 1 iff Γ′ `∗NCx As.

(♦)

(>) As is (P > Q)s. Suppose vws(A) = 1 but Γ′ 6`∗NCx As; then
vws(P > Q) = 1 but Γ′ 6`∗NCx (P > Q)s. From the latter, by s-
maximality, Γ′ `∗NCx ¬(P > Q)s; so, since Γ′ is a scapegoat set
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for >, there is some t such that Γ′ `∗NCx Ps/t and Γ′ `∗NCx ¬Qt;
from the first, by construction, 〈ws, wt〉 ∈ RP ; and from the
second, by consistency, Γ′ 6`∗NCx Qt; so by assumption, vwt(Q) =
0; so by TC(>), vws(P > Q) = 0. This is impossible; reject
the assumption: if vws(A) = 1, then Γ′ `∗NCx As.
(ii) Suppose Γ′ `∗NCx As but vws(A) = 0; then Γ′ `∗NCx (P > Q)s
but vws(P > Q) = 0. From the the latter, by TC(>), there is
some wt ∈ W such that 〈ws, wt〉 ∈ RP and vwt(Q) = 0; from
the first of these, by construction, Γ′ `∗NCx Ps/t; and from the
second, by assumption, Γ′ 6`∗NCx Qt; but by (>E), Γ′ `∗NCx Qt.
This is impossible; reject the assumption: if Γ′ ǸCx As then
vws(A) = 1. So vws(A) = 1 iff Γ′ `∗NCx As.

———
For any As, vws(A) = 1 iff Γ′ `∗NCx As.

L4.9 If Γ0 is consistent, then 〈W, {RA |A ∈ =}, v〉 constructed as above is
a Cx interpretation.

In each case, we need to show that the interpretation meets the con-
dition(s) x. Suppose Γ0 is consistent.

(1) If (1) is in Cx, then AMP1 is in NCx. Suppose wt ∈ fA(ws);
then 〈ws, wt〉 ∈ RA; so by construction, Γ′ `∗NCx As/t; so by
AMP1, Γ′ `∗NCx At; so by L4.8, vwt(A) = 1; so wt ∈ [A]. So
fA(ws) ⊆ [A].

(2) If (2) is in Cx then AMP2 is in NCx. Suppose ws ∈ [A]; then
vws(A) = 1; so by L4.8, Γ′ `∗NCx As; so by AMP2, Γ′ `∗NCx As/s;
so by construction, 〈ws, ws〉 ∈ RA; so ws ∈ fA(ws).

(3) If (3) is in Cx then AMS1 is in NCx. Suppose [A] 6= φ but
fA(ws) = φ. From the former, there is some wt ∈W such that
vwt(A) = 1; so by L4.8, Γ′ `∗NCx At; so by (♦Iυ), Γ′ `∗NCx ♦As.
From the latter, there is no wu such that wsRAwu; so there is
no wu such that wsRAwu and vwu(B) = 0, and there is no wu
such that wsRAwu and vwu(¬B) = 0; so by TC(>), vws(A >
B) = 1 and vws(A > ¬B) = 1; so by L4.8, Γ′ `∗NCx (A > B)s
and Γ′ `∗NCx (A > ¬B)s. So reason as follows,
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1 Γ′

2 ♦As from Γ′

3 (A > B)s from Γ′

4 (A > ¬B)s from Γ′

5 As/t A (g, 2 AMS1)

6 ♦As A (c, ¬I)

7 Bt 3,5 >E

8 ¬Bt 4,5 >E

9 ¬♦As 6-8 ¬I

10 ¬♦As 2,5-9 AMS1

So Γ′ `∗NCx ¬♦As; and since by L4.6, Γ′ is consistent, Γ′ 6`∗NCx
♦As. This is impossible; reject the assumption: if [A] 6= φ,
then fA(ws) 6= φ.

(4) If (4) is in Cx then AMS2 is in NCx. Suppose fA(ws) ⊆ [B]
and fB(ws) ⊆ [A]. Then any x ∈ W such that wsRAx has
vx(B) = 1 and any y ∈W such that wsRBy has vy(A) = 1; so
by TC(>), vws(A > B) = 1 and vws(B > A) = 1; so by L4.8,
Γ′ `∗NCx (A > B)s and Γ′ `∗NCx (B > A)s. Suppose wt ∈ fA(ws);
then by construction, Γ′ `∗NCx As/t; so by AMS2, Γ′ `∗NCx Bs/t;
so by construction, wt ∈ fB(ws). Suppose wt ∈ fB(ws); then
by construction, Γ′ `∗NCx Bs/t; so by AMS2, Γ′ `∗NCx As/t; so by
construction, wt ∈ fA(ws). So fA(ws) = fB(ws).

(5) If (5) is in Cx then AMS3 is in NCx. Suppose fA(ws)∩ [B] 6= φ
but fA∧B(ws) 6⊆ fA(ws). From the former, there is some wt ∈
fA(ws) such that vwt(B) = 1; so by TC(¬), vwt(¬B) = 0; so by
TC(>), vws(A > ¬B) = 0; so by TC(¬), vws(¬(A > ¬B)) = 1;
so by L4.8, Γ′ `∗NCx ¬(A > ¬B)s. From the latter, there is
some wu such that wu ∈ fA∧B(ws) but wu 6∈ fA(ws). From
the first of these, by construction, Γ′ `∗NCx (A ∧ B)s/u; so by
AMS3, Γ′ `∗NCx As/u; so by construction, wu ∈ fA(ws). This is
impossible; reject the assumption: if fA(ws) ∩ [B] 6= φ then
fA∧B(ws) ⊆ fA(ws).

(6) Suppose (6) is in Cx, wt ∈ fA(ws) and wu ∈ fA(ws). Then by
construction, Γ′ `∗NCx As/t and Γ′ `∗NCx As/u; and by construc-
tion, since we are in C2, wt = wu.

(7) Suppose (7) is in Cx, ws ∈ [A] and wt ∈ fA(ws). Since ws ∈
[A], vws(A) = 1; so by L4.8, Γ′ `∗NCx As; and since wt ∈ fA(ws),
by construction, Γ′ `∗NCx As/t. So by construction, since we are
in C1, ws = wt.
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Map For any ws ∈W , set m(s) = ws; otherwise m(s) is arbitrary.

L4.10 If Γ0 is consistent, then vm(Γ0) = 1.

Reasoning parallel to L2.10 for NKα.

Main result: Suppose Γ |=Cx A but Γ 6 ǸCx A. Then Γ0 |=∗Cx A0 but Γ0 6`∗NCx A0.
By (DN), if Γ0 `∗NCx ¬¬A0, then Γ0 `∗NCx A0; so Γ0 6`∗NCx ¬¬A0; so by L4.2,
Γ0∪{¬A0} is consistent; so by L4.9 and L4.10, there is a Cx interpretation
〈W, {RA |A ∈ =}, v〉m constructed as above such that vm(Γ0∪{¬A0}) = 1; so
vm(0)(¬A) = 1; so by TC(¬), vm(0)(A) = 0; so vm(Γ0) = 1 and vm(0)(A) = 0;
so by VCx*, Γ0 6|=∗Cx A0. This is impossible; reject the assumption: if
Γ |=Cx A, then Γ ǸCx A.

5 Intuitionistic Logic: IL (ch. 6)

5.1 Language / Semantic Notions

LIL The vocabulary consists of propositional parameters p0, p1 . . . with
the operators, ∧, ∨, ⇁, and A. Each propositional parameter is a
formula; if A and B are formulas, so are (A ∧ B), (A ∨ B), ⇁A,
and (A A B).

IIL An interpretation is a triple 〈W,R, v〉 where W is a set of worlds,
R is a subset of W 2 = W × W , and v is a function such that for
any w ∈ W and p, vw(p) = 1 or vw(p) = 0. For x, y, z ∈ W , an
interpretation is subject to the conditions,

ρ for all x, xRx reflexivity
τ for all x, y, z, if xRy and yRz then xRz transitivity
h for any parameter p, if vx(p) = 1, and xRy,

then vy(p) = 1
heredity

We think of worlds as representing a state of information at a given
time. vw(p) = 1 when p is proved at state w. The heredity condition
guarantees that what is proved at one stage remains proved at the
next. Notice that vw(p) = 0 does not indicate that p is false – but
rather that p isn’t proved.

TIL For complex expressions,

(∧) vw(A ∧B) = 1 if vw(A) = 1 and vw(B) = 1, and 0 otherwise.

(∨) vw(A ∨B) = 1 if vw(A) = 1 or vw(B) = 1, and 0 otherwise.
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(⇁) vw(⇁A) = 1 if all x ∈ W such that wRx have vx(A) = 0, and
0 otherwise.

(A) vw(A A B) = 1 if all x ∈W such that wRx have either vx(A) =
0 or vx(B) = 1, and 0 otherwise.

For a set Γ of formulas, vw(Γ) = 1 iff vw(A) = 1 for each A ∈ Γ; then,

VIL Γ |=IL A iff there is no IL interpretation 〈W,R, v〉 and w ∈ W such
that vw(Γ) = 1 and vw(A) = 0.

5.2 Natural Derivations: NIL

Augment the language for intuionistic logic to include expressions with sub-
scripts and expressions of the sort s.t as for NKα, along with a unary oper-
ator, ∼. Intuitively, ∼A indicates that A is not (yet) proven. There is one
new rule for the heredity condition. Otherwise, rules are as in NKρτ with
∼ like ¬, and rules for A and ⇁ on the analogy of −3 and �¬.

R Ps

Ps

H Ps
s.t

Pt
where P includes no instance of ∼

∧I Ps
Qs

(P ∧Q)s

∧E (P ∧Q)s

Ps

∧E (P ∧Q)s

Qs

∨I Ps

(P ∨Q)s

∨I Ps

(Q ∨ P )s

∼I Ps

Qt
∼Qt
∼Ps

∼E ∼Ps

Qt
∼Qt

Ps

∨E (P ∨Q)s
Ps

Rt

Qs

Rt

Rt

AI s.t

Pt

Qt

(P A Q)s
where t does not appear in any
undischarged premise or assump-
tion

AE (P A Q)s
s.t

Pt

Qt

AMρ

s.s
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⇁I s.t

∼Pt
⇁Ps

where t does not appear in any
undischarged premise or assump-
tion

⇁E ⇁Ps
s.t

∼Pt

AMτ s.t

t.u

s.u

Every subscript is 0, appears in a premise, or appears in the t-place of an
accessible assumption for AI or ⇁I. Where the members of Γ and A are
formulas in the original language for intuitionistic logic (without subscripts
and without ∼), let let the members of Γ0 be the formulas in Γ, each with
subscript 0. Then,

NIL Γ ǸIL A iff there is an NIL derivation of A0 from the members of Γ0.

Examples. Here are instances of the more interesting standard axioms for
intuitionistic logic. Note that our account of a derivation guarantees that ∼
is not an operator in any of A, B, or C.

A1 ǸIL A A (B A A)

1 0.1 A (g, AI)

2 A1

3 1.2 A (g, AI)

4 B2

5 A2 2,3 H

6 (B A A)1 3-5 AI

7 [A A (B A A)]0 1-6 AI
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A2 ǸIL (A A B) A [(A A (B A C)) A (A A C)]

1 0.1 A (g, AI)

2 (A A B)1

3 1.2 A (g, AI)

4 (A A (B A C))2

5 2.3 A (g, AI)

6 A3

7 1.3 3,5 AMτ

8 B3 2,7,6 AE

9 (B A C)3 4,5,6 AE

10 3.3 AMρ

11 C3 9,10,8 AE

12 (A A C)2 5-11 AI

13 [(A A (B A C)) A (A A C)]1 3-12 AI

14 ((A A B) A [(A A (B A C)) A (A A C)])0 1-13 AI

A3 ǸIL A A (B A (A ∧B))

A4 ǸIL (A ∧B) A A

A5 ǸIL (A ∧B) A B

A6 ǸIL A A (A ∨B)

A7 ǸIL B A (A ∨B)

A8 ǸIL (A A C) A [(B A C) A ((A ∨B) A C)]

A9 ǸIL (A A B) A [(A A⇁B) A⇁A]

1 0.1 A (g, AI)

2 (A A B)1

3 1.2 A (g, AI)

4 (A A⇁B)2

5 2.3 A (g, ⇁I)

6 A3 A (c, ∼I)

7 1.3 3,5 AMτ

8 B3 2,7,6 AE

9 ⇁B3 4,5,6 AE

10 3.3 AMρ

11 ∼B3 9,10 ⇁E

12 ∼A3 6-11 ∼I

13 ⇁A2 5-12 ⇁I

14 [(A A⇁B) A⇁A]1 3-13 AI

15 ((A A B) A [(A A⇁B) A⇁A])0 1-14 AI
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A10 ǸIL ⇁A A (A A B)

1 0.1 A (g, AI)

2 ⇁A1

3 1.2 A (g, AI)

4 A2

5 ∼B2 A (c, ∼E)

6 A2 4 R

7 ∼A2 2,3 ⇁E

8 B2 5-7 ∼E

9 (A A B)1 3-8 AI

10 [⇁A A (A A B)]0 1-9 AI

A system with these axioms and MP (which we already have by AMρ with
AE) turns into classical logic if A10 is replaced by double negation, ⇁⇁A A
A. But we cannot prove ⇁⇁A A A (or at least we cannot if our derivation
system is sound).

5.3 Soundness and Completeness

Preliminaries: Begin with generalized notions of validity to include expres-
sions with subscripts and operator ‘∼’. First, as a supplement to TIL,

TIL (∼) vw(∼A) = 1 if vw(A) = 0, and 0 otherwise.

For a model 〈W,R, v〉, let m be a map from subscripts into W . Say 〈W,R,
v〉m is 〈W,R, v〉 with map m. Then, where Γ is a set of expressions of our
language for derivations, vm(Γ) = 1 iff for each As ∈ Γ, vm(s)(A) = 1,
and for each s.t ∈ Γ, 〈m(s),m(t)〉 ∈ R. Now expand notions of validity
to include subscripted formulas, and alternate expressions as indicated in
double brackets.

VIL* Γ |=∗IL As [[s.t]] iff there is no IL interpretation 〈W,R, v〉m such that
vm(Γ) = 1 but vm(s)(A) = 0 [[〈m(s),m(t)〉 6∈ R]].

NIL* Γ `∗NIL As [[s.t]] iff there is an NIL derivation of As [[s.t]] from the
members of Γ.

These notions reduce to the standard ones when all the members of Γ and
A have subscript 0 (and so do not include expressions of the sort s.t) and
do not include ‘∼’. For the following, cases omitted are like ones worked,
and so left to the reader.
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Theorem 5.1 NIL is sound: If Γ ǸIL A then Γ |=IL A.

L5.1 If Γ ⊆ Γ′ and Γ |=∗IL Ps [[s.t]], then Γ′ |=∗IL Ps [[s.t]].

Reasoning parallel to that for L2.1 of NK
(t)
α .

Main result: For each line in a derivation let Pi be the expression on line i
and Γi be the set of all premises and assumptions whose scope includes line
i. We set out to show “generalized” soundness: if Γ `∗NIL P then Γ |=∗IL P. As
above, this reduces to the standard result when P and all the members of
Γ are formulas with subscript 0 and do not include ‘∼’. Suppose Γ `∗NIL P.
Then there is a derivation of P from premises in Γ where P appears under the
scope of the premises alone. By induction on line number of this derivation,
we show that for each line i of this derivation, Γi |=∗IL Pi. The case when
Pi = P is the desired result.

Basis: P1 is a premise or an assumption As [[s.t]]. Then Γ1 = {As} [[{s.t}]]; so
for any 〈W,R, v〉m, vm(Γ1) = 1 iff vm(s)(A) = 1 [[〈m(s),m(t)〉 ∈ R]];
so there is no 〈W,R, v〉m such that vm(Γ1) = 1 but vm(s)(A) = 0
[[〈m(s),m(t)〉 6∈ R]]. So by VIL*, Γ1 |=∗IL As [[s.t]], where this is just
to say, Γ1 |=∗IL P1.

Assp: For any i, 1 ≤ i < k,Γi |=∗IL Pi.

Show: Γk |=∗IL Pk.

Pk is either a premise, an assumption, or arises from previous lines
by R, ∧I, ∧E, ∨I, ∨E, ∼I, ∼E, ⇁I, ⇁E, AI, AE, AMρ, AMτ or H.
If Pk is a premise or an assumption, then as in the basis, Γk |=∗IL Pk.
So suppose Pk arises by one of the rules.

(R)

(∧I)

(∧E)

(∨I)

(∨E)

(∼I) If Pk arises by ∼I, then the picture is like this,
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As

i Bt
j ∼Bt
k ∼As

where i, j < k and Pk is ∼As. By assumption, Γi |=∗IL Bt and Γj |=∗IL
∼Bt; but by the nature of access, Γi ⊆ Γk∪{As} and Γj ⊆ Γk∪{As};
so by L5.1, Γk∪{As} |=∗IL Bt and Γk∪{As} |=∗IL ∼Bt. Suppose Γk 6|=∗IL
∼As; then by VIL*, there is an IL interpretation 〈W,R, v〉m such
that vm(Γk) = 1 but vm(s)(∼A) = 0; so by TIL(∼), vm(s)(A) = 1;
so vm(Γk) = 1 and vm(s)(A) = 1; so vm(Γk ∪ {As}) = 1; so by
VIL*, vm(t)(B) = 1 and vm(t)(∼B) = 1; from the latter, by TIL(∼),
vm(t)(B) = 0. This is impossible; reject the assumption: Γk |=∗IL ∼As,
which is to say, Γk |=∗IL Pk.

(∼E)

(⇁I) If Pk arises by ⇁I, then the picture is like this,

s.t

i ∼At
k ⇁As

where i < k, t does not appear in any member of Γk (in any undis-
charged premise or assumption), and Pk is ⇁As. By assumption,
Γi |=∗IL ∼At; but by the nature of access, Γi ⊆ Γk ∪ {s.t}; so by
L5.1, Γk ∪ {s.t} |=∗IL ∼At. Suppose Γk 6|=∗IL ⇁As; then by VIL*,
there is an IL interpretation 〈W,R, v〉m such that vm(Γk) = 1 but
vm(s)(⇁A) = 0; so by TIL(⇁), there is some w ∈ W such that
m(s)Rw and vw(A) = 1. Now consider a map m′ like m except that
m′(t) = w, and consider 〈W,R, v〉m′ ; since t does not appear in Γk,
it remains that vm′(Γk) = 1; and since m′(t) = w and m′(s) = m(s),
〈m′(s),m′(t)〉 ∈ R; so vm′(Γk ∪{s.t}) = 1; so by VIL*, vm′(t)(∼A) =
1; so by TIL(∼), vm′(A) = 0. But m′(t) = w; so vw(A) = 0. This
is impossible; reject the assumption: Γk |=∗IL ⇁As, which is to say,
Γk |=∗IL Pk.

(⇁E) If Pk arises by ⇁E, then the picture is like this,
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i ⇁As
j s.t

k ∼At

where i, j < k and Pk is ∼At. By assumption, Γi |=∗IL ⇁As and
Γj |=∗IL s.t; but by the nature of access, Γi ⊆ Γk and Γj ⊆ Γk; so
by L5.1, Γk |=∗IL ⇁As and Γk |=∗IL s.t. Suppose Γk 6|=∗IL ∼At; then by
VIL*, there is some IL interpretation 〈W,R, v〉m such that vm(Γk) =
1 but vm(t)(∼A) = 0; so by TIL(∼), vm(t)(A) = 1. Since vm(Γk) = 1,
by VIL*, vm(s)(⇁A) = 1 and 〈m(s),m(t)〉 ∈ R; from the first of
these, by TIL(⇁), any w such that m(s)Rw has vw(A) = 0; so
vm(t)(A) = 0. This is impossible; reject the assumption: Γk |=∗IL At,
which is to say, Γk |=∗IL Pk.

(AI) If Pk arises by AI, then the picture is like this,

s.t

At

i Bt

k (A A B)s

where i < k, t does not appear in any member of Γk (in any undis-
charged premise or assumption), and Pk is (A A B)s. By assump-
tion, Γi |=∗IL Bt; but by the nature of access, Γi ⊆ Γk ∪ {s.t, At}; so
by L5.1, Γk ∪ {s.t, At} |=∗IL Bt. Suppose Γk 6|=∗IL (A A B)s; then by
VIL*, there is an IL interpretation 〈W,R, v〉m such that vm(Γk) = 1
but vm(s)(A A B) = 0; so by TIL(A), there is some w ∈ W such
that m(s)Rw with vw(A) = 1 and vw(B) = 0. Now consider a
map m′ like m except that m′(t) = w, and consider 〈W,R, v〉m′ ;
since t does not appear in Γk, it remains that vm′(Γk) = 1; since
m′(t) = w and m′(s) = m(s), vm′(t)(A) = 1 and 〈m′(s),m′(t)〉 ∈ R;
so vm′(Γk∪{s.t, At}) = 1; so by VIL*, vm′(t)(B) = 1. But m′(t) = w;
so vw(B) = 1. This is impossible; reject the assumption: Γk |=∗IL (A A
B)s, which is to say, Γk |=∗IL Pk.

(AE)

(AMρ)

(AMτ) If Pk arises by AMτ , then the picture is like this,
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i s.t

j t.u

k s.u

where i, j < k and Pk is s.u. By assumption, Γi |=∗IL s.t and Γj |=∗IL t.u;
but by the nature of access, Γi ⊆ Γk and Γj ⊆ Γk; so by L5.1,
Γk |=∗IL s.t and Γk |=∗IL t.u. Suppose Γk 6|=∗IL s.u; then by VIL*,
there is some IL interpretation 〈W,R, v〉m such that vm(Γk) = 1
but 〈m(s),m(u)〉 6∈ R; since vm(Γk) = 1, by VIL*, 〈m(s),m(t)〉 ∈
R and 〈m(t),m(u)〉 ∈ R; but IL includes condition τ ; so for any
〈x, y〉, 〈y, z〉 ∈ R, 〈x, z〉 ∈ R; so 〈m(s),m(u)〉 ∈ R. This is impossible;
reject the assumption: Γk |=∗IL s.u, which is to say, Γk |=∗IL Pk.

(H) If Pk arises by H, then the picture is like this,

i As
j s.t

k At

where i, j < k, A has no instance of ‘∼’ and Pk is At. By assumption,
Γi |=∗IL As and Γj |=∗IL s.t; but by the nature of access, Γi ⊆ Γk and
Γj ⊆ Γk; so by L5.1, Γk |=∗IL As and Γk |=∗IL s.t. Suppose Γk 6|=∗IL At;
then by VIL*, there is some IL interpretation 〈W,R, v〉m such that
vm(Γk) = 1 but vm(t)(A) = 0; since vm(Γk) = 1, by VIL*, vm(s)(A) =
1 and 〈m(s),m(t)〉 ∈ R.

Now, by induction on the number of operators in A, we show that
for A without ‘∼’, if vx(A) = 1 and xRy, then vy(A) = 1. Suppose
xRy.

Basis: Suppose A is a parameter p and vx(A) = 1; then vx(p) = 1;
so by condition h, vy(p) = 1; so vy(A) = 1.

Assp: For 0 ≤ i < k, if A has i operators and vx(A) = 1, then
vy(A) = 1.

Show: If A has k operators and vx(A) = 1, then vy(A) = 1.

If A has k operators and no instance of ‘∼’ then it is of the
form, P ∧Q, P ∨Q, ⇁P , or P A Q, where P and Q have < k
operators.

(∧) Suppose A is P ∧ Q and vx(A) = 1; then vx(P ∧ Q) = 1;
so by TIL(∧), vx(P ) = 1 and vx(Q) = 1; so by assumption,
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vy(P ) = 1 and vy(Q) = 1; so by TIL(∧), vy(P ∧ Q) = 1; so
vy(A) = 1.

(∨) Suppose A is P ∨Q and vx(A) = 1; then vx(P ∨Q) = 1; so by
TIL(∨), vx(P ) = 1 or vx(Q) = 1; so by assumption, vy(P ) = 1
or vy(Q) = 1; so by TIL(∨), vy(P ∨Q) = 1; so vy(A) = 1.

(⇁) Suppose A is ⇁P and vx(A) = 1 but vy(A) = 0; then vx(⇁P )
= 1 but vy(⇁P ) = 0. From the former, by TIL(⇁), any w
such that xRw has vw(P ) = 0. From the latter, by TIL(⇁),
there is some z ∈ W such that yRz and vz(P ) = 1. But xRy
and yRz so by τ , xRz; so vz(P ) = 0. This is impossible; reject
the assumption: if vx(A) = 1, then vy(A) = 1.

(A) Suppose A is P A Q and vx(A) = 1 but vy(A) = 0; then
vx(P A Q) = 1 but vy(P A Q) = 0. From the former, by
TIL(A), any w such that xRw has vw(P ) = 0 or vw(Q) = 1.
From the latter, by TIL(A), there is some z ∈ W such that
yRz where vz(P ) = 1 and vz(Q) = 0. But xRy and yRz so by
τ , xRz; so vz(P ) = 0 or vz(Q) = 1. This is impossible; reject
the assumption: if vx(A) = 1, then vy(A) = 1.

———
For any such A, if vx(A) = 1, then vy(A) = 1.

So, returning to the case for (H), vm(t)(A) = 1. This is impossible;
reject the assumption: Γk |=∗IL At, which is to say, Γk |=∗IL Pk.

———
For any i, Γi |=∗IL Pi.

Theorem 5.2 NIL is complete: if Γ |=IL A then Γ ǸIL A.

Suppose Γ |=IL A; then Γ0 |=∗IL A0; we show that Γ0 `∗NIL A0. Again, this
reduces to the standard notion.

Con Γ is consistent iff there is no As such that Γ `∗NIL As and Γ `∗NIL ∼As.

L5.2 If s is 0 or appears in Γ, and Γ 6`∗NIL ∼Ps, then Γ∪ {Ps} is consistent.

Suppose s is 0 or appears in Γ and Γ 6`∗NIL ∼Ps but Γ ∪ {Ps} is
inconsistent. Then there is some At such that Γ ∪ {Ps} `∗NIL At and
Γ ∪ {Ps} `∗NIL ∼At. But then we can argue,
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1 Γ

2 Ps A (c, ∼I)

3 At from Γ ∪ {Ps}
4 ∼At from Γ ∪ {Ps}
5 ∼Ps 2-4 ∼I

where the assumption is allowed insofar as s is either 0 or appears in
Γ; so Γ `∗NIL ∼Ps. But this is impossible; reject the assumption: if s
is 0 or introduced in Γ and Γ 6`∗NIL ∼Ps, then Γ ∪ {Ps} is consistent.

L5.3 There is an enumeration of all the subscripted formulas, P1 P2 . . .

Proof by construction as for L2.3 of NKα.

Max Γ is s-maximal iff for any As either Γ `∗NIL As or Γ `∗NIL ∼As.

Sgt Γ is a scapegoat set for ⇁ iff for every formula of the form ∼⇁As,
if Γ `∗NIL ∼⇁As then there is some t such that Γ `∗NIL s.t and Γ `∗NIL At.
Γ is a scapegoat set for A iff for every formula of the form ∼(A A
B)s, if Γ `∗NIL ∼(A A B)s then there is some t such that Γ `∗NIL s.t,
Γ `∗NIL At and Γ `∗NIL ∼Bt.

C(Γ′) For Γ with unsubscripted formulas and the corresponding Γ0, we con-
struct Γ′ as follows. Set Ω0 = Γ0. By L5.3, there is an enumeration,
P1,P2 . . . of all the subscripted formulas; let E0 be this enumeration.
Then for the first As in Ei−1 such that s is 0 or included in Ωi−1, let
Ei be like Ei−1 but without As, and set,

Ωi = Ωi−1 if Ωi−1 `∗NIL ∼As

Ωi∗ = Ωi−1 ∪ {As} if Ωi−1 6`∗NIL ∼As

and
Ωi = Ωi∗ if As is not of the form ∼⇁Ps or ∼(P A

Q)s
Ωi = Ωi∗ ∪ {s.t, Pt} if As is of the form ∼⇁Ps

Ωi = Ωi∗ ∪ {s.t, Pt,∼Qt} if As is of the form ∼(P A Q)s

-where t is the first subscript not included in Ωi∗

then
Γ′ =

⋃
i≥0 Ωi

Note that there is always sure to be a subscript t not in Ωi∗ insofar
as there are infinitely many subscripts, and at any stage only finitely
many formulas are added – the only subscripts in the initial Ω0 being
0. Suppose s is introduced in Γ′; then there is some Ωi in which it is
first introduced; and any formula Pj in the original enumeration that
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has subscript s is sure to be “considered” for inclusion at a subsequent
stage.

L5.4 For any s included in Γ′, Γ′ is s-maximal.

Suppose s is included in Γ′ but Γ′ is not s-maximal. Then there
is some As such that Γ′ 6`∗NIL As and Γ′ 6`∗NIL ∼As. For any i, each
member of Ωi−1 is in Γ′; so if Ωi−1 `∗NIL ∼As then Γ′ `∗NIL ∼As; but
Γ′ 6`∗NIL ∼As; so Ωi−1 6`∗NIL ∼As; so since s is included in Γ′, there
is a stage in the construction that sets Ωi∗ = Ωi−1 ∪ {As}; so by
construction, As ∈ Γ′; so Γ′ `∗NIL As. This is impossible; reject the
assumption: Γ′ is s-maximal.

L5.5 If Γ0 is consistent, then each Ωi is consistent.

Suppose Γ0 is consistent.

Basis: Ω0 = Γ0 and Γ0 is consistent; so Ω0 is consistent.

Assp: For any i, 0 ≤ i < k, Ωi is consistent.

Show: Ωk is consistent.

Ωk is either (i) Ωk−1, or (ii) Ωk∗ = Ωk−1 ∪ {As}, (iii) Ωk∗ ∪
{s.t, Pt} or (iv) Ωk∗ ∪ {s.t, Pt,∼Qt}.

(i) Suppose Ωk is Ωk−1. By assumption, Ωk−1 is consistent; so Ωk

is consistent.

(ii) Suppose Ωk is Ωk∗ = Ωk−1 ∪ {As}. Then by construction, s is
0 or in Ωk−1 and Ωk−1 6`∗NIL ∼As; so by L5.2, Ωk−1 ∪ {As} is
consistent; so Ωk is consistent.

(iii) Suppose Ωk is Ωk∗ ∪ {s.t, Pt}. In this case, as above, Ωk∗
is consistent and by construction, ∼⇁Ps ∈ Ωk∗ . Suppose
Ωk is inconsistent. Then there are Au and ∼Au such that
Ωk∗ ∪{s.t, Pt} `∗NIL Au and Ωk∗ ∪{s.t, Pt} `∗NIL ∼Au. So reason
as follows,

1 Ωk∗

2 s.t A (g, ⇁I)

3 Pt A (c, ∼I)

4 Au from Ωk∗ ∪ {s.t, Pt}
5 ∼Au from Ωk∗ ∪ {s.t, Pt}
6 ∼Pt 3-5 ∼I

7 ⇁Ps 2-6 ⇁I
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where, by construction, t is not in Ωk∗ . So Ωk∗ `∗NIL ⇁Ps; but
∼⇁Ps ∈ Ωk∗ ; so Ωk∗ `∗NIL ∼⇁Ps; so Ωk∗ is inconsistent. This
is impossible; reject the assumption: Ωk is consistent.

(iv) Suppose Ωk is Ωk∗ ∪{s.t, Pt,∼Qt}. In this case, as above, Ωk∗
is consistent and by construction, ∼(P A Q)s ∈ Ωk∗ . Suppose
Ωk is inconsistent. Then there are Au and ∼Au such that
Ωk∗ ∪{s.t, Pt,∼Qt} `∗NIL Au and Ωk∗ ∪{s.t, Pt,∼Qt} `∗NIL ∼Au.
So reason as follows,

1 Ωk∗

2 s.t A (g, AI)

3 Pt

4 ∼Qt A (c, ∼E)

5 Au from Ωk∗ ∪ {s.t, Pt,∼Qt}
6 ∼Au from Ωk∗ ∪ {s.t, Pt,∼Qt}
7 Qt 4-6 ∼E

8 (P A Q)s 2-7 AI

where, by construction, t is not in Ωk∗ . So Ωk∗ `∗NIL (P A Q)s;
but ∼(P A Q)s ∈ Ωk∗ ; so Ωk∗ `∗NIL ∼(P A Q)s; so Ωk∗ is
inconsistent. This is impossible; reject the assumption: Ωk is
consistent.

———
For any i, Ωi is consistent.

L5.6 If Γ0 is consistent, then Γ′ is consistent.

Reasoning parallel to L2.6 for NKα.

L5.7 If Γ0 is consistent, then Γ′ is a scapegoat set for ⇁ and A.

For ⇁. Suppose Γ0 is consistent and Γ′ `∗NIL ∼⇁Ps. By L5.6, Γ′

is consistent; and by the constraints on subscripts, s is included in
Γ′. Since Γ′ is consistent, Γ′ 6`∗NIL ∼∼⇁Ps; so there is a stage in
the construction process where Ωi∗ = Ωi−1 ∪ {∼⇁Ps} and Ωi =
Ωi∗ ∪ {s.t, Pt}; so by construction, s.t ∈ Γ′ and Pt ∈ Γ′; so Γ′ `∗NIL s.t
and Γ′ `∗NIL Pt. So Γ′ is a scapegoat set for ⇁.

For A. Suppose Γ0 is consistent and Γ′ `∗NIL ∼(P A Q)s. By L5.6,
Γ′ is consistent; and by the constraints on subscripts, s is included
in Γ′. Since Γ′ is consistent, Γ′ 6`∗NIL ∼∼(P A Q)s; so there is a stage
in the construction process where Ωi∗ = Ωi−1 ∪ {∼(P A Q)s} and
Ωi = Ωi∗ ∪ {s.t, Pt,∼Qt}; so by construction, s.t ∈ Γ′, Pt ∈ Γ′ and
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∼Qt ∈ Γ′; so Γ′ `∗NIL s.t, Γ′ `∗NIL Pt and Γ′ `∗NIL ∼Qt. So Γ′ is a
scapegoat set for A.

C(I) We construct an interpretation I = 〈W,R, v〉 based on Γ′ as follows.
Let W have a member ws corresponding to each subscript s included
in Γ′. Then set 〈ws, wt〉 ∈ R iff Γ′ `∗NIL s.t, and vws(p) = 1 iff Γ′ `∗NIL ps.

L5.8 If Γ0 is consistent then for 〈W,R, v〉 constructed as above, and for
any s included in Γ′, vws(A) = 1 iff Γ′ `∗NIL As.
Suppose Γ0 is consistent and s is included in Γ′. By L5.4, Γ′ is s-
maximal. By L5.6 and L5.7, Γ′ is consistent and a scapegoat set for
⇁ and A. Now by induction on the number of operators in As,

Basis: If As has no operators, then it is a parameter ps and by con-
struction, vws(p) = 1 iff Γ′ `∗NIL ps. So vws(A) = 1 iff Γ′ `∗NIL As.

Assp: For any i, 0 ≤ i < k, if As has i operators, then vws(A) = 1 iff
Γ′ `∗NIL As.

Show: If As has k operators, then vws(A) = 1 iff Γ′ `∗NIL As.
If As has k operators, then it is of the form ∼Ps, (P ∧Q)s, (P ∨
Q)s, (P A Q)s, or ⇁Ps where P and Q have < k operators.

(∼) As is ∼Ps. (i) Suppose vws(A) = 1; then vws(∼P ) = 1; so
by TIL(∼), vws(P ) = 0; so by assumption, Γ′ 6`∗NIL Ps; so by
s-maximality, Γ′ `∗NIL ∼Ps, where this is to say, Γ′ `∗NIL As.
(ii) Suppose Γ′ `∗NIL As; then Γ′ `∗NIL ∼Ps; so by consistency,
Γ′ 6`∗NIL Ps; so by assumption, vws(P ) = 0; so by TIL(∼),
vws(∼P ) = 1, where this is to say, vws(A) = 1. So vws(A) = 1
iff Γ′ `∗NIL As.

(∧)

(∨)

(A)

(⇁) As is ⇁Ps. (i) Suppose vws(A) = 1 but Γ′ 6`∗NIL As; then
vws(⇁P ) = 1 but Γ′ 6`∗NIL ⇁Ps. From the latter, by s-
maximality, Γ′ `∗NIL ∼⇁Ps; so, since Γ′ is a scapegoat set for
⇁, there is some t such that Γ′ `∗NIL s.t and Γ′ `∗NIL Pt; from
the first, by construction, 〈ws, wt〉 ∈ R; and from the second,
by assumption, vwt(P ) = 1; so by TIL(⇁), vws(⇁P ) = 0.
This is impossible; reject the assumption: if vws(A) = 1, then
Γ′ `∗NIL As.
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(ii) Suppose Γ′ `∗NIL As but vws(A) = 0; then Γ′ `∗NIL ⇁Ps but
vws(⇁P ) = 0. From the latter, by TIL(⇁), there is some
wt ∈ W such that wsRwt and vwt(P ) = 1; so by assumption,
Γ′ `∗NIL Pt; but since wsRwt, by construction, Γ′ `∗NIL s.t; so
by (⇁E), Γ′ `∗NIL ∼Pt; so by consistency, Γ′ 6`∗NIL Pt. This is
impossible; reject the assumption: if Γ′ ǸIL As then vws(A) =
1. So vws(A) = 1 iff Γ′ `∗NIL As.

———
For any As, vws(A) = 1 iff Γ′ `∗NIL As.

L5.9 If Γ0 is consistent, then 〈W,R, v〉 constructed as above is an IL in-
terpretation.

For this, we need to show that the interpretation meets the ρ, τ and
h conditions.

(ρ) Suppose ws ∈ W . Then by construction, s is a subscript in
Γ′; so by (AMρ), Γ′ `∗NIL s.s; so by construction, 〈ws, ws〉 ∈ R
and ρ is satisfied.

(τ)

(h) Suppose vws(p) = 1 and wsRwt. Then by construction, Γ′ `∗NIL
ps and Γ′ `∗NIL s.t; so by (H), Γ′ `∗NIL pt; so by construction,
vwt(p) = 1.

Map For any ws ∈W , set m(s) = ws; otherwise m(s) is arbitrary.

L5.10 If Γ0 is consistent, then vm(Γ0) = 1.

Reasoning parallel to L2.10 for NKα.

Main result: Suppose Γ |=IL A but Γ 6 ǸIL A. Then Γ0 |=∗IL A0 but Γ0 6`∗NIL
A0. By a simple derivation, if Γ0 `∗NIL ∼∼A0, then Γ0 `∗NIL A0; so Γ0 6`∗NIL
∼∼A0; so by L5.2, Γ0 ∪ {∼A0} is consistent; so by L5.9 and L5.10, there
is an IL interpretation 〈W,R, v〉m constructed as above such that vm(Γ0 ∪
{∼A0}) = 1; so vm(0)(∼A) = 1; so by TIL(∼), vm(0)(A) = 0; so vm(Γ0) = 1
and vm(0)(A) = 0; so by VIL*, Γ0 6|=∗IL A0. This is impossible; reject the
assumption: if Γ |=IL A, then Γ ǸIL A.
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6 Many-Valued Logics: Mx (ch. 7,8)

6.1 Language / Semantic Notions

LMx The language consists of propositional parameters p0, p1 . . . with
the operators, ¬, ∧, ∨, and ⊃. Each propositional parameter is a
formula; if A and B are formulas, so are ¬A, (A∧B), (A∨B), and
(A ⊃ B). A ≡ B abbreviates (A ⊃ B) ∧ (B ⊃ A).

IMx An interpretation is a function v which assigns to each proposi-
tional parameter some subset of {0, 1}; so v(p) is φ, {1}, {0} or {1, 0}.
Intuitively, v(p) is true iff 1 ∈ v(p) and v(p) is false iff 0 ∈ v(p). Where
x is empty or includes some combination of the following constraints,

exc for no p are both 0 ∈ v(p) and 1 ∈ v(p) exclusion
exh for any p, either 1 ∈ v(p) or 0 ∈ v(p) exhaustion

v is an Mx interpretation only if it meets the constraints from x.
MCL has both exc and exh, MK3 and M L3 just exc, MLP and MRM

just exh, and MFD neither exc nor exh (these are classical logic, and
Priest’s K3,  L3, LP, RM3 and FDE ).

TM For complex expressions,

(¬) 1 ∈ v(¬A) iff 0 ∈ v(A); 0 ∈ v(¬A) iff 1 ∈ v(A).

(∧) 1 ∈ v(A ∧ B) iff 1 ∈ v(A) and 1 ∈ v(B); 0 ∈ v(A ∧ B) iff
0 ∈ v(A) or 0 ∈ v(B).

(∨) 1 ∈ v(A∨B) iff 1 ∈ v(A) or 1 ∈ v(B); 0 ∈ v(A∨B) iff 0 ∈ v(A)
and 0 ∈ v(B).

(⊃) 1 ∈ v(A ⊃ B) iff 0 ∈ v(A) or 1 ∈ v(B); 0 ∈ v(A ⊃ B) iff
1 ∈ v(A) and 0 ∈ v(B).

(⊃)L3 1 ∈ v(A ⊃ B) iff 0 ∈ v(A) or 1 ∈ v(B) or none of 1, 0 ∈ v(A)
or 1, 0 ∈ v(B); 0 ∈ v(A ⊃ B) iff 1 ∈ v(A) and 0 ∈ v(B).

(⊃)RM 1 ∈ v(A ⊃ B) iff 1 6∈ v(A) or 0 6∈ v(B) or all of 1, 0 ∈ v(A)
and 1, 0 ∈ v(B); 0 ∈ v(A ⊃ B) iff 1 ∈ v(A) and 0 ∈ v(B).

All the systems have the same conditions, except that M L3 interpretations
use (⊃)L3 and MRM interpretations use (⊃)RM . For a set Γ of formulas,
1 ∈ v(Γ) iff 1 ∈ v(A) for each A ∈ Γ; then,

VMx Γ |=Mx A iff there is no Mx interpretation v such that 1 ∈ v(Γ) but
1 6∈ v(A).
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This account is adequate to the (superficially) different presentations in
these chapters of Priest. For the multivalued approach: classical logic has
values {0}, {1}, with {1} designated; K3 and  L3 have φ, {0}, {1}, with
{1} designated; LP and RM3 have {0}, {1}, {0, 1}, with {1} and {0, 1}
designated; and FDE has φ, {0}, {1}, {0, 1}, with {1} and {0, 1} designated.
For the relational approach, we identify the relation as set membership. And
a v as above maps to a Routley interpretation with vw(p) = 1 iff 1 ∈ v(p),
and vw∗(p) = 0 iff 0 ∈ v(p).5 Then, in each case, conditions for truth and
validity are as above.

6.2 Natural Derivations: NMx

Introduce expressions of the sort A and A. Intuitively A indicates that A is
not false. Let \A\ and /A/ represent either A or A where what is represented
is constant in a given context, but \A\ and /A/ are opposite. And similarly
for //A// and \\A\\, though there need be no fixed relation between overlines
on \A\ and \\A\\. Except for a pair of new rules (D) and (U) corresponding
to conditions exc and exh, derivation rules mirror ones for classical logic.

D P

P

U P

P

R /P /

/P /

¬I /P /

//Q//

\\¬Q\\
\¬P \

¬E /¬P /

//Q//

\\¬Q\\
\P \

∧I /P /

/Q/

/P ∧Q/

∧E /P ∧Q/

/P /

∧E /P ∧Q/

/Q/

5For this, see [3, sections 8.5.8, 8.7.17 and 8.7.18] along with L6.0 for the proof of
soundness in [7].
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∨I /P /

/P ∨Q/

∨I /P /

/Q ∨ P /

⊃I /P /

\Q\

\P ⊃ Q\

⊃E \P ⊃ Q\
/P /

\Q\

∨E /P ∨Q/
/P /

//R//

/Q/

//R//

//R//

≡I /P /

\Q\

/Q/

\P \

\P ≡ Q\

≡E \P ≡ Q\
/P /

\Q\

≡E \P ≡ Q\
/Q/

\P \

NMFD has the I- and E-rules for ¬, ∧, ∨, ⊃ with (R). NMK3 adds (D), for
truth down. NMLP adds (U), for truth up. NMCL has all the rules. In these
systems, (≡I) and (≡E) are derived. In addition, for these systems, two-way
derived rules carry over from CL with consistent overlines. Thus, e.g.,

Impl /P ⊃ Q/ / . /¬P ∨Q/
/¬P ⊃ Q/ / . /P ∨Q/

MT, NB and DS appear in the forms,

MT /P ⊃ Q/
\¬Q\

/¬P /

NB /P ≡ Q/ /P ≡ Q/
\¬P \ \¬Q\

/¬Q/ /¬P /

DS /P ∨Q/ /P ∨Q/
\¬P \ \¬Q\

/Q/ /P /

Alternate systems. The systems NM L3 and NMRM have (R) with I and
E rules for ¬, ∧, and ∨. Both include,

⊃ I P

Q

P ⊃ Q

⊃E P ⊃ Q
P

Q

which are the same as before. NM L3 adds (D) and,
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⊃ IL3 P

(P ∨ ¬P ) ∨ (Q ∨ ¬Q)

Q

P ⊃ Q

⊃EL3 P ⊃ Q
(P ∨ ¬P ) ∨ (Q ∨ ¬Q)

P

Q

NMRM adds (U) and,

⊃ IRM P

(P ∨ ¬P ) ∨ (Q ∨ ¬Q)

Q

P ⊃ Q

⊃ERM P ⊃ Q
(P ∨ ¬P ) ∨ (Q ∨ ¬Q)

P

Q

Because of the lack of symmetry for ⊃ rules, there is no easy carryover in
these systems of derived rules for ≡ and ⊃.

Where the members of Γ and A are expressions without overlines,

NMx Γ ǸMx A iff there is an NMx derivation of A from the members of Γ.

Examples. Here are derivations, cast to show the general forms, for MT
and the second form of DS.

/P ⊃ Q/, \¬Q\ ǸMx
/¬P /

1 /P ⊃ Q/ P

2 \¬Q\ P

3 \P \ A (c, ¬I)

4 /Q/ 1,3 ⊃E

5 \¬Q\ 2 R

6 /¬P / 3-5 ¬I

/P ∨Q/, \¬Q\ ǸMx
/P /

1 /P ∨Q/ P

2 \¬Q\ P

3 /P / A (g, 1 ∨E)

4 /P / 3 R

5 /Q/ A (g, 1 ∨E)

6 \¬P \ A (c, ¬E)

7 /Q/ 5 R

8 \¬Q\ 2 R

9 /P / 6-8 ¬E

10 /P / 1,3-4,5-9 ∨E

And for some particular results requiring (D) and (U), here are demonstra-
tions of standard rule and axioms for classical logic, making use of the full
rule set (see, e.g. [6, chapter 3]).
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MP A,A ⊃ B ǸMCL
B

1 A P

2 A ⊃ B P

3 A 1 D

4 B 2,3 ⊃E

A1 ǸMCL
A ⊃ (B ⊃ A)

1 A A (g, ⊃I)

2 B A (g, ⊃I)

3 A 1 U

4 B ⊃ A 2-3 ⊃I

5 A ⊃ (B ⊃ A) 1-4 ⊃I

A2 ǸMCL
[A ⊃ (B ⊃ C)] ⊃ [(A ⊃ B) ⊃ (A ⊃ C)]

1 A ⊃ (B ⊃ C) A (g, ⊃I)

2 A ⊃ B A (g, ⊃I)

3 A A (g, ⊃I)

4 A ⊃ B 2 U

5 B 3,4 ⊃E

6 A ⊃ (B ⊃ C) 1 U

7 B ⊃ C 3,6 ⊃E

8 B 5 D

9 C 7,8 ⊃E

10 A ⊃ C 3-9 ⊃I

11 (A ⊃ B) ⊃ (A ⊃ C) 2-10 ⊃I

12 [A ⊃ (B ⊃ C)] ⊃ [(A ⊃ B) ⊃ (A ⊃ C)] 1-11 ⊃I

A3 ǸMCL
(¬A ⊃ ¬B) ⊃ [(¬A ⊃ B) ⊃ A]

1 ¬A ⊃ ¬B A (g, ⊃I)

2 ¬A ⊃ B A (g, ⊃I)

3 ¬A A (c, ¬E)

4 ¬A 3 U

5 B 2,4 ⊃E

6 ¬B 1,4 ⊃E

7 ¬B 6 U

8 A 3-7 ¬E

9 (¬A ⊃ B) ⊃ A 2-8 ⊃I

10 (¬A ⊃ ¬B) ⊃ [(¬A ⊃ B) ⊃ A] 1-9 ⊃I

Of course, there is not much point going back-and-forth between overline
and non-overline expressions in the full classical system. But these examples
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should illustrate the rules. And overlines matter for the other systems.
Finally, a couple derivations to show modus ponens as a derived rule in
NM L3 and NMRM.

P ⊃ Q,P ǸML3
Q

1 P ⊃ Q P

2 P P

3 P 2 D

4 P ∨ ¬P 2 ∨I

5 (P ∨ ¬P ) ∨ (Q ∨ ¬Q) 4 ∨I

6 Q 1,3,5 ⊃E

P ⊃ Q,P ǸMRM
Q

1 P ⊃ Q P

2 P P

3 ¬Q A (c, ¬E)

4 Q ∨ ¬Q 3 ∨I

5 (P ∨ ¬P ) ∨ (Q ∨ ¬Q) 4 ∨I

6 Q 1,2,5 ⊃E

7 ¬Q 3 U

8 Q 3-7 ¬E

6.3 Soundness and Completeness

Preliminaries: Begin with generalized notions of truth and validity to in-
clude expressions with overlines. First, holding as a generalization of TM.
Say /A/ holds iff h(A) = 1 and otherwise fails. As usual, for the following,
cases omitted are like ones worked, and so left to the reader.

HM (B) h(p) = 1 if 1 ∈ v(p), and otherwise h(p) = 0; h(p) = 1 iff
0 6∈ v(p), and otherwise h(p) = 0.

(¬) h(/¬A/) = 1 iff h(\A\) = 0, and otherwise h(/¬A/) = 0.

(∧) h(/A ∧ B/) = 1 iff h(/A/) = 1 and h(/B/) = 1, and otherwise
h(/A ∧B/) = 0.

(∨) h(/A ∨ B/) = 1 iff h(/A/) = 1 or h(/B/) = 1, and otherwise
h(/A ∨B/) = 0.

(⊃) h(/A ⊃ B/) = 1 iff h(\A\) = 0 or h(/B/) = 1, and otherwise
h(/A ⊃ B/) = 0.

(⊃)L3 h(A ⊃ B) = 1 iff h(A) = 0 or h(B) = 1 or none of h(A) = 1,
h(A) = 0, h(B) = 1, or h(B) = 0, and otherwise h(A ⊃ B) =
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0; h(A ⊃ B) = 0 iff h(A) = 1 and h(B) = 0, and otherwise
h(A ⊃ B) = 1.

(⊃)RM h(A ⊃ B) = 1 iff h(A) = 0 or h(B) = 1 or all of h(A) = 1,
h(A) = 0, h(B) = 1, and h(B) = 0, and otherwise h(A ⊃ B) =
0; h(A ⊃ B) = 0 iff h(A) = 1 and h(B) = 0, and otherwise
h(A ⊃ B) = 1.

Except for the (⊃)L3 and (⊃)RM conditions, this formulation nicely mirrors
the original classical definition TCL. And h and v are related as one would
expect.

L6.0 For any Mx interpretation v and corresponding h, h(A) = 1 iff 1 ∈
v(A), and h(A) = 1 iff 0 6∈ v(A).

Basis: If A has no operators, then it is a parameter p. By HM(B),
h(p) = 1 iff 1 ∈ v(p) and h(p) = 1 iff 0 6∈ v(p); so h(A) = 1 iff
1 ∈ v(A), and h(A) = 1 iff 0 6∈ v(A).

Assp: For 0 ≤ i < k, if A has k operators, then h(A) = 1 iff 1 ∈ v(A),
and h(A) = 1 iff 0 6∈ v(A).

Show: If A has k operators, then h(A) = 1 iff 1 ∈ v(A), and h(A) = 1
iff 0 6∈ v(A).

If A has k operators, then it is of the form, ¬P , P ∧Q, P ∨Q,
or P ⊃ Q where P and Q have < k operators.

(¬) Suppose A is ¬P . By HM(¬), h(¬P ) = 1 iff h(P ) = 0; by
assumption, iff 0 ∈ v(P ); by TM(¬) iff 1 ∈ v(¬P ). By HM(¬),
h(¬P ) = 1 iff h(P ) = 0; by assumption, iff 1 6∈ v(P ); by
TM(¬) iff 0 6∈ v(¬P ). So h(A) = 1 iff 1 ∈ v(A), and h(A) = 1
iff 0 6∈ v(A).

(∧) Suppose A is P ∧ Q. By HM(∧), h(P ∧ Q) = 1 iff h(P ) = 1
and h(Q) = 1; by assumption, iff 1 ∈ v(P ) and 1 ∈ v(Q); by
TM(∧) iff 1 ∈ v(P∧Q). By HM(∧), h(P ∧Q) = 1 iff h(P ) = 1
and h(Q) = 1; by assumption, iff 0 6∈ v(P ) and 0 6∈ v(Q); by
TM(∧) iff 0 6∈ v(P ∧ Q). So h(A) = 1 iff 1 ∈ v(A), and
h(A) = 1 iff 0 6∈ v(A).

(∨)

(⊃) Suppose A is P ⊃ Q. By HM(⊃), h(P ⊃ Q) = 1 iff h(P ) = 0
or h(Q) = 1; by assumption, iff 0 ∈ v(P ) or 1 ∈ v(Q); by
TM(⊃) iff 1 ∈ v(P ⊃ Q). By HM(⊃), h(P ⊃ Q) = 1 iff
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h(P ) = 0 or h(Q) = 1; by assumption, iff 1 6∈ v(P ) or 0 6∈
v(Q); by TM(⊃) iff 0 6∈ v(P ⊃ Q). So h(A) = 1 iff 1 ∈ v(A),
and h(A) = 1 iff 0 6∈ v(A).

(⊃)L3 Suppose A is P ⊃ Q. By HM(⊃)L3, h(P ⊃ Q) = 1 iff h(P ) = 0
or h(Q) = 1 or none of h(P ) = 1, h(P ) = 0, h(Q) = 1, or
h(Q) = 0; by assumption, iff 0 ∈ v(P ) or 1 ∈ v(Q) or none
of 1, 0 ∈ v(P ) or 1, 0 ∈ v(Q); by TM(⊃)L3 iff 1 ∈ v(P ⊃
Q). By HM(⊃)L3, h(P ⊃ Q) = 1 iff h(P ) = 0 or h(Q) = 1;
by assumption, iff 1 6∈ v(P ) or 0 6∈ v(Q); by TM(⊃)L3 iff
0 6∈ v(P ⊃ Q). So h(A) = 1 iff 1 ∈ v(A), and h(A) = 1 iff
0 6∈ v(A).

(⊃)RM Suppose A is P ⊃ Q. By HM(⊃)RM , h(P ⊃ Q) = 1 iff
h(P ) = 0 or h(Q) = 1 or all of h(P ) = 1, h(P ) = 0, h(Q) = 1,
and h(Q) = 0; by assumption, iff 1 6∈ v(P ) or 0 6∈ v(Q) or all of
1, 0 ∈ v(P ) and 1, 0 ∈ v(Q); by TM(⊃)RM iff 1 ∈ v(P ⊃ Q).
By HM(⊃)RM , h(P ⊃ Q) = 1 iff h(P ) = 0 or h(Q) = 1;
by assumption, iff 1 6∈ v(P ) or 0 6∈ v(Q); by TM(⊃)RM iff
0 6∈ v(P ⊃ Q). So h(A) = 1 iff 1 ∈ v(A), and h(A) = 1 iff
0 6∈ v(A).

———
For any A, h(A) = 1 iff 1 ∈ v(A), and h(A) = 1 iff 0 6∈ v(A).

So A holds iff 1 ∈ v(A), and otherwise fails; and A holds iff 0 6∈ v(A), and
otherwise fails. This permits natural generalizations for notions of validity.
For any v, where Γ is a set of expressions with or without overlines, say
h(Γ) = 1 iff h(/A/) = 1 for each /A/ ∈ Γ. Then,

VMx* Γ |=∗Mx /A/ iff there is no Mx interpretation v and corresponding h
such that h(Γ) = 1 but h(/A/) = 0.

NMx* Γ `∗NMx /A/ iff there is an NMx derivation of /A/ from the members
of Γ.

These notions reduce to the standard ones when all the members of Γ and
/A/ are without overlines. This is obvious for NMx*. And similarly, we
have h(A) = 1 iff 1 ∈ v(A); so VMx* collapses to VMx.

Theorem 6.1 NMx is sound: If Γ ǸMx A then Γ |=Mx A.

L6.1 If Γ ⊆ Γ′ and Γ |=∗Mx /P /, then Γ′ |=∗Mx /P /.
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Suppose Γ ⊆ Γ′ and Γ |=∗Mx /P /, but Γ′ 6|=∗Mx /P /. From the latter, by
VMx*, there is some v and h such that h(Γ′) = 1 but h(/P /) = 0.
But since h(Γ′) = 1 and Γ ⊆ Γ′, h(Γ) = 1; so h(Γ) = 1 but h(/P /) =
0; so by VMx*, Γ 6|=∗Mx /P /. This is impossible; reject the assumption:
if Γ ⊆ Γ′ and Γ |=∗Mx /P /, then Γ′ |=∗Mx /P /.

Main result: For each line in a derivation let Pi be the formula on line i
(with or without overlines) and set Γi equal to the set of all premises and
assumptions whose scope includes line i. We set out to show “generalized”
soundness: if Γ `∗NMx /A/ then Γ |=∗Mx /A/. As above, this reduces to the
standard result when the members of Γ andA are without overlines. Suppose
Γ `∗NMx /A/. Then there is a derivation of /A/ from premises in Γ where /A/

appears under the scope of the premises alone. By induction on line number
of this derivation, we show that for each line i of this derivation, Γi |=∗Mx Pi.
The case when Pi = /A/ is the desired result.

Basis: P1 is a premise or an assumption /A/. Then Γ1 = {/A/}; so h(Γ1) = 1
iff h(/A/) = 1; so there is no h such that h(Γ1) = 1 but h(/A/) = 0.
So by VMx*, Γ1 |=∗Mx /A/, where this is just to say, Γ1 |=∗Mx P1.

Assp: For any i, 1 ≤ i < k,Γi |=∗Mx Pi.

Show: Γk |=∗Mx Pk.
Pk is either a premise, an assumption, or arises from previous lines
by R, ¬I, ¬E, ∧I, ∧E, ∨I, ∨E, or, depending on the system, ⊃I, ⊃E,
D, U, ⊃ I, ⊃E, ⊃ IL3, ⊃EL3,⊃ IRM , or ⊃ERM . If Pk is a premise or
an assumption, then as in the basis, Γk |=∗Mx Pk. So suppose Pk arises
by one of the rules.

(R)

(¬I) If Pk arises by ¬I, then the picture is like this,

/A/

i //B//

j \\¬B\\
k \¬A\

where i, j < k and Pk is \¬A\. By assumption, Γi |=∗Mx //B// and
Γj |=∗Mx \\¬B\\; but by the nature of access, Γi ⊆ Γk ∪ {/A/} and
Γj ⊆ Γk∪{/A/}; so by L6.1, Γk∪{/A/} |=∗Mx //B// and Γk∪{/A/} |=∗Mx
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\\¬B\\. Suppose Γk 6|=∗Mx \¬A\; then by VMx*, there is some v and
h such that h(Γk) = 1 but h(\¬A\) = 0; from the latter, by HM(¬),
h(/A/) = 1; so h(Γk) = 1 and h(/A/) = 1; so h(Γk∪{/A/}) = 1; so by
VMx*, h(//B//) = 1 and h(\\¬B\\) = 1; from the latter, by HM(¬),
h(//B//) = 0. This is impossible; reject the assumption: Γk |=∗Mx \¬A\,
which is to say, Γk |=∗Mx Pk.

(¬E)

(∧I)

(∧E)

(∨I)

(∨E)

(⊃I) If Pk arises by ⊃I, then the picture is like this,

\A\

i /B/

k /A ⊃ B/

where i < k and Pk is /A ⊃ B/. By assumption, Γi |=∗Mx /B/; and by
the nature of access, Γi ⊆ Γk∪{\A\}; so by L6.1, Γk∪{\A\} |=∗Mx /B/.
Suppose Γk 6|=∗Mx /A ⊃ B/; then by VMx*, there is some v and
h such that h(Γk) = 1 but h(/A ⊃ B/) = 0; from the latter, by
HM(⊃), h(\A\) = 1 and h(/B/) = 0; so h(Γk) = 1 and h(\A\) = 1;
so h(Γk ∪ {\A\}) = 1; so by VMx*, h(/B/) = 1. This is impossible;
reject the assumption: Γk |=∗Mx /A ⊃ B/, which is to say, Γk |=∗Mx Pk.

(⊃E) If Pk arises by ⊃E, then the picture is like this,

i /A ⊃ B/
j \A\

k /B/

where i, j < k and Pk is /B/. By assumption, Γi |=∗Mx /A ⊃ B/ and
Γj |=∗Mx \A\; but by the nature of access, Γi ⊆ Γk and Γj ⊆ Γk; so by
L6.1, Γk |=∗Mx /A ⊃ B/ and Γk |=∗Mx \A\. Suppose Γk 6|=∗Mx /B/; then
by VMx*, there is some v and h such that h(Γk) = 1 but h(/B/) = 0;
since h(Γk) = 1, by VMx*, h(/A ⊃ B/) = 1 and h(\A\) = 1; from
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the former, by HM(⊃), h(\A\) = 0 or h(/B/) = 1; so h(/B/) = 1.
This is impossible; reject the assumption: Γk |=∗Mx /B/, which is to
say, Γk |=∗Mx Pk.

(D) If Pk arises by D, then the picture is like this,

i A

k A

where i < k and Pk is A. Where this rule is included in NMx, Mx has
condition exc, so no interpretation has v(p) = {1, 0}. By assumption,
Γi |=∗Mx A; but by the nature of access, Γi ⊆ Γk; so by L6.1, Γk |=∗Mx A.
Suppose Γk 6|=∗Mx A; then by VMx*, there is some v and h such that
h(Γk) = 1 but h(A) = 0; since h(Γk) = 1, by VMx*, h(A) = 1. But
for these interpretations, for any A, if h(A) = 1 then h(A) = 1.

Basis: A is a parameter p. Suppose h(A) = 1; then h(p) = 1; so by
HM(B), 1 ∈ v(p); so by exc, 0 6∈ v(p); so by HM(B), h(p) = 1;
so h(A) = 1.

Assp: For any i, 0 ≤ i < k, if A has i operators, and h(A) = 1, then
h(A) = 1.

Show: If A has k operators, and h(A) = 1, then h(A) = 1.

If A has k operators, then A is of the form, ¬P , P ∧Q, P ∨Q,
or P ⊃ Q, where P and Q have < k operators.

(¬) A is ¬P . Suppose h(A) = 1; then h(¬P ) = 1; so by HM(¬),
h(P ) = 0; so by assumption, h(P ) = 0; so by HM(¬), h(¬P ) =
1, which is to say, h(A) = 1.

(∧) A is P ∧ Q. Suppose h(A) = 1; then h(P ∧ Q) = 1; so by
HM(∧), h(P ) = 1 and h(Q) = 1; so by assumption, h(P ) = 1
and h(Q) = 1; so by HM(∧), h(P ∧Q) = 1, which is to say
h(A) = 1.

(∨)

(⊃) A is P ⊃ Q. Suppose h(A) = 1; then h(P ⊃ Q) = 1; so by
HM(⊃), h(P ) = 0 or h(Q) = 1; so by assumption, h(P ) = 0
or h(Q) = 1; so by HM(⊃), h(P ⊃ Q) = 1, which is to say
h(A) = 1.

(⊃)L3 A is P ⊃ Q. Suppose h(A) = 1; then h(P ⊃ Q) = 1; so
by HM(⊃)L3, h(P ) = 0 or h(Q) = 1 or none of h(P ) = 1,
h(P ) = 0, h(Q) = 1, or h(Q) = 0; so by assumption, h(P ) = 0

105



or h(Q) = 1; so by HM(⊃)L3, h(P ⊃ Q) = 1, which is to say
h(A) = 1.

———
For any A, if h(A) = 1, then h(A) = 1.

So, returning to the case for (D), h(A) = 1. This is impossible; reject
the assumption: Γk |=∗Mx A, which is to say, Γk |=∗Mx Pk.

(U) If Pk arises by U, then the picture is like this,

i A

k A

where i < k and Pk is A. Where this rule is included in NMx, Mx
has condition exh, so no interpretation has v(p) = φ. By assumption,
Γi |=∗Mx A; but by the nature of access, Γi ⊆ Γk; so by L6.1, Γk |=∗Mx A.
Suppose Γk 6|=∗Mx A; then by VMx*, there is some v and h such that
h(Γk) = 1 but h(A) = 0; since h(Γk) = 1, by VMx*, h(A) = 1. But
for these interpretations, for any A, if h(A) = 1 then h(A) = 1.

Basis: A is a parameter p. Suppose h(A) = 1; then h(p) = 1; so by
HM(B), 0 6∈ v(p); so by exh, 1 ∈ v(p); so by HM(B), h(p) = 1;
so h(A) = 1.

Assp: For any i, 0 ≤ i < k, if A has i operators, and h(A) = 1, then
h(A) = 1.

Show: If A has k operators, and h(A) = 1, then h(A) = 1.

If A has k operators, then A is of the form, ¬P , P ∧Q, P ∨Q,
or P ⊃ Q, where P and Q have < k operators.

(¬) A is ¬P . Suppose h(A) = 1; then h(¬P ) = 1; so by HM(¬),
h(P ) = 0; so by assumption, h(P ) = 0; so by HM(¬), h(¬P ) =
1, which is to say, h(A) = 1.

(∧) A is P ∧ Q. Suppose h(A) = 1; then h(P ∧Q) = 1; so by
HM(∧), h(P ) = 1 and h(Q) = 1; so by assumption, h(P ) = 1
and h(Q) = 1; so by HM(∧), h(P ∧ Q) = 1, which is to say
h(A) = 1.

(∨)

(⊃) A is P ⊃ Q. Suppose h(A) = 1; then h(P ⊃ Q) = 1; so by
HM(⊃), h(P ) = 0 or h(Q) = 1; so by assumption, h(P ) = 0
or h(Q) = 1; so by HM(⊃), h(P ⊃ Q) = 1, which is to say
h(A) = 1.
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(⊃)RM A is P ⊃ Q. Suppose h(A) = 1; then h(P ⊃ Q) = 1; so by
HM(⊃)RM , h(P ) = 0 or h(Q) = 1; so h(P ) = 0 or h(Q) = 1
or all of h(P ) = 1, h(P ) = 0, h(Q) = 1, and h(Q) = 0; so by
HM(⊃)RM , h(P ⊃ Q) = 1, which is to say h(A) = 1.

———
For any A, if h(A) = 1, then h(A) = 1.

So, returning to the case for (U), h(A) = 1. This is impossible; reject
the assumption: Γk |=∗Mx A, which is to say, Γk |=∗Mx Pk.

(⊃ I)

(⊃E)

(⊃ IL3) If Pk arises by ⊃ IL3, then the picture is like this,

A

(A ∨ ¬A) ∨ (B ∨ ¬B)

i B

k A ⊃ B

where i < k and Pk is A ⊃ B. By assumption, Γi |=∗NML3 B; and by

the nature of access, Γi ⊆ Γk∪{A, (A∨¬A)∨ (B∨¬B)}; so by L6.1,
Γk ∪ {A, (A ∨ ¬A) ∨ (B ∨ ¬B)} |=∗NML3 B. Suppose Γk 6|=∗NML3 A ⊃ B;
then by VMx*, there is some v and h such that h(Γk) = 1 but
h(A ⊃ B) = 0; from the latter, by HM(⊃)L3, h(A) = 1 and h(B) = 0
and at least one of h(A) = 1, h(A) = 0, h(B) = 1, or h(B) = 0; since
at least one of h(A) = 1, h(A) = 0, h(B) = 1, or h(B) = 0, by HM(¬)
twice, at least one of h(A) = 1, h(¬A) = 1, h(B) = 1, or h(¬B) = 1;
so by repeated applications of HM(∨), h((A∨¬A)∨ (B ∨¬B)) = 1;
so h(Γk) = 1, h(A) = 1, and h((A ∨ ¬A) ∨ (B ∨ ¬B)) = 1; so
h(Γk ∪{A, (A∨¬A)∨ (B ∨¬B)}) = 1; so by VMx*, h(B) = 1. This
is impossible; reject the assumption: Γk |=∗NML3 A ⊃ B, which is to
say, Γk |=∗NML3 Pk.

(⊃EL3) If Pk arises by ⊃EL3, then the picture is like this,

h A ⊃ B
i (A ∨ ¬A) ∨ (B ∨ ¬B)

j A

k B
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where h, i, j < k and Pk is B. By assumption, Γh |=∗NML3 A ⊃ B,

Γi |=∗NML3 (A ∨ ¬A) ∨ (B ∨ ¬B) and Γj |=∗NML3 A; but by the nature of
access, Γh ⊆ Γk, Γi ⊆ Γk and Γj ⊆ Γk; so by L6.1, Γk |=∗NML3 A ⊃ B,

Γk |=∗NML3 (A∨¬A)∨ (B ∨¬B) and Γk |=∗NML3 A. Suppose Γk 6|=∗NML3 B;
then by VMx*, there is some v and h such that h(Γk) = 1 but
h(B) = 0; since h(Γk) = 1, by VMx*, h(A ⊃ B) = 1, h((A ∨ ¬A) ∨
(B ∨ ¬B)) = 1 and h(A) = 1; from the first of these, by HM(⊃)L3,
h(A) = 0 or h(B) = 1 or none of h(A) = 1, h(A) = 0, h(B) = 1,
or h(B) = 0; but since h((A ∨ ¬A) ∨ (B ∨ ¬B)) = 1, by repeated
applications of HM(∨), at least one of h(A) = 1, h(¬A) = 1, h(B) =
1, or h(¬B) = 1; so by HM(¬) twice, at least one of h(A) = 1,
h(A) = 0, h(B) = 1, or h(B) = 0; so h(A) = 0 or h(B) = 1; but
since h(A) = 1, h(B) = 1. This is impossible; reject the assumption:
Γk |=∗NML3 B, which is to say, Γk |=∗NML3 Pk.

(⊃ IRM ) If Pk arises by ⊃ IRM , then the picture is like this,

A

(A ∨ ¬A) ∨ (B ∨ ¬B)

i B

k A ⊃ B

where i < k and Pk is A ⊃ B. By assumption, Γi |=∗NMRM B; and

by the nature of access, Γi ⊆ Γk ∪ {A, (A ∨ ¬A) ∨ (B ∨ ¬B)}; so by
L6.1, Γk ∪ {A, (A ∨ ¬A) ∨ (B ∨ ¬B)} |=∗NMRM B. Suppose Γk 6|=∗NMRM
A ⊃ B; then by VMx*, there is some v and h such that h(Γk) = 1
but h(A ⊃ B) = 0; from the latter, by HM(⊃)RM , h(A) = 1 and
h(B) = 0 and not all of h(A) = 1, h(A) = 0, h(B) = 1, and h(B) = 0;
since not all of h(A) = 1, h(A) = 0, h(B) = 1, or h(B) = 0, at least
one of h(A) = 0, h(A) = 1, h(B) = 0, or h(B) = 1; so by HM(¬)
twice, at least one of h(¬A) = 1, h(A) = 1, h(¬B) = 1, or h(B) = 1;
so by repeated applications of HM(∨), h((A ∨ ¬A) ∨ (B ∨ ¬B)) =
1; so h(Γk) = 1, h(A) = 1, and h((A ∨ ¬A) ∨ (B ∨ ¬B)) = 1; so
h(Γk ∪ {A, (A ∨ ¬A) ∨ (B ∨ ¬B)}) = 1; so by VMx*, h(B) = 1.
This is impossible; reject the assumption: Γk |=∗NMRM A ⊃ B, which is
to say, Γk |=∗NMRM Pk.

(⊃ERM ) If Pk arises by ⊃ERM , then the picture is like this,
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h A ⊃ B
i (A ∨ ¬A) ∨ (B ∨ ¬B)

j A

k B

where h, i, j < k and Pk is B. By assumption, Γh |=∗NMRM A ⊃ B,

Γi |=∗NMRM (A ∨ ¬A) ∨ (B ∨ ¬B) and Γj |=∗NMRM A; but by the nature
of access, Γh ⊆ Γk, Γi ⊆ Γk and Γj ⊆ Γk; so by L6.1, Γk |=∗NMRM
A ⊃ B, Γk |=∗NMRM (A ∨ ¬A) ∨ (B ∨ ¬B) and Γk |=∗NMRM A. Sup-

pose Γk 6|=∗NMRM B; then by VMx*, there is some v and h such that

h(Γk) = 1 but h(B) = 0; since h(Γk) = 1, by VMx*, h(A ⊃ B) = 1,
h((A ∨ ¬A) ∨ (B ∨ ¬B)) = 1 and h(A) = 1; from the first of these,
by HM(⊃)RM , h(A) = 0 or h(B) = 1 or all of h(A) = 1, h(A) = 0,
h(B) = 1, and h(B) = 0; but since h((A ∨ ¬A) ∨ (B ∨ ¬B)) = 1, by
repeated applications of HM(∨), at least one of h(A) = 1, h(¬A) = 1,
h(B) = 1, or h(¬B) = 1; so by HM(¬) twice, at least one of
h(A) = 0, h(A) = 1, h(B) = 0, or h(B) = 1; so h(A) = 0 or
h(B) = 1; but since h(A) = 1, h(B) = 1. This is impossible; reject
the assumption: Γk |=∗NMRM B, which is to say, Γk |=∗NMRM Pk.

———
For any i, Γi |=∗Mx Ai.

Theorem 6.2 NMx is complete: if Γ |=Mx A then Γ ǸMx A.

Suppose Γ |=Mx A; then Γ |=∗Mx A; we show that Γ `∗NMx A. Again, this
reduces to the standard notion when there are no overlines. Fix on some
particular constraint(s) x. Then definitions of consistency etc. are relative
to it.

Con Γ is consistent iff there is no A such that Γ `∗NMx /A/ and Γ `∗NMx
\¬A\.

L6.2 If Γ 6`∗NMx \¬P \, then Γ ∪ {/P /} is consistent.

Suppose Γ 6`∗NMx \¬P \ but Γ ∪ {/P /} is inconsistent. Then there is
some A such that Γ∪{/P /} `∗NMx //A// and Γ∪{/P /} `∗NMx \\¬A\\. But
then we can argue,
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1 Γ

2 /P / A (c, ¬I)

3 //A// from Γ ∪ {/P /}
4 \\¬A\\ from Γ ∪ {/P /}
5 \¬P \ 2-4 ¬I

So Γ `∗NMx \¬P \. But this is impossible; reject the assumption: if
Γ 6`∗NMx \¬P \, then Γ ∪ {/P /} is consistent.

L6.3 There is an enumeration of all the formulas, P1,P2 . . .

Proof by construction. A simple approach is to order A1, A2 . . . in
the usual way, and let the final enumeration be, A1, A1, A2, A2 . . ..

Max Γ is maximal iff for any A either Γ `∗NMx /A/ or Γ `∗NMx \¬A\.

C(Γ′) We construct a Γ′ from Γ as follows. Set Ω0 = Γ. By L6.3, there
is an enumeration, P1,P2 . . . of all the formulas; for any Pi = /A/ in
this series set,

Ωi = Ωi−1 if Ωi−1 `∗NMx \¬A\
Ωi = Ωi−1 ∪ {/A/} if Ωi−1 6`∗NMx \¬A\

then
Γ′ =

⋃
i≥0 Ωi

L6.4 Γ′ is maximal.

Suppose Γ′ is not maximal. Then there is some Pi = /A/ such that
Γ′ 6`∗NMx /A/ and Γ′ 6`∗NMx \¬A\. For any i, each member of Ωi−1 is
in Γ′; so if Ωi−1 `∗NMx \¬A\ then Γ′ `∗NMx \¬A\; but Γ′ 6`∗NMx \¬A\;
so Ωi−1 6`∗NMx \¬A\; so by construction, Ωi = Ωi−1 ∪ {/A/}; so by
construction, /A/ ∈ Γ′; so Γ′ `∗NMx /A/. This is impossible; reject the
assumption: Γ′ is maximal.

L6.5 If Γ is consistent, then each Ωi is consistent.

Suppose Γ is consistent.

Basis: Ω0 = Γ and Γ is consistent; so Ω0 is consistent.

Assp: For any i, 0 ≤ i < k, Ωi is consistent.

Show: Ωk is consistent.

Ωk is either Ωk−1 or Ωk−1 ∪ {/A/}. Suppose the former; by
assumption, Ωk−1 is consistent; so Ωk is consistent. Suppose
the latter; then by construction, Ωk−1 6`∗NMx \¬A\; so by L6.2,
Ωk−1 ∪ {/A/} is consistent; so Ωk is consistent.
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———
For any i, Ωi is consistent.

L6.6 If Γ is consistent, then Γ′ is consistent.

Suppose Γ is consistent, but Γ′ is not; from the latter, there is some
P such that Γ′ `∗NMx /P / and Γ′ `∗NMx \¬P \. Consider derivations D1
and D2 of these results and the premises of these derivations. Where
Pi is the last of these premises in the enumeration of formulas, by
the construction of Γ′, each of the premises must be a member of Ωi;
so D1 and D2 are derivations from Ωi; so Ωi is not consistent. But
since Γ is consistent, by L6.5, Ωi is consistent. This is impossible;
reject the assumption: if Γ is consistent then Γ′ is consistent.

C(v) We construct an interpretation v based on Γ′ as follows. For any
parameter p, set 1 ∈ v(p) iff Γ′ `∗NMx p, and 0 ∈ v(p) iff Γ′ 6`∗NMx p.

L6.7 If Γ is consistent then for any A, h(/A/) = 1 iff Γ′ `∗NMx /A/.
Suppose Γ is consistent. By L6.4, Γ′ is maximal; by L6.6, Γ′ is
consistent. Now by induction on the number of operators in A,

Basis: If A has no operators, then it is a parameter p or p. By
construction, Γ′ `∗NMx p iff 1 ∈ v(p); by HM(B), iff h(p) = 1.
Similarly, by construction, Γ′ 6`∗NMx p iff 0 ∈ v(p); by HM(B),
iff h(p) 6= 1. So h(/p/) = 1 iff Γ′ `∗NMx /p/, which is to say,
h(/A/) = 1 iff Γ′ `∗NMx /A/.

Assp: For any i, 0 ≤ i < k, if A has i operators, then h(/A/) = 1 iff
Γ′ `∗NMx /A/.

Show: If A has k operators, then h(/A/) = 1 iff Γ′ `∗NMx /A/.
If A has k operators, then it is of the form ¬P , P ∧Q, P ∨Q
or P ⊃ Q where P and Q have < k operators.

(¬) A is ¬P . (i) Suppose h(/A/) = 1; then h(/¬P /) = 1; so by
HM(¬), h(\P \) = 0; so by assumption, Γ′ 6`∗NMx \P \; so by
maximality, Γ′ `∗NMx /¬P /, where this is to say, Γ′ `∗NMx /A/.
(ii) Suppose Γ′ `∗NMx /A/; then Γ′ `∗NMx /¬P /; so by consistency,
Γ′ 6`∗NMx \P \; so by assumption, h(\P \) = 0; so by HM(¬),
h(/¬P /) = 1, where this is to say, h(/A/) = 1. So h(/A/) = 1
iff Γ′ `∗NMx /A/.

(∧)

(∨)
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(⊃) A is P ⊃ Q. (i) Suppose h(/A/) = 1 but Γ′ 6`∗NMx /A/; then
h(/P ⊃ Q/) = 1 but Γ′ 6`∗NMx /P ⊃ Q/. From the latter, by
maximality, Γ′ `∗NMx \¬(P ⊃ Q)\; from this it follows, by the
following derivations,

1 \¬(P ⊃ Q)\ P

2 /¬P / A (c, ¬E)

3 \P \ A (g, ⊃I)

4 \¬Q\ A (c, ¬E)

5 \P \ 3 R

6 /¬P / 2 R

7 /Q/ 4-6 ¬E

8 /P ⊃ Q/ 3-7 ⊃I

9 \¬(P ⊃ Q)\ 1 R

10 \P \ 2-9 ¬E

1 \¬(P ⊃ Q)\ P

2 /Q/ A (c, ¬I)

3 \P \ A (g, ⊃I)

4 /Q/ 2 R

5 /P ⊃ Q/ 3-4 ⊃I

6 \¬(P ⊃ Q)\ 1 R

7 \¬Q\ 2-6 ¬I

that Γ′ `∗NMx \P \ and Γ′ `∗NMx \¬Q\; so by consistency, Γ′ 6`∗NMx
/Q/; so by assumption, h(\P \) = 1 and h(/Q/) = 0; so by
HM(⊃), h(/P ⊃ Q/) = 0. This is impossible; reject the as-
sumption: if h(/A/) = 1 then Γ′ `∗NMx /A/.
(ii) Suppose Γ′ `∗NMx /A/ but h(/A/) = 0; then Γ′ `∗NMx /P ⊃ Q/
but h(/P ⊃ Q/) = 0. From the latter, by HM(⊃), h(\P \) = 1
and h(/Q/) = 0; so by assumption, Γ′ `∗NMx \P \ and Γ′ 6`∗NMx
/Q/; but since Γ′ `∗NMx /P ⊃ Q/ and Γ′ `∗NMx \P \, by (⊃E),
Γ′ `∗NMx /Q/. This is impossible; reject the assumption: if
Γ′ `∗NMx /A/, then h(/A/) = 1. So h(/A/) = 1 iff Γ′ `∗NMx /A/.

(⊃)L3 A is P ⊃ Q. (i) /A/ is either (a) A or (b) A. (a) Suppose
h(A) = 1 but Γ′ 6`∗NML3 A; then h(P ⊃ Q) = 1 but Γ′ 6`∗NML3 P ⊃
Q. From the latter, by maximality, Γ′ `∗NML3 ¬(P ⊃ Q); from
this it follows, by the following derivations,
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1 ¬(P ⊃ Q) P

2 ¬P A (c, ¬E)

3 P A (g, ⊃ IL3)

4 (P ∨ ¬P ) ∨ (Q ∨ ¬Q) A (g, ⊃ IL3)

5 ¬Q A (c, ¬E)

6 P 3 R

7 ¬P 2 R

8 Q 5-7 ¬E

9 P ⊃ Q 3-8 ⊃ IL3

10 ¬(P ⊃ Q) 1 R

11 P 2-10 ¬E

1 ¬(P ⊃ Q) P

2 Q A (c, ¬I)

3 P A (g, ⊃ IL3)

4 (P ∨ ¬P ) ∨ (Q ∨ ¬Q) A (g, ⊃ IL3)

5 Q 2 R

6 P ⊃ Q 3-5 ⊃ IL3

7 ¬(P ⊃ Q) 1 R

8 ¬Q 2-7 ¬I

1 ¬(P ⊃ Q) P

2 ¬((P ∨ ¬P ) ∨ (Q ∨ ¬Q)) A (c, ¬E)

3 P A (g, ⊃ IL3)

4 (P ∨ ¬P ) ∨ (Q ∨ ¬Q) A (g, ⊃ IL3)

5 ¬Q A (c, ¬E)

6 (P ∨ ¬P ) ∨ (Q ∨ ¬Q) 3 R

7 ¬((P ∨ ¬P ) ∨ (Q ∨ ¬Q)) 2 R

8 Q 5-7 ¬E

9 P ⊃ Q 3-8 ⊃ IL3

10 ¬(P ⊃ Q) 1 R

11 (P ∨ ¬P ) ∨ (Q ∨ ¬Q) 2-10 ¬E

that Γ′ `∗NML3 P , Γ′ `∗NML3 ¬Q, and Γ′ `∗NML3 (P ∨¬P )∨(Q∨¬Q);
from the second of these, by consistency, Γ′ 6`∗NML3 Q; so by

assumption, h(P ) = 1 and h(Q) = 0. Since h(P ⊃ Q) = 1,
by HM(⊃)L3, h(P ) = 0 or h(Q) = 1 or none of h(P ) = 1,
h(P ) = 0, h(Q) = 1, or h(Q) = 0; but since h(P ) = 1 and
h(Q) = 0, none of h(P ) = 1, h(P ) = 0, h(Q) = 1, or h(Q) = 0;
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so all of h(P ) = 0, h(P ) = 1, h(Q) = 0, and h(Q) = 1; so by
assumption, Γ′ 6`∗NML3 P , Γ′ `∗NML3 P , Γ′ 6`∗NML3 Q, and Γ′ `∗NML3 Q;

so by maximality, Γ′ `∗NML3 P , Γ′ `∗NML3 ¬P , Γ′ `∗NML3 Q, and

Γ′ `∗NML3 ¬Q; from this, along with Γ′ `∗NML3 (P∨¬P )∨(Q∨¬Q),
it follows, by the following derivation,

1 P P

2 ¬P P

3 Q P

4 ¬Q P

5 (P ∨ ¬P ) ∨ (Q ∨ ¬Q) P

6 ¬(P ⊃ Q) A (c, ¬E)

7 ¬¬P 1 DN

8 ¬¬P 3 DN

9 ¬P ∧ ¬¬P 2,7 ∧I

10 ¬Q ∧ ¬¬Q 4,8 ∧I

11 ¬(P ∨ ¬P ) 9 DeM

12 ¬(P ∨ ¬P ) 10 DeM

13 ¬(P ∨ ¬P ) ∧ ¬(Q ∨ ¬Q) 11,12 ∧I

14 ¬((P ∨ ¬P ) ∨ (Q ∨ ¬Q)) 13 DeM

15 (P ∨ ¬P ) ∨ (Q ∨ ¬Q) 5 R

16 P ⊃ Q 6-15 ¬E

that Γ′ `∗NML3 P ⊃ Q. This is impossible; reject the assump-

tion: if h(A) = 1 then Γ′ `∗NML3 A. (b) Suppose h(A) = 1 but

Γ′ 6`∗NML3 A; then h(P ⊃ Q) = 1 but Γ′ 6`∗NML3 P ⊃ Q. From

the former, by HM(⊃)L3, h(P ) = 0 or h(Q) = 1; so by as-
sumption, Γ′ 6`∗NML3 P or Γ′ `∗NML3 Q. Suppose the first; then by

maximality, Γ′ `∗NML3 ¬P ; from this it follows, by the following
derivation,

1 ¬P P

2 P A (g, ⊃ I)

3 ¬Q A (c, ¬E)

4 P 2 R

5 ¬P 1 R

6 Q 3-5 ¬E

7 P ⊃ Q 2-6 ⊃ I

that Γ′ `∗NML3 P ⊃ Q. This is impossible. Suppose the sec-

ond; then Γ′ `∗NML3 Q; from this it follows, by the following
derivation,
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1 Q P

2 P A (g, ⊃ I)

3 Q 1 R

4 P ⊃ Q 2-3 ⊃ I

that Γ′ `∗NML3 P ⊃ Q. This is impossible; reject the assumption:

if h(A) = 1 then Γ′ `∗NML3 A. If h(/A/) = 1 then Γ′ `∗NML3 /A/.

(ii) As before, /A/ is either (a) A or (b) A. (a) Suppose Γ′ `∗NML3
A but h(A) = 0; then Γ′ `∗NML3 P ⊃ Q but h(P ⊃ Q) = 0.

From the latter, by HM(⊃)L3, h(P ) = 1 and h(Q) = 0 and at
least one of h(P ) = 1, h(P ) = 0, h(Q) = 1, or h(Q) = 0; so
h(P ) = 1, h(Q) = 0, and either h(P ) = 1 or h(Q) = 0; so by
assumption, Γ′ `∗NML3 P , Γ′ 6`∗NML3 Q, and either Γ′ `∗NML3 P or

Γ′ 6`∗NML3 Q. Suppose Γ′ `∗NML3 P ; so Γ′ `∗NML3 P ⊃ Q, Γ′ `∗NML3 P ,

and Γ′ `∗NML3 P ; from this it follows, by the following derivation,

1 P ⊃ Q P

2 P P

3 P P

4 P ∨ ¬P 2 ∨I

5 (P ∨ ¬P ) ∨ (Q ∨ ¬Q) 4 ∨I

6 Q 1,5,3 ⊃EL3

that Γ′ `∗NML3 Q. This is impossible. Suppose Γ′ 6`∗NML3 Q; then
by maximality, Γ′ `∗NML3 ¬Q; so Γ′ `∗NML3 P ⊃ Q, Γ′ `∗NML3 ¬Q,

and Γ′ `∗NML3 P ; from this it follows, by the following derivation,

1 P ⊃ Q P

2 ¬Q P

3 P P

4 Q ∨ ¬Q 2 ∨I

5 (P ∨ ¬P ) ∨ (Q ∨ ¬Q) 4 ∨I

6 Q 1,5,3 ⊃EL3

that Γ′ `∗NML3 Q. This is impossible; reject the assumption: if

Γ′ `∗NML3 A then h(A) = 1. (b) Suppose Γ′ `∗NML3 A but h(A) =

0; then Γ′ `∗NML3 P ⊃ Q but h(P ⊃ Q) = 0. From the latter,

by HM(⊃)L3, h(P ) = 1 and h(Q) = 0; so by assumption,
Γ′ `∗NML3 P and Γ′ 6`∗NML3 Q; so Γ′ `∗NML3 P ⊃ Q and Γ′ `∗NML3 P ;
from this it follows, by the following derivation,
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1 P ⊃ Q P

2 P P

6 Q 1,2 ⊃E

that Γ′ `∗NML3 Q. This is impossible; reject the assumption: if

Γ′ `∗NML3 A then h(A) = 1. If Γ′ `∗NML3 /A/ then h(/A/) = 1. So
h(/A/) = 1 iff Γ′ `∗NML3 /A/.

(⊃)RM

———
For any A, h(/A/) = 1 iff Γ′ `∗NMx /A/.

L6.8 If Γ is consistent, then v constructed as above is an Mx interpretation.

For this, we need to show that the relevant constraints are met. Sup-
pose Γ is consistent; by L6.4, Γ′ is maximal; by L6.6, Γ′ is consistent.

(exc) For systems MCL and MK3 with v(p) 6= {1, 0}, (D) is in NKx.
Suppose v(p) = {1, 0}; then 1 ∈ v(p) and 0 ∈ v(p); so by con-
struction, Γ′ `∗NMx p and Γ′ 6`∗NMx p; from the latter, by maxi-
mality, Γ′ `∗NMx ¬p; so by (D), Γ′ `∗NMx ¬p; so Γ′ is inconsistent.
This is impossible; reject the assumption: v(p) 6= {1, 0}.

(exh) For systems MCL and MLP with v(p) 6= φ, (U) is in NKx.
Suppose v(p) = φ; then 1 6∈ v(p) and 0 6∈ v(p); so by construc-
tion, Γ′ 6`∗NMx p and Γ′ `∗NMx p; from the former, by maximality,
Γ′ `∗NMx ¬p; so by (U), Γ′ `∗NMx ¬p; so Γ′ is inconsistent. This
is impossible; reject the assumption: v(p) 6= φ.

L6.9 If Γ is consistent, then h(Γ) = 1.

Suppose Γ is consistent and /A/ ∈ Γ; then by construction, /A/ ∈ Γ′;
so Γ′ `∗NMx /A/; so since Γ is consistent, by L6.7, h(/A/) = 1. And
similarly for any /A/ ∈ Γ. So h(Γ) = 1.

Main result: Suppose Γ |=Mx A but Γ 6 ǸMx A. Then Γ |=∗Mx A but Γ 6`∗NMx A.
By (DN), if Γ `∗NMx ¬¬A, then Γ `∗NMx A; so Γ 6`∗NMx ¬¬A; so by L6.2,
Γ ∪ {¬A} is consistent; so by L6.8 and L6.9, there is an Mx interpretation
v with corresponding h constructed as above such that h(Γ ∪ {¬A}) = 1;
so h(¬A) = 1; so by HM(¬), h(A) = 0; so h(Γ) = 1 and h(A) = 0; so by
VMx*, Γ 6|=∗Mx A. This is impossible; reject the assumption: if Γ |=Mx A,
then Γ ǸMx A.
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7 Gaps, Gluts and Worlds: υX, Ix (ch. 9)

7.1 Language / Semantic Notions

This section is developed directly in terms introduced in demonstration of
soundness and completeness in section 6. Apart from that discussion, the
notions should be roughly familiar from derivations in that section.

LυX The vocabulary consists of propositional parameters p0, p1 . . . with
the operators, ¬, ∧, ∨, and →. Each propositional parameter is a
formula; if A and B are formulas, so are ¬A, (A ∧ B), (A ∨ B),
and (A → B). A ⊃ B abbreviates ¬A ∨ B, and A ≡ B abbreviates
(A ⊃ B)∧ (B ⊃ A). This time, from the start, for any formula A, we
allow A and A, where as before /A/ and \A\ (//A// and \\A\\) represent
one or the other (and similarly for N and N immediately below).

IυX An interpretation is 〈W,N,N, h〉 where W is a set of worlds, and
N,N ⊆ W are normal worlds for truth and non-falsity respectively;
h is a function such that for any w ∈W , hw(/p/) = 1 or hw(/p/) = 0,
and for any w not in /N/, hw(/A→ B/) = 1 or hw(/A→ B/) = 0. So
h makes assignments directly to expressions of the sort /A → B/ at
worlds not in /N/. Say /A/ holds at w if hw(/A/) = 1 and otherwise
fails. Interpretations may also be subject to the constraints,

K N = N = W

4 N = N

The K systems are subject to constraint (K), the 4 systems to (4).
Of course, (K) implies (4); so it is enough that interpretations for
υK4 and υK∗ are subject to (K); υN4 is subject to (4), and υN∗
to neither. With restriction K, h reduces to a simple assignment
to parameters at worlds. Though it does not appear in Priest, we
consider also a requirement (CL) which includes (4) and that for any
for any w ∈ N , hw(p) = hw(p).

Hυ For expressions not assigned a value directly,

(¬) hw(/¬A/) = 1 if hw(\A\) = 0, and 0 otherwise.

(∧) hw(/A ∧ B/) = 1 if hw(/A/) = 1 and hw(/B/) = 1, and 0
otherwise.

(∨) hw(/A ∨B/) = 1 if hw(/A/) = 1 or hw(/B/) = 1, and 0 other-
wise.
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(→)4 For w ∈ /N/, hw(/A → B/) = 1 iff there is no x ∈ W such
that hx(A) = 1 and hx(/B/) = 0.

(→)∗ For w ∈ /N/, hw(/A → B/) = 1 iff there is no x ∈ W such
that hx(//A//) = 1 and hx(//B//) = 0.

The 4-systems υN4 and υK4 take Hυ(→)4; the star systems υN∗ and υK∗
take Hυ(→)∗. Where Γ does not include formulas with overlines, hw(Γ) = 1
iff hw(A) = 1 for each A ∈ Γ; then,

VυX Γ |=υX A iff there is no υX interpretation 〈W,N,N, h〉 and w ∈ N
such that hw(Γ) = 1 and hw(A) = 0.

System Ix.

LIx The vocabulary is as before with A for→. Again, for any formula A,
allow A and A.

IIx An interpretation is 〈W,R, h〉 where,

ρ for all x, xRx reflexivity
τ for all x, y, z, if xRy and yRz then xRz transitivity
h for all x, y and p, if xRy, then if hx(p) = 1,

hy(p) = 1, and if hy(p) = 1, hx(p) = 1
heredity

apply to any interpretation. In addition, interpretations may be sub-
ject to the condition,

exc for no p are both h(p) = 1 and h(p) = 0 exclusion

HIx is as before with,

(A) hx(A A B) = 1 iff there is no y ∈ W such that xRy and
hy(A) = 1 but hy(B) = 0. hx(A A B) = 1 iff hx(A) = 0 or
hx(B) = 1.

(A)W hx(A A B) = 1 iff there is no y ∈ W such that xRy and
hy(A) = 1 but hy(B) = 0. hx(A A B) = 1 iff there is some
y ∈W such that xRy and hy(A) = 1 and hy(B) = 0.

The system I4 takes neither exc nor (A)W . I3 adds exc; IW adds to I4 the
(A)W condition. Then validity works in the usual way.

As in the previous section, these accounts are meant to accommodate
different presentations in Priest, and help exhibit their differences. In par-
ticular, as for the previous section, given constraint (4), an interpretation
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〈W,N,N, h〉 corresponds to a relational 〈W,N, ρ〉, where hw(A) = 1 iff A
bears relation ρ (which, as in the previous section, may be set membership)
to 1 at w, and hw(A) = 1 iff A does not bear ρ to 0 at w. And an interpre-
tation 〈W,N,N, h〉 corresponds to a star interpretation 〈W,N, ∗, v〉 where
hw(A) = 1 iff vw(A) = 1 and hw(A) = 1 iff vw∗(A) = 1.6

7.2 Natural Derivations: NυX, NIx

Allow expressions with both integer subscripts and overlines. /n/[s] indicates
that world s is an element of /N/. I- and E- rules for ¬, ∧, ∨, ⊃ and ≡ are
a natural combination of rules for NKυ and NFDE, with rules for ⊃ and ≡
now derived.

R /P /s

/P /s

¬I /P /s

//Q//t
\\¬Q\\t
\¬P \s

¬E /¬P /s

//Q//t
\\¬Q\\t
\P \s

∧I /P /s
/Q/s

/P ∧Q/s

∧E /P ∧Q/s

/P /s

∧E /P ∧Q/s

/Q/s

∨I /P /s

/P ∨Q/s

∨I /P /s

/Q ∨ P /s

⊃I /P /s

\Q\s
\P ⊃ Q\s

⊃E \P ⊃ Q\s
/P /s

\Q\s

∨E /P ∨Q/s
/P /s

//R//t

/Q/s

//R//t
//R//t

6For the latter, given a star interpretation 〈W,N, ∗, v〉 consider an υX∗ interpretation

〈W ′, N ′, N ′, h〉 with a w′ ∈ W ′ corresponding to each w ∈ W . And for an υX∗ inter-

pretation 〈W ′, N ′, N ′, h〉 consider a star interpretation 〈W,N, ∗, v〉 with a w and w∗ ∈W
corresponding to each w′ ∈W ′. Then set x′ ∈ N ′ iff x ∈ N ; x′ ∈ N ′ iff x∗ ∈ N ; hx′(p) = 1
iff vx(p) = 1; hx′(p) = 1 iff vx∗(p) = 1; for x′ 6∈ N ′, hx′(P → Q) = 1 iff vx(P → Q) = 1;

and for x′ 6∈ N ′, hx′(P → Q) = 1 iff vx∗(P → Q) = 1. Then the result follows by a simple
induction (for a related demonstration, see the proof of L7.0 in [7]).
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≡I /P /s

\Q\s

/Q/s

\P \s
\P ≡ Q\s

≡E \P ≡ Q\s
/P /s

\Q\s

≡E \P ≡ Q\s
/Q/s

\P \s

The different derivation systems of this section add to these from,

→I4 /n/[s]

Pt

/Q/t
/P → Q/s

where t does not appear in
any undischarged premise
or assumption

→E4 /n/[s]
/P → Q/s
Pt

/Q/t

→I*
/n/[s]
//P //t

//Q//t
/P → Q/s

where t does not appear in
any undischarged premise
or assumption

→E*
/n/[s]
/P → Q/s
//P //t

//Q//t

K

/n/[s]

NI

n[0]

Ca /n/[s]

\n\[s]

Cb /n/[a]
//P //a

\\P \\a

For the star-rules, //P //t and //Q//t may be either Pt and Qt, or P t and Qt.
Then,

NυK4 adds →I4 and →E4 with K

NυK∗ adds →I* and →E* with K

NυN∗ adds →I* and →E* with NI

NυN4 adds →I4 and →E4 with NI and Ca

A system with CL would add both Ca and Cb. As a simplification, in the
first cases, one might eliminate rule K, and delete the normality require-
ment from other rules. In these systems, every subscript is 0, appears in a
premise, or appears in the t-place of an accessible assumption for→I. Where
the members of Γ and A are without overlines or subscripts, let Γ0 be the
members of Γ, each with subscript 0. Then,

NυX Γ ǸυX A iff there is an NυX derivation of A0 from Γ0.
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Derived rules are as one would expect. Two-way derived rules carry over
from CL with overlines and subscripts constant throughout. Thus, e.g.,

Impl /P ⊃ Q/s / . /¬P ∨Q/s
/¬P ⊃ Q/s / . /P ∨Q/s

MT, NB and DS appear in the forms,

MT /P ⊃ Q/s
\¬Q\s

/¬P /s

NB /P ≡ Q/s /P ≡ Q/s
\¬P \s \¬Q\s

/¬Q/s /¬P /s

DS /P ∨Q/s /P ∨Q/s
\¬P \s \¬Q\s

/Q/s /P /s

System NIx. These systems take over rules for ¬, ∨ and ∧ from before,
and then add from the following in the natural way.

AI s.t

Pt

Qt

(P A Q)s
where t does not appear in any
undischarged premise or assump-
tion

AE (P A Q)s
s.t

Pt

Qt

AMρ

s.s

AMτ s.t

t.u

s.u

HI Ps P t
s.t s.t

Pt P s

D Ps

P s

A I Ps

Qs
(P A Q)s

AE (P A Q)s
Ps

Qs

A IW s.t

Pt
¬Qt

(P A Q)s

AEW (P A Q)s
s.t

Pt
¬Qt

Au

Au
where t does not appear in
any undischarged premise
or assumption and is not
u

Each of the NIx systems have AI, AE, AMρ, AMτ and HI . NI4 then takes
A I and A E, NI3 adds D. NIW substitutes A IW and A EW in the four-
valued system. Validity is as before.
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Examples. Here are a few cases where the logics do not all have the same
results.

P → Q ǸυX∗ ¬Q→ ¬P

1 (P → Q)0 P

2 n[0] NI or K

3 ¬Q1 A (g, →I*)

4 P 1 A (c, ¬I)

5 Q1 2,1,4 →E*
6 ¬Q1 3 R

7 ¬P1 4-6 ¬I

8 (¬Q→ ¬P )0 2,3-7 →I*

This derivation works with either (K) or (NI), but does not go through in
the 4-systems insofar as there is no “purchase” for application of →E4 with
(1) and only P 1, rather than P1, at (4).

P ∧ ¬Q ǸυX4
¬(P → Q)

1 (P ∧ ¬Q)0 P

2 n[0] NI

3 n[0] Ca or directly by K

4 (P → Q)0 A (c, ¬I)

5 P0 1 ∧E

6 Q0 3,4,5 →E4

7 ¬Q0 1 ∧E

8 ¬(P → Q)0 4-7 ¬I

This derivation works with either (NI) and (Ca) or (K). It is blocked in
either star system insofar as the contradiction does not arise: by →E*, we
might get Q0 at (4), but this does not contradict ¬Q0 for ¬I.

ǸυKx
[(P → Q) ∧ (Q→ R)]→ (P → R)

1 n[0] K

2 [(P → Q) ∧ (Q→ R)]1 A (g, →Ix)

3 n[1] K

4 P2 A (g, →Ix)

5 (P → Q)1 2 ∧E

6 Q2 3,4,5 →Ex

7 (Q→ R)1 2 ∧E

8 R2 3,6,7 →Ex

9 (P → R)1 3,4-8 →Ix

10 ([(P → Q) ∧ (Q→ R)]→ (P → R))0 1,2-9 →Ix
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This derivation works with either the star- or 4-rules. But it works only
with (K) insofar as s = 1 for lines (6), (8) and (9). And, finally, a couple
cases to show ¬(A A B)s / . (A A ¬B)s in NIW

1 ¬(A A B)s P

2 s.t A (g, AI)

3 At

4 Bt A (c, ¬I)

5 (A A B)s 2,3,4 A I

6 ¬(A A B)s 1 R

7 ¬Bt 4-6 ¬I

8 (A A ¬B)s 2-7 AI

1 (A A ¬B)s P

2 (A A B)s A (c, ¬I)

3 s.t A g, 2 A E)

4 At
5 Bt

6 (A A B)s A ¬I

7 ¬Bt 1,3,4 AE

8 Bt 5 R

9 ¬(A A B)s 6-8 ¬I

10 ¬(A A B)s 2,3-9 A E

11 (A A B)s 2 R

12 ¬(A A B)s 2-11 ¬I

7.3 Soundness and Completeness: υX

Preliminaries: Begin with generalized notions of validity. For a model
〈W,N,N, h〉, let m be a map from subscripts into W such that m(0) is some
member of N . Then say 〈W,N,N, h〉m is 〈W,N,N, h〉 with map m. Then,
where Γ is a set of expressions of our language for derivations, hm(Γ) = 1 iff
for each /As/ ∈ Γ, hm(s)(/A/) = 1, and for each /n/[s] ∈ Γ, m(s) ∈ /N/. Now
expand notions of validity for subscripts, overlines, and alternate expressions
as indicated in double brackets as follows,

VυX* Γ |=∗υX /A/s [[/n/[s]]] iff there is no υX interpretation 〈W,N,N, h〉m
such that hm(Γ) = 1 but hm(s)(/A/) = 0 [[m(s) 6∈ /N/]].

NυX* Γ `∗NυX /A/s [[/n/[s]]] iff there is an NυX derivation of /A/s [[/n/[s]]]
from the members of Γ.
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These notions reduce to the standard ones when all the members of Γ and A
are without overlines and have subscript 0 (and so do not include expressions
of the sort /n/[s]). As usual, for the following, cases omitted are like ones
worked, and so left to the reader.

Theorem 7.1 NυX is sound: If Γ ǸυX A then Γ |=υX A.

For the (→)∗ case, it will be useful to have a further preliminary.

L7.0 For an interpretation 〈W,N,N, h〉, consider 〈W ′, N ′, N ′, h′〉 such that
corresponding to each w ∈ W there are w′, w∗ ∈ W ′ where, (i) w′ ∈
/N ′/ iff w ∈ /N/, and w∗ ∈ /N ′/ iff w ∈ \N\; (ii) h′w′(/p/) = 1
iff hw(/p/) = 1, and h′w∗(/p/) = 1 iff hw(\p\) = 1; (iii) for w′ 6∈
/N ′/, h′w′(/P → Q/) = 1 iff hw(/P → Q/) = 1, and for w∗ 6∈ /N ′/,
h′w∗(/P → Q/) = 1 iff hw(\P → Q\) = 1. Then,

For the star systems and interpretations as above, for any /A/, (i)
h′w′(/A/) = 1 iff hw(/A/) = 1 and (ii) h′w∗(/A/) = 1 iff hw(\A\) = 1.

Basis: /A/ is an atomic /p/. (i) By construction, h′w′(/p/) = 1 iff
hw(/p/) = 1; so h′w′(/A/) = 1 iff hw(/A/) = 1. Similarly, (ii)
by construction, h′w∗(/p/) = 1 iff hw(\p\) = 1; so h′w∗(/A/) = 1
iff hw(\A\) = 1.

Assp: For any i, 0 ≤ i < k, if /A/ has i operators, (i) h′w′(/A/) = 1
iff hw(/A/) = 1 and (ii) h′w∗(/A/) = 1 iff hw(\A\) = 1.

Show: If /A/ has k operators, then (i) h′w′(/A/) = 1 iff hw(/A/) = 1
and (ii) h′w∗(/A/) = 1 iff hw(\A\) = 1.

If /A/ has k operators, then it is of the form, /¬P /, /P ∧Q/,
/P ∨Q/, or /P → Q/, where P and Q have < k operators.

(¬) /A/ is /¬P /. (i) h′w′(/A/) = 1 iff h′w′(/¬P /) = 1; by Hυ(¬),
iff h′w′(\P \) = 0; by assumption iff hw(\P \) = 0; by Hυ(¬),
iff hw(/¬P /) = 1; iff hw(/A/) = 1. (ii) h′w∗(/A/) = 1 iff
h′w∗(/¬P /) = 1; by Hυ(¬), iff h′w∗(\P \) = 0; by assumption iff
hw(/P /) = 0; by Hυ(¬), iff hw(\¬P \) = 1; iff hw(\A\) = 1.

(∧) /A/ is /P ∧ Q/. (i) h′w′(/A/) = 1 iff h′w′(/P ∧ Q/) = 1; by
Hυ(∧), iff h′w′(/P /) = 1 and h′w′(/Q/) = 1; by assumption, iff
hw(/P /) = 1 and hw(/Q/) = 1; by Hυ(∧), iff hw(/P ∧Q/) = 1;
iff hw(/A/) = 1. (ii) h′w∗(/A/) = 1 iff h′w∗(/P ∧ Q/) = 1; by
Hυ(∧), iff h′w∗(/P /) = 1 and h′w∗(/Q/) = 1; by assumption, iff
hw(\P \) = 1 and hw(\Q\) = 1; by Hυ(∧), iff hw(\P ∧Q\) = 1;
iff hw(\A\) = 1.
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(∨)

(→) A is /P → Q/. (i) Suppose w′ 6∈ /N ′/; then by construction,
h′w′(/P → Q/) = 1 iff hw(/P → Q/) = 1; so h′w′(/A/) = 1 iff
hw(/A/) = 1. So suppose w′ ∈ /N ′/; then by construction, w ∈
/N/. h′w′(/A/) = 0 iff h′w′(/A → B/) = 0; since w′ ∈ /N ′/, by
Hυ(→)∗ iff either there is an x′ ∈ W ′ such that h′x′(//P //) = 1
and h′x′(//Q//) = 0, or there is a y∗ ∈W ′ such that h′y∗(//P //) =
1 and h′y∗(//Q//) = 0; by assumption, iff either hx(//P //) = 1 and
hx(//Q//) = 0, or hy(\\P \\) = 1 and hy(\\Q\\) = 0; given either
of these, since w ∈ /N/, by Hυ(→)∗, iff hw(/P → Q/) = 0; iff
hw(/A/) = 0.

(ii) Suppose w∗ 6∈ /N ′/; then by construction, h′w∗(/P →
Q/) = 1 iff hw(\P → Q\) = 1; so h′w∗(/A/) = 1 iff hw(\A\) = 1.
So suppose w∗ ∈ /N ′/; then w ∈ \N\. h′w∗(/A/) = 0 iff
h′w∗(/A → B/) = 0; since w∗ ∈ /N ′/, by Hυ(→)∗ iff either
there is an x′ ∈W ′ such that h′x′(//P //) = 1 and h′x′(//Q//) = 0,
or there is a y∗ ∈W ′ such that h′y∗(//P //) = 1 and h′y∗(//Q//) =
0; by assumption, iff either hx(//P //) = 1 and hx(//Q//) = 0,
or hy(\\P \\) = 1 and hy(\\Q\\) = 0; given either of these, since
w ∈ \N\, by Hυ(→)∗, iff hw(\P → Q\) = 0; iff hw(\A\) = 0.

———
For any A, (i) h′w′(/A/) = 1 iff hw(/A/) = 1 and (ii) h′w∗(/A/) = 1 iff
hw(\A\) = 1.

L7.1 If Γ ⊆ Γ′ and Γ |=∗υX /P /s [[/n/[s]]] then Γ′ |=∗υX /P /s [[/n/[s]]].

Suppose Γ ⊆ Γ′ and Γ |=∗υX /P /s [[/n/[s]]], but Γ′ 6|=∗υX /P /s [[/n/[s]]].
From the latter, by VυX*, there is some υX interpretation 〈W,N,N, h〉m
such that hm(Γ′) = 1 but hm(s)(/P /) = 0 [[m(s) 6∈ /N/]]. But since
hm(Γ′) = 1 and Γ ⊆ Γ′, hm(Γ) = 1; so hm(Γ) = 1 but hm(s)(/P /) = 0
[[m(s) 6∈ /N/]]; so by VυX*, Γ 6|=∗υX /P /s [[/n/[s]]]. This is impossi-
ble; reject the assumption: if Γ ⊆ Γ′ and Γ |=∗υX /P /s [[/n/[s]]], then
Γ′ |=∗υX /P /s [[/n/[s]]].

Main result: For each line in a derivation let Pi be the expression on line i
and Γi be the set of all premises and assumptions whose scope includes line
i. We set out to show “generalized” soundness: if Γ `∗NυX P then Γ |=∗υX P. As
above, this reduces to the standard result when P and all the members of Γ
are without overlines and have subscript 0. Suppose Γ `∗NυX P. Then there
is a derivation of P from premises in Γ where P appears under the scope of
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the premises alone. By induction on line number of this derivation, we show
that for each line i of this derivation, Γi |=∗υX Pi. The case when Pi = P is
the desired result.

Basis: P1 is a premise or an assumption /A/s [[/n/[s]]]. Then Γ1 = {/A/s}
[[{/n/[s]}]]; so for any 〈W,N,N, h〉m, hm(Γ1) = 1 iff hm(s)(/A/) = 1

[[m(s) ∈ /N/]]; so there is no 〈W,N,N, h〉m such that hm(Γ1) = 1 but
hm(s)(/A/) = 0 [[m(s) 6∈ /N/]]. So by VυX*, Γ1 |=∗υX /A/s [[/n/[s]]],
where this is just to say, Γ1 |=∗υX P1.

Assp: For any i, 1 ≤ i < k,Γi |=∗υX Pi.

Show: Γk |=∗υX Pk.

Pk is either a premise, an assumption, or arises from previous lines by
R, ∧I, ∧E, ∨I, ∨E, ¬I, ¬E or, depending on the system, →I4, →E4,
→I*, →E*, K, NI, Ca, or Cb. If Pk is a premise or an assumption,
then as in the basis, Γk |=∗υX Pk. So suppose Pk arises by one of the
rules.

(R)

(∧I)

(∧E)

(∨I)

(∨E)

(¬I) If Pk arises by ¬I, then the picture is like this,

/A/s

i //B//t
j \\¬B\\t
k \¬A\s

where i, j < k and Pk is \¬A\s. By assumption, Γi |=∗υX //B//t and
Γj |=∗υX \\¬B\\t; but by the nature of access, Γi ⊆ Γk ∪ {/A/s} and
Γj ⊆ Γk ∪ {/A/s}; so by L7.1, Γk ∪ {/A/s} |=∗υX //B//t and Γk ∪
{/A/s} |=∗υX \\¬B\\t. Suppose Γk 6|=∗υX \¬A\s; then by VυX*, there
is an υX interpretation 〈W,N,N, h〉m such that hm(Γk) = 1 but
hm(s)(\¬A\) = 0; so by Hυ(¬), hm(s)(/A/) = 1; so hm(Γk) = 1 and
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hm(s)(/A/) = 1; so hm(Γk∪{/A/s}) = 1; so by VυX*, hm(t)(//B//) = 1
and hm(t)(\\¬B\\) = 1; from the latter, by Hυ(¬), hm(t)(//B//) = 0.
This is impossible; reject the assumption: Γk |=∗υX \¬A\s, which is to
say, Γk |=∗υX Pk.

(¬E)

(→I4) If Pk arises by →I4, then the picture is like this,

i /n/[s]

At

j /B/t

k /A→ B/s

where i, j < k, t does not appear in any member of Γk (in any
undischarged premise or assumption), and Pk is /A → B/s. By
assumption, Γi |=∗υX /n/[s] and Γj |=∗υX /B/t; but by the nature of
access, Γi ⊆ Γk and Γj ⊆ Γk ∪ {At}; so by L7.1, Γk |=∗υX /n/[s] and
Γk ∪ {At} |=∗υX /B/t. Suppose Γk 6|=∗υX /A → B/s; then by VυX*,
there is an υX interpretation 〈W,N,N, h〉m such that hm(Γk) = 1
but hm(s)(/A → B/) = 0; since hm(Γk) = 1, by VυX*, m(s) ∈ /N/;
so, since hm(s)(/A → B/) = 0, by Hυ(→)4, there is some w ∈ W
such that hw(A) = 1 and hw(/B/) = 0. Now consider a map m′ like
m except that m′(t) = w, and consider 〈W,N,N, h〉m′ ; since t does
not appear in Γk, it remains that hm′(Γk) = 1; and since m′(t) = w,
hm′(t)(A) = 1; so hm′(Γk ∪ {At}) = 1; so by VυX*, hm′(t)(/B/) = 1.
But m′(t) = w; so hw(/B/) = 1. This is impossible; reject the as-
sumption: Γk |=∗υX /A→ B/s, which is to say, Γk |=∗υX Pk.

(→E4) If Pk arises by →E4, then the picture is like this,

h /n/[s]

i /A→ B/s
j At

k /B/t

where h, i, j < k and Pk is /B/t. By assumption, Γh |=∗υX /n/[s], Γi |=∗υX
/A→ B/s, and Γj |=∗υX At; but by the nature of access, Γh ⊆ Γk, Γi ⊆
Γk, and Γj ⊆ Γk; so by L7.1, Γk |=∗υX /n/[s], Γk |=∗υX /A → B/s, and
Γk |=∗υX At. Suppose Γk 6|=∗υX /B/t; then by VυX*, there is some υX
interpretation 〈W,N,N, h〉m such that hm(Γk) = 1 but hm(t)(/B/) =
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0; since hm(Γk) = 1, by VυX*, m(s) ∈ /N/, hm(s)(/A → B/) = 1,
and hm(t)(A) = 1; from the second of these, since m(s) ∈ /N/, by
Hυ(→)4, there is no w ∈ W such that hw(A) = 1 and hw(/B/) = 0;
so it is not the case that hm(t)(A) = 1 and hm(t)(/B/) = 0. This
is impossible; reject the assumption: Γk |=∗υX /B/t, which is to say,
Γk |=∗υX Pk.

(→I*) If Pk arises by →I*, then the picture is like this,

i /n/[s]
//A//t

j //B//t

k /A→ B/s

where i, j < k, t does not appear in any member of Γk (in any
undischarged premise or assumption), and Pk is /A → B/s. By
assumption, Γi |=∗υX /n/[s] and Γj |=∗υX //B//t; but by the nature of
access, Γi ⊆ Γk and Γj ⊆ Γk ∪ {//A//t}; so by L7.1, Γk |=∗υX /n/[s]
and Γk ∪ {//A//t} |=∗υX //B//t. Suppose Γk 6|=∗υX /A → B/s; then
by VυX*, there is an υX interpretation 〈W,N,N, h〉m such that
hm(Γk) = 1 but hm(s)(/A → B/) = 0; since hm(Γk) = 1, by VυX*,
m(s) ∈ /N/; so, since hm(s)(/A → B/) = 0, by Hυ(→)∗, there is

some x ∈ W such that hx(A) = 1 and hx(B) = 0, or hx(A) = 1
and hx(B) = 0. Without loss of generality, suppose hx(A) = 1 and

hx(B) = 0; then by L7.0, there is an interpretation 〈W ′, N ′, N ′, h′〉
where h′w′(/P /) = 1 iff hw(/P /) = 1 and h′w∗(/P /) = 1 iff hw(\P \) = 1.
So with m(s) = w iff m′(s) = w′, it remains that h′m′(Γk) = 1; and
we have that x′, x∗ ∈ W ′ are such that h′x′(A) = 1 and h′x′(B) = 0,
and h′x∗(A) = 1 and h′x∗(B) = 0; one of these is a y such that
h′y(//A//) = 1 and h′y(//B//) = 0. Now consider a map n like m′

except that n(t) = y, and consider 〈W ′, N ′, N ′, h′〉n; since t does
not appear in Γk, it remains that h′n(Γk) = 1; and since n(t) = y,
h′n(t)(

//A//) = 1; so h′n(Γk∪{//A//t}) = 1; so by VυX*, h′n(t)(
//B//) = 1.

But n(t) = y; so h′y(//B//) = 1. This is impossible; reject the assump-
tion: Γk |=∗υX /A→ B/s, which is to say, Γk |=∗υX Pk.

(→E*) If Pk arises by →E*, then the picture is like this,
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h /n/[s]

i /A→ B/s
j //A//t

k //B//t

where h, i, j < k and Pk is //B//t. By assumption, Γh |=∗υX /n/[s],
Γi |=∗υX /A → B/s, and Γj |=∗υX //A//t; but by the nature of ac-
cess, Γh ⊆ Γk, Γi ⊆ Γk, and Γj ⊆ Γk; so by L7.1, Γk |=∗υX /n/[s],
Γk |=∗υX /A → B/s, and Γk |=∗υX //A//t. Suppose Γk 6|=∗υX //B//t; then
by VυX*, there is some υX interpretation 〈W,N,N, h〉m such that
hm(Γk) = 1 but hm(t)(//B//) = 0; since hm(Γk) = 1, by VυX*,
m(s) ∈ /N/, hm(s)(/A → B/) = 1, and hm(t)(//A//) = 1; from the
second of these, since m(s) ∈ /N/, by Hυ(→)∗, there is no w ∈ W
such that hw(//A//) = 1 and hw(//B//) = 0; so it is not the case that
hm(t)(//A//) = 1 and hm(t)(//B//) = 0. This is impossible; reject the
assumption: Γk |=∗υX //B//t, which is to say, Γk |=∗υX Pk.

(K) If Pk arises by K, then the picture is like this,

k /n/[s]

where Pk is /n/[s]. Where this rule is in NυX, υX includes condition
K. Suppose Γk 6|=∗υX /n/[s]; then by VυX*, there is some υX inter-
pretation 〈W,N,N, h〉m such that hm(Γk) = 1 but m(s) 6∈ /N/. But
by condition K, N = N = W ; so m(s) ∈ /N/. This is impossible;
reject the assumption: Γk |=∗υX /n/[s], which is to say, Γk |=∗υX Pk.

(NI) If Pk arises by NI, then the picture is like this,

k n[0]

where Pk is n[0]. Suppose Γk 6|=∗υX n[0]; then by VυX*, there is
some υX interpretation 〈W,N,N, h〉m such that hm(Γk) = 1 but
m(0) 6∈ N . But by construction, m(0) ∈ N . This is impossible;
reject the assumption: Γk |=∗υX n[0], which is to say, Γk |=∗υX Pk.

(Ca) If Pk arises by Ca then the picture is like this,

i /n/[s]

k \n\[s]
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where i < k and Pk is \n\[s]. Where this rule is in NυX, υX includes
condition 4. By assumption, Γi |=∗υX /n/[s]; but by the nature of
access, Γi ⊆ Γk; so by L7.1, Γk |=∗υX /n/[s]. Suppose Γk 6|=∗υX \n\[s];
then by VυX*, there is some υX interpretation 〈W,N,N, h〉m such
that hm(Γk) = 1 but m(s) 6∈ \N\; since hm(Γk) = 1, by VυX*,
m(s) ∈ /N/. But by condition 4, N = N ; so m(s) ∈ \N\. This
is impossible; reject the assumption: Γk |=∗υX \n\[s], which is to say,
Γk |=∗υX Pk.

(Cb) If Pk arises by Cb then the picture is like this,

i /n/[a]

j //A//a

k \\A\\a

where i, j < k and Pk is \\A\\a. By assumption, Γi |=∗υX /n/[a] and
Γj |=∗υX //A//a; but by the nature of access, Γi ⊆ Γk and Γj ⊆ Γk;
so by L7.1, Γk |=∗υX /n/[a] and Γk |=∗υX //A//a. Suppose Γk 6|=∗υX \\A\\a;
then by VυX*, there is some υX interpretation 〈W,N,N, h〉m such
that hm(Γk) = 1 but hm(a)(\\A\\) = 0; since hm(Γk) = 1, by VυX*,
m(a) ∈ /N/ and hm(a)(//A//) = 1.

Now, by induction on the number of operators in //A//, we show that
if x ∈ /N/, then hx(//A//) = 1 iff hx(\\A\\) = 1. Suppose x ∈ /N/.

Basis: Suppose //A// is a parameter p. By requirement CL, hx(//p//) =
1 iff hx(\\p\\) = 1; so hx(//A//) = 1 iff hx(\\A\\) = 1.

Assp: For 0 ≤ i < k, if //A// has i operators, then hx(//A//) = 1 iff
hx(\\A\\) = 1.

Show: If //A// has k operators, hx(//A//) = 1 iff hx(\\A\\) = 1

If //A// has k operators then it is of the form, //¬P //, //P ∧Q//,
//P ∨Q//, or //P → Q//, where P and Q have < k operators.

(¬) Suppose //A// is //¬P //. Then hx(//A//) = 1 iff hx(//¬P //) = 1;
by Hυ(¬), iff hx(\\P \\) = 0; by assumption, iff hx(//Q//) = 0;
by Hυ(¬), iff hx(\\¬P \\) = 1; iff hx(\\A\\) = 1.

(∧) Suppose //A// is //P ∧ Q//. Then hx(//A//) = 1 iff hx(//P ∧
Q//) = 1; by Hυ(∧), iff hx(//P //) = 1 and hx(//Q//) = 1; by
assumption, iff hx(\\P \\) = 1 and hx(\\Q\\) = 1; by Hυ(∧), iff
hx(\\P ∧Q\\) = 1; iff hx(\\A\\) = 1.

(∨)
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(→)4 Suppose //A// is //P → Q//. Then hx(//A//) = 1 iff hx(//P ∧
Q//) = 1; since x ∈ /N/, by Hυ(→)4, iff there is no y ∈ W
such that hy(A) = 1 and hy(//B//) = 0; by assumption, iff
there is no y ∈ W such that hy(A) = 1 and hy(\\B\\) = 0; by
Hυ(→)4, iff hx(\\P ∧Q\\) = 1.

(→)∗ Suppose //A// is //P → Q//. Then hx(//A//) = 1 iff hx(//P ∧
Q//) = 1; since x ∈ /N/, by Hυ(→)∗, iff there is no y ∈ W
such that hy(//A//) = 1 and hy(//B//) = 0; by assumption, iff
there is no y ∈ W such that hy(\\A\\) = 1 and hy(\\B\\) = 0;
by Hυ(→)4, iff hx(\\P ∧Q\\) = 1.

———
For any such //A//, hx(//A//) = 1 iff hx(\\A\\) = 1.

So, returning to the case for (Cb), hm(a)(\\A\\) = 1. This is impossi-
ble; reject the assumption: Γk |=∗υX \\A\\a, which is to say, Γk |=∗υX Pk.

———
For any i, Γi |=∗υX Pi.

Theorem 7.2 NυX is complete: if Γ |=υX A then Γ ǸυX A.

Suppose Γ |=υX A; then Γ0 |=∗υX A0; we show that Γ0 `∗NυX A0. As usual, this
reduces to the standard notion. For the following, fix on some particular
υX. Then definitions of consistency etc. are relative to it.

Con Γ is consistent iff there is no As such that Γ `∗NυX /A/s and Γ `∗NυX
\¬A\s.

L7.2 If s is 0 or appears in Γ, and Γ 6`∗NυX \¬P \s, then Γ ∪ {/P /s} is
consistent.

Suppose s is 0 or appears in Γ and Γ 6`∗NυX \¬P \s but Γ ∪ {/P /s} is
inconsistent. Then there is some At such that Γ ∪ {/P /s} `∗NυX //A//t
and Γ ∪ {/P /s} `∗NυX \\¬A\\t. But then we can argue,

1 Γ

2 /P /s A (c, ¬I)

3 //A//t from Γ ∪ {/P /s}
4 \\¬A\\t from Γ ∪ {/P /s}
5 \¬P \s 2-4 ¬I

where the assumption is allowed insofar as s is either 0 or appears in
Γ; so Γ `∗NυX \¬P \s. But this is impossible; reject the assumption: if
s is 0 or appears in Γ and Γ 6`∗NυX \¬P \s, then Γ∪{/P /s} is consistent.
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L7.3 There is an enumeration of all the subscripted formulas, P1 P2 . . .

Proof by construction as usual.

Max Γ is s-maximal iff for any As either Γ `∗NυX /A/s or Γ `∗NυX \¬A\s.

Sgt Γ is a scapegoat set for (→)K4 iff for every formula of the form
¬(A → B), if Γ `∗NυK4

/¬(A → B)/s then there is some t such that
Γ `∗NυK4

At and Γ `∗NυK4
/¬B/t.

Γ is a scapegoat set for (→)N4 iff for every formula of the form
¬(A → B), if Γ `∗NυK4

/¬(A → B)/0 then there is some t such that
Γ `∗NυK4

At and Γ `∗NυK4
/¬B/t.

Γ is a scapegoat set for (→)K∗ iff for every formula of the form
¬(A → B), if Γ `∗NυK∗ /¬(A → B)/s then there is some t such that
Γ `∗NυK∗ At and Γ `∗NυK∗ ¬Bt.

Γ is a scapegoat set for (→)N∗ iff for every formula of the form
¬(A → B), if Γ `∗NυK∗ ¬(A→ B)0 then there is some t such that
Γ `∗NυK∗ At and Γ `∗NυK∗ ¬Bt.

C(Γ′) For Γ with unsubscripted formulas and the corresponding Γ0, we con-
struct Γ′ as follows. Set Ω0 = Γ0. By L7.3, there is an enumeration,
P1,P2 . . . of all the formulas; let E0 be this enumeration. Then for
the first /A/s in Ei−1 such that s is 0 or included in Ωi−1, let Ei be
like Ei−1 but without /A/s, and set,

Ωi = Ωi−1 if Ωi−1 `∗NυX \¬A\s
Ωi∗ = Ωi−1 ∪ {/A/s} if Ωi−1 6`∗NυX \¬A\s

and
υK4: Ωi = Ωi∗ if As is not of the form /¬(P → Q)/s

Ωi = Ωi∗ ∪ {Pt, /¬Q/t} if As is of the form /¬(P → Q)/s
υN4: Ωi = Ωi∗ if As is not of the form /¬(P → Q)/0

Ωi = Ωi∗ ∪ {Pt, /¬Q/t} if As is of the form /¬(P → Q)/0
υK∗: Ωi = Ωi∗ if As is not of the form /¬(P → Q)/s

Ωi = Ωi∗ ∪ {Pt,¬Qt} if As is of the form /¬(P → Q)/s
υN∗: Ωi = Ωi∗ if As is not of the form ¬(P → Q)0

Ωi = Ωi∗ ∪ {Pt,¬Qt} if As is of the form ¬(P → Q)0
-where t is the first subscript not included in Ωi∗

then
Γ′ =

⋃
i≥0 Ωi

Note that there is always sure to be a subscript t not in Ωi∗ insofar
as there are infinitely many subscripts, and at any stage only finitely
many formulas are added – the only subscripts in the initial Ω0 being
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0. Suppose s appears in Γ′; then there is some Ωi in which it is first
appears; and any formula Pj in the original enumeration that has
subscript s is sure to be “considered” for inclusion at a subsequent
stage.

L7.4 For any s included in Γ′, Γ′ is s-maximal.

Suppose s is included in Γ′ but Γ′ is not s-maximal. Then there is
some As such that Γ′ 6`∗NυX /A/s and Γ′ 6`∗NυX \¬A\s. For any i, each
member of Ωi−1 is in Γ′; so if Ωi−1 `∗NυX \¬A\s then Γ′ `∗NυX \¬A\s;
but Γ′ 6`∗NυX \¬A\s; so Ωi−1 6`∗NυX \¬A\s; so since s is included in Γ′,
there is a stage in the construction that sets Ωi∗ = Ωi−1 ∪ {/A/s}; so
by construction, /A/s ∈ Γ′; so Γ′ `∗NυX /A/s. This is impossible; reject
the assumption: Γ′ is s-maximal.

L7.5 If Γ0 is consistent, then each Ωi is consistent.

Suppose Γ0 is consistent.

Basis: Ω0 = Γ0 and Γ0 is consistent; so Ω0 is consistent.

Assp: For any i, 0 ≤ i < k, Ωi is consistent.

Show: Ωk is consistent.

Ωk is either (i) Ωk−1, (ii) Ωk∗ = Ωk−1 ∪ {/A/s}, (iii) Ωk∗ ∪
{Pt, /¬Q/t} in υK4 or υN4, or (iv) Ωk∗ ∪ {Pt,¬Qt} in υK∗ or
υN∗.

(i) Suppose Ωk is Ωk−1. By assumption, Ωk−1 is consistent; so Ωk

is consistent.

(ii) Suppose Ωk is Ωk∗ = Ωk−1 ∪ {/A/s}. Then by construction, s
is 0 or in Ωk−1 and Ωk−1 6`∗NυX \¬A\s; so by L7.2, Ωk−1∪{/A/s}
is consistent; so Ωk is consistent.

(iii) Suppose Ωk is Ωk∗∪{Pt, /¬Q/t} in υK4 or υN4. In this case, as
above, Ωk∗ is consistent and by construction, /¬(P → Q)/s ∈
Ωk∗ (in υN4, with s = 0). Suppose Ωk is inconsistent. Then
there is some Au such that Ωk∗ ∪ {Pt, /¬Q/t} `∗NυX //A//u and
Ωk∗ ∪ {Pt, /¬Q/t} `∗NυX \\¬A\\u. So reason as follows,
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1 Ωk∗

2 Pt A (g, →I4)

3 /¬Q/t A (c, ¬E)

4 //A//u from Ωk∗ ∪ {Pt, /¬Q/t}
5 \\¬A\\u from Ωk∗ ∪ {Pt, /¬Q/t}
6 \Q\t 3-5 ¬E

7 \P → Q\s 2-6 →I4

where, by construction, t is not in Ωk∗ and for υN4, s = 0.
So Ωk∗ `∗NυX \P → Q\s; but /¬(P → Q)/s ∈ Ωk∗ ; so Ωk∗ `∗NυX
/¬(P → Q)/s; so Ωk∗ is inconsistent. This is impossible; reject
the assumption: Ωk is consistent.

(iv) Suppose Ωk is Ωk∗ ∪{Pt,¬Qt} in υK∗ or υN∗. In this case, as
above, Ωk∗ is consistent and by construction, /¬(P → Q)/s ∈
Ωk∗ (in υK∗, with overline and s = 0). Suppose Ωk is incon-
sistent. Then there is some Au such that Ωk∗ ∪{Pt,¬Qt} `∗NυX
//A//u and Ωk∗ ∪ {Pt,¬Qt} `∗NυX \\¬A\\u. So reason as follows,

1 Ωk∗

2 Pt A (g, →I*)

3 ¬Qt A (c, ¬E)

4 //A//u from Ωk∗ ∪ {Pt,¬Qt}
5 \\¬A\\u from Ωk∗ ∪ {Pt,¬Qt}
6 Qt 3-5 ¬E

7 \P → Q\s 2-6 →I*

where, by construction, t is not in Ωk∗ and for υN∗, \P → Q\s
is without overline and s = 0. So Ωk∗ `∗NυX \P → Q\s; but
/¬(P → Q)/s ∈ Ωk∗ ; so Ωk∗ `∗NυX /¬(P → Q)/s; so Ωk∗ is
inconsistent. This is impossible; reject the assumption: Ωk is
consistent.

———
For any i, Ωi is consistent.

L7.6 If Γ0 is consistent, then Γ′ is consistent.

Reasoning parallel to L2.6 and L6.6.

L7.7 If Γ0 is consistent, then Γ′ is a scapegoat set for (→)K4 , (→)N4 ,
(→)K∗ , and (→)N∗ .

For (→)K4 and (→)N4 . Suppose Γ0 is consistent and Γ′ `∗NυX /¬(P →
Q)/s. By L7.6, Γ′ is consistent; and by the constraints on subscripts,
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s is included in Γ′. Since Γ′ is consistent, Γ′ 6`∗NυX \¬¬(P → Q)\s;
so there is a stage in the construction process where Ωi∗ = Ωi−1 ∪
{/¬(P → Q)/s} and Ωi = Ωi∗ ∪ {Pt, /¬Q/t}; so by construction,
Pt ∈ Γ′ and /¬Q/t ∈ Γ′; so Γ′ `∗NυX Pt and Γ′ `∗NυX /¬Q/t. So Γ′ is a
scapegoat set for (→)K4 and (→)N4 – where the argument for (→)N4

assumes s = 0.

For (→)K∗ and (→)N∗ . Suppose Γ0 is consistent and Γ′ `∗NυX /¬(P →
Q)/s. By L7.6, Γ′ is consistent; and by the constraints on subscripts,
s is included in Γ′. Since Γ′ is consistent, Γ′ 6`∗NυX \¬¬(P → Q)\s;
so there is a stage in the construction process where Ωi∗ = Ωi−1 ∪
{/¬(P → Q)/s} and Ωi = Ωi∗∪{Pt,¬Qt}; so by construction, Pt ∈ Γ′

and ¬Qt ∈ Γ′; so Γ′ `∗NυX Pt and Γ′ `∗NυX ¬Qt. So Γ′ is a scapegoat
set for (→)K∗ and (→)N∗ – where the argument for (→)N∗ assumes
/¬(P → Q)/s is with overline and s = 0.

C(I) We construct an interpretation I = 〈W,N,N, h〉 based on Γ′ as fol-
lows.

υKx: For the K systems, let W have a member ws corresponding
to each subscript s included in Γ′. Then set N = N = W and
hws(/p/) = 1 iff Γ′ `∗NυX /p/s.

υN4: Let W have a member ws corresponding to each subscript s
included in Γ′. Then set N = N = {w0}; hws(/p/) = 1 iff
Γ′ `∗NυX /p/s; and for s 6= 0, hws(/A→ B/) = 1 iff Γ′ `∗NυX /A→
B/s.

υN∗: Let W have a member ws corresponding to each subscript s
included in Γ′. Then set N = {w0} and N = φ; hws(/p/) = 1
iff Γ′ `∗NυX /p/s; hws(P → Q) = 1 iff Γ′ `∗NυX (P → Q)s; and for
s 6= 0, hws(A→ B) = 1 iff Γ′ `∗NυX (A→ B)s.

L7.8 If Γ0 is consistent then for 〈W,N,N, h〉 constructed as above, and for
any s included in Γ′, hws(/A/) = 1 iff Γ′ `∗NυX /A/s.

Suppose Γ0 is consistent and s is included in Γ′. By L7.4, Γ′ is s-
maximal. By L7.6 and L7.7, Γ′ is consistent and a scapegoat set
for the different conditionals. Now by induction on the number of
operators in /A/s,

Basis: If /A/s has no operators, then it is a parameter /p/s and by
construction, hws(/p/) = 1 iff Γ′ `∗NυX /p/s. So hws(/A/) = 1 iff
Γ′ `∗NυX /A/s.
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Assp: For any i, 0 ≤ i < k, if /A/s has i operators, then hws(/A/) = 1
iff Γ′ `∗NυX /A/s.

Show: If /A/s has k operators, then hws(/A/) = 1 iff Γ′ `∗NυX /A/s.

If /A/s has k operators, then it is of the form /¬P /s, /P ∧Q/s,
/P ∨Q/s or /P → Q/s, where P and Q have < k operators.

(¬) /A/s is /¬P /s. (i) Suppose hws(/A/) = 1; then hws(/¬P /) = 1;
so by Hυ(¬), hws(\P \) = 0; so by assumption, Γ′ 6`∗NυX \P \s;
so by s-maximality, Γ′ `∗NυX /¬P /s, where this is to say, Γ′ `∗NυX
/A/s. (ii) Suppose Γ′ `∗NυX /A/s; then Γ′ `∗NυX /¬P /s; so by
consistency, Γ′ 6`∗NυX \P \s; so by assumption, hws(\P \) = 0; so
by Hυ(¬), hws(/¬P /) = 1, where this is to say, hws(/A/) = 1.
So hws(/A/) = 1 iff Γ′ `∗NυX /A/s.

(∧)

(∨)

(→) /A/s is /P → Q/s. (i) Suppose hws(/A/) = 1 but Γ′ 6`∗NυX /A/s;
then hws(/P → Q/) = 1, but Γ′ 6`∗NυX /P → Q/s; from the
latter, by s-maximality, Γ′ `∗NυX \¬(P → Q)\s.

υK4: In this case, N = N = K; so ws ∈ /N/. Since Γ′ is
a scapegoat set for (→)K4 , there is some t such that
Γ′ `∗NυK4

Pt and Γ′ `∗NυK4
\¬Q\t; from the latter, by con-

sistency, Γ′ 6`∗NυK4
/Q/t; so by assumption, hwt(P ) = 1

and hwt(/Q/) = 0; so since ws ∈ /N/, by Hυ(→)4,
hws(/P → Q/) = 0. This is impossible; reject the as-
sumption: if hws(/A/) = 1, then Γ′ `∗NυX /A/s.

υN4: In this case, when s = 0, ws ∈ /N/ and reasoning is
as immediately above. Otherwise, by construction, if
hws(/A/) = 1 then Γ′ `∗NυX /A/s.

υK∗: In this case, N = N = K; so ws ∈ /N/. Since Γ′ is
a scapegoat set for (→)K∗ , there is some t such that
Γ′ `∗NυK∗ Pt and Γ′ `∗NυK∗ ¬Qt; from the latter, by consis-
tency, Γ′ 6`∗NυK∗ Qt; so by assumption, hwt(P ) = 1 and
hwt(Q) = 0; so since ws ∈ /N/, by Hυ(→)∗, hws(/P →
Q/) = 0. This is impossible; reject the assumption: if
hws(/A/) = 1, then Γ′ `∗NυX /A/s.

υN∗: In this case, when s = 0 and /P → Q/ is without
overline – so that \¬(P → Q)\ is ¬(P → Q) – ws ∈ /N/

and reasoning is as immediately above. Otherwise, by
construction, if hws(/A/) = 1 then Γ′ `∗NυX /A/s.
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So in any of these cases, if hws(/A/) = 1 then Γ′ `∗NυX /A/s.

(ii) Suppose Γ′ `∗NυX /A/s but hws(/A/) = 0; then Γ′ `∗NυX /P →
Q/s but hws(/P → Q/) = 0.

υK4: From the latter, by Hυ(→)4, there is some wt ∈ W
such that hwt(P ) = 1 and hwt(/Q/) = 0; so by assump-
tion, Γ′ `∗NυK4

Pt and Γ′ 6`∗NυK4
/Q/t; so by s-maximality,

Γ′ `∗NυK4
\¬Q\t. So by reasoning as follows,

1 Γ′

2 /P → Q/s A (c, ¬I)

3 Pt from Γ′

4 /Q/t 2,3 →E4

5 \¬Q\t from Γ′

6 \¬(P → Q)\s 2-5 ¬I

Γ′ `∗NυK4
\¬(P → Q)\s; so by consistency, Γ′ 6`∗NυK4

/P → Q/s. This is impossible; reject the assumption:
if Γ′ `∗NυX /A/s then hws(/A/) = 1.

υN4: When s = 0, the reasoning is as immediately above.
Otherwise, by construction, if Γ′ `∗NυX /A/s, then
hws(/A/) = 1.

υK∗: From the latter, by Hυ(→)∗, there is some wt ∈ W
such that hwt(//P //) = 1 and hwt(//Q//) = 0; so by as-
sumption, Γ′ `∗NυK4

//P //t and Γ′ 6`∗NυK4
//Q//t; so by s-

maximality, Γ′ `∗NυK4
\\¬Q\\t. So by reasoning as follows,

1 Γ′

2 /P → Q/s A (c, ¬I)

3 //P //t from Γ′

4 //Q//t 2,3 →E*
5 \\¬Q\\t from Γ′

6 \¬(P → Q)\s 2-5 ¬I

Γ′ `∗NυK∗ \¬(P → Q)\s; so by consistency, Γ′ 6`∗NυK∗
/P → Q/s. This is impossible; reject the assumption:
if Γ′ `∗NυX /A/s then hws(/A/) = 1.

υN∗: When s = 0 and /P → Q/ is without overline, the
reasoning is as immediately above. Otherwise, by con-
struction, if Γ′ `∗NυX /A/s then hws(/A/) = 1.

So in any of these cases, if Γ′ `∗NυX /A/s then hws(/A/) = 1. So
hws(/A/) = 1 iff Γ′ `∗NυX /A/s.
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———
For any As, hws(/A/) = 1 iff Γ′ `∗NυX /A/s.

L7.9 If Γ0 is consistent, then 〈W,N,N, h〉 constructed as above is an υX
interpretation.

This is immediate, by construction.

Map For any ws ∈W , set m(s) = ws; otherwise m(s) is arbitrary.

L7.10 If Γ0 is consistent, then hm(Γ0) = 1.

Reasoning parallel to L2.10 and L6.9.

Main result: Suppose Γ |=υX A but Γ 6 ǸυX A. Then Γ0 |=∗υX A0 but
Γ0 6`∗NυX A0. By (DN), if Γ0 `∗NυX ¬¬A0, then Γ0 `∗NυX A0; so Γ0 6`∗NυX ¬¬A0; so
by L7.2, Γ0∪{¬A0} is consistent; so by L7.9 and L7.10, there is an υX in-
terpretation 〈W,N,N, h〉m constructed as above such that hm(Γ0∪{¬A0}) =
1; so hm(0)(¬A) = 1; so by Hυ(¬), hm(0)(A) = 0; so hm(Γ0) = 1 and
hm(0)(A) = 0; so by VυX*, Γ0 6|=∗υX A0. This is impossible; reject the as-
sumption: if Γ |=υX A, then Γ ǸυX A.

7.4 Soundness and Completeness: Ix

Preliminaries: Begin with generalized notions of validity. For a model
〈W,R, h〉, let m be a map from subscripts into W . Then say 〈W,R, h〉m
is 〈W,R, h〉 with map m. Then, where Γ is a set of expressions of our lan-
guage for derivations, hm(Γ) = 1 iff for each /As/ ∈ Γ, hm(s)(/A/) = 1, and
for each s.t ∈ Γ, 〈m(s),m(t)〉 ∈ R. Now expand notions of validity for sub-
scripts, overlines, and alternate expressions as indicated in double brackets
as follows,

VIx* Γ |=∗Ix /A/s [[s.t]] iff there is no Ix interpretation 〈W,R, h〉m such that
hm(Γ) = 1 but hm(s)(/A/) = 0 [[〈m(s),m(t)〉 6∈ R]].

NIx* Γ `∗NIx /A/s [[s.t]] iff there is an NIx derivation of /A/s [[s.t]] from the
members of Γ.

These notions reduce to the standard ones when all the members of Γ and A
are without overlines and have subscript 0 (and so do not include expressions
of the sort s.t). As usual, for the following, cases omitted are like ones
worked, and so left to the reader.

Theorem 7.3 NIx is sound: If Γ ǸIx A then Γ |=Ix A.
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L7.1a If Γ ⊆ Γ′ and Γ |=∗Ix /P /s [[s.t]] then Γ′ |=∗Ix /P /s [[s.t]].

Suppose Γ ⊆ Γ′ and Γ |=∗Ix /P /s [[s.t]], but Γ′ 6|=∗Ix /P /s [[s.t]]. From
the latter, by VIx*, there is some Ix interpretation 〈W,R, h〉m such
that hm(Γ′) = 1 but hm(s)(/P /) = 0 [[〈m(s),m(t)〉 6∈ R]]. But since
hm(Γ′) = 1 and Γ ⊆ Γ′, hm(Γ) = 1; so hm(Γ) = 1 but hm(s)(/P /) = 0
[[〈m(s),m(t)〉 6∈ R]]; so by VIx*, Γ 6|=∗Ix /P /s [[s.t]]. This is impossible;
reject the assumption: if Γ ⊆ Γ′ and Γ |=∗Ix /P /s [[s.t]], then Γ′ |=∗Ix /P /s
[[s.t]].

Main result: For each line in a derivation let Pi be the expression on line i
and Γi be the set of all premises and assumptions whose scope includes line
i. We set out to show “generalized” soundness: if Γ `∗NIx P then Γ |=∗Ix P. As
above, this reduces to the standard result when P and all the members of Γ
are without overlines and have subscript 0. Suppose Γ `∗NIx P. Then there
is a derivation of P from premises in Γ where P appears under the scope of
the premises alone. By induction on line number of this derivation, we show
that for each line i of this derivation, Γi |=∗Ix Pi. The case when Pi = P is
the desired result.

Basis: P1 is a premise or an assumption /A/s [[s.t]]. Then Γ1 = {/A/s}
[[{s.t}]]; so for any 〈W,R, h〉m, hm(Γ1) = 1 iff hm(s)(/A/) = 1 [[〈m(s),m(t)〉 ∈
R]]; so there is no 〈W,R, h〉m such that hm(Γ1) = 1 but hm(s)(/A/) = 0
[[〈m(s),m(t)〉 6∈ R]]. So by VIx*, Γ1 |=∗Ix /A/s [[s.t]], where this is just
to say, Γ1 |=∗Ix P1.

Assp: For any i, 1 ≤ i < k,Γi |=∗Ix Pi.

Show: Γk |=∗Ix Pk.
Pk is either a premise, an assumption, or arises from previous lines
by R, ∧I, ∧E, ∨I, ∨E, ¬I, ¬E or, depending on the system, AI, AE,
AMρ, AMτ , HI, D, A I, AE, A IW , or AEW . If Pk is a premise or an
assumption, then as in the basis, Γk |=∗Ix Pk. So suppose Pk arises by
one of the rules.

(R)

(∧I)

(∧E)

(∨I)
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(∨E)

(¬I)

(¬E)

(AI) If Pk arises by AI, then the picture is like this,

s.t

At

i Bt
k (A A B)s

where i < k, t does not appear in any member of Γk (in any undis-
charged premise or assumption), and Pk is (A A B)s. By assump-
tion, Γi |=∗Ix Bt; but by the nature of access, Γi ⊆ Γk ∪ {s.t, At}; so
by L7.1a, Γk ∪ {s.t, At} |=∗Ix Bt. Suppose Γk 6|=∗Ix (A A B)s; then by
VIx*, there is an Ix interpretation 〈W,R, h〉m such that hm(Γk) = 1
but hm(s)(A A B) = 0; so, by HIx(A), there is some w ∈ W such
that m(s)Rw and hw(A) = 1 but hw(B) = 0. Now consider a map m′

like m except that m′(t) = w, and consider 〈W,R, h〉m′ ; since t does
not appear in Γk, it remains that hm′(Γk) = 1; and since m′(t) = w,
m(s)Rm′(t) and hm′(t)(A) = 1; so hm′(Γk ∪ {s.t, At}) = 1; so by
VIx*, hm′(t)(B) = 1. But m′(t) = w; so hw(B) = 1. This is im-
possible; reject the assumption: Γk |=∗Ix (A A B)s, which is to say,
Γk |=∗Ix Pk.

(AE) If Pk arises by AE, then the picture is like this,

h (A A B)s
i s.t

j At

k Bt

where h, i, j < k and Pk is Bt. By assumption, Γh |=∗Ix (A A B)s,
Γi |=∗Ix s.t and Γj |=∗Ix At; but by the nature of access, Γh ⊆ Γk,
Γi ⊆ Γk and Γj ⊆ Γk; so by L7.1a, Γk |=∗Ix (A A B)s, Γk |=∗Ix s.t
and Γk |=∗Ix At. Suppose Γk 6|=∗Ix Bt; then by VIx*, there is some Ix
interpretation 〈W,R, h〉m such that hm(Γk) = 1 but hm(t)(B) = 0;
since hm(Γk) = 1, by VIx*, hm(s)(A A B) = 1, 〈m(s),m(t)〉 ∈ R
and hm(t)(A) = 1; from the first of these, by HIx(A), there is no
w ∈W such that m(s)Rw and hw(A) = 1 but hw(B) = 0; so it is not
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the case that 〈m(s),m(t)〉 ∈ R and hm(t)(A) = 1 but hm(t)(B) = 0.
This is impossible; reject the assumption: Γk |=∗Ix Bt, which is to say,
Γk |=∗Ix Pk.

(AMρ)

(AMτ)

(HI) If Pk arises by HI, then the picture is like this,

i As
j s.t

k At

or i At
j s.t

k As

where i, j < k and, in the left-hand case, Pk is At. By assumption,
Γi |=∗Ix As and Γj |=∗Ix s.t; but by the nature of access, Γi ⊆ Γk
and Γj ⊆ Γk; so by L7.1a, Γk |=∗Ix As and Γk |=∗Ix s.t. Suppose
Γk 6|=∗Ix At; then by VIx*, there is some Ix interpretation 〈W,R, h〉m
such that hm(Γk) = 1 but hm(t)(A) = 0; since hm(Γk) = 1, by VIx*,
hm(s)(A) = 1 and 〈m(s),m(t)〉 ∈ R.

Now, by induction on the number of operators in A, we show that
if xRy, then if hx(A) = 1, then hy(A) = 1, and if hy(A) = 1, then
hx(A) = 1. Suppose xRy.

Basis: Suppose A is a parameter p. (i) Suppose hx(A) = 1; then
hx(p) = 1; so by condition h, hy(p) = 1; so hy(A) = 1.

(ii) Suppose hy(A) = 1; then hy(p) = 1; so by condition h,
hx(p) = 1; so hx(A) = 1.

Assp: For 0 ≤ i < k, if A has i operators, then if hx(A) = 1, then
hy(A) = 1, and if hy(A) = 1, then hx(A) = 1.

Show: If A has k operators, then if hx(A) = 1, then hy(A) = 1, and
if hy(A) = 1, then hx(A) = 1.

If A has k operators then it is of the form, ¬P , P ∧Q, P ∨Q,
or P A Q, where P and Q have < k operators.

(¬) Suppose A is ¬P . (i) Suppose hx(A) = 1; then hx(¬P ) = 1;
so by HIx(¬), hx(P ) = 0; so by assumption, hy(P ) = 0; so by
HIx(¬), hy(¬P ) = 1.

(ii) Suppose hy(A) = 1; then hy(¬P ) = 1; so by HIx(¬),
hy(P ) = 0; so by assumption, hx(P ) = 0; so by HIx(¬),
hx(¬P ) = 1.
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(∧) Suppose A is P ∧Q. (i) Suppose hx(A) = 1; then hx(P ∧Q) =
1; so by HIx(∧), hx(P ) = 1 and hx(Q) = 1; so by assumption,
hy(P ) = 1 and hy(Q) = 1; so by HIx(∧), hy(P ∧ Q) = 1; so
hy(A) = 1.

(ii) Suppose hy(A) = 1; then hy(P ∧Q) = 1; so by HIx(∧),
hy(P ) = 1 and hy(Q) = 1; so by assumption, hx(P ) = 1 and
hx(Q) = 1; so by HIx(∧), hx(P ∧Q) = 1; so hx(A) = 1.

(∨)

(A) Suppose A is P A Q. (i) Suppose hx(A) = 1 but hy(A) = 0;
then hx(P A Q) = 1 but hy(P A Q) = 0. From the former, by
HIx(A), any w such that xRw has hw(P ) = 0 or hw(Q) = 1.
From the latter, by HIx(A), there is some z ∈ W such that
yRz where hz(P ) = 1 and hz(Q) = 0. But xRy and yRz; so
by τ , xRz; so hz(P ) = 0 or hz(Q) = 1. This is impossible;
reject the assumption: if hx(A) = 1, then hy(A) = 1.

(ii) Suppose hy(A) = 1; then hy(P A Q) = 1; so by HIx(A),
hy(P ) = 0 or hy(Q) = 1; so by assumption, hx(P ) = 0 or
hx(Q) = 1; so by HIx(A), hx(P A Q) = 1; so hx(A) = 1.

(A)W Suppose A is P A Q. (i) Suppose hx(A) = 1 but hy(A) = 0;
then hx(P A Q) = 1 but hy(P A Q) = 0. From the former, by
HIx(A)W , any w such that xRw has hw(P ) = 0 or hw(Q) = 1.
From the latter, by HIx(A)W , there is some z ∈ W such that
yRz where hz(P ) = 1 and hz(Q) = 0. But xRy and yRz; so
by τ , xRz; so hz(P ) = 0 or hz(Q) = 1. This is impossible;
reject the assumption: if hx(A) = 1, then hy(A) = 1.

(ii) Suppose hy(A) = 1 but hx(A) = 0; then hy(P A Q) = 1
but hx(P A Q) = 0. From the former, by HIx(A)W , there is
some w ∈ W such that yRw and hw(P ) = 1 and hw(Q) = 0.
But xRy and yRw; so by τ , xRw; so there is some w ∈
W such that xRw and hw(P ) = 1 and hw(Q) = 0; but
since hx(P A Q) = 0, by HIx(A)W , any z such that xRz
has hz(P ) = 0 or hz(Q) = 1; so since xRw, hw(P ) = 0 or
hw(Q) = 1. This is impossible; reject the assumption: if
hy(A) = 1, then hx(A) = 1.

———
For any such A, if hx(A) = 1, then hy(A) = 1, and if hy(A) = 1, then
hx(A) = 1.

So, returning to the left-hand case for (HI), hm(t)(A) = 1. This
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is impossible; reject the assumption: Γk |=∗Ix At, which is to say,
Γk |=∗Ix Pk. And similarly in the right-hand case.

(D) If Pk arises by D, then the picture is like this,

i As

k As

where i < k and Pk is As. Where this rule is included in NIx, Ix has
condition exc, so no interpretation has hx(p) = {1, 0}. By assump-
tion, Γi |=∗Ix As; but by the nature of access, Γi ⊆ Γk; so by L7.1a,
Γk |=∗Ix As. Suppose Γk 6|=∗Ix As; then by VIx*, there is an Ix inter-
pretation 〈W,R, h〉m such that hm(Γk) = 1 but hm(s)(A) = 0; since
h(Γk) = 1, by VIx*, hm(s)(A) = 1. But for these interpretations, for

any A, if hx(A) = 1 then hx(A) = 1.

Basis: A is a parameter p. Suppose hx(A) = 1; then hx(p) = 1; so
1 ∈ hx(p); so by exc, 0 6∈ hx(p); so hx(p) = 1; so hx(A) = 1.

Assp: For any i, 0 ≤ i < k, if A has i operators, and hx(A) = 1, then
hx(A) = 1.

Show: If A has k operators, and hx(A) = 1, then hx(A) = 1.

If A has k operators, then A is of the form, ¬P , P ∧Q, P ∨Q,
or P A Q, where P and Q have < k operators.

(¬) A is ¬P . Suppose hx(A) = 1; then hx(¬P ) = 1; so by HIx(¬),
hx(P ) = 0; so by assumption, hx(P ) = 0; so by HIx(¬),
hx(¬P ) = 1, which is to say, hx(A) = 1.

(∧) A is P ∧ Q. Suppose hx(A) = 1; then hx(P ∧ Q) = 1; so
by HIx(∧), hx(P ) = 1 and hx(Q) = 1; so by assumption,
hx(P ) = 1 and hx(Q) = 1; so by HIx(∧), hx(P ∧Q) = 1,
which is to say hx(A) = 1.

(∨)

(A) A is P A Q. Suppose hx(A) = 1; then hx(P A Q) = 1; so by
HIx(A), for any w such that xRw, hw(P ) = 0 or hw(Q) = 1;
but by ρ, xRx; so hx(P ) = 0 or hx(Q) = 1; so by assumption,
hx(P ) = 0 or hx(Q) = 1; so by HIx(A), hx(P A Q) = 1, which
is to say hx(A) = 1.

———
For any A, if hx(A) = 1, then hx(A) = 1.
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So, returning to the case for (D), hm(s)(A) = 1. This is impossible;

reject the assumption: Γk |=∗Ix A, which is to say, Γk |=∗Ix Pk.

(A I) If Pk arises by A I, then the picture is like this,

As

i Bs

k (A A B)s

where i < k and Pk is (A A B)s. By assumption, Γi |=∗Ix Bs; and by
the nature of access, Γi ⊆ Γk ∪ {As}; so by L7.1a, Γk ∪ {As} |=∗Ix Bs.
Suppose Γk 6|=∗Ix (A A B)s; then by VIx*, there is some Ix interpre-
tation 〈W,R, h〉m such that hm(Γk) = 1 but hm(s)(A A B) = 0; from

the latter, by HIx(A), hm(s)(A) = 1 and hm(s)(B) = 0; so hm(Γk) = 1

and hm(s)(A) = 1; so hm(Γk ∪ {As}) = 1; so by VIx*, hm(s)(B) = 1.

This is impossible; reject the assumption: Γk |=∗Ix (A A B)s, which is
to say, Γk |=∗Ix Pk.

(AE) If Pk arises by AE, then the picture is like this,

i (A A B)s
j As

k Bs

where i, j < k and Pk is Bs. By assumption, Γi |=∗Ix (A A B)s and
Γj |=∗Ix As; but by the nature of access, Γi ⊆ Γk and Γj ⊆ Γk;
so by L7.1a, Γk |=∗Ix (A A B)s and Γk |=∗Ix As. Suppose Γk 6|=∗Ix
Bs; then by VIx*, there is some Ix interpretation 〈W,R, h〉m such
that hm(Γk) = 1 but hm(s)(B) = 0; since hm(Γk) = 1, by VIx*,

hm(s)(A A B) = 1 and hm(s)(A) = 1; from the former, by HIx(A),
hm(s)(A) = 0 or hm(s)(B) = 1; so hm(s)(B) = 1. This is impossible;

reject the assumption: Γk |=∗Ix Bs, which is to say, Γk |=∗Ix Pk.

(A IW ) If Pk arises by A IW , then the picture is like this,

h s.t

i At
j ¬Bt

k (A A B)s
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where h, i, j < k and Pk is (A A B)s. By assumption, Γh |=∗Ix s.t,
Γi |=∗Ix At and Γj |=∗Ix ¬Bt; but by the nature of access, Γh ⊆ Γk,
Γi ⊆ Γk and Γj ⊆ Γk; so by L7.1a, Γk |=∗Ix s.t, Γk |=∗Ix At, and Γk |=∗Ix
¬Bt. Suppose Γk 6|=∗Ix (A A B)s; then by VIx*, there is some Ix
interpretation 〈W,R, h〉m such that hm(Γk) = 1 but hm(s)(A A B) =
0; since hm(Γk) = 1, by VIx*, 〈m(s),m(t)〉 ∈ R, hm(t)(A) = 1 and

hm(t)(¬B) = 1; from the last of these, by HIx(¬), hm(t)(B) = 0; so
there is some m(t) ∈W such that m(s)Rm(t) and hm(t)(A) = 1 and

hm(t)(B) = 0; so by HIx(A)W , hm(s)(A A B) = 1. This is impossible;

reject the assumption: Γk |=∗Ix (A A B)s, which is to say, Γk |=∗Ix Pk.

(AEW ) If Pk arises by AEW , then the picture is like this,

i (A A B)s
s.t

At
¬Bt

j Cu

k Cu

where i, j < k, t does not appear in any member of Γk (in any
undischarged premise or assumption) and is not u, and Pk is Cu.
By assumption, Γi |=∗Ix (A A B)s and Γj |=∗Ix Cu; but by the na-
ture of access, Γi ⊆ Γk and Γj ⊆ Γk ∪ {s.t, At,¬Bt}; so by L7.1a,
Γk |=∗Ix (A A B)s and Γk ∪ {s.t, At,¬Bt} |=∗Ix Cu. Suppose Γk 6|=∗Ix
Cu; then by VIx*, there is an Ix interpretation 〈W,R, h〉m such
that hm(Γk) = 1 but hm(u)(C) = 0; since hm(Γk) = 1, by VIx*,

hm(s)(A A B) = 1; so, by HIx(A)W , there is some w ∈ W such that

m(s)Rw and hw(A) = 1 and hw(B) = 0. Now consider a map m′

like m except that m′(t) = w, and consider 〈W,R, h〉m′ ; since t does
not appear in Γk, it remains that hm′(Γk) = 1; and since m′(t) = w,
m(s)Rm′(t) and hm′(t)(A) = 1 and hm′(t)(B) = 0; from the last of
these, by HIx(¬), hm′(t)(¬B) = 1; so hm′(Γk ∪ {s.t, At,¬B}) = 1;
so by VIx*, hm′(u)(C) = 1. But since t 6= u, m′(u) = m(u); so
hm(u)(C) = 1. This is impossible; reject the assumption: Γk |=∗Ix Cu,
which is to say, Γk |=∗Ix Pk.

———
For any i, Γi |=∗Ix Pi.

Theorem 7.4 NIx is complete: if Γ |=Ix A then Γ ǸIx A.
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Suppose Γ |=Ix A; then Γ0 |=∗Ix A0; we show that Γ0 `∗NIx A0. As usual, this
reduces to the standard notion. For the following, fix on some particular Ix.
Then definitions of consistency etc. are relative to it.

Con Γ is consistent iff there is no As such that Γ `∗NIx /A/s and Γ `∗NIx
\¬A\s.

L7.2a If s is 0 or appears in Γ, and Γ 6`∗NIx \¬P \s, then Γ ∪ {/P /s} is
consistent.

Reasoning as in L7.2.

L7.3a There is an enumeration of all the subscripted formulas, P1 P2 . . .
with access relations s.t.

Proof by construction as usual.

Max Γ is s-maximal iff for any As either Γ `∗NIx /A/s or Γ `∗NIx \¬A\s.

Sgt Γ is a scapegoat set for (A)I3,4 iff for every formula of the form

¬(A A B)s, if Γ `∗NIx ¬(A A B)s then there is some t such that Γ `∗NIx
s.t, Γ `∗NIx At and Γ `∗NIx ¬Bt.

Γ is a scapegoat set for (A)IW iff for every formula of the form
(A A B)s, if Γ `∗NIx ¬(A A B)s then there is some t such that Γ `∗NIx
s.t, Γ `∗NIx At and Γ `∗NIx ¬Bt; and if Γ `∗NIx (A A B)s then there is
some t such that Γ `∗NIx s.t, Γ `∗NIx At and Γ `∗NIx ¬Bt

C(Γ′) For Γ with unsubscripted formulas and the corresponding Γ0, we con-
struct Γ′ as follows. Set Ω0 = Γ0. By L7.3a, there is an enumeration,
P1,P2 . . . of all the formulas, together with all the access relations s.t;
let E0 be this enumeration. Then for the first expression P in Ei−1
such that all its subscripts are 0 or introduced in Ωi−1, let Ei be like
Ei−1 but without P, and set,
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Ωi = Ωi−1 if Ωi−1 `∗NIx \¬A\s
Ωi∗ = Ωi−1 ∪ {/A/s} if Ωi−1 6`∗NIx \¬A\s

and

I3,4: Ωi = Ωi∗ if As is not of the form ¬(P A Q)s
Ωi = Ωi∗ ∪ {s.t, Pt,¬Qt} if As is of the form ¬(P A Q)s

IW : Ωi = Ωi∗ if As is not of the form ¬(P A Q)s
or (P A Q)s

Ωi = Ωi∗ ∪ {s.t, Pt,¬Qt} if As is of the form ¬(P A Q)s
Ωi = Ωi∗ ∪ {s.t, Pt,¬Qt} if As is of the form (P A Q)s

-where t is the first subscript not included in Ωi∗

then
Γ′ =

⋃
i≥0 Ωi

Note that there is always sure to be a subscript t not in Ωi∗ insofar
as there are infinitely many subscripts, and at any stage only finitely
many formulas are added – the only subscripts in the initial Ω0 being
0. Suppose s appears in Γ′; then there is some Ωi in which it is first
appears; and any formula Pj in the original enumeration that has
subscript s is sure to be “considered” for inclusion at a subsequent
stage.

L7.4a For any s included in Γ′, Γ′ is s-maximal.

Reasoning as in L7.4.

L7.5a If Γ0 is consistent, then each Ωi is consistent.

Suppose Γ0 is consistent.

Basis: Ω0 = Γ0 and Γ0 is consistent; so Ω0 is consistent.

Assp: For any i, 0 ≤ i < k, Ωi is consistent.

Show: Ωk is consistent.

Ωk is either (i) Ωk−1, (ii) Ωk∗ = Ωk−1 ∪ {/A/s}, (iii) Ωk∗ ∪
{s.t, Pt,¬Qt} in I3,4 or IW , or (iv) Ωk∗ ∪ {s.t, Pt,¬Qt} in IW .

(i) Suppose Ωk is Ωk−1. By assumption, Ωk−1 is consistent; so Ωk

is consistent.

(ii) Suppose Ωk is Ωk∗ = Ωk−1∪{/A/s}. Then by construction, s is
0 or in Ωk−1 and Ωk−1 6`∗NIx \¬A\s; so by L7.2a, Ωk−1∪{/A/s}
is consistent; so Ωk is consistent.

(iii) Suppose Ωk is Ωk∗ ∪ {s.t, Pt,¬Qt} in I3,4 or IW . In this case,

as above, Ωk∗ is consistent and by construction, ¬(P A Q)s ∈
Ωk∗ . Suppose Ωk is inconsistent. Then there is some Au such
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that Ωk∗ ∪{s.t, Pt,¬Qt} `∗NIx /A/u and Ωk∗ ∪{s.t, Pt,¬Qt} `∗NIx
\¬A\u. So reason as follows,

1 Ωk∗

2 s.t A (g, AI)

3 Pt A (g, AI)

4 ¬Qt A (c, ¬E)

5 /A/u from Ωk∗ ∪ {s.t, Pt,¬Qt}
6 \¬A\u from Ωk∗ ∪ {s.t, Pt,¬Qt}
7 Qt 4-6 ¬E

8 (P A Q)s 2-7 AI

where, by construction, t is not in Ωk∗ . So Ωk∗ `∗NIx (P A
Q)s; but ¬(P A Q)s ∈ Ωk∗ ; so Ωk∗ `∗NIx ¬(P A Q)s; so Ωk∗ is
inconsistent. This is impossible; reject the assumption: Ωk is
consistent.

(iv) Suppose Ωk is Ωk∗ ∪ {s.t, Pt,¬Qt} in IW . In this case, as
above, Ωk∗ is consistent and by construction, (P A Q)s ∈ Ωk∗ .
Suppose Ωk is inconsistent. Then there is some Au such that
Ωk∗ ∪ {s.t, Pt,¬Qt} `∗NIx /A/u and Ωk∗ ∪ {s.t, Pt,¬Qt} `∗NIx
\¬A\u. So reason as follows,

1 Ωk∗

2 (P A Q)s A (c, ¬I)

3 s.t A (g, AEW )

4 Pt A (g, AEW )

5 ¬Qt A (g, AEW )

6 /A/u from Ωk∗ ∪ {s.t, Pt,¬Qt}
7 /A/u 2,3-6 AEW
8 s.t A (g, AEW )

9 Pt A (g, AEW )

10 ¬Qt A (g, AEW )

11 \¬A\u from Ωk∗ ∪ {s.t, Pt,¬Qt}
12 \¬A\u 2,8-11 AEW

13 ¬(P A Q)s 2-12 ¬I

where, by construction, t is not in Ωk∗ . So Ωk∗ `∗NIx ¬(P A
Q)s; but (P A Q)s ∈ Ωk∗ ; so Ωk∗ `∗NIx (P A Q)s; so Ωk∗ is
inconsistent. This is impossible; reject the assumption: Ωk is
consistent.

———
For any i, Ωi is consistent.
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L7.6a If Γ0 is consistent, then Γ′ is consistent.

Reasoning parallel to L2.6 and L6.6.

L7.7a If Γ0 is consistent, then Γ′ is a scapegoat set for (A)I3,4 and (A)IW .

For (A)I3,4 and (A)IW . Suppose Γ0 is consistent and Γ′ `∗NIx ¬(P A Q)s.
By L7.6a, Γ′ is consistent; and by the constraints on subscripts, s is
included in Γ′. Since Γ′ is consistent, Γ′ 6`∗NIx ¬¬(P A Q)s; so there is
a stage in the construction process where Ωi∗ = Ωi−1 ∪ {¬(P A Q)s}
and Ωi = Ωi∗ ∪ {s.t, Pt,¬Qt}; so by construction, s.t ∈ Γ′, Pt ∈ Γ′

and ¬Qt ∈ Γ′; so Γ′ `∗NIx s.t, Γ′ `∗NIx Pt and Γ′ `∗NIx ¬Qt. So Γ′ is a
scapegoat set for (A)I3,4 .

Furthermore for (A)IW . Suppose Γ0 is consistent and Γ′ `∗NIx (P A Q)s.
By L7.6a, Γ′ is consistent; and by the constraints on subscripts, s is
included in Γ′. Since Γ′ is consistent, Γ′ 6`∗NIx ¬(P A Q)s; so there is
a stage in the construction process where Ωi∗ = Ωi−1 ∪ {(P A Q)s}
and Ωi = Ωi∗ ∪ {s.t, Pt,¬Qt}; so by construction, s.t ∈ Γ′, Pt ∈ Γ′

and ¬Qt ∈ Γ′; so Γ′ `∗NIx s.t, Γ′ `∗NIx Pt and Γ′ `∗NIx ¬Qt. So Γ′ is a
scapegoat set for (A)IW .

C(I) We construct an interpretation I = 〈W,R, h〉 based on Γ′ as follows.
Let W have a member ws corresponding to each subscript s included
in Γ′. Then set 〈ws, wt〉 ∈ R iff Γ′ `∗NIx s.t and hws(/p/) = 1 iff
Γ′ `∗NIx /p/s.

L7.8a If Γ0 is consistent then for 〈W,R, h〉 constructed as above, and for
any s included in Γ′, hws(/A/) = 1 iff Γ′ `∗NIx /A/s.
Suppose Γ0 is consistent and s is included in Γ′. By L7.4a, Γ′ is
s-maximal. By L7.6a and L7.7a, Γ′ is consistent and a scapegoat
set for the different conditionals. Now by induction on the number
of operators in /A/s,

Basis: If /A/s has no operators, then it is a parameter /p/s and by
construction, hws(/p/) = 1 iff Γ′ `∗NIx /p/s. So hws(/A/) = 1 iff
Γ′ `∗NIx /A/s.

Assp: For any i, 0 ≤ i < k, if /A/s has i operators, then hws(/A/) = 1
iff Γ′ `∗NIx /A/s.

Show: If /A/s has k operators, then hws(/A/) = 1 iff Γ′ `∗NIx /A/s.
If /A/s has k operators, then it is of the form /¬P /s, /P ∧Q/s,
/P ∨Q/s or /P A Q/s, where P and Q have < k operators.
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(¬)

(∧)

(∨)

(A) /A/s is /P A Q/s. (i) Suppose hws(/A/) = 1 but Γ′ 6`∗NIx /A/s;
then hws(/P A Q/) = 1, but Γ′ 6`∗NIx /P A Q/s.
I3,4: (a) /P A Q/s is (P A Q)s. Then hws(P A Q) = 1, but

Γ′ 6`∗NIx (P A Q)s. From the latter, by s-maximality,
Γ′ `∗NIx ¬(P A Q)s; but since Γ′ is a scapegoat set for
(A)I3,4 , there is some t such that Γ′ `∗NIx s.t, Γ′ `∗NIx Pt
and Γ′ `∗NIx ¬Qt; from the last of these, by consistency,
Γ′ 6`∗NIx Qt; so by assumption, hwt(P ) = 1 and hwt(Q) =
0; and since Γ′ `∗NIx s.t, by construction, 〈ws, wt〉 ∈ R;
so there is some y ∈W such that wsRy and hy(P ) = 1
but hy(Q) = 0; so by HIx(A), hws(P A Q) = 0. This is
impossible.
(b) /P A Q/s is (P A Q)s. Then hws(P A Q) = 1, but
Γ′ 6`∗NIx (P A Q)s. From the latter, by s-maximality,
Γ′ `∗NIx ¬(P A Q)s. From the former, by HIx(A),
hws(P ) = 0 or hws(Q) = 1. Suppose the first; so
hws(P ) = 0; then by assumption, Γ′ 6`∗NIx Ps; so by
s-maximality, Γ′ `∗NIx ¬P s; so by reasoning as follows,

1 ¬P s from Γ′

2 Ps A (g, A I)

3 ¬Qs A (c, ¬E)

4 Ps 2 R

5 ¬P s 1 R

6 Qs 3-5 ¬E

7 (P A Q)s 2-6 A I

Γ′ `∗NIx (P A Q)s; so Γ′ `∗NIx (P A Q)s and Γ′ `∗NIx
¬(P A Q)s; so Γ′ is inconsistent. Suppose the sec-
ond; so hws(Q) = 1; then by assumption, Γ′ `∗NIx Qs; so
by reasoning as follows,

1 Qs from Γ′

2 Ps A (g, A I)

3 Qs 1 R

4 (P A Q)s 2-3 A I

Γ′ `∗NIx (P A Q)s; so Γ′ `∗NIx (P A Q)s and Γ′ `∗NIx
¬(P A Q)s; so Γ′ is inconsistent. In either case, Γ′ is
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inconsistent. This is impossible; reject the assumption:
if hws(/A/) = 1, then Γ′ `∗NIx /A/s.

IW : (a) /P A Q/s is (P A Q)s. Same reasoning as in I3,4.
(b) /P A Q/s is (P A Q)s. Then hws(P A Q) = 1, but
Γ′ 6`∗NIx (P A Q)s. From the latter, by s-maximality,
Γ′ `∗NIx ¬(P A Q)s. From the former, by HIx(A)W ,
there is some wt ∈W such that wsRwt and hwt(P ) = 1
and hwt(Q) = 0; so by construction and by assumption,
Γ′ `∗NIx s.t and Γ′ `∗NIx Pt but Γ′ 6`∗NIx Qt; from the last
of these, by s-maximality, Γ′ `∗NIx ¬Qt; so by reasoning
as follows,

1 s.t from Γ′

2 Pt from Γ′

3 ¬Qt from Γ′

4 (P A Q)s 1,2,3 A IW

Γ′ `∗NIx (P A Q)s; so Γ′ `∗NIx (P A Q)s and Γ′ `∗NIx
¬(P A Q)s; so Γ′ is inconsistent. This is impossible; re-
ject the assumption: if hws(/A/) = 1, then Γ′ `∗NIx /A/s.

So in both these cases, if hws(/A/) = 1 then Γ′ `∗NIx /A/s.

(ii) Suppose Γ′ `∗NIx /A/s but hws(/A/) = 0; then Γ′ `∗NIx /P A
Q/s but hws(/P A Q/) = 0.

I3,4: (a) /P A Q/s is (P A Q)s. Then Γ′ `∗NIx (P A Q)s but
hws(P A Q) = 0. From the latter, by HIx(A), there
is some wt ∈ W such that wsRwt and hwt(P ) = 1 but
hwt(Q) = 0; so by assumption, Γ′ `∗NIx s.t and Γ′ `∗NIx Pt
but Γ′ 6`∗NIx Qt; from the last of these, by s-maximality,
Γ′ `∗NIx ¬Qt. So by reasoning as follows,

1 Γ′ from Γ′

2 (P A Q)s A (c, ¬I)

3 s.t from Γ′

4 Pt from Γ′

5 Qt 2,3,4 AE

6 ¬Qt from Γ′

7 ¬(P A Q)s 2-6 ¬I

Γ′ `∗NIx ¬(P A Q)s; so by consistency, Γ′ 6`∗NIx (P A Q)s.
This is impossible.
(b) /P A Q/s is (P A Q)s. Then Γ′ `∗NIx (P A Q)s
but hws(P A Q) = 0. From the latter, by HIx(A),
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hws(P ) = 1 but hws(Q) = 0; so by assumption, Γ′ `∗NIx
Ps but Γ′ 6`∗NIx Qs; so by s-maximality, Γ′ `∗NIx ¬Qs. So
by reasoning as follows,

1 Γ′ from Γ′

2 (P A Q)s A (c, ¬I)

3 Ps from Γ′

4 Qs 2,3 AE

5 ¬Qs from Γ′

6 ¬(P A Q)s 2-5 ¬I

Γ′ `∗NIx ¬(P A Q)s; so by consistency, Γ′ 6`∗NIx (P A Q)s.
This is impossible; reject the assumption: if Γ′ `∗NIx
/A/s, then hws(/A/) = 1.

IW : (a) /P A Q/s is (P A Q)s. Same reasoning as in I3,4.
(b) /P A Q/s is (P A Q)s. Then Γ′ `∗NIx (P A Q)s
but hws(P A Q) = 0. From the former, since Γ′ is a
scapegoat set for (A)IW , there is some t such that Γ′ `∗NIx
s.t, Γ′ `∗NIx Pt and Γ′ `∗NIx ¬Qt. Since hws(P A Q) = 0,
by HIx(A)W , for any y ∈W such that wsRy, hy(P ) = 0
or hy(Q) = 1; so if wsRwt then either hwt(P ) = 0
or hwt(Q) = 1; so by construction and assumption, if
Γ′ `∗NIx s.t then either Γ′ 6`∗NIx Pt or Γ′ `∗NIx Qt; so,
since Γ′ `∗NIx s.t, either Γ′ 6`∗NIx Pt or Γ′ `∗NIx Qt; so,
since Γ′ `∗NIx Pt, Γ′ `∗NIx Qt. But Γ′ `∗NIx ¬Qt; so, by
consistency Γ′ 6`∗NIx Qt. This is impossible; reject the
assumption: if Γ′ `∗NIx /A/s, then hws(/A/) = 1.

So in both these cases, if Γ′ `∗NIx /A/s then hws(/A/) = 1. So
hws(/A/) = 1 iff Γ′ `∗NIx /A/s.

———
For any As, hws(/A/) = 1 iff Γ′ `∗NIx /A/s.

L7.9a If Γ0 is consistent, then 〈W,R, h〉 constructed as above is an Ix in-
terpretation.

For this, we need to show that the interpretation meets the ρ, τ and
h conditions.

(ρ) Suppose ws ∈ W . Then by construction, s is a subscript in
Γ′; so by (AMρ), Γ′ `∗NIx s.s; so by construction, 〈ws, ws〉 ∈ R
and ρ is satisfied.
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(τ)

(h) Suppose wsRwt, vws(p) = 1, and vwt(p) = 1. Then by con-
struction, Γ′ `∗NIx s.t, Γ′ `∗NIx ps, and Γ′ `∗NIx pt; so by (H),
Γ′ `∗NIx pt and Γ′ `∗NIx ps; so by construction, vwt(p) = 1 and
vws(p) = 1 and h is satisfied.

Map For any ws ∈W , set m(s) = ws; otherwise m(s) is arbitrary.

L7.10a If Γ0 is consistent, then hm(Γ0) = 1.

Reasoning parallel to L2.10 and L6.9.

Main result: Suppose Γ |=Ix A but Γ 6 ǸIx A. Then Γ0 |=∗Ix A0 but Γ0 6`∗NIx A0.
By (DN), if Γ0 `∗NIx ¬¬A0, then Γ0 `∗NIx A0; so Γ0 6 ǸIx ∗]¬¬A0; so by L7.2a,
Γ0 ∪ {¬A0} is consistent; so by L7.9a and L7.10a, there is an Ix interpre-
tation 〈W,R, h〉m constructed as above such that hm(Γ0 ∪ {¬A0}) = 1; so
hm(0)(¬A) = 1; so by Hυ(¬), hm(0)(A) = 0; so hm(Γ0) = 1 and hm(0)(A) =
0; so by VIx*, Γ0 6|=∗Ix A0. This is impossible; reject the assumption: if
Γ |=Ix A, then Γ ǸIx A.

8 Mainstream Relevant Logics: Bx (ch. 10,11)

The treatment here for Priest’s chapter 11 is minimal: there are only re-
sources for CK with applications in chapter 11, as well as chapter 10. I
follow Priest in developing the star-semantics on its own terms, and pick up
the four-valued semantics again in the next section.

8.1 Language / Semantic Notions

LBx The vocabulary consists of propositional parameters p0, p1 . . . with
the operators, ¬, ∧, ∨, →, (and >). Each propositional parameter is
a formula; if A and B are formulas, so are ¬A, (A ∧ B), (A ∨ B),
(A → B) and (A > B). A ⊃ B abbreviates ¬A ∨ B, and A ≡ B
abbreviates (A ⊃ B) ∧ (B ⊃ A).

IBrx Without ‘>’ in the language, an interpretation is 〈W,N,R, ∗,�, v〉
where W is a set of worlds; N is a subset of W ; R is a subset of
W 3 = W × W × W ; ∗ is a function from worlds to worlds such
that w∗∗ = w; and v is a function such that for any w ∈ W and p,
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vw(p) = 1 or vw(p) = 0. � is a reflexive and transitive relation on W
such that if a � b then aE b and b∗ E a∗, where,

aE b =


if va(p) = 1 then vb(p) = 1
if bRxy and a 6∈ N , then aRxy
if bRxy and a ∈ N then x � y

As a constraint on interpretations, we require also,

NC For any w ∈ N , wRxy iff x = y

Where x is empty or indicates some combination of the following
constraints,

(C8) If Rabc, then Rac∗b∗

(C9) If there is an x such that Rabx and Rxcd then there is a y
such that Racy and Rbyd

(C10) If there is an x such that Rabx and Rxcd then there is a y
such that Rbcy and Rayd

(C11) If Rabc then there is an x such that Rabx and Rxbc

(C12) If Rabc then there is an x such that a � x and Rbxc

(C13) If x ∈ N , x∗ � x.

(C14) For any x, if x ∈ N , x∗ � x, and if x 6∈ N , xRx∗x.

(C15) If Rabc then a � c.
(C16) If Rabc then a � c or b � c.

〈W,N,R, ∗,�, v〉 is a Bx interpretation when it meets the constraints
from x. System B has none of the extra constraints; other systems
add from the extra constraints as described in Priest. In particular,
BR is BC8−C12.

IBcx When ‘>’ is in the language, an interpretation is 〈W,N,R, {RA |A ∈
=}, ∗, v〉, where = is the set of all formulas and RA is a subset of W 2.
Condition NC remains in place, but none of C8 - C16. That is all for
BC (what Priest calls CB). Where fA(w) = {x ∈ W | wRAx}, and
[A] = {x ∈W | vx(A) = 1}, BC+ adds the constraints,

(1) For any w ∈ N , fA(w) ⊆ [A]

(2) For any w ∈ N , if w ∈ [A], then w ∈ fA(w)

TB For complex expressions,
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(¬) vw(¬A) = 1 if vw∗(A) = 0, and 0 otherwise.

(∧) vw(A ∧B) = 1 if vw(A) = 1 and vw(B) = 1, and 0 otherwise.

(∨) vw(A ∨B) = 1 if vw(A) = 1 or vw(B) = 1, and 0 otherwise.

(→) vw(A → B) = 1 iff there are no x, y ∈ W such that wRxy and
vx(A) = 1 but vy(B) = 0.

(>) vw(A > B) = 1 iff there is no x ∈ W such that wRAx and
vx(B) = 0.

For a set Γ of formulas, vw(Γ) = 1 iff vw(A) = 1 for each A ∈ Γ; then,

VBx Γ |=Bx A iff there is no Bx interpretation 〈W,N,R, ∗,v, v〉 / 〈W,N,R,
{RA |A ∈ =}, ∗, v〉 and w ∈ N such that vw(Γ) = 1 and vw(A) = 0.

8.2 Natural Derivations: NBx

Allow subscripts of the sort i and i#. Where s is a subscript i or i#, s is the
other. Say s is “introduced” as a subscript when either s or s is a subscript.
For subscripts s, t, u allow also expressions of the sort s ' t, s.t.u and As/t.
Let P(s) be any expression in which s appears, and P(t) the same expression
with one or more instances of s replaced by t.

R Ps

Ps

¬I Ps

Qt
¬Qt
¬Ps

¬E ¬Ps

Qt
¬Qt

Ps

∧I Ps
Qs

(P ∧Q)s

∧E (P ∧Q)s

Ps

∧E (P ∧Q)s

Qs

∨I Ps

(P ∨Q)s

∨I Ps

(Q ∨ P )s

⊃I Ps

Qs

(P ⊃ Q)s

⊃E (P ⊃ Q)s
Ps

Qs

∨E (P ∨Q)s
Ps

Rt

Qs

Rt

Rt
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≡I Ps

Qs

Qs

Ps

(P ≡ Q)s

≡E (P ≡ Q)s
Ps

Qs

≡E (P ≡ Q)s
Qs

Ps

→I s.t.u

Pt

Qu

(P → Q)s
where t and u are not
introduced in any undis-
charged premise or as-
sumption

→E s.t.u

(P → Q)s
Pt

Qu

6→I s.t.u

Pt
¬Qu

¬(P → Q)s

6→E ¬(P → Q)s
s.t.u

Pt
¬Qu

Rv

Rv
where t and u are not
introduced in any undis-
charged premise or as-
sumption or by v

0I s ' t

0.s.t

0E 0.s.t

s ' t

'I

s ' s

'E s ' t s ' t
P(s) P(s)

P(t) P(t)

These are the rules of NB, where ⊃I, ⊃E, ≡I, ≡E and, as we shall see, 6→I
and 6→E are derived. With s ' t, we can introduce s ' s by 'I, and then
get t ' s by 'E; so informally, we let 'E include also a derived rule that
reverses order around ‘'’ – using s ' t to replace some instance(s) of t (t)
with s (s). As usual, subscripts are 0 or introduced in an assumption that
requires new subscripts (and similarly for the following). To make things
easier to follow, cite lines for→E only in the order listed above: first access,
then the conditional, then the antecedent.

For relevant systems NBx, allow expressions of the sort, s � t and s 6' t.
The latter contradicts s ' t in ¬I and ¬E.7 Then include rules from the
following as appropriate.

7We might allow a generic subscript z such that any s ' t is (s ' t)z and s 6' t is
¬(s ' t)z# . Then the negation rules apply as stated.
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AM9 s.t.x

x.u.v

s.u.y

t.y.v

Pw

Pw

AM10 s.t.x

x.u.v

t.u.y

s.y.v

Pw

Pw

AM11 s.t.u

s.t.y

y.t.u

Pw

Pw

AM12 s.t.u

s � y
t.y.u

Pw

Pw

AM13

0# � 0

AM14 s ' 0

s � s

Pw

s 6' 0

s.s.s

Pw

Pw

AM15 s.t.u

s � u

AM16 s.t.u

s � u

Pw

t � u

Pw

Pw

AM8 s.t.u

s.u.t

�E s � t
Ps

Pt

�# s � t

t � s

�R s 6' 0 s ' 0

s � t s � t
t.u.v t.u.v

s.u.v u � v

For AM9, AM10, AM11 and AM12, y is not introduced in any undischarged
premise or assumption, or by w. Rules for � are always included with any
of AM12 - AM16.8

Conditional systems. For the systems NBCx revert to the rules of NB.
Then add >I and >E. As we show just below, 6>I and 6>E are derived.

>I Ps/t

Qt

(P > Q)s
where t is not intro-
duced in any undischarged
premise or assumption

>E (P > Q)s
Ps/t

Qt

6>I Ps/t
¬Qt

¬(P > Q)s

6>E ¬(P > Q)s
Ps/t
¬Qt

Ru

Ru
where t is not intro-
duced in any undischarged
premise or assumption, or
by u

8There are also rules, �ρ according to which ` s � s and �τ according to which s � t,
t � u ` s � u. But these do not normally play a role in derivations.
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As before, corresponding to constraints (1) and (2) for the C+ system, are
AMP1 and AMP2, now restricted to apply just at the normal world 0.

AMP1 P0/t

Pt

AMP2 P0

P0/0

Where Γ is a set of unsubscripted formulas, let Γ0 be those same formu-
las, each with subscript 0. Then,

NBx Γ ǸBx A iff there is an NBx derivation of A0 from the members of
Γ0.

Derived rules carry over much as one would expect. Thus, e.g.,

MT (P ⊃ Q)s
¬Qs

¬Ps

NB (P ≡ Q)s (P ≡ Q)s
¬Ps ¬Qs

¬Qs ¬Ps

DS (P ∨Q)s (P ∨Q)s
¬Ps ¬Qs

Qs Ps

Impl (P ⊃ Q)s / . (¬P ∨Q)s
(¬P ⊃ Q)s / . (P ∨Q)s

Examples. First, 6→I, 6→E, 6>I and 6>E are derived rules in NBx and
NBCx.

6→I

1 s.t.u P

2 Pt P

3 ¬Qu P

4 (P → Q)s A (c, ¬I)

5 Qu 1,4,2 →E

6 ¬Qu 3 R

7 ¬(P → Q)s 4-6 ¬I

6→E

1 ¬(P → Q)s P

2 ¬Rv A (c, ¬E)

3 s.t.u A (g, →I)

4 Pt

5 ¬Qu A (c, ¬E)

... with 1,3,4,5

6 Rv as for 6→E

7 ¬Rv 2 R

8 Qu 5-7 ¬E

9 (P → Q)s 3-8 →I

10 ¬(P → Q)s 1 R

11 Rv 2-10 ¬E
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6>I

1 Ps/t P

2 ¬Qt P

3 (P > Q)s A (c, ¬I)

4 Qt 1,3 >E

5 ¬Qt 2 R

6 ¬(P > Q)s 3-5 ¬I

6>E

1 ¬(P > Q)s P

2 ¬Ru A (c, ¬E)

3 Ps/t A (g, >I)

4 ¬Qt A (c, ¬E)

... with 1,3,4

5 Ru as for 6>E

6 ¬Ru 2 R

7 Qt 4-6 ¬E

8 (P > Q)s 3-7 >I

9 ¬(P > Q)s 1 R

10 Ru 2-9 ¬E

Note the way overlines work (much the way slashes worked before). For
6→E, note that the application of→I depends on the restriction that t and u
are not introduced by v; and similarly, for 6>E the application of >I depends
on the restriction that t is not introduced by u.

As further examples, here are a few key results that parallel ones from
Priest’s text.

A3 ǸBx (A ∧B)→ A

1 0.1.2 A (g, →I)

2 (A ∧B)1

3 A1 2 ∧E

4 1 ' 2 1 0E

5 A2 3,4 'E

6 [(A ∧B)→ A]0 1-5 →I
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A5 ǸBx [(A→ B) ∧ (A→ C)]→ [A→ (B ∧ C)]

1 0.1.2 A (g, →I)

2 [(A→ B) ∧ (A→ C)]1

3 2.3.4 A (g, →I)

4 A3

5 1 ' 2 1 0E

6 1.3.4 3,5 'E

7 (A→ B)1 2 ∧E

8 (A→ C)1 2 ∧E

9 B4 6,7,4 →E

10 C4 6,8,4 →E

11 (B ∧ C)4 9,10 ∧I

12 [A→ (B ∧ C)]2 3-11 →I

13 ([(A→ B) ∧ (A→ C)]→ [A→ (B ∧ C)])0 1-12 →I

R5 (A→ ¬B) ǸBx (B → ¬A)

1 (A→ ¬B)0 P

2 0.1.2 A (g, →I)

3 B1

4 A2# A (c, ¬I)

5 2# ' 2# 'I

6 0.2#.2# 5 0I

7 ¬B2# 6,1,4 →E

8 1 ' 2 2 0E

9 B2 3,8 'E

10 ¬A2 4-9 ¬I

11 (B → ¬A)0 2-10 →I
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A9 ǸB9
(A→ B)→ [(B → C)→ (A→ C)]

1 0.1.2 A (g, →I)

2 (A→ B)1

3 2.3.4 A (g, →I)

4 (B → C)3

5 4.5.6 A (g, →I)

6 A5

7 1 ' 2 1 0E

8 (A→ B)2 2,7 'E

9 2.5.7 A (g, 3,5 AM9)

10 3.7.6

11 B7 9,8,6 →E

12 C6 10,4,11 →E

13 C6 3,5,9-12 AM9

14 (A→ C)4 5-13 →I

15 [(B → C)→ (A→ C)]2 3-14 →I

16 ((A→ B)→ [(B → C)→ (A→ C)])0 1-15 →I

ǸBR
(¬A→ A)→ A

1 0.1.2 A (g, →I)

2 (¬A→ A)1

3 0.2#.1# 1 AM8

4 0.2#.3 A (g, 3 AM11)

5 3.2#.1#

6 3.1.2 5 AM8

7 3 � 4 A (g, 6 AM12)

8 1.4.2

9 ¬A2# A (c, ¬E)

10 2# ' 3 4 0E

11 ¬A3 9,10 'E

12 ¬A4 7,11 �E

13 A2 8,2,12 →E

14 ¬A2# 9R

15 A2 9-14 ¬E

16 A2 6,7-15 AM12

17 A2 3,4-16 AM11

18 [(¬A→ A)→ A]0 1-17 →I
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A14 ǸB14
(A→ ¬A)→ ¬A

1 0.1.2 A (g, →I)

2 (A→ ¬A)1

3 1 ' 2 1 0E

4 2 ' 0 A (g, AM14)

5 2# � 2

6 A2# A (c, ¬I)

7 1 ' 0 3,4 'E

8 (A→ ¬A)0 2,7 'E

9 A2 5,6 �E

10 A1 9,3 'E

11 ¬A2 1,8,10 →E

12 A2# 6R

13 ¬A2 6-12 ¬I

14 2 6' 0 A (g, AM14)

15 2.2#.2

16 A2# A (c, ¬I)

17 (A→ ¬A)2 2,3 'E

18 ¬A2 15,17,16 →E

19 A2# 16 R

20 ¬A2 16-19 ¬I

21 ¬A2 4-13,14-20 AM14

22 [(A→ ¬A)→ ¬A]0 1-21 →I

8.3 Soundness and Completeness

Preliminaries: Begin with generalized notions of validity. For a model
〈W,N,R, ∗,�, v〉 or 〈W,N,R, {RA |A ∈ =}, ∗, v〉, let m be a map from sub-
scripts into W such that m(0) ∈ N and m(s) = m(s)∗. Say 〈W,N,R, ∗,�
, v〉m and 〈W,N,R, {RA|A ∈ =}, ∗, v〉m are〈W,N,R, ∗,�, v〉 and 〈W,N,R, {RA|
A ∈ =}, ∗, v〉 with map m. Then, where Γ is a set of expressions of our lan-
guage for derivations, vm(Γ) = 1 iff for each As ∈ Γ, vm(s)(A) = 1, for each
s ' t ∈ Γ, m(s) = m(t), for each s.t.u ∈ Γ, 〈m(s),m(t),m(u)〉 ∈ R, for each
s � t ∈ Γ, 〈m(s),m(t)〉 ∈ �, and for each As/t ∈ Γ, 〈m(s),m(t)〉 ∈ RA.
Unless otherwise noted, reasoning is meant to be neutral between inter-
pretations of the different types. Now expand notions of validity to include
subscripted formulas, and alternate expressions as indicated in double brack-
ets.

VBx* Γ |=∗Bx As [[s ' t / s.t.u / s � t / As/t]] iff there is no Bx interpretation
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with map m such that vm(Γ) = 1 but vm(s)(A) = 0 [[m(s) 6= m(t) /
〈m(s),m(t),m(u)〉 6∈ R / 〈m(s),m(t)〉 6∈ � /〈m(s),m(t)〉 6∈ RA]].

NBx* Γ `∗NBx As [[s ' t / s.t.u / s � t / As/t]] iff there is an NBx derivation
of As [[s ' t / s.t.u / s � t / As/t]] from the members of Γ.

These notions reduce to the standard ones when all the members of Γ and A
have subscript 0 (and so are not of the sort s ' t, s.t.u, s � t, or As/t). For
the following, cases omitted are like ones worked, and so left to the reader.

Theorem 8.1 NBx is sound: If Γ ǸBx A then Γ |=Bx A.

L8.1 If Γ ⊆ Γ′ and Γ |=∗Bx Ps [[s ' t / s.t.u / s � t / As/t]], then Γ′ |=∗Bx Ps
[[s ' t / s.t.u / s � t / As/t]].
Suppose Γ ⊆ Γ′ and Γ |=∗Bx Ps [[s ' t / s.t.u / s � t / As/t]], but
Γ′ 6|=∗Bx Ps [[s ' t/s.t.u/s � t/As/t]]. From the latter, by VBx*, there
is some Bx interpretation with v and m such that vm(Γ′) = 1 but
vm(s)(P ) = 0 [[m(s) 6= m(t) / 〈m(s),m(t),m(u)〉 6∈ R / 〈m(s),m(t)〉 6∈
� /〈m(s),m(t)〉 6∈ RA]]. But since vm(Γ′) = 1 and Γ ⊆ Γ′, vm(Γ) = 1;
so vm(Γ) = 1 but vm(s)(P ) = 0 [[m(s) 6= m(t) / 〈m(s),m(t),m(u)〉 6∈
R / 〈m(s),m(t)〉 6∈ � /〈m(s),m(t)〉 6∈ RA]]; so by VBx*, Γ 6|=∗Bx Ps
[[s ' t / s.t.u/s � t /As/t]]. This is impossible; reject the assumption:
if Γ ⊆ Γ′ and Γ |=∗Bx Ps [[s ' t / s.t.u / s � t / As/t]], then Γ′ |=∗Bx Ps
[[s ' t / s.t.u / s � t / As/t]].

Main result: For each line in a derivation let Pi be the expression on line i
and Γi be the set of all premises and assumptions whose scope includes line
i. We set out to show “generalized” soundness: if Γ `∗NBx P then Γ |=∗Bx P. As
above, this reduces to the standard result when P and all the members of Γ
are formulas with subscript 0. Suppose Γ `∗NBx P. Then there is a derivation
of P from premises in Γ where P appears under the scope of the premises
alone. By induction on line number of this derivation, we show that for
each line i of this derivation, Γi |=∗Bx Pi. The case when Pi = P is the desired
result.

Basis: P1 is a premise or an assumption As [[s ' t / s.t.u / s � t / As/t]].
Then Γ1 = {As} [[{s ' t} / {s.t.u} / {s � t} / {As/t}]]; so for any
Bx interpretation with its v and m, vm(Γ1) = 1 iff vm(s)(A) = 1
[[m(s) = m(t) / 〈m(s),m(t),m(u)〉 ∈ R/ 〈m(s),m(t)〉 ∈ RA]]; so there
is no Bx interpretation with v and m such that vm(Γ1) = 1 but
vm(s)(A) = 0 [[m(s) 6= m(t) / 〈m(s),m(t),m(u)〉 6∈ R / 〈m(s),m(t)〉 6∈
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� /〈m(s),m(t)〉 6∈ RA]]. So by VBx*, Γ1 |=∗Bx As [[s ' t / s.t.u / s �
t / As/t]], where this is just to say, Γ1 |=∗Bx P1.

Assp: For any i, 1 ≤ i < k,Γi |=∗Bx Pi.

Show: Γk |=∗Bx Pk.
Pk is either a premise, an assumption, or arises from previous lines by
R, ∧I, ∧E, ∨I, ∨E, ¬I, ¬E,→I,→E, 'I, 'E, 0I, 0E or, depending on
the system, AM8, AM9, AM10, AM11, AM12, AM13, AM14, AM15,
AM16, �E, �#, �R, >I, >E, AMP1, or AMP2. If Pk is a premise or
an assumption, then as in the basis, Γk |=∗Bx Pk. So suppose Pk arises
by one of the rules.

(R)

(∧I)

(∧E)

(∨I)

(∨E)

(¬I) If Pk arises by ¬I, then the picture is like this,

As

i Bt
j ¬Bt
k ¬As

where i, j < k and Pk is ¬As. By assumption, Γi |=∗Bx Bt and Γj |=∗Bx
¬Bt; but by the nature of access, Γi ⊆ Γk∪{As} and Γj ⊆ Γk∪{As};
so by L8.1, Γk ∪ {As} |=∗Bx Bt and Γk ∪ {As} |=∗Bx ¬Bt. Suppose
Γk 6|=∗Bx ¬As; then by VBx*, there is a Bx interpretation with v and m
such that vm(Γk) = 1 but vm(s)(¬A) = 0; so by TB(¬), vm(s)∗(A) =
1; so by the construction of m, vm(s)(A) = 1; so vm(Γk) = 1 and
vm(s)(A) = 1; so vm(Γk ∪ {As}) = 1; so by VBx*, vm(t)(B) = 1
and vm(t)(¬B) = 1; from the latter, by TB(¬), vm(t)∗(B) = 0; so by
the construction of m, vm(t)(B) = 0. This is impossible; reject the
assumption: Γk |=∗Bx ¬As, which is to say, Γk |=∗Bx Pk.

(¬E)
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(→I) If Pk arises by →I, then the picture is like this,

s.t.u

At

i Bu

k (A→ B)s

where i < k, t, u are not introduced in any member of Γk (in any
undischarged premise or assumption), and Pk is (A → B)s. By
assumption, Γi |=∗Bx Bu; but by the nature of access, Γi ⊆ Γk ∪
{s.t.u, At}; so by L8.1, Γk ∪ {s.t.u, At} |=∗Bx Bu. Suppose Γk 6|=∗Bx
(A → B)s; then by VBx*, there is a Bx interpretation with W,
R, v and m such that vm(Γk) = 1 but vm(s)(A → B) = 0; so by
TB(→), there are x, y ∈ W such that Rm(s)xy and vx(A) = 1 but
vy(B) = 0. Now consider a map m′ like m except that m′(t) = x,
m′(t) = x∗, m′(u) = y, and m′(u) = y∗; since t and u (along with
t and u) do not appear in Γk, it remains that vm′(Γk) = 1; since
vx(A) = 1, vm′(t)(A) = 1; and since Rm(s)xy, with m(s) = m′(s),
we have 〈m′(s),m′(t),m′(u)〉 ∈ R; so vm′(Γk ∪ {s.t.u, At}) = 1; so
by VBx*, vm′(u)(B) = 1. But m′(u) = y; so vy(B) = 1. This is
impossible; reject the assumption: Γk |=∗Bx (A→ B)s, which is to say,
Γk |=∗Bx Pk.

(→E) If Pk arises by →E, then the picture is like this,

h s.t.u

i (A→ B)s
j At

k Bu

where h, i, j < k and Pk is Bu. By assumption, Γh |=∗Bx s.t.u, Γi |=∗Bx
(A → B)s and Γj |=∗Bx At; but by the nature of access, Γh ⊆ Γk,
Γi ⊆ Γk and Γj ⊆ Γk; so by L8.1, Γk |=∗Bx s.t.u, Γk |=∗Bx (A → B)s
and Γk |=∗Bx At. Suppose Γk 6|=∗Bx Bu; then by VBx*, there is some
Bx interpretation with W, R, v and m such that vm(Γk) = 1 but
vm(u)(B) = 0; since vm(Γk) = 1, by VBx*, 〈m(s),m(t),m(u)〉 ∈ R,
vm(s)(A → B) = 1 and vm(t)(A) = 1; since vm(s)(A → B) = 1, by
TB(→), there are no x, y ∈ W such that Rm(s)xy and vx(A) = 1
but vy(B) = 0; so since 〈m(s),m(t),m(u)〉 ∈ R, it is not the case
that vm(t)(A) = 1 and vm(u)(B) = 0. This is impossible; reject the
assumption: Γk |=∗Bx Bu, which is to say, Γk |=∗Bx Pk.
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('I) If Pk arises by 'I, then the picture is like this,

k s ' s

where Pk is s ' s. Suppose Γk 6|=∗Bx s ' s; then by VBx*, there is a Bx
interpretation with v and m such that vm(Γk) = 1 but m(s) 6= m(s).
This is impossible; reject the assumption: Γk |=∗Bx s ' s, which is to
say, Γk |=∗Bx Pk.

('E) If Ak arises by 'E, then the picture is like this,

i s ' t
j A(s)

k A(t)

or i s ' t
j A(s)

k A(t)

where i, j < k and Pk is A(t) or A(t). By assumption, Γi |=∗Bx s ' t
and Γj |=∗Bx A(s) / A(s); but by the nature of access, Γi ⊆ Γk and
Γj ⊆ Γk; so by L8.1, Γk |=∗Bx s ' t and Γk |=∗Bx A(s) / A(s). In
the right-hand case, A(s) is of the sort, Au, u ' v, u.v.w or Au/v
where one of u, v, or w is s. Suppose A(s) is As and Γk 6|=∗Bx At.
Then by VBx*, there is some Bx interpretation with v and m such
that vm(Γk) = 1 but vm(t)(A) = 0. Since vm(Γk) = 1, by VBx*,
m(s) = m(t) and vm(s)(A) = 1; since m(s) = m(t), m(s)∗ = m(t)∗;
but by the construction of m, m(s)∗ = m(s) and m(t)∗ = m(t);
so m(s) = m(t); so vm(t)(A) = 1. This is impossible; reject the
assumption: Γk |=∗Bx At, which is to say, Γk |=∗Bx Pk. And similarly in
the other cases.

(0I) If Pk arises by 0I, then the picture is like this,

i s ' t

k 0.s.t

where i < k and Pk is 0.s.t. By assumption, Γi |=∗Bx s ' t; but by
the nature of access, Γi ⊆ Γk; so by L8.1, Γk |=∗Bx s ' t. Suppose
Γk 6|=∗Bx 0.s.t; then by VBx*, there is a Bx interpretation with W, N ,
R, v and m such that vm(Γk) = 1 but 〈m(0),m(s),m(t)〉 6∈ R; since
vm(Γk) = 1, by VBx*, m(s) = m(t); and by the construction of m,
m(0) ∈ N ; so by NC, 〈m(0),m(s),m(t)〉 ∈ R. This is impossible;
reject the assumption: Γk |=∗Bx 0.s.t, which is to say, Γk |=∗Bx Pk.
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(0E) If Pk arises by 0E, then the picture is like this,

i 0.s.t

k s ' t

where i < k and Pk is s ' t. By assumption, Γi |=∗Bx 0.s.t; but by
the nature of access, Γi ⊆ Γk; so by L8.1, Γk |=∗Bx 0.s.t. Suppose
Γk 6|=∗Bx s ' t; then by VBx*, there is a Bx interpretation with W, N ,
R, v and m such that vm(Γk) = 1 but m(s) 6= m(t); since vm(Γk) = 1,
by VBx*, 〈m(0),m(s),m(t)〉 ∈ R; and by the construction of m,
m(0) ∈ N ; so by NC, m(s) = m(t). This is impossible; reject the
assumption: Γk |=∗Bx s ' t, which is to say, Γk |=∗Bx Pk.

(AM8) If Pk arises by AM8, then the picture is like this,

i s.t.u

k s.u.t

where i < k and Pk is s.u.t. Where this rule is included in NBx, Bx
includes condition C8. By assumption, Γi |=∗Bx s.t.u; but by the nature
of access, Γi ⊆ Γk; so by L8.1, Γk |=∗Bx s.t.u. Suppose Γk 6|=∗Bx s.u.t;
then by VBx*, there is a Bx interpretation with R, v and m such that
vm(Γk) = 1 but 〈m(s),m(u),m(t)〉 6∈ R; since vm(Γk) = 1, by VBx*,
〈m(s),m(t),m(u)〉 ∈ R; so by C8, 〈m(s),m(u)∗,m(t)∗〉 ∈ R; so by
the construction of m, 〈m(s),m(u),m(t)〉 ∈ R. This is impossible;
reject the assumption: Γk |=∗Bx s.u.t, which is to say, Γk |=∗Bx Pk.

(AM9) If Pk arises by AM9, then the picture is like this,

h s.t.x

i x.u.v

s.u.y

t.y.v

j Aw

k Aw

where h, i, j < k, y is not introduced in any member of Γk (in any
undischarged premise or assumption) or by w, and Pk is Aw. Where
this rule is included in NBx, Bx includes condition C9. By assump-
tion, Γh |=∗Bx s.t.x, Γi |=∗Bx x.u.v and Γj |=∗Bx Aw; but by the nature of
access, Γh ⊆ Γk, Γi ⊆ Γk and Γj ⊆ Γk ∪ {s.u.y, t.y.v}; so by L8.1,

167



Γk |=∗Bx s.t.x, Γk |=∗Bx x.u.v and Γk ∪ {s.u.y, t.y.v} |=∗Bx Aw. Suppose
Γk 6|=∗Bx Aw; then by VBx*, there is a Bx interpretation with W, R,
v and m such that vm(Γk) = 1 but vm(w)(A) = 0; since vm(Γk) = 1,
by VBx*, 〈m(s),m(t),m(x)〉 ∈ R and 〈m(x),m(u),m(v)〉 ∈ R; so
by C9, there is some z ∈ W such that 〈m(s),m(u), z〉 ∈ R and
〈m(t), z,m(v)〉 ∈ R. Now consider a map m′ like m except that
m′(y) = z and m′(y) = z∗; since y (along with y) does not appear
in Γk, it remains that vm′(Γk) = 1; and since m(s) = m′(s), and
similarly for t, u and v, 〈m′(s),m′(u),m′(y)〉 ∈ R and 〈m′(t),m′(y),
m′(v)〉 ∈ R; so vm′(Γk∪{s.u.y, t.y.v}) = 1; so by VBx*, vm′(w)(A) =
1. But since y is not introduced by w, m′(w) = m(w); so vm(w)(A) =
1. This is impossible; reject the assumption: Γk |=∗Bx Aw, which is to
say, Γk |=∗Bx Pk.

(AM10)

(AM11) If Pk arises by AM11, then the picture is like this,

i s.t.u

s.t.y

y.t.u

j Aw

k Aw

where i, j < k, y is not introduced in any member of Γk (in any
undischarged premise or assumption) or by w, and Pk is Aw. Where
this rule is included in NBx, Bx includes condition C11. By as-
sumption, Γi |=∗Bx s.t.u and Γj |=∗Bx Aw; but by the nature of access,
Γi ⊆ Γk and Γj ⊆ Γk ∪ {s.t.y, y.t.u}; so by L8.1, Γk |=∗Bx s.t.u and
Γk ∪ {s.t.y, y.t.u} |=∗Bx Aw. Suppose Γk 6|=∗Bx Aw; then by VBx*, there
is a Bx interpretation with W, R, v and m such that vm(Γk) = 1 but
vm(w)(A) = 0; since vm(Γk) = 1, by VBx*, 〈m(s),m(t),m(u)〉 ∈ R;
so by C11, there is some z ∈ W such that 〈m(s),m(t), z〉 ∈ R and
〈z,m(t),m(u)〉 ∈ R. Now consider a map m′ like m except that
m′(y) = z and m′(y) = z∗; since y (along with y) does not appear in
Γk, it remains that vm′(Γk) = 1; and since m(s) = m′(s), and simi-
larly for t and u, 〈m′(s),m′(t),m′(y)〉 ∈ R and 〈m′(y),m′(t),m′(u)〉
∈ R; so vm′(Γk ∪ {s.t.y, y.t.u}) = 1; so by VBx*, vm′(w)(A) = 1.
But since y is not introduced by w, m′(w) = m(w); so vm(w)(A) = 1.
This is impossible; reject the assumption: Γk |=∗Bx Aw, which is to say,
Γk |=∗Bx Pk.
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(AM12) If Pk arises by AM12, then the picture is like this,

i s.t.u

s � y
t.y.u

j Aw

k Aw

where i, j < k, y is not introduced in any member of Γk (in any
undischarged premise or assumption) or by w, and Pk is Aw. Where
this rule is included in NBx, Bx includes condition C12. By as-
sumption, Γi |=∗Bx s.t.u and Γj |=∗Bx Aw; but by the nature of ac-
cess, Γi ⊆ Γk and Γj ⊆ Γk ∪ {s � y, t.y.u}; so by L8.1, Γk |=∗Bx
s.t.u and Γk ∪ {s � y, t.y.u} |=∗Bx Aw. Suppose Γk 6|=∗Bx Aw; then
by VBx*, there is a Bx interpretation with W, R, �, v and m
such that vm(Γk) = 1 but vm(w)(A) = 0; since vm(Γk) = 1, by
VBx*, 〈m(s),m(t),m(u)〉 ∈ R; so by C12, there is some z such
that 〈m(s), z〉 ∈ � and 〈m(t), z,m(u)〉 ∈ R. Now consider a map
m′ like m except that m′(y) = z and m′(y) = z∗; since y (along
with y) does not appear in Γk, it remains that vm′(Γk) = 1; and
since m(s) = m′(s), and similarly for t and u, 〈m′(s),m′(y)〉 ∈ �
and 〈m′(t),m′(y),m′(u)〉 ∈ R; so vm′(Γk ∪ {s � y, t.y.u}) = 1; so
by VBx*, vm′(w)(A) = 1. But since y is not introduced by w,
m′(w) = m(w); so vm(w)(A) = 1. This is impossible; reject the
assumption: Γk |=∗Bx Aw, which is to say, Γk |=∗Bx Pk.

(AM13) If Pk arises by AM13, then the picture is like this,

k 0# � 0

where Pk is 0# � 0. Where this rule is included in NBx, Bx includes
condition C13. Suppose Γk 6|=∗Bx 0# � 0; then by VBx*, there is a Bx
interpretation with W, N , R, �, v and m such that vm(Γk) = 1 but
〈m(0)∗,m(0)〉 6∈ �. But by the construction of m, m(0) ∈ N ; so by
C13, 〈m(0)∗,m(0)〉 ∈ �. This is impossible; reject the assumption:
Γk |=∗Bx 0# � 0, which is to say, Γk |=∗Bx Pk.

(AM14) If Pk arises by AM14, then the picture is like this,
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s ' 0

s � s

i Aw

s 6' 0

s.s.s

j Aw

k Aw

where i, j < k and Pk is Aw. Where this rule is included in NBx,
Bx includes condition C14. By assumption, Γi |=∗Bx Aw and Γj |=∗Bx
Aw; but by the nature of access, Γi ⊆ Γk ∪ {s ' 0, s � s} and
Γj ⊆ Γk ∪ {s 6' 0, s.s.s}; so by L8.1, Γk ∪ {s ' 0, s � s} |=∗Bx Aw and
Γk∪{s 6' 0, s.s.s} |=∗Bx Aw. Suppose Γk 6|=∗Bx Aw; then by VBx*, there
is a Bx interpretation with W,N , R, �, v andm such that vm(Γk) = 1
but vm(w)(A) = 0. Consider world m(s) ∈ W ; either m(s) ∈ N or
m(s) 6∈ N . Suppose m(s) ∈ N ; then by the construction of m,
m(s) = m(0), and by C14, 〈m(s)∗,m(s)〉 ∈ �; so by the construction
of m, 〈m(s),m(s)〉 ∈ �; so vm(Γk ∪ {s ' 0, s � s}) = 1; so by
VBx*, vm(w)(A) = 1. Suppose m(s) 6∈ N ; then by the construction
of m, m(s) 6= m(0), and by C14, 〈m(s),m(s)∗,m(s)〉 ∈ R; so by the
construction of m, 〈m(s),m(s),m(s)〉 ∈ R; so Γk∪{s 6' 0, s.s.s} = 1;
so by VBx*, vm(w)(A) = 1; so in either case, vm(w)(A) = 1. This
is impossible; reject the assumption: Γk |=∗Bx Aw, which is to say,
Γk |=∗Bx Pk.

(AM15)

(AM16)

(�E) If Pk arises by �E, then the picture is like this,

i s � t
j As

k At

where i, j < k and Pk is At. By assumption, Γi |=∗Bx s � t and
Γj |=∗Bx As; but by the nature of access, Γi ⊆ Γk and Γj ⊆ Γk; so
by L8.1, Γk |=∗Bx s � t and Γk |=∗Bx As. Suppose Γk 6|=∗Bx At; then
by VBx*, there is a Bx interpretation with W, N , R, �, v and m
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such that vm(Γk) = 1 but vm(t)(A) = 0; since vm(Γk) = 1, by VBx*,
〈m(s),m(t)〉 ∈ � and vm(s)(A) = 1.

Now, by induction on the number of operators in A, we show that
for any x, y ∈ W , if x � y, then (i) if vx(A) = 1 then vy(A) = 1 and
(ii) if vy∗(A) = 1 then vx∗(A) = 1.

Basis: A is a parameter p. Suppose x � y. Then xE y and y∗ E x∗.
(i) Suppose vx(A) = 1; then vx(p) = 1; and since x E y,
vy(p) = 1, which is to say vy(A) = 1. (ii) Suppose vy∗(A) = 1;
then vy∗(p) = 1; and since y∗E x∗, vx∗(p) = 1, which is to say
vx∗(A) = 1.

Assp: For any i, 0 ≤ i < k, if A has i operators, then for any x, y ∈
W , if x � y, then (i) if vx(A) = 1 then vy(A) = 1 and (ii) if
vy∗(A) = 1 then vx∗(A) = 1.

Show: If A has k operators, then for any x, y ∈ W , if x � y, then
(i) if vx(A) = 1 then vy(A) = 1 and (ii) if vy∗(A) = 1 then
vx∗(A) = 1.

If A has k operators, then A is of the form, ¬P , P ∧Q, P ∨Q,
or P → Q, where P and Q have < k operators. Suppose
x � y. Then xE y and y∗ E x∗.

(¬) A is ¬P . (i) Suppose vx(A) = 1; then vx(¬P ) = 1; so by
HBx(¬), vx∗(P ) = 0; so by assumption, vy∗(P ) = 0; so by
HBx(¬), vy(¬P ) = 1, which is to say, vy(A) = 1. (ii) Suppose
vy∗(A) = 1; then vy∗(¬P ) = 1; so by HBx(¬), vy(P ) = 0; so
by assumption, vx(P ) = 0; so by HBx(¬), vx∗(¬P ) = 1, which
is to say, vx∗(A) = 1.

(∧) A is P ∧ Q. (i) Suppose vx(A) = 1; then vx(P ∧ Q) = 1;
so by HBx(∧), vx(P ) = 1 and vx(Q) = 1; so by assumption,
vy(P ) = 1 and vy(Q) = 1; so by HBx(∧), vy(P ∧ Q) = 1,
which is to say vy(A) = 1. (ii) Suppose vy∗(A) = 1; then
vy∗(P ∧ Q) = 1; so by HBx(∧), vy∗(P ) = 1 and vy∗(Q) = 1;
so by assumption, vx∗(P ) = 1 and vx∗(Q) = 1; so by HBx(∧),
vx∗(P ∧Q) = 1, which is to say vx∗(A) = 1.

(∨)

(→) A is P → Q. (i) Suppose vx(A) = 1 but vy(A) = 0; then
vx(P → Q) = 1 and vy(P → Q) = 0; then by HBx(→),
there are some w, z ∈W such that yRwz and vw(P ) = 1 but
vz(Q) = 0. We consider this in two cases: (1) x 6∈N ; then since
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x E y and yRwz, xRwz; so since vw(P ) = 1, vx(P → Q) =
1, and xRwz, by HBx(→), vz(Q) = 1. This is impossible.
Case (2): x ∈ N ; then since x E y and yRwz, w � z; so
since x ∈ N and w = w, by NC, xRww; so since vw(P ) = 1,
vx(P → Q) = 1, and xRww, by HBx(→), vw(Q) = 1; but since
w � z, by assumption, vz(Q) = 1. This is impossible; reject
the assumption: vy(P → Q) = 1, which is to say vy(A) = 1.

And similarly for (ii).
———
For any A and any x, y ∈ W , if x � y, then (i) if vx(A) = 1 then
vy(A) = 1 and (ii) if vy∗(A) = 1 then vx∗(A) = 1.

So, returning to the case for (�E), vm(t)(A) = 1. This is impossible;
reject the assumption: Γk |=∗Bx At, which is to say, Γk |=∗Bx Pk.

(�#) If Pk arises by �#, then the picture is like this,

i s � t

k t � s

where i < k and Pk is t � s. By assumption, Γi |=∗Bx s � t; but by
the nature of access, Γi ⊆ Γk; so by L8.1, Γk |=∗Bx s � t. Suppose
Γk 6|=∗Bx t � s; then by VBx*, there is an Bx interpretation with
W, �, v and m such that vm(Γk) = 1 but 〈m(t),m(s)〉 6∈ �; so by
the construction of m, 〈m(t)∗,m(s)∗〉 6∈ �; since vm(Γk) = 1, by
VBx*, 〈m(s),m(t)〉 ∈ �; so 〈m(s),m(t)〉 ∈ E and 〈m(t)∗,m(s)∗〉 ∈
E; but since m(s)∗∗ = m(s) and m(t)∗∗ = m(t), 〈m(s)∗∗,m(t)∗∗〉 ∈
E; so 〈m(t)∗,m(s)∗〉 ∈ �. This is impossible; reject the assumption:
Γk |=∗Bx t � s, which is to say, Γk |=∗Bx Pk.

(�R)

(>I)

(>E) If Pk arises by >E, then the picture is like this,

i (A > B)s
j As/t

k Bt

where i, j < k and Pk is Bt. By assumption, Γi |=∗Bx (A > B)s and
Γj |=∗Bx As/t; but by the nature of access, Γi ⊆ Γk and Γj ⊆ Γk; so by
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L8.1, Γk |=∗Bx (A > B)s and Γk |=∗Bx As/t. Suppose Γk 6|=∗Bx Bt; then
by VBx*, there is some Bx interpretation with W, {RA | A ∈ =}, v
and m such that vm(Γk) = 1 but vm(t)(B) = 0; since vm(Γk) = 1, by
VBx*, vm(s)(A > B) = 1 and 〈m(s),m(t)〉 ∈ RA; from the former,
by TB(>), any w ∈ W such that m(s)RAw has vw(B) = 1; so
vm(t)(B) = 1. This is impossible; reject the assumption: Γk |=∗Bx Bt,
which is to say, Γk |=∗Bx Pk.

(AMP1) If Pk arises by AMP1, then the picture is like this,

i A0/t

k At

where i < k and Pk is At. Where this rule is in NBx, Bx includes
condition (1). By assumption, Γi |=∗Bx A0/t; but by the nature of
access, Γi ⊆ Γk; so by L8.1, Γk |=∗Bx A0/t. Suppose Γk 6|=∗Bx At; then
by VBx*, there is some Bx interpretation with N , {RA | A ∈ =}, v
and m such that vm(Γk) = 1 but vm(t)(A) = 0; since vm(Γk) = 1, by
VBx*, m(t) ∈ fA(m(0)); but by the construction of m, m(0) ∈ N ;
so by condition (1), m(t) ∈ [A]; so vm(t)(A) = 1. This is impossible;
reject the assumption: Γk |=∗Bx At, which is to say, Γk |=∗Bx Pk.

(AMP2) If Pk arises by AMP2, then the picture is like this,

i A0

k A0/0

where i < k and Pk is A0/0. Where this rule is in NBx, Bx includes
condition (2). By assumption, Γi |=∗Bx A0; but by the nature of access,
Γi ⊆ Γk; so by L8.1, Γk |=∗Bx A0. Suppose Γk 6|=∗Bx A0/0; then by
VBx*, there is some Bx interpretation with N , {RA |A ∈ =}, v and
m such that vm(Γk) = 1 but m(0) 6∈ fA(m(0)); since vm(Γk) = 1, by
VCx*, vm(0)(A) = 1; so m(0) ∈ [A]; and by the construction of m,
m(0) ∈ N ; so by condition (2), m(0) ∈ fA(m(0)). This is impossible;
reject the assumption: Γk |=∗Bx A0/0, which is to say, Γk |=∗Bx Pk.

———
For any i, Γi |=∗Bx Pi.

Theorem 8.2 NBx is complete: if Γ |=Bx A then Γ ǸBx A.
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Suppose Γ |=Bx A; then Γ0 |=∗Bx A0; we show that Γ0 `∗NBx A0. As usual, this
reduces to the standard notion. For the following, fix on some particular
constraint(s) x. Then definitions of consistency etc. are relative to it.

Con Γ is consistent iff there is no As such that Γ `∗NBx As and Γ `∗NBx ¬As.

L8.2 If s is 0 or introduced in Γ, and Γ 6`∗NBx ¬Ps, then Γ∪{Ps} is consistent.

Suppose s is 0 or introduced in Γ and Γ 6`∗NBx ¬Ps but Γ ∪ {Ps} is
inconsistent. Then there is some At such that Γ ∪ {Ps} `∗NBx At and
Γ ∪ {Ps} `∗NBx ¬At. But then we can argue,

1 Γ

2 Ps A (c, ¬I)

3 At from Γ ∪ {Ps}
4 ¬At from Γ ∪ {Ps}
5 ¬Ps 2-4 ¬I

where the assumption is allowed insofar as s is either 0 or introduced
in Γ; so Γ `∗NBx ¬Ps. But this is impossible; reject the assumption: if
s is 0 or introduced in Γ and Γ 6`∗NBx ¬Ps, then Γ∪ {Ps} is consistent.

L8.3 There is an enumeration of all the subscripted formulas, P1 P2 . . .
In addition, there is an enumeration of these formulas with access
relations s.t.u and with pairs of the sort s.t.u / u.v.w.

Proof by construction.

Max Γ is s-maximal iff for any As either Γ `∗NBx As or Γ `∗NBx ¬As.

Sgt Γ is a scapegoat set for → iff for every formula of the form ¬(A→
B)s, if Γ `∗NBx ¬(A → B)s then there are y and z such that Γ `∗NBx
s.y.z, Γ `∗NBx Ay and Γ `∗NBx ¬Bz.
Γ is a scapegoat set for > iff for every formula of the form ¬(A >
B)s, if Γ `∗NBx ¬(A > B)s then there is some y such that Γ `∗NBx As/y
and Γ `∗NBx ¬By.
Γ is a scapegoat set for C9/C10 iff for any access pair s.t.u/u.v.w, if
Γ `∗NBx s.t.u and Γ `∗NBx u.v.w, then there is a y such that Γ `∗NBx s.v.y
and Γ `∗NBx t.y.w, and a z such that Γ `∗NBx t.v.z and Γ `∗NBx s.z.w.

Γ is a scapegoat set for C12 iff for any access relation s.t.u, if
Γ `∗NBx s.t.u, then there is a y such that Γ `∗NBx s.t.y and Γ `∗NBx y.t.u.
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C(Γ′) For Γ with unsubscripted formulas and the corresponding Γ0, we con-
struct Γ′ as follows. Set Ω0 = Γ0. By L8.3, there is an enumeration,
P1,P2 . . . of all the subscripted formulas, together with all the access
relations s.t.u if C12 is in Bx, and pairs s.t.u / u.v.w if C9 and C10
are in Bx ; let E0 be this enumeration. Then for the first expression
P in Ei−1 such that all its subscripts are 0 or introduced in Ωi−1, let
Ei be like Ei−1 but without P, and set,

Ωi = Ωi−1 if Ωi−1 ∪ {P} is inconsistent
Ωi∗ = Ωi−1 ∪ {P} if Ωi−1 ∪ {P} is consistent

and
Ωi = Ωi∗ if P is not of the form ¬(P →

Q)s, ¬(P > Q)s, s.t.u/u.v.w,
or s.t.u

Ωi = Ωi∗ ∪ {s.y.z, Py¬Qz} if P is of the form ¬(P → Q)s
Ωi = Ωi∗ ∪ {Ps/y,¬Qy} if P is of the form ¬(P > Q)s
Ωi = Ωi∗ ∪ {s.v.y, t.y.w, t.v.z, s.z.w} if P is of the form s.t.u/u.v.w
Ωi = Ωi∗ ∪ {s.t.y, y.t.u} if P is of the form s.t.u

-where y and z are the first subscripts not introduced in Ωi∗

then
Γ′ =

⋃
i≥0 Ωi

Note that there are always sure to be subscripts y and z not in Ωi∗

insofar as there are infinitely many subscripts, and at any stage only
finitely many expressions are added – the only subscripts in the initial
Ω0 being 0. Suppose s is introduced in Γ′; then there is some Ωi in
which it is first introduced; and any expression Pj in the original
enumeration that introduces subscript s is sure to be “considered”
for inclusion at a subsequent stage.

L8.4 For any s introduced in Γ′, Γ′ is s-maximal.

Suppose s is introduced in Γ′ but Γ′ is not s-maximal. Then there
is some As such that Γ′ 6`∗NBx As and Γ′ 6`∗NBx ¬As. For any i, each
member of Ωi−1 is in Γ′; so if Ωi−1 `∗NBx ¬As then Γ′ `∗NBx ¬As; but
Γ′ 6`∗NBx ¬As; so Ωi−1 6`∗NBx ¬As; so since s is introduced in Γ′, by L8.2,
Γ′ ∪ {As} is consistent; so there is a stage in the construction that
sets Ωi∗ = Ωi−1 ∪ {As}; so by construction, As ∈ Γ′; so Γ′ `∗NBx As.
This is impossible; reject the assumption: Γ′ is s-maximal.

L8.5 If Γ0 is consistent, then each Ωi is consistent.

Suppose Γ0 is consistent.

Basis: Ω0 = Γ0 and Γ0 is consistent; so Ω0 is consistent.
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Assp: For any i, 0 ≤ i < k, Ωi is consistent.

Show: Ωk is consistent.

Ωk is either (i) Ωk−1, (ii) Ωk∗ = Ωk−1 ∪ {P}, (iii) Ωk∗ ∪
{s.y.z, Py,¬Qz}, (iv) Ωk∗∪{Ps/y,¬Qy}, (v) Ωk∗∪{s.v.y, t.y.w,
t.v.z, s.z.w}, or (vi) Ωk∗ ∪ {s.t.y, y.t.u}.

(i) Suppose Ωk is Ωk−1. By assumption, Ωk−1 is consistent; so Ωk

is consistent.

(ii) Suppose Ωk is Ωk∗ = Ωk−1∪{P}. Then by construction, Ωk−1∪
{P} is consistent; so Ωk is consistent.

(iii) Suppose Ωk is Ωk∗ ∪ {s.y.z, Py,¬Qz}. In this case, as above,
Ωk∗ is consistent and by construction, ¬(P → Q)s ∈ Ωk∗ . Sup-
pose Ωk is inconsistent. Then there are Ax and ¬Ax such that
Ωk∗ ∪ {s.y.z, Py,¬Qz} `∗NBx Ax and Ωk∗ ∪ {s.y.z, Py,¬Qz} `∗NBx
¬Ax. So reason as follows,

1 Ωk∗

2 s.y.z A (g, →I)

3 Py

4 ¬Qz A (c, ¬E)

5 Ax from Ωk∗ ∪ {s.y.z, Py,¬Qz}
6 ¬Ax from Ωk∗ ∪ {s.y.z, Py,¬Qz}
7 Qz 4-6 ¬E

8 (P → Q)s 2-7 →I

where, by construction, y and z are not introduced Ωk∗ . So
Ωk∗ `∗NBx (P → Q)s; but ¬(P → Q)s ∈ Ωk∗ ; so Ωk∗ `∗NBx
¬(P → Q)s; so Ωk∗ is inconsistent. This is impossible; reject
the assumption: Ωk is consistent.

(iv) Suppose Ωk is Ωk∗ ∪ {Ps/y,¬Qy}. In this case, as above, Ωk∗
is consistent and by construction, ¬(P > Q)s ∈ Ωk∗ . Suppose
Ωk is inconsistent. Then there are Ax and ¬Ax such that
Ωk∗ ∪ {Ps/y,¬Qy} `∗NBx Ax and Ωk∗ ∪ {Ps/y,¬Qy} `∗NBx ¬Ax.
So reason as follows,

1 Ωk∗

2 Ps/y A (g, >I)

3 ¬Qy A (c, ¬E)

4 Ax from Ωk∗ ∪ {Ps/y,¬Qy}
5 ¬Ax from Ωk∗ ∪ {Ps/y,¬Qy}
6 Qy 3-5 ¬E

8 (P > Q)s 2-6 >I
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where, by construction, y is not introduced Ωk∗ . So Ωk∗ `∗NBx
(P > Q)s; but ¬(P > Q)s ∈ Ωk∗ ; so Ωk∗ `∗NBx ¬(P > Q)s; so
Ωk∗ is inconsistent. This is impossible; reject the assumption:
Ωk is consistent.

(v) Suppose Ωk is Ωk∗ ∪ {s.v.y, t.y.w, t.v.z, s.z.w}. In this case,
as above, Ωk∗ is consistent and by construction, s.t.u, u.v.w ∈
Ωk∗ . Suppose Ωk is inconsistent. Then there are Ax and ¬Ax
such that Ωk∗ ∪ {s.v.y, t.y.w, t.v.z, s.z.w} `∗NBx Ax and Ωk∗ ∪
{s.v.y, t.y.w, t.v.z, s.z.w} `∗NBx ¬Ax. So reason as follows,

1 Ωk∗

2 s.t.u member of Ωk∗

3 u.v.w member of Ωk∗

4 s.v.y A (g, AM9)

5 t.y.w

6 t.v.z A (g, AM10)

7 s.z.w

8 (A→ A)0 A (c, ¬I)

9 Ax from Ωk∗ ∪ {s.v.y, t.y.w, t.v.z, s.z.w}
10 ¬Ax from Ωk∗ ∪ {s.v.y, t.y.w, t.v.z, s.z.w}
11 ¬(A→ A)0# 8-10 ¬I

12 ¬(A→ A)0# 2,3,6-11 AM10

13 ¬(A→ A)0# 2,3,4-12 AM9

where, by construction, y and z are not introduced Ωk∗ . So
Ωk∗ `∗NBx ¬(A → A)0# ; but `∗NBx (A → A)0; so Ωk∗ is in-
consistent. This is impossible; reject the assumption: Ωk is
consistent.

(vi) Similarly.
———
For any i, Ωi is consistent.

L8.6 If Γ0 is consistent, then Γ′ is consistent.

Suppose Γ0 is consistent, but Γ′ is not; from the latter, there is some
Ps such that Γ′ `∗NBx Ps and Γ′ `∗NBx ¬Ps. Consider derivations D1 and
D2 of these results, and the premises Pi . . .Pj of these derivations. By
construction, there is an Ωk with each of these premises as a member;
so D1 and D2 are derivations from Ωk; so Ωk is not consistent. But
since Γ0 is consistent, by L8.5, Ωk is consistent. This is impossible;
reject the assumption: if Γ0 is consistent then Γ′ is consistent.
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L8.7 If Γ0 is consistent, then Γ′ is a scapegoat set for →, > and, in the
appropriate systems, for C9/C10 and C12.

For →. Suppose Γ0 is consistent and Γ′ `∗NBx ¬(P → Q)s. By L8.6,
Γ′ is consistent; and by the constraints on subscripts, s is introduced
in Γ′. Since Γ′ `∗NBx ¬(P → Q)s, Γ′ has just the same consequences
as Γ′ ∪ {¬(P → Q)s}; so Γ′ ∪ {¬(P → Q)s} is consistent, and for
any Ωj , Ωj ∪ {¬(P → Q)s} is consistent. So there is a stage in the
construction process where Ωi∗ = Ωi−1 ∪ {¬(P → Q)s} and Ωi =
Ωi∗ ∪ {s.y.z, Py,¬Qz}; so by construction, s.y.z, Py,¬Qz ∈ Γ′; so
Γ′ `∗NBx s.y.z, Γ′ `∗NBx Py and Γ′ `∗NBx ¬Qz. So Γ′ is a scapegoat set for
→.

For >. Suppose Γ0 is consistent and Γ′ `∗NBx ¬(P > Q)s. By L8.6, Γ′

is consistent; and by the constraints on subscripts, s is introduced in
Γ′. Since Γ′ `∗NBx ¬(P > Q)s, Γ′ has just the same consequences as
Γ′ ∪{¬(P > Q)s}; so Γ′ ∪{¬(P > Q)s} is consistent, and for any Ωj ,
Ωj∪{¬(P > Q)s} is consistent. So there is a stage in the construction
process where Ωi∗ = Ωi−1∪{¬(P > Q)s} and Ωi = Ωi∗∪{Ps/y,¬Qy};
so by construction, Ps/y,¬Qy ∈ Γ′; so Γ′ `∗NBx Ps/y and Γ′ `∗NBx ¬Qy.
So Γ′ is a scapegoat set for >.

For C9/C10. Suppose Γ0 is consistent, Γ′ `∗NBx s.t.u and Γ′ `∗NBx u.v.w.
By L8.6, Γ′ is consistent; and by the constraints on subscripts, s, t,
u, v and w are introduced in Γ′. Since Γ′ `∗NBx s.t.u, and Γ′ `∗NBx
u.v.w, Γ′ has just the same consequences as Γ′ ∪ {s.t.u, u.v.w}; so
Γ′ ∪ {s.t.u, u.v.w} is consistent, and for any Ωj , Ωj ∪ {s.t.u, u.v.w}
is consistent. So there is a stage in the construction process where
Ωi∗ = Ωi−1 ∪ {s.t.u, u.v.w} and Ωi = Ωi∗ ∪ {s.v.y, t.y.w, t.v.z, s.z.w};
so by construction, s.v.y, t.y.w, t.v.z, s.z.w ∈ Γ′; so there is a y such
that Γ′ `∗NBx s.v.y and Γ′ `∗NBx t.y.w, and there is a z such that Γ′ `∗NBx
t.v.z and Γ′ `∗NBx s.z.w. So Γ′ is a scapegoat set for C9/C10. And
similarly for C12.

C(I) We construct an interpretation IBx = 〈W,N,R, ∗, v〉 or 〈W,N,R,
{RA | A ∈ =}, ∗, v〉 based on Γ′ as follows. Let W have a member
ws corresponding to each subscript s introduced in Γ′, except that
if Γ′ `∗NBx s ' t then ws = wt and ws = wt (we might do this, in
the usual way, by beginning with equivalence classes on subscripts).
Then set N = {w0}; 〈ws, wt, wu〉 ∈ R iff Γ′ `∗NBx s.t.u; 〈ws, wt〉 ∈ RA
iff Γ′ `∗NBx As/t; ∗ = {〈ws, ws〉 | s is introduced in Γ′}; and vws(p) = 1
iff Γ′ `∗NBx ps.
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Note that the specification is consistent: Suppose ws = wt; then by
construction, Γ′ `∗NBx s ' t; so by 'E, Γ′ `∗NBx ps iff Γ′ `∗NBx pt; so
vws(p) = vwt(p); and similarly in other cases. Also, the ∗-function
has the right form, as s, s are introduced in pairs, and 〈ws, ws#〉 ∈ ∗
iff 〈ws# , ws〉 ∈ ∗.

L8.8 If Γ0 is consistent then for IBx constructed as above, and for any s
introduced in Γ′, vws(A) = 1 iff Γ′ `∗NBx As.
Suppose Γ0 is consistent and s is introduced in Γ′. By L8.4, Γ′ is
s-maximal. By L8.6 and L8.7, Γ′ is consistent and a scapegoat set
for → and >. Now by induction on the number of operators in As,

Basis: If As has no operators, then it is a parameter ps and by
construction, vws(p) = 1 iff Γ′ `∗NBx ps. So vws(A) = 1 iff
Γ′ `∗NBx As.

Assp: For any i, 0 ≤ i < k, if As has i operators, then vws(A) = 1 iff
Γ′ `∗NBx As.

Show: If As has k operators, then vws(A) = 1 iff Γ′ `∗NBx As.
If As has k operators, then it is of the form ¬Ps, (P ∧ Q)s,
(P ∨ Q)s, (P → Q)s, or (P > Q)s where P and Q have < k
operators.

(¬) As is ¬Ps. (i) Suppose vws(A) = 1; then vws(¬P ) = 1; so
by TB(¬), vw∗s (P ) = 0; so by construction, vws(P ) = 0; so
by assumption, Γ′ 6`∗NBx Ps; so by s-maximality, Γ′ `∗NBx ¬Ps,
where this is to say, Γ′ `∗NBx As. (ii) Suppose Γ′ `∗NBx As; then
Γ′ `∗NBx ¬Ps; so by consistency, Γ′ 6`∗NBx Ps; so by assumption,
vws(P ) = 0; so by construction, vw∗s (P ) = 0; so by TB(¬),
vws(¬P ) = 1, where this is to say, vws(A) = 1. So vws(A) = 1
iff Γ′ `∗NBx As.

(∧)

(∨)

(→) As is (P → Q)s. (i) Suppose vws(A) = 1 but Γ′ 6`∗NBx As; then
vws(P → Q) = 1 but Γ′ 6`∗NBx (P → Q)s. From the latter, by
s-maximality, Γ′ `∗NBx ¬(P → Q)s; so, since Γ′ is a scapegoat
set for →, there are some y and z such that Γ′ `∗NBx s.y.z,
Γ′ `∗NBx Py and Γ′ `∗NBx ¬Qz; from the latter, by consistency,
Γ′ 6`∗NBx Qz; so by assumption, vwy(P ) = 1 and vwz(Q) = 0;
but since Γ′ `∗NBx s.y.z, by construction, 〈ws, wy, wz〉 ∈ R; so
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by TB(→), vws(P → Q) = 0. This is impossible; reject the
assumption: if vws(A) = 1 then Γ′ `∗NBx As.
(ii) Suppose Γ′ `∗NBx As but vws(A) = 0; then Γ′ `∗NBx (P → Q)s
but vws(P → Q) = 0. From the latter, by TB(→), there are
some wt, wu ∈ W such that 〈ws, wt, wu〉 ∈ R and vwt(P ) = 1
but vwu(Q) = 0; so by assumption, Γ′ `∗NBx Pt and Γ′ 6`∗NBx Qu;
so by s-maximality, Γ′ `∗NBx ¬Qu. Since 〈ws, wt, wu〉 ∈ R, by
construction, Γ′ `∗NBx s.t.u; so by reasoning as follows,

1 Γ′

2 (P → Q)s A (c, ¬I)

3 s.t.u from Γ′

4 Pt from Γ′

5 Qu 3,2,4 →E

6 ¬Qu from Γ′

7 ¬(P → Q)s 2-6 ¬I

Γ′ `∗NBx ¬(P → Q)s; so by consistency, Γ′ 6`∗NBx (P → Q)s.
This is impossible; reject the assumption: if Γ′ ǸBx As then
vws(A) = 1. So vws(A) = 1 iff Γ′ `∗NBx As.

(>) As is (P > Q)s. (i) Suppose vws(A) = 1 but Γ′ 6`∗NBx As; then
vws(P > Q) = 1 but Γ′ 6`∗NBx (P > Q)s. From the latter, by s-
maximality, Γ′ `∗NBx ¬(P > Q)s; so, since Γ′ is a scapegoat set
for >, there is some y such that Γ′ `∗NBx Ps/y, and Γ′ `∗NBx ¬Qy;
from the first of these, by construction, 〈ws, wy〉 ∈ RP ; and
from the second, by consistency, Γ′ 6`∗NBx Qy; so by assumption,
vwy(Q) = 0; so by TB(>), vws(P > Q) = 0. This is impossi-
ble; reject the assumption: if vws(A) = 1 then Γ′ `∗NBx As.
(ii) Suppose Γ′ `∗NBx As but vws(A) = 0; then Γ′ `∗NBx (P > Q)s
but vws(P > Q) = 0. From the latter, by TB(>), there is a wt
such that 〈ws, wt〉 ∈ RP , and vwt(Q) = 0; so by assumption,
Γ′ 6`∗NBx Qt; so by s-maximality, Γ′ `∗NBx ¬Qt. Since 〈ws, wt〉 ∈
RP , by construction, Γ′ `∗NBx Ps/t; so by reasoning as follows,

1 Γ′

2 (P > Q)s A (c, ¬I)

3 Ps/t from Γ′

4 Qt 2,3 >E

5 ¬Qt from Γ′

6 ¬(P > Q)s 2-5 ¬I

Γ′ `∗NBx ¬(P > Q)s; so by consistency, Γ′ 6`∗NBx (P > Q)s.
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This is impossible; reject the assumption: if Γ′ ǸBx As then
vws(A) = 1. So vws(A) = 1 iff Γ′ `∗NBx As.

———
For any As, vws(A) = 1 iff Γ′ `∗NBx As.

L8.9 If Γ0 is consistent, then IBx constructed as above is a Bx interpreta-
tion.

In each case, we need to show that relevant constraints are met.
Suppose Γ0 is consistent. By L8.7 Γ′ is a scapegoat set for C9/C10
and C12 in those systems.

(NC) Suppose 〈w0, ws, wt〉 ∈ R; then by construction, Γ′ `∗NBx 0.s.t;
so by 0E, Γ′ `∗NBx s ' t; so by construction, ws = wt. Suppose
ws = wt; then by construction, Γ′ `∗NBx s ' t; so by 0I, Γ′ `∗NBx
0.s.t; so by construction, 〈w0, ws, wt〉 ∈ R. So 〈w0, ws, wt〉 ∈ R
iff ws = wt; and, since N = {w0}, NC is satisfied.

(C8) If C8 is in Bx, then AM8 is in NBx. Suppose 〈ws, wt, wu〉 ∈
R; then by construction, Γ′ `∗NBx s.t.u; so by AM8, Γ′ `∗NBx
s.u.t; so by construction, 〈ws, wu, wt〉 ∈ R; so by construction,
〈ws, w∗u, w∗t 〉 ∈ R. So C8 is satisfied.

(C9/10) Suppose there is a wu such that 〈ws, wt, wu〉 ∈ R and 〈wu,
wv, ww〉 ∈ R; then by construction, Γ′ `∗NBx s.t.u and Γ′ `∗NBx
u.v.w; so, since Γ′ is a C9/C10 scapegoat set, there is a y
such that Γ′ `∗NBx s.v.y and Γ′ `∗NBx t.y.w, and there is a z
such that Γ′ `∗NBx t.v.z and Γ′ `∗NBx s.z.w; so by construc-
tion, 〈ws, wv, wy〉 ∈ R, 〈wt, wy, ww〉 ∈ R, 〈wt, wv, wz〉 ∈ R
and 〈ws, wz, ww〉 ∈ R. So C9 and C10 are satisfied.

(C12) Similarly.

(C13) If C13 is in Bx, then AM13 is in NBx. Suppose 〈ws, wt, wu〉 ∈
R and 〈wu, wv, ww〉 ∈ R; then by construction, Γ′ `∗NBx s.t.u
and Γ′ `∗NBx u.v.w; so by AM13, Γ′ `∗NBx s.v.w; so by construc-
tion, 〈ws, wv, ww〉 ∈ R. So C13 is satisfied.

(�) If (�) is in Bx, then AM� is in NBx. (i) Suppose 〈ws, wt, wu〉 ∈
R and vws(p) = 1; then by construction, Γ′ `∗NBx s.t.u and
Γ′ `∗NBx ps; so by AM�, Γ′ `∗NBx pu; so by construction, vwu(p) =
1. (ii) Suppose 〈ws, wt, wu〉 ∈ R and vw∗u(p) = 1; then by
construction, vwu(p) = 1 so by construction again, Γ′ `∗NBx s.t.u
and Γ′ `∗NBx pu; so by AM�, Γ′ `∗NBx ps; so by construction,
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vws(p) = 1; and by construction again, vw∗s (p) = 1. So C13 is
satisfied.

(1) If condition (1) is in Bx, then AMP1 is in NBx. Suppose wt ∈
fA(w0); then 〈w0, wt〉 ∈ RA; so by construction, Γ′ `∗NBx A0/t;
so by AMP1, Γ′ `∗NBx At; so by L8.8, vwt(A) = 1; so wt ∈ [A].
So fA(w0) ⊆ [A] and (1) is satisfied.

(2) If condition (2) is in Bx, then AMP2 is in NBx. Suppose w0 ∈
[A]; then vw0(A) = 1; so by L8.8, Γ′ `∗NBx A0; so by AMP2,
Γ′ `∗NBx A0/0; so by construction, 〈w0, w0〉 ∈ RA; so w0 ∈
fA(w0) and (2) is satisfied.

Map For any ws ∈W , set m(s) = ws; otherwise m(s) is arbitrary.

L8.10 If Γ0 is consistent, then vm(Γ0) = 1.

Reasoning parallel to that for L2.10 of NKα.

Main result: Suppose Γ |=Bx A but Γ 6 ǸBx A. Then Γ0 |=∗Bx A0 but Γ0 6`∗NBx A0.
By (DN), if Γ0 `∗NBx ¬¬A0, then Γ0 `∗NBx A0; so Γ0 6`∗NBx ¬¬A0; so by L8.2,
Γ0∪{¬A0} is consistent; so by L8.9 and L8.10, there is a Bx interpretation
with v and m constructed as above such that vm(Γ0 ∪ {¬A0}) = 1; so
vm(0)(¬A) = 1; so by construction, vm∗0(¬A) = 1; so by TB(¬), vm(0)(A) =
0; so vm(Γ0) = 1 and vm(0)(A) = 0; so by VBx*, Γ0 6|=∗Bx A0. This is
impossible; reject the assumption: if Γ |=Bx A, then Γ ǸBx A.
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9 Four-Valued Relevant Logics: R4x (ch. 10,11)

Though Priest does not do so — and it has been suggested that it cannot
reasonably be done [4], relevant systems are capable of a four-valued treat-
ment. Thus, to make contact with what has gone before, and contact with
some of my own suggestions for the significance of relevant semantics [5], a
four-valued approach is developed. The discussion is restricted to (standard)
logics in the range DW - R — though it might be extended beyond.

9.1 Language / Semantic Notions

LR4 The vocabulary consists of propositional parameters p0, p1 . . . with
the operators ¬, ∧, ∨, and →. Each propositional parameter is a
formula; if A and B are formulas, so are ¬A, (A ∧ B), (A ∨ B),
and (A → B). A ⊃ B abbreviates ¬A ∨ B. In the extended case,
the language includes �; then if A is a formula, so is �A; and ♦A
abbreviates ¬�¬A. If A is a formula so formed, so is A.

Let /A/ and \A\ represent either A or A where what is represented
is constant in a given context, but /A/ and \A\ are opposite. And
similarly for other expressions with overlines as below.

IR4 Without � in the language, an interpretation is 〈W,N,N,R,R,�,
h〉 where W is a set of worlds; N,N ⊆W are normal worlds for truth
and non-falsity respectively; R,R ⊆W 3 are access relations for truth
and non-falsity respectively; and h is a valuation which assigns to
each /p/ either 1 or 0 at each w ∈ W . � encompasses the inclusion
relations ≤, ≤∗ and ≤], constrained so that,

(�) Each of the following obtain,

a ≤ b⇒


if ha(p) = 1 then hb(p) = 1 and if hb(p) = 1 then ha(p) = 1
if bRxy then aRxy if a 6∈ N , otherwise if bRxy then x ≤ y
if aRxy then bRxy if b 6∈ N , otherwise if aRxy then x ≤ y

a ≤∗ b⇒


if ha(p) = 1 then hb(p) = 1 and if hb(p) = 1 then ha(p) = 1
if bRxy then aRxy if a 6∈ N , otherwise if bRxy then x ≤ y
if aRxy then bRxy if b 6∈ N , otherwise if aRxy then x ≤ y

a ≤] b⇒


if ha(p) = 1 then hb(p) = 1 and if hb(p) = 1 then ha(p) = 1
if bRxy then aRxy if a 6∈ N , otherwise if bRxy then x ≤ y
if aRxy then bRxy if b 6∈ N , otherwise if aRxy then x ≤ y

As additional constraints on interpretations, we may require any of,
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NC For any w ∈ /N/, w/R/xy iff x = y

C9
10 If a/R/bx and xRcd then there is a y such that bRcy and a/R/yd,

and a z such that bRzd and a/R/cz. And if a/R/xb and xRcd
then there is a y such that bRcy and a/R/yd, and a z such that
bRzd and a/R/cz.

C11 If a/R/bc then there is a y such that a/R/by and yRbc and a z
such that a/R/zc and zRbc.

C12 If aRbc then for some y ≥ a, bRyc, and for some z ≥∗ a, cRbz.
And if aRbc then for some y ≥] a, bRyc, and for some z ≤ a,
cRbz

CL (i) w ∈ N iff w ∈ N
(ii) for any w ∈ N , hw(p) = hw(p).

Then the base standard relevant system is DW and includes just NC.
Other regular relevant systems add from C9 - C12 in the usual way
[8]; so TW has C9

10, RW adds C12, and R all three. The 4A systems
from [5] drop NC (and, for that matter N , N and M) but may include
C9 - C12; the 4B systems from [5] include NC, and might include any
of the other constraints, including CL.

Where the language includes �, 4B interpretations may be extended
to be of the sort, 〈W,M,N,N,R,R,�, h〉 where M ⊆ W is a modal
access relation. Interpretations are subject to,

MC If w ∈ /N/ and wMx, then x ∈ /N/

CM Where � is any of the three inclusion relations, require: If a � b
then (i) if bMc there is some y � c such that aMy; and (ii) if
aMc then there is some y � c such that bMy.

and optionally standard modal constraints of the sort,

κ If a/R/bx and xMc then there is a y such that bMy and a/R/yc,
and if a/R/xb and xMc, there is a y such that bMy and a/R/cy.

ρ Reflexivity: for all x, xMx.

σ Symmetry: for all x, y if xMy then yMx.

τ Transitivity: for all x, y, z if xMy and yMz then xMz.
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The last three give results we expect as T: �A → A; B: A → �♦A
and 4: �A → ��A. Without constraint, A → B |=NR4m �A → �B;
(A → B) → (�A → �B) comes from (κ); the K principle �(A →
B)→ (�A→ �B) then comes together with reflexivity. It is possible
to obtain the K principle independently, but the required constraint
with conditions like, (κ) if a/R/bx and xMc, then there are y, z such
that aMy, bMz and y/R/zc, is relatively difficult to motivate. For
discussion see [5] note 14.

In the absence of C12 it is simplest to omit inclusion relations (or
set them to the empty set); and similarly in the absence of modal
operators to omit modal access (or to set it to the empty set).

HR4 For complex expressions,

(¬) hw(/¬P /) = 1 iff hw(\P \) = 0

(∧) hw(/P ∧Q/) = 1 iff hw(/P /) = 1 and hw(/Q/) = 1

(∨) hw(/P ∨Q/) = 1 iff hw(/P /) = 1 or hw(/Q/) = 1

(→) hw(/P → Q/) = 1 iff there are no x, y ∈ W such that w/R/xy
and hx(P ) = 1 but hy(Q) = 0, or hy(P ) = 1 but hx(Q) = 0

(�) hw(/�P /) = 1 iff there is no x ∈ W such that wMx and
hx(/P /) = 0

For a set Γ of formulas, hw(Γ) = 1 iff hw(/P /) = 1 for each /P / ∈ Γ; then,

VR4 Γ |=R4x P iff there is no R4x interpretation 〈W,M,N,N,R,R,�, h〉
and w ∈ N such that hw(Γ) = 1 but hw(P ) = 0.

9.2 Natural Derivations: NR4x

Allow subscripts and expressions of the sort s.t, /r.s.t/, s ' t, and s � t (for
each of the three inclusions). Allow also /n/[s] and ¬/n/[s] (with implicit
subscript s); to say that a world is or is not in /N/; where Ps is /n/[s] or
¬/n/[s], let /P /s and \P \s be the same expression, so that /n/[s] and ¬/n/[s]
contradict for ¬I.

R /P /s

/P /s

¬I /P /s

//Q//t
\\¬Q\\t
\¬P \s

¬E /¬P /s

//Q//t
\\¬Q\\t
\P \s
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∧I /P /s
/Q/s

/P ∧Q/s

∧E /P ∧Q/s

/P /s

∧E /P ∧Q/s

/Q/s

∨I /P /s

/P ∨Q/s

∨I /P /s

/Q ∨ P /s

⊃I /P /s

\Q\s
\P ⊃ Q\s

⊃E \P ⊃ Q\s
/P /s

\Q\s

∨E /P ∨Q/s
/P /s

//R//t

/Q/s

//R//t
//R//t

→E /s.t.u/ /s.t.u/

/P → Q/s /P → Q/s
Pt Pu

Qu Qt

→I /s.t.u/ /s.t.u/

Pt Pu

Qu Qt
/P → Q/s /P → Q/s

where t and u do not appear in any
undischarged premise or assumption

CL /n/[s] /n/[s]
//P //s

\\P \\s \n\[s]

NI

n[0]

NE /n/[a] /n/[a]

s ' t /a.s.t/

/a.s.t/ s ' t

'I

s ' s

'E s ' t
P(s)

P(t)

These are the rules for the base systems. DW takes all the rules but CL.
Roy’s 4A drops the NI, NE, 'I and 'E rules. Roy’s 4B is like DW except
that it may include CL. From these it is possible to add from the following
in the natural way.

�I s.t

/P /t
/�P /s

where t does not ap-
pear in any undis-
charged premise or
assumption

�E /�P /s
s.t

/P /t

♦I /P /t
s.t

/♦P /s

♦E /♦P /s
s.t
/P /t

//Q//u
//Q//u

where t does not ap-
pear in any undis-
charged premise or
assumption and is
not u

MC /n/[s]

s.t

/n/[t]
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AMκ /a.b.x/

x.c
/a.y.c/

b.y

//P //w
//P //w

/a.x.b/

x.c
/a.c.y/

b.y

//P //w
//P //w

where y does not appear in an undischarged

premise or assumption and is not w

AMρ

s.s

AMσ s.t

t.s

AMτ s.t

t.u

s.u

AM9
10

/a.b.x/

x.c.d

b.c.y
/a.y.d/

//P //w
//P //w

/a.b.x/

x.c.d

b.y.d
/a.c.y/

//P //w
//P //w

/a.x.b/

x.c.d

b.c.y
/a.y.d/

//P //w
//P //w

/a.x.b/

x.c.d

b.y.d
/a.c.y/

//P //w
//P //w

AM11 /s.t.u/

/s.t.y/

y.t.u

//P //w
//P //w

/s.t.u/

/s.y.u/

y.t.u

//P //w
//P //w

≤E a ≤ b
Pa

Pb

≤∗E a ≤∗ b
Pa

P b

≤]E a ≤] b
P a

Pb

AM12 a.b.c

y ≥ a
b.y.c

//P //w
//P //w

a.b.c

y ≥∗ a
c.b.y

//P //w
//P //w

a.b.c

y ≥] a
b.y.c

//P //w
//P //w

a.b.c

y ≤ a
c.b.y

//P //w
//P //w

where y does not appear in any undischarged premise or assumption and is not w

♦I and ♦E are derived. Though they will not play a natural role in most
derivations, for systems with the inclusion relations (and so for systems like
R with AM12) we also allow also:

≤RE: a ≤ b, b.x.y, n[a] ` x ≤ y; a ≤ b, b.x.y, ∼n[a] ` a.x.y
a ≤ b, a.x.y, n[b] ` x ≤ y; a ≤ b, a.x.y, ∼n[b] ` b.x.y

≤∗RE: a ≤∗ b, b.x.y, n[a] ` x ≤ y; a ≤∗ b, b.x.y, ∼n[a] ` a.x.y
a ≤∗ b, a.x.y, n[b] ` x ≤ y; a ≤∗ b, a.x.y, ∼n[b] ` b.x.y
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≤]RE: a ≤] b, b.x.y, n[a] ` x ≤ y; a ≤] b, b.x.y, ∼n[a] ` a.x.y
a ≤] b, a.x.y, n[b] ` x ≤ y; a ≤] b, a.x.y, ∼n[b] ` b.x.y

�ME a � b
b.c

y � c
a.y

/P /w
/P /w

�ME a � b
a.c

c � y
b.y

/P /w
/P /w

where y does not appear in any undischarged premise or assumption and is not w

Every subscript is 0 or is introduced according to the rules in an assumption.
Where Γ is a set of unsubscripted formulas, let Γ0 be those same formulas,
each with subscript 0. Then,

VNR4 Γ ǸR4x A iff there is an NR4x derivation of A0 from the members
of Γ0.

Examples. Here are some cases, with the first ones paired to illustrate
the match between derivations that do, and ones that do not, include the
NI, NE, 'I and 'E rules.

(A→ B) ∧ (A→ C) ǸR4Ax A→ (B ∧ C)

1 (A→ B) ∧ (A→ C)0 P

2 0.1.2 A (g, →I)

3 A1

4 (A→ B)0 1 ∧E

5 (A→ C)0 1 ∧E

6 B2 2,4,3 →E

7 C2 2,5,3 →E

8 (B ∧ C)2 6,7 ∧I

9 A→ (B ∧ C)0 2-8 →I

188



(A5) ǸR4Bx [(A→ B) ∧ (A→ C)]→ [A→ (B ∧ C)]

1 0.1.2 A (g, →I)

2 (A→ B) ∧ (A→ C)1

3 n[0] NI

4 1 ' 2 1,3 NE

5 2.3.4 A (g, →I)

6 A3

7 (A→ B) ∧ (A→ C)2 2,4 'E

8 (A→ B)2 7 ∧E

9 B4 5,8,6 →E

10 (A→ C)2 7 ∧E

11 C4 5,10,6 →E

12 (B ∧ C)4 9,11 ∧I

13 [A→ (B ∧ C)]2 5-12 →I

14 [(A→ B) ∧ (A→ C)]→ [A→ (B ∧ C)]0 1-13 →I

A→ ¬B ǸR4Ax B → ¬A

1 (A→ ¬B)0 P

2 0.1.2 A (g, →I)

3 B1

4 A2 A (c, ¬I)

5 ¬B1 2,1,4 →E

6 B1 3 R

7 ¬A2 4-6 ¬I

8 (B → ¬A)0 2-7 →I
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(A8) ǸR4Bx (A→ ¬B)→ (B → ¬A)

1 0.1.2 A (g, →I)

2 (A→ ¬B)1

3 n[0] NI

4 1 ' 2 3,1 NE

5 2.3.4 A (g, →I)

6 B3

7 A4 A (c, ¬I)

8 (A→ ¬B)2 2,4 'E

9 ¬B3 5,8,7 →E

10 B3 6 R

11 ¬A4 7-10 ¬I

12 (B → ¬A)2 5-11 →I

13 (A→ ¬B)→ (B → ¬A)0 1-12 →I

ǸR4r (¬A→ A)→ A

1 0.1.2 A (g, →I)

2 (¬A→ A)1

3 n[0] NI

4 0.3.2 A (g, 1 AM11)

5 3.1.2

6 3 ' 2 3,4 NE

7 4 ≥] 3 A (g, 5 AM12)

8 1.4.2

9 ¬A2 A (c, ¬E)

10 ¬A3 9,6 'E

11 ¬A4 7,10 ≤]E
12 A2 8,2,11 →E

13 ¬A2 9 R

14 A2 9-13 ¬E

15 A2 5,7-14 AM12

16 A2 1,4-15 AM11

17 [(¬A→ A)→ A]0 1-16 →I
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A→ B ǸR4m �A→ �B

1 (A→ B)0 P

2 0.1.2 A (g, →I)

3 �A1

4 n[0] NI

5 1 ' 2 2,4 NE

6 2.3 A (g, �I)

7 �A2 3,5 'E

8 A3 6,7 �E

9 3 ' 3 'I

10 0.3.3 4,9 NE

11 B3 10,1,8 →E

12 �B2 6-11 �I

13 (�A→ �B)0 2-12 →I

9.3 Soundness and Completeness: R4x

Preliminaries: Begin with generalized notions of validity. For a model
〈W,M,N,N,R,R,�, h〉, let m be a map from subscripts into W such that
m(0) is some member ofN . Then say 〈W,M,N,N,R,R,�, h〉m is 〈W,M,N,
N,R,R,�, h〉 with map m. Let hm(s)[/n/(s)] = 1 iff m(s) ∈ /N/ and
hm(s)[¬/n/(s)] = 1 iff hm(s)[/n/(s)] = 0. Then, where Γ is a set of ex-
pressions of our language for derivations, hm(Γ) = 1 iff for each /As/ ∈ Γ,
hm(s)(/A/) = 1, for each s.t ∈ Γ, 〈m(s),m(t)〉 ∈ M , for each /r.s.t/ ∈ Γ,
〈m(r),m(s),m(t)〉 ∈ /R/, for each s ' t in Γ, m(s) = m(t) and for each
s � t in Γ, 〈m(s),m(t)〉 ∈ � (for each of ≤, ≤∗ and ≤] in �). Now ex-
pand notions of validity for subscripts, overlines, and alternate expressions
as indicated in double brackets as follows,

VR4x* Γ |=∗R4x
/A/s [[s.t, /r.s.t/, s ' t, s � t]] iff there is no R4x interpreta-

tion 〈W,M,N,N,R,R,�, h〉m such that hm(Γ) = 1 but hm(s)(/A/) =
0 [[〈m(s), m(t)〉 6∈M, 〈m(r),m(s),m(t)〉 6∈ /R/, m(s) 6= m(t), 〈m(s),
m(t)〉 6∈ �]].

NR4x* Γ `∗NR4x
/A/s [[s.t, /r.s.t/, s ' t, s � t]] iff there is an NR4x deriva-

tion of /A/s [[s.t, /r.s.t/, s ' t, s � t]] from the members of Γ.

These notions reduce to the standard ones when all the members of Γ and A
are without overlines and have subscript 0 (and so do not include expressions
of the sort s.t, /r.s.t/, or s � t). As usual, for the following, cases omitted
are like ones worked, and so left to the reader.
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Theorem 9.1 NR4x is sound: If Γ ǸR4x A then Γ |=R4x A.

L9.0 If 〈W,M,N,N,R,R,�, h〉 is an R4x interpretation, then there is
an R4x interpretation 〈W,M,N,N,R,R,2, h〉 with w,w∗ ∈W corre-
sponding to each w ∈ W such that for any /A/, (i) hw(/A/) = 1 iff
hw(/A/) = 1 and (ii) hw∗(/A/) = 1 iff hw(\A\) = 1.

For R4x interpretation 〈W,M,N,N,R,R,�, h〉, consider 〈W,M,N,
N,R,R,2, h〉 such that corresponding to each w ∈W there are w,w∗ ∈
W such that, M = {〈w, x〉, 〈w∗, x∗〉 | 〈w, x〉 ∈M}; w ∈ /N/ iff w ∈ /N/,
and w∗ ∈ /N/ iff w ∈ \N\. Set,

/R/ = {〈x, y, z〉, 〈x, z∗, y∗〉 | 〈x/R/yz} ∪ {〈x∗, y, z〉, 〈x∗, z∗, y∗〉 | 〈x\R\yz}
0 = {〈y, z〉 | y ≤ z} ∪ {〈y∗, z∗〉 | z ≤ y} ∪ {〈y, z∗〉 | y ≤∗ z} ∪ {〈y∗, z〉 | y ≤] z}
0∗ = {〈y, z〉 | y ≤∗ z}∪ {〈y∗, z∗〉 | y ≤] z}∪ {〈y, z∗〉 | y ≤ z}∪ {〈y∗, z〉 | z ≤ y}

0] = {〈y, z〉 |y ≤] z}∪{〈y∗, z∗〉 |y ≤∗ z}∪{〈y, z∗〉 |z ≤ y}∪{〈y∗, z〉 |y ≤ z}.

And hw(/p/) = hw(/p/); but hw∗(/p/) = hw(\p\).

(1) By induction on the length of A, for any w, (i) hw(/A/) = hw(/A/)
and (ii) hw∗(/A/) = hw(\A\).

Basis: If A has no operator symbols then A is a parameter p. But
then by construction, hw(/p/) = hw(/p/) and hw∗(/p/) = hw(\p\).

Assp: For any i, 0 ≤ i < k if A has i operator symbols, then for any
w, both (i) and (ii) are met.

Show: If A has k operator symbols, (i) and (ii) are met. If A has k
operator symbols, it is of the form ¬P , P ∧Q, P ∨Q, P → Q
or �P where P and Q have < k operator symbols.

(¬) /A/ is /¬P /. (i) By HR4(¬), hw(/¬P /) = 1 iff hw(\P \) = 0; by
assumption iff hw(\P \) = 0; by HR4(¬), iff hw(/¬P /) = 1. (ii)
By HR4(¬), hw∗(/¬P /) = 1 iff hw∗(\P \) = 0; by assumption
iff hw(/P /) = 0; by HR4(¬), iff hw(\¬P \) = 1.

(∧) /A/ is /P ∧Q/. (i) By HR4(∧), hw(/P ∧Q/) = 1 iff hw(/P /) =
1 and hw(/Q/) = 1; by assumption, iff hw(/P /) = 1 and
hw(/Q/) = 1; by HR4(∧), iff hw(/P ∧Q/) = 1. (ii) By HR4(∧),
hw∗(/P ∧ Q/) = 1 iff hw∗(/P /) = 1 and hw∗(/Q/) = 1; by as-
sumption, iff hw(\P \) = 1 and hw(\Q\) = 1; by HR4(∧), iff
hw(\P ∧Q\) = 1.

(∨)
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(�) /A/ is /�P /. (i) By HR4(�) and the construction, hw(/�P /) =
0 iff there is some x ∈W such that wMx and hx(/P /) = 0; but
by construction wMx iff wMx, and by assumption hx(/P /) = 0
iff hx(/P /) = 0; by HR4(�), iff hw(/�P /) = 0. (ii) By HR4(�)
and the construction, hw∗(/�P /) = 0 iff there is some x∗ ∈W
such that w∗Mx∗ and hx∗(/P /) = 0; but by construction w∗Mx∗

iff wMx, and by assumption hx∗(/P /) = 0 iff hx(\P \) = 0; by
HR4(�), iff hw(\�P \) = 0.

(→) (a) By HR4(→) and construction, hw(/A → B/) = 0 iff there
are either y, z ∈ W such that w/R/yz and hy(A) = 1 but
hz(B) = 0 or hz(A) = 1 but hy(B) = 0, or there are z∗, y∗ ∈W
such that w/R/z∗y∗ and hz∗(A) = 1 but hy∗(B) = 0 or hy∗(A) =
1 but hz∗(B) = 0. In the first case, by construction w/R/yz
and by assumption hy(A) = 1 but hz(B) = 0 or hz(A) = 1
but hy(B) = 0. In the second case, by construction, w/R/yz
and by assumption hz(A) = 1 but hy(B) = 0 or hy(A) = 1
but hz(B) = 0. By HR4(→) either is so iff hw(/A→ B/) = 0.

(b) By HR4(→) and construction, hw∗(/A → B/) = 0 iff
there are either y, z ∈ W such that w∗/R/yz and hy(A) = 1
but hz(B) = 0 or hz(A) = 1 but hy(B) = 0, or there are
z∗, y∗ ∈W such that w∗/R/z∗y∗ and hz∗(A) = 1 but hy∗(B) = 0
or hy∗(A) = 1 but hz∗(B) = 0. In the first case, by construc-
tion w\R\yz and by assumption hy(A) = 1 but hz(B) = 0 or
hz(A) = 1 but hy(B) = 0. In the second case, by construc-
tion, w\R\yz and by assumption hz(A) = 1 but hy(B) = 0
or hy(A) = 1 but hz(B) = 0. By HR4(→) either is so iff
hw∗(\A→ B\) = 0.

———
For any w and A, (i) hw(/A/) = hw(/A/) and (ii) hw∗(/A/) = hw(\A\).

(2) If 〈W,M,N,N,R,R,�, h〉 is an R4x interpretation then 〈W,M,
N,N,R,R,2, h〉 is an R4x interpretation.

(0) (i) Suppose a 0 b; then by construction a ≤ b. (a) Suppose
ha(p) = 1; then by (1), ha(p) = 1; so by (≤), hb(p) = 1; so
by (1), hb(p) = 1. Suppose hb(p) = 1; then by (1), hb(p) = 1;
so by (≤), ha(p) = 1; so by (1), ha(p) = 1. (b.i) Suppose
bRxy and a 6∈ N; then by construction, bRxy and a 6∈ N ;
so by (≤), aRxy and by construction, aRxy. Suppose bRxy
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and a ∈ N; then by construction, bRxy and a ∈ N ; so by
(≤), x ≤ y; so by construction x 0 y. (b.ii) Suppose bRy∗x∗

and a 6∈ N; then by construction, bRxy and a 6∈ N ; so by
(≤), aRxy and by construction, aRy∗x∗. Suppose bRy∗x∗ and
a ∈ N; then by construction, bRxy and a ∈ N ; so by (≤),
x ≤ y; so by construction y∗ 0 x∗. (c.i) Suppose aRxy and
b 6∈ N; then by construction, aRxy and b 6∈ N ; so by (≤),
bRxy and by construction, bRxy. Suppose aRxy and b ∈ N;
then by construction, aRxy and b ∈ N ; so by (≤), x ≤ y;
so by construction x 0 y. (c.ii) Suppose aRy∗x∗ and b 6∈ N;
then by construction, aRxy and b 6∈ N ; so by (≤), bRxy and
by construction, bRy∗x∗. Suppose aRy∗x∗ and b ∈ N; then
by construction, aRxy and b ∈ N ; so by (≤), x ≤ y; so by
construction y∗ 0 x∗.

(ii) Suppose a∗ 0 b∗; then by construction b ≤ a. (a) Suppose
ha∗(p) = 1; then by (1), ha(p) = 1; so by (≤), hb(p) = 1; so by
(1), hb∗(p) = 1. Suppose hb∗(p) = 1; then by (1), hb(p) = 1;
so by (≤), ha(p) = 1; so by (1), ha∗(p) = 1. (b.i) Suppose
b∗Rxy and a∗ 6∈ N; then by construction, bRxy and a 6∈ N ;
so by (≤), aRxy and by construction, a∗Rxy. Suppose b∗Rxy
and a∗ ∈ N; then by construction, bRxy and a ∈ N ; so by
(≤), x ≤ y; so by construction x 0 y. (b.ii) Suppose b∗Ry∗x∗

and a∗ 6∈ N; then by construction, bRxy and a 6∈ N ; so by
(≤), aRxy and by construction, a∗Ry∗x∗. Suppose b∗Ry∗x∗

and a∗ ∈ N; then by construction, bRxy and a ∈ N ; so by (≤),
x ≤ y; so by construction y∗ 0 x∗. (c.i) Suppose a∗Rxy and
b∗ 6∈ N; then by construction, aRxy and b 6∈ N ; so by (≤),
bRxy and by construction, b∗Rxy. Suppose a∗Rxy and b∗ ∈ N;
then by construction, aRxy and b ∈ N ; so by (≤), x ≤ y; so
by construction x 0 y. (c.ii) Suppose a∗Ry∗x∗ and b∗ 6∈ N;
then by construction, aRxy and b 6∈ N ; so by (≤), bRxy and
by construction, b∗Ry∗x∗. Suppose a∗Ry∗x∗ and b∗ ∈ N; then
by construction, aRxy and b ∈ N ; so by (≤), x ≤ y; so by
construction y∗ 0 x∗.

(iii) Suppose a 0 b∗; then by construction a ≤∗ b. (a) Suppose
ha(p) = 1; then by (1), ha(p) = 1; so by (≤∗), hb(p) = 1; so by
(1), hb∗(p) = 1. Suppose hb∗(p) = 1; then by (1), hb(p) = 1;
so by (≤∗), ha(p) = 1; so by (1), ha(p) = 1. (b.i) Suppose
b∗Rxy and a 6∈ N; then by construction, bRxy and a 6∈ N ;
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so by (≤∗), aRxy and by construction, aRxy. Suppose b∗Rxy
and a ∈ N; then by construction, bRxy and a ∈ N ; so by
(≤∗), x ≤ y; so by construction x 0 y. (b.ii) Suppose b∗Ry∗x∗

and a 6∈ N; then by construction, bRxy and a 6∈ N ; so by
(≤∗), aRxy and by construction, aRy∗x∗. Suppose b∗Ry∗x∗

and a ∈ N; then by construction, bRxy and a ∈ N ; so by (≤),
x ≤ y; so by construction y∗ 0 x∗. (c.i) Suppose aRxy and
b∗ 6∈ N; then by construction, aRxy and b 6∈ N ; so by (≤∗),
bRxy and by construction, b∗Rxy. Suppose aRxy and b∗ ∈ N;
then by construction, aRxy and b ∈ N ; so by (≤∗), x ≤ y;
so by construction x 0 y. (c.ii) Suppose aRy∗x∗ and b∗ 6∈ N;
then by construction, aRxy and b 6∈ N ; so by (≤∗), bRxy and
by construction, b∗Ry∗x∗. Suppose aRy∗x∗ and b ∈ N; then
by construction, aRxy and b ∈ N ; so by (≤∗), x ≤ y; so by
construction y∗ 0 x∗.

(iv) Suppose a∗ 0 b; then by construction a ≤] b. (a) Suppose
ha∗(p) = 1; then by (1), ha(p) = 1; so by (≤]), hb(p) = 1; so
by (1), hb(p) = 1. Suppose hb(p) = 1; then by (1), hb(p) = 1;
so by (≤]), ha(p) = 1; so by (1), ha∗(p) = 1. (b.i) Suppose
bRxy and a∗ 6∈ N; then by construction, bRxy and a 6∈ N ;
so by (≤]), aRxy and by construction, a∗Rxy. Suppose bRxy
and a∗ ∈ N; then by construction, bRxy and a ∈ N ; so by
(≤]), x ≤ y; so by construction x 0 y. (b.ii) Suppose bRy∗x∗

and a∗ 6∈ N; then by construction, bRxy and a 6∈ N ; so by
(≤]), aRxy and by construction, a∗Ry∗x∗. Suppose bRy∗x∗

and a∗ ∈ N; then by construction, bRxy and a ∈ N ; so by
(≤]), x ≤ y; so by construction y∗ 0 x∗. (c.i) Suppose a∗Rxy
and b 6∈ N; then by construction, aRxy and b 6∈ N ; so by (≤]),
bRxy and by construction, bRxy. Suppose a∗Rxy and b ∈ N;
then by construction, aRxy and b ∈ N ; so by (≤]), x ≤ y;
so by construction x 0 y. (c.ii) Suppose a∗Ry∗x∗ and b 6∈ N;
then by construction, aRxy and b 6∈ N ; so by (≤]), bRxy and
by construction, bRy∗x∗. Suppose a∗Ry∗x∗ and b ∈ N; then
by construction, aRxy and b ∈ N ; so by (≤]), x ≤ y; so by
construction y∗ 0 x∗.

(0∗)

(0])

(NC) (i) Suppose w ∈ /N/; then w ∈ /N/. Say w/R/yz; then by
construction, w/R/yz; so by NC, y = z; so y = z; and similarly
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if w/R/z∗y∗. Say y = z; then y = z so by NC, w/R/yz; so
w/R/yz; and similarly for y∗ and z∗. (ii) Suppose w∗ ∈ /N/;
then w ∈ \N\. Say w∗/R/yz; then by construction w\R\yz; so
by NC y = z; so y = z; and similarly if w∗/R/z∗y∗. Say y = z;
then y = z so by NC, w\R\yz; so w∗/R/yz; and similarly for
y∗ and z∗.

(CL) (i) Suppose w ∈ /N/; then by construction, w ∈ /N/; so by
CL, w ∈ \N\; so by construction, w ∈ \N\. Suppose w∗ ∈ /N/;
then by construction, w ∈ \N\; so by CL, w ∈ /N/; so by
construction, w∗ ∈ \N\. (ii) Say w ∈ N; then by construction,
w ∈ N . By construction, hw(/p/) = 1 iff hw(/p/) = 1; by CL
iff hw(\p\) = 1; by construction iff hw(\p\) = 1. By construc-
tion, hw∗(/p/) = 1 iff hw(\p\) = 1; by CL iff hw(/p/) = 1; by
construction iff hw∗(\p\) = 1.

(MC) Suppose w ∈ /N/ and wMx; then by construction, w ∈ /N/

and wMx; so by MC, x ∈ /N/; so by construction, x ∈ /N/.
Suppose w∗ ∈ /N/ and w∗Mx∗; then by construction, w ∈ \N\
and wMx; so by MC, x ∈ \N\; so by construction, x∗ ∈ /N/.
So 〈W,M,N,N,R,R,2, h〉 satisfies MC.

(CM) (0)

(0∗) (i) Suppose a 0∗ b; then by construction a ≤∗ b. Sup-
pose bMc; then by construction, bMc; so by CM, there
is some y ≤∗ c such that aMy; so by construction y 0∗ c
and aMy. Suppose aMc then by construction aMc so
by CM there is some y, c ≤∗ y such that bMy; so by
construction, c 0∗ y and bMy.
(ii) Suppose a∗ 0∗ b∗; then by construction a ≤] b.
Suppose b∗Mc∗; then by construction, bMc; so by CM,
there is some y ≤] c such that aMy; so by construction
y∗ 0∗ c∗ and a∗My∗. Suppose a∗Mc∗ then by construc-
tion aMc so by CM there is some y, c ≤] y such that
bMy; so by construction, c∗ 0∗ y∗ and b∗My∗.
(iii) Suppose a∗ 0∗ b; then by construction b ≤ a. Sup-
pose bMc; then by construction, bMc; so by CM, there
is some y, c ≤ y such that aMy; so by construction,
y∗ 0∗ c and a∗My∗. Suppose a∗Mc∗ then by construction
aMc so by CM there is some y ≤ c such that bMy; so by
construction c∗ 0∗ y and bMy.
(iv) Suppose a 0∗ b∗; then by construction a ≤ b. Sup-
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pose b∗Mc∗; then by construction, bMc; so by CM, there
is some y ≤ c such that aMy; so by construction y 0∗ c∗

and aMy. Suppose aMc then by construction aMc so
by CM there is some y, c ≤ y such that bMy; so by
construction, c 0 y and bMy.

(0])

(ρ)

(σ) Suppose 〈x, y〉 ∈ M; then by construction, 〈x, y〉 ∈M ; so by σ,
〈y, x〉 ∈M ; so by construction 〈y, x〉 ∈ M. Suppose 〈x∗, y∗〉 ∈ M;
then by construction, 〈x, y〉 ∈ M ; so by σ, 〈y, x〉 ∈ M ; so by
construction 〈y∗, x∗〉 ∈ M. So 〈W,M,N,N,R,R,�, h〉 satisfies
σ.

(τ)

(C9
10) Suppose a/R/bx and xRcd; then by construction, a/R/bx and

xRcd; so by C9
10 there is a y such that bRcy and a/R/yd and

a z such that bRzd and a/R/cz; so by construction, there is
a y such that bRcy and a/R/yd, and a z such that bRzd and
a/R/cz.

Suppose a/R/bx and xRc∗d∗; then by construction, a/R/bx and
xRdc; so by C9

10 there is a y such that bRdy and a/R/yc and
a z such that bRzc and a/R/dz; so by construction, there is a
y∗ such that bRy∗d∗ and a/R/c∗y∗, and a z∗ such that bRc∗z∗

and a/R/z∗d∗.

Suppose a/R/b∗x∗ and x∗Rcd; then by construction, a/R/xb
and xRcd; so by C9

10 there is a y such that bRcy and a/R/yd
and a z such that bRzd and a/R/cz; so by construction, there
is a y such that b∗Rcy and a/R/yd, and a z such that b∗Rzd
and a/R/cz.

Suppose a/R/b∗x∗ and x∗Rc∗d∗; then by construction, a/R/xb
and xRdc; so by C9

10 there is a y such that bRdy and a/R/yc
and a z such that bRzc and a/R/dz; so by construction, there
is a y∗ such that b∗Ry∗d∗ and a/R/c∗y∗, and a z∗ such that
b∗Rc∗z∗ and a/R/z∗d∗. And similarly for the other cases.

(C11)

(C12) Suppose a∗Rbc; then by construction, aRbc; so by C12, there
is some y, a ≤] y, bRyc and some z ≤ a, cRbz; so by construc-
tion, a∗ 0 y, bRyc, a∗ 0∗ z and cRbz.
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Suppose aRb∗c∗; then by construction, aRcb; so by C12, there
is some y, a ≤ y, cRyb and some, z, a ≤∗ z, bRcz; so by
construction, a 0∗ y∗, c∗Rb∗y∗, a 0 z∗ and b∗Rz∗c∗.

Suppose a∗Rb∗c∗; then by construction, aRcb; so by C12, there
is some y, a ≤ y, cRyb and some, z, a ≤∗ z, bRcz; so by
construction, y∗ 0 a∗, c∗Rb∗y∗, a∗ 0] z∗ and b∗Rz∗c∗.

And similarly in other cases.

L9.1 If Γ ⊆ Γ′ and Γ |=∗R4x
/P /s [[s.t, /r.s.t/, s ' t, s � t]] then Γ′ |=∗R4x

/P /s
[[s.t, /r.s.t/, s ' t, s � t]].
Suppose Γ ⊆ Γ′ and Γ |=∗R4x

/P /s [[s.t, /r.s.t/, s ' t, s � t]], but
Γ′ 6|=∗R4x

/P /s [[s.t, /r.s.t/, s ' t, s � t]]. From the latter, by VR4x*,
there is some R4x interpretation 〈W,M,N,N,R,R,�, h〉m such that
hm(Γ′) = 1 but hm(s)(/P /) = 0 [[〈m(s), m(t)〉 6∈ M, 〈m(r),m(s),
m(t)〉 6∈ /R/, m(s) 6= m(t), 〈m(s),m(t)〉 6∈ �]]. But since hm(Γ′) =
1 and Γ ⊆ Γ′, hm(Γ) = 1; so hm(Γ) = 1 but hm(s)(/P /) = 0
[[〈m(s), m(t)〉 6∈ M, 〈m(r),m(s),m(t)〉 6∈ /R/, m(s) 6= m(t), 〈m(s),
m(t)〉 6∈ �]]; so by VR4x*, Γ 6|=∗R4x

/P /s [[s.t, /r.s.t/, s ' t, s � t]].
This is impossible; reject the assumption: if Γ ⊆ Γ′ and Γ |=∗R4x

/P /s
[[s.t, /r.s.t/, s ' t, s � t]], then Γ′ |=∗R4x

/P /s [[s.t, /r.s.t/, s ' t, s � t]].

Main result: For each line in a derivation let Pi be the expression on line i
and Γi be the set of all premises and assumptions whose scope includes line
i. We set out to show “generalized” soundness: if Γ `∗NR4x P then Γ |=∗R4x P.
As above, this reduces to the standard result when P and all the members
of Γ are without overlines and have subscript 0. Suppose Γ `∗NR4x P. Then
there is a derivation of P from premises in Γ where P appears under the
scope of the premises alone. By induction on line number of this derivation,
we show that for each line i of this derivation, Γi |=∗R4x Pi. The case when
Pi = P is the desired result.

Basis: P1 is a premise or an assumption /A/s [[s.t, /r.s.t/, s ' t, s � t]].
Then Γ1 = {/A/s} [[s.t, /r.s.t/, s ' t, s � t]]; so for any 〈W,M,N,N,
R,R,�, h〉m, hm(Γ1) = 1 iff hm(s)(/A/) = 1 [[〈m(s), m(t)〉 ∈M, 〈m(r),
m(s),m(t)〉 ∈ /R/, m(s) = m(t), 〈m(s),m(t)〉 ∈ �]]; so there is no
〈W,M,N,N,R,R,�, h〉m such that hm(Γ1) = 1 but hm(s)(/A/) = 0
[[〈m(s), m(t)〉 6∈ M, 〈m(r),m(s),m(t)〉 6∈ /R/, m(s) 6= m(t), 〈m(s),
m(t)〉 6∈ �]]. So by VR4x*, Γ1 |=∗R4x

/A/s [[s.t, /r.s.t/, s ' t, s � t]],
where this is just to say, Γ1 |=∗R4x P1.
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Assp: For any i, 1 ≤ i < k,Γi |=∗R4x Pi.

Show: Γk |=∗R4x Pk.

Pk is either a premise, an assumption, or arises from previous lines
by R, ∧I, ∧E, ∨I, ∨E, ¬I, ¬E, ⊃I, ⊃E,→I,→E or, depending on the
system, NI, NE, 'I, 'E, CL, then �I, �E, MC, AMρ, AMσ, AMτ ,
and AM9

10, AM11, AM12, ≤E, ≤∗E, ≤]E, ≤RE, ≤∗RE, ≤]RE, or �ME.
If Pk is a premise or an assumption, then as in the basis, Γk |=∗R4x Pk.
So suppose Pk arises by one of the rules.

(R)

(∧I)

(∧E)

(∨I)

(∨E)

(¬I)

(¬E)

(⊃I)

(⊃E)

(→I) If Pk arises by →I, then the picture is like this,

/s.t.u/

At

i Bu

k /A→ B/s

or

/s.t.u/

Au

i Bt

k /A→ B/s

where i < k, t and u do not appear in any member of Γk (in any
undischarged premise or assumption), and Pk is /A → B/s. In
the first case, by assumption, Γi |=∗R4x Bu; but by the nature of ac-
cess, Γi ⊆ Γk ∪ {/s.t.u/, At}; so by L9.1, Γk ∪ {/s.t.u/, At} |=∗R4x Bu.
Suppose Γk 6|=∗R4x

/A → B/s; then by VR4x*, there is an R4x in-
terpretation 〈W,M,N,N,R,R,�, h〉m such that hm(Γk) = 1 but
hm(s)(/A → B/) = 0. From the latter, by HR4(→), there are
x, y ∈W such that m(s)/R/xy and either hx(A) = 1 and hy(B) = 0,
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or hy(A) = 1 and hx(B) = 0. But then by L9.0, there is an R4x
interpretation, 〈W,M,N,N,R,R,2, h〉 with w,w∗ ∈W corresponding
to each w ∈W such that for any /A/, hw(/A/) = 1 iff hw(/A/) = 1 and
hw∗(/A/) = 1 iff hw(\A\) = 1. So, where m(s) = w iff m(s) = w (and
the construction retains other relations on those worlds), it remains
that hm(Γk) = 1. In addition, by construction, if m(s)/R/xy and
hx(A) = 1 but hy(B) = 0, then m(s)/R/xy and hx(A) = 1 but hy(B) =
0. And if m(s)/R/xy and hy(A) = 1 but hx(B) = 0, then m(s)/R/y∗x∗

and hy∗(A) = 1 but hx∗(B) = 0. Either way, then, there are a, b ∈W
such that m(s)/R/ab where ha(A) = 1 and hb(B) = 0. Now consider
a map m′ like m except that m′(t) = a and m′(u) = b, and con-
sider 〈W,M,N,N,R,R,2, h〉m′ ; since t and u do not appear in Γk it
remains that hm′(Γk) = 1; since m′(t) = a, hm′(t)(A) = 1; and since
m(s)/R/ab, 〈m′(s),m′(t),m′(u)〉 ∈ /R/; so hm′(Γk ∪ {At, /s.t.u/}) = 1;
so by VR4x*, hm′(u)(B) = 1; so hb(B) = 1. Reject the assumption:
Γk |=∗R4x

/A→ B/s, which is to say, Γk |=∗R4x Pk. And similarly in the
other case.

(→E)

(NI)

(NE)

('I)

('E)

(CL) If Pk arises by CL, then the picture is like this,

i /n/[s]

j //A//s

k \\A\\s

or
i /n/[s]

k \n\[s]

where, for the first case, i, j < k and Pk is \\A\\s. Where this rule
is included in NR4x, R4x includes constraint CL along with NC. By
assumption, Γi |=∗R4x

/n/[s] and Γj |=∗R4x
//A//s; but by the nature

of access, Γi ⊆ Γk and Γj ⊆ Γk; so by L9.1, Γk |=∗R4x
/n/[s] and

Γk |=∗R4x
//A//s. Suppose Γk 6|=∗R4x

\\A\\s; then by VR4x*, there is an
R4x interpretation 〈W,M,N,N,R,R,�, h〉m such that hm(Γk) = 1
but hm(s)(\\A\\) = 0; since hm(Γk) = 1, by VR4x*, m(s) ∈ /N/ and
hm(s)(//A//) = 1.
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Now, by induction on the number of operators in A we show that for
any x ∈ /N/, hx(//A//) = hx(\\A\\).

Basis: //A// is a parameter //p//. Suppose x ∈ /N/; then by CL,
hx(//p//) = hx(\\p\\).

Assp: For any i, 0 ≤ i < k, if A has i operator symbols then for any
x ∈ /N/, hx(//A//) = hx(\\A\\).

Show: If A has k operator symbols then for any x ∈ /N/, hx(//A//) =
hx(\\A\\).

If A has k operator symbols, then it is of the form ¬P , P ∧Q,
P ∨ Q, P → Q, or �P where P and Q have < k operator
symbols. Suppose x ∈ /N/.

(¬) A is ¬P . By HR4(¬), hx(//¬P //) = 1 iff hx(\\P \\) = 0; by
assumption, iff hx(//P //) = 0; by HR4(¬) iff hx(\\¬P \\) = 1.

(∧) A is P ∧Q. By HR4(∧), hx(//P ∧Q//) = 1 iff hx(//P //) = 1 and
hx(//Q//) = 1; by assumption iff hx(\\P \\) = 1 and hx(\\Q\\) =
1; by HR4(∧), iff hx(\\P ∧Q\\) = 1.

(∨)

(→) A is P → Q. Suppose hx(//P → Q//) = 1 but hx(\\P → Q\\) =
0. From the latter, by HR4(→), there are y, z ∈ W such
that x\\R\\yz and hy(P ) = 1 but hz(Q) = 0, or hz(P ) = 1
but hy(Q) = 0. Since x ∈ /N/, by CL x ∈ \N\; so that
x ∈ //N// and x ∈ \\N\\; so with x\\R\\yz, by NC y = z, and
with NC again x//R//yz. So from hx(//P → Q//) = 1, it is not
the case that hy(P ) = 1 but hz(Q) = 0, or hz(P ) = 1 but
hy(Q) = 0. Reject the assumption: it is not the case that
hx(//P → Q//) = 1 but hx(\\P → Q\\) = 0.

(�) A is �P . Suppose hx(//�P //) = 1 but hx(\\�P \\) = 0. From
the latter, by HR4(�), there is some y ∈ W such that xMy
and hy(\\P \\) = 0; but since x ∈ /N/, by MC, y ∈ /N/; so by
assumption, hy(//P //) = 0; so by HR4(�), hx(//�P //) = 0. This
is impossible; reject the assumption: it is not the case that
hx(//�P //) = 1 but hx(\\�P \\) = 0.

———
For any A and x ∈ /N/, hx(//A//) = hx(\\A\\)

So, returning to the main case, hm(s)(\\A\\) = 1. This is impossible;
reject the assumption: Γk |=∗R4x

\\A\\s; which is to say, Γk |=∗R4x Pk.
The other case is straightforward.
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(�I)

(�E)

(MC)

(AMρ)

(AMσ)

(AMτ)

(AM9
10)

(AM11) If Pk arises by AM11, then the picture is like this,

i /s.t.u/

/s.t.y/

y.t.u

j //A//w

k //A//w

or i /s.t.u/

/s.y.u/

y.t.u

j //A//w

k //A//w

where i, j < k and Pk is //A//w. Where this rule is included in
NR4x, R4x includes constraint C11. By assumption, in both cases,
Γi |=∗R4x

/s.t.u/ and Γj |=∗R4x
//A//w; but, in the left-hand case, by

the nature of access, Γi ⊆ Γk and Γj ⊆ Γk ∪ {/s.t.y/, y.t.u}; so
by L9.1, Γk |=∗R4x

/s.t.u/ and Γk ∪ {/s.t.y/, y.t.u} |=∗R4x
//A//w. Sup-

pose Γk 6|=∗R4x
//A//w; then by VR4x*, there is an R4x interpretation

〈W,M,N,N,R,R,�, h〉m such that hm(Γk) = 1 but hm(w)(//A//) = 0;
since hm(Γk) = 1, by VR4x*, 〈m(s),m(t),m(u)〉 ∈ /R/; and by C11,
if a/R/bc then there is a y such that a/R/by and yRbc and a z such
that a/R/zc and zRbc; so there is a v ∈ W such that m(s)/R/m(t)v
and vRm(t)m(u); consider a map m′ like m except that m′(y) = v,
and consider 〈W,M,N,N,R,R,�, h〉m′ ; since y does not appear in
Γk, it remains that hm′(Γk) = 1; and since m′(s) = m(s), m′(t) =
m(t), m′(y) = v and m′(u) = m(u), 〈m′(s),m′(t),m′(y)〉 ∈ /R/ and
〈m′(y),m′(t),m′(u)〉 ∈ R; so hm′(Γk ∪ {/s.t.y/, y.t.u}) = 1; so by
VR4x*, hm′(w)(//A//) = 1. But since y 6= w, m′(w) = m(w); so
hm(w)(//A//) = 1. This is impossible; reject the assumption: Γk |=∗R4x

//A//w, which is to say, Γk |=∗R4x Pk. And similarly for the right-hand
case.

(AM12)
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(≤E) If Pk arises by ≤E, then the picture is like this,

i a ≤ b
j Aa

k Ab

where i, j < k and Pk is Ab. By assumption, Γi |=∗R4x a ≤ b and
Γj |=∗R4x Aa; but by the nature of access, Γi ⊆ Γk and Γj ⊆ Γk; so
by L9.1, Γk |=∗R4x a ≤ b and Γk |=∗R4x Aa. Suppose Γk 6|=∗R4x Ab; then
by VR4x*, there is an R4x interpretation 〈W,M,N,N,R,R,�, h〉m
such that hm(Γk) = 1 but hm(b)(A) = 0; since hm(Γk) = 1, by
VR4x*, 〈m(a),m(b)〉 ∈ ≤ and hm(a)(A) = 1.

Now, by induction on the number of operators in A, we show that
for any x, y ∈ W , if x ≤ y, then (i) if hx(A) = 1 then hy(A) = 1, and
(ii) if hy(A) = 1 then hx(A) = 1.

Basis: A is a parameter p. Suppose x ≤ y. (i) Suppose hx(A) =
1; then hx(p) = 1; but since x ≤ y, by (�), hy(p) = 1; so
hy(A) = 1. (ii) Suppose hy(A) = 1; then hy(p) = 1; but since
x ≤ y, by (�), hx(p) = 1; so hx(A) = 1.

Assp: For any i, 0 ≤ i < k, if A has i operators, then for any x,
y ∈ W , if x ≤ y, then if hx(A) = 1 then hy(A) = 1, and if
hy(A) = 1 then hx(A) = 1.

Show: If A has k operators, then for any x, y ∈ W , if x ≤ y, then
(i) if hx(A) = 1 then hy(A) = 1, and (ii) if hy(A) = 1 then
hx(A) = 1.

If A has k operators, then A is of the form, ¬P , P ∧Q, P ∨Q,
P → Q, or �P , where P and Q have < k operators. Suppose
x ≤ y.

(¬) A is ¬P . (i) Suppose hx(A) = 1; then hx(¬P ) = 1; so by
HR4x(¬), hx(P ) = 0; so by assumption, hy(P ) = 0; so by
HR4x(¬), hy(¬P ) = 1, which is to say, hy(A) = 1. (ii) Sup-
pose hy(A) = 1; then hy(¬P ) = 1; so by HR4x(¬), hy(P ) = 0;
so by assumption, hx(P ) = 0; so by HR4x(¬), hx(¬P ) = 1,
which is to say, hx(A) = 1.

(∧) A is P ∧ Q. (i) Suppose hx(A) = 1; then hx(P ∧ Q) = 1; so
by HR4x(∧), hx(P ) = 1 and hx(Q) = 1; so by assumption,
hy(P ) = 1 and hy(Q) = 1; so by HR4x(∧), hy(P ∧ Q) = 1,
which is to say hy(A) = 1. (ii) Suppose hy(A) = 1; then
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hy(P ∧Q) = 1; so by HR4x(∧), hy(P ) = 1 and hy(Q) = 1;
so by assumption, hx(P ) = 1 and hx(Q) = 1; so by HR4x(∧),
hx(P ∧Q) = 1, which is to say hx(A) = 1.

(∨)

(→) A is P → Q. (i) Suppose hx(A) = 1 but hy(A) = 0; then
hx(P → Q) = 1 and hy(P → Q) = 0; then by HR4x(→),
there are some w, z ∈ W such that yRwz and (1) hw(P ) = 1
but hz(Q) = 0, or (2) hz(P ) = 1 but hw(Q) = 0. We consider
these in two cases: (a) x 6∈ N ; then since yRwz and x ≤ y,
by (�), xRwz. Suppose (1): hw(P ) = 1 but hz(Q) = 0; then
since hw(P ) = 1, hx(P → Q) = 1, and xRwz, by HR4x(→),
hz(Q) = 1. This is impossible. Suppose (2): hz(P ) = 1 but
hw(Q) = 0; then since hz(P ) = 1, hx(P → Q) = 1, and xRwz,
by HR4x(→), hw(Q) = 1. This is impossible. (b) x ∈ N ; then
since yRwz and x ≤ y, by (�), w ≤ z. Suppose (1): hw(P ) = 1
but hz(Q) = 0; then since x ∈N and w = w, by NC, xRww; so
since hw(P ) = 1, hx(P → Q) = 1, and xRww, by HR4x(→),
hw(Q) = 1; but since w ≤ z, by assumption, hz(Q) = 1. This
is impossible; reject the assumption: hy(P → Q) = 1, which
is to say hy(A) = 1. Suppose (2): hz(P ) = 1 but hw(Q) = 0;
then since x ∈ N and z = z, by NC, xRzz; so since hz(P ) = 1,
hx(P → Q) = 1, and xRzz, by HR4x(→), hz(Q) = 1; but
since w ≤ z, by assumption, hw(Q) = 1. This is impossible;
reject the assumption: if hx(A) = 1, then hy(A) = 1.

And similarly for (ii).

(�) A is �P . (i) Suppose hx(A) = 1; then hx(�P ) = 1. Suppose
hy(�P ) = 0; then by HR4x(�), there is some w ∈ W such that
yMw and hw(P ) = 0; since x ≤ y and yMw, by the constraint
on modal access (CM), there is some v ≤ w such that xMv;
since v ≤ w and hw(P ) = 0, by assumption, hv(P ) = 0;
so by HR4x(�), hx(�P ) = 0. This is impossible; reject the
assumption: hy(�P ) = 1, which is to say hy(A) = 1.

(ii) Suppose hy(A) = 1; then hy(�P ) = 1; suppose hx(�P ) =
0; then by HR4x(�), there is some w ∈W such that xMw and
hw(P ) = 0; since x ≤ y and xMw, by CM, there is some v ≥ w
such that yMv; since w ≤ v and hw(P ) = 0, by assumption,
hv(P ) = 0; so by HR4x(�), hy(�P ) = 0. This is impossible;
reject the assumption: hx(�P ) = 1, which is to say hx(A) = 1.

———
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For any A and any x, y ∈ W , if x ≤ y, then (i) if hx(A) = 1 then
hy(A) = 1, and (ii) if hy(A) = 1 then hx(A) = 1.

So, returning to the case for (≤E), hm(b)(A) = 1. This is impossible;
reject the assumption: Γk |=∗R4x Ab, which is to say, Γk |=∗R4x Pk.

(≤∗E)

(≤]E)

(≤RE) If Pk arises by ≤RE, then the picture is like this,

h a ≤ b
i b.x.y

j n[a]

k x ≤ y

h a ≤ b
i a.x.y

j n[b]

k x ≤ y

h a ≤ b
i b.x.y

j ∼n[a]

k a.x.y

h a ≤ b
i a.x.y

j ∼n[b]

k b.x.y

where h, i, j < k. In the third case Pk is a.x.y. By assumption,
Γh |=∗R4x a ≤ b, Γi |=∗R4x b.x.y and Γj |=∗R4x ∼n[a]; but by the nature of
access, Γh ⊆ Γk, Γi ⊆ Γk and Γj ⊆ Γk; so by L9.1, Γk |=∗R4x a ≤ b,
Γk |=∗R4x b.x.y and Γk |=∗R4x ∼n[a]. Suppose Γk 6|=∗R4x a.x.y; then
by VR4x*, there is an R4x interpretation 〈W,M,N,N,R,R,�, h〉m
such that hm(Γk) = 1 but 〈m(a),m(x),m(y)〉 6∈ R; since hm(Γk) = 1,
by VR4x*, 〈m(a),m(b)〉 ∈ ≤, 〈m(b),m(x),m(y)〉 ∈ R and hm(φ)[∼n(a)]
= 1, so that hm(φ)[n(a)] = 0 and m(a) 6∈ N ; so with (�), 〈m(a),m(x),
m(y)〉 ∈ R. This is impossible; reject the assumption. And similarly
in other the cases.

(≤∗RE)

(≤]RE)

(�ME) If Pk arises by �ME, then the picture is like this,

h a � b
i b.c

t � c
a.t

j /A/w

k /A/w

or

h a � b
i a.c

c � t
b.t

j /A/w

k /A/w

where h, i, j < k, t does not appear in any member of Γk (in any
undischarged premise or assumption) and is not w, and Pk is /A/w.
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Where this rule is included in NR4x, R4x includes CM. In the first
case, by assumption, Γh |=∗R4x a � b, Γi |=∗R4x b.c and Γj |=∗R4x

/A/w;
but by the nature of access, Γh ⊆ Γk, Γi ⊆ Γk, and Γj ⊆ Γk ∪
{t � c, a.t}; so by L9.1, Γk |=∗R4x a � b, Γk |=∗R4x b.c and Γk ∪ {t �
c, a.t} |=∗R4x

/A/w. Suppose Γk 6|=∗R4x
/A/w; then by VR4x*, there is an

R4x interpretation 〈W,M,N,N,R,R,�, h〉m such that hm(Γk) = 1
but hm(w)(/A/) = 0. Since hm(Γk) = 1, by VR4x*, 〈m(a),m(b)〉 ∈ �
and 〈m(b),m(c)〉 ∈M so by CM, there is some y such that 〈y,m(c)〉 ∈
� and 〈m(a), y〉 ∈M . Consider a map m′ like m except that m′(t) =
y; since t does not appear in Γk, it remains that hm′(Γk) = 1; since
m′(t) = y and other values are unchanged, 〈m′(t),m′(c)〉 ∈ � and
〈m′(a),m′(t)〉 ∈ M ; so hm′(Γk ∪ {t � c, a.t}) = 1; so by VR4x*,
hm′(w)(/A/) = 1; and since m′(w) = m(w), hm(w)(/A/) = 1. This is
impossible; reject the assumption: Γk |=∗R4x

/A/w, where this is to say,
Γk |=∗R4x Pk.

———
For any i, Γi |=∗R4x Pi.

Theorem 9.2 NR4x is complete: if Γ |=R4x A then Γ ǸR4x A.

Suppose Γ |=R4x A; then Γ0 |=∗R4x A0; we show that Γ0 `∗NR4x A0. As usual,
this reduces to the standard notion. For the following, fix on some particular
R4x. Then definitions of consistency etc. are relative to it.

Con Γ is consistent iff there is no As such that Γ `∗NR4x
/A/s and Γ `∗NR4x

\¬A\s.

L9.2 If s is 0 or appears in Γ, and Γ 6`∗NR4x
\¬P \s, then Γ ∪ {/P /s} is

consistent.

Reasoning as in L7.2.

L9.3 There is an enumeration of all the subscripted formulas, P1 P2 . . . In
addition, there is an enumeration of these formulas with expressions
of the sort s.t and s.t.u and with pairs of the sort s.t.u,u.v.w and
s � t, u.v.

Proof by construction.

Max Γ is s-maximal iff for any As either Γ `∗NR4x
/A/s or Γ `∗NR4x

\¬A\s.
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Sgt Γ is a scapegoat set for→ iff for every formula of the form /¬(A→ B)/s,
if Γ `∗NR4x

/¬(A→ B)/s then there are some t, u such that Γ `∗NR4x

\s.t.u\, Γ `∗NR4x At and Γ `∗NR4x ¬Bu.

Γ is a scapegoat set for � iff for every formula of the form /¬�A/s,
if Γ `∗NR4x

/¬�A/s then there is some t such that Γ `∗NR4x s.t and
Γ `∗NR4x

/¬A/t.
Γ is a scapegoat set for C9/C10 iff (i) for every access pair /s.t.u/,
u.v.w, if Γ `∗NR4x

/s.t.u/ and Γ `∗NR4x u.v.w, then there is some y such
that Γ `∗NR4x t.v.y and Γ `∗NR4x

/s.y.w/, and there is some z such
that Γ `∗NR4x t.z.w and Γ `∗NR4x

/s.v.z/; and (ii) for every access pair
/s.u.t/, u.v.w, if Γ `∗NR4x

/s.u.t/ and Γ `∗NR4x u.v.w, then there is some
y such that Γ `∗NR4x t.v.y and Γ `∗NR4x

/s.y.w/, and there is some z such
that Γ `∗NR4x t.z.w and Γ `∗NR4x

/s.v.z/.

Γ is a scapegoat set for C11 iff for every access relation /s.t.u/,
if Γ `∗NR4x

/s.t.u/ then there is some y such that Γ `∗NR4x
/s.t.y/ and

Γ `∗NR4x y.t.u, and there is some z such that Γ `∗NR4x
/s.z.u/ and Γ `∗NR4x

z.t.u.

Γ is a scapegoat set for C12 iff for every access relation s.t.u, if
Γ `∗NR4x s.t.u then there is some y such that Γ `∗NR4x y ≥ s and Γ `∗NR4x

t.y.u, and there is some z such that Γ `∗NR4x z ≥∗ s and Γ `∗NR4x u.t.z;
and if Γ `∗NR4x s.t.u then there is some y such that Γ `∗NR4x y ≥] s
and Γ `∗NR4x t.y.u, and there is some z such that Γ `∗NR4x z ≤ s and
Γ `∗NR4x u.t.z

Γ is a scapegoat set for CM iff for every pair s � t, t.u, if Γ `∗NR4x

s � t and Γ `∗NR4x t.u there is some y such that Γ `∗NR4x y � u and
Γ `∗NR4x s.y; and for every s � t, s.u, if Γ `∗NR4x s � t and Γ `∗NR4x s.u
there is some y such that Γ `∗NR4x u � y and Γ `∗NR4x t.y.

C(Γ′) For Γ with unsubscripted formulas and the corresponding Γ0, we con-
struct Γ′ as follows. Set Ω0 = Γ0. By L9.3, there is an enumeration,
P1,P2 . . . of all the formulas, together with all the access relations
s.t and s.t.u, and access pairs s.t.u, u.v.w if C9/C10 is in R4x and
s � t, u.v if CM is in R4x; let E0 be this enumeration. Then for
the first expression P in Ei−1 such that all its subscripts are 0 or
introduced in Ωi−1, let Ei be like Ei−1 but without P, and set,
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Ωi = Ωi−1 if Ωi−1 ∪ {P} is inconsistent
Ωi∗ = Ωi−1 ∪ {P} if Ωi−1 ∪ {P} is consistent

and
→: Ωi = Ωi∗ ∪ {\s.y.z\, Py,¬Qz} if P is of the form /¬(P → Q)/s
�: Ωi = Ωi∗ ∪ {s.y, /¬P /y} if P is of the form /¬�P /s

C9
10: Ωi = Ωi∗ ∪ {t.v.y, /s.y.w/, t.z.w, /s.v.z/} if P is of the form /s.t.u/, u.v.w

Ωi = Ωi∗ ∪ {t.v.y, /s.y.w/, t.z.w, /s.v.z/} if P is of the form /s.u.t/, u.v.w
C11: Ωi = Ωi∗ ∪ {/s.t.y/, y.t.u, /s.z.u/, z.t.u} if P is of the form /s.t.u/

C12: Ωi = Ωi∗ ∪ {y ≥ s, t.y.u, z ≥∗ s, u.t.z} if P is of the form s.t.u
Ωi = Ωi∗ ∪ {y ≥] s, t.y.u, z ≤ s, u.t.z} if P is of the form s.t.u

CM: Ωi = Ωi∗ ∪ {y � u, s.y} if P is of the form s � t, t.u
Ωi = Ωi∗ ∪ {u � y, t.y} if P is of the form s � t, s.u

-where y, z are the first subscripts not included in Ωi∗

and
Ωi = Ωi∗ otherwise

then
Γ′ =

⋃
i≥0 Ωi

Note that there are always sure to be subscripts y, z not in Ωi∗ insofar
as there are infinitely many subscripts, and at any stage only finitely
many formulas are added – the only subscripts in the initial Ω0 being
0. Suppose s appears in Γ′; then there is some Ωi in which it is first
appears; and any formula Pj in the original enumeration that has
subscript s is sure to be “considered” for inclusion at a subsequent
stage.

L9.4 For any s included in Γ′, Γ′ is s-maximal.

Reasoning as in L7.4.

L9.5 If Γ0 is consistent, then each Ωi is consistent.

Suppose Γ0 is consistent.

Basis: Ω0 = Γ0 and Γ0 is consistent; so Ω0 is consistent.

Assp: For any i, 0 ≤ i < k, Ωi is consistent.

Show: Ωk is consistent.

Ωk is either (i) Ωk−1, (ii) Ωk∗ = Ωk−1 ∪ {P}, (iii) Ωk∗ ∪
{\s.y.z\, Py,¬Qz}, (iv) Ωk∗ ∪ {s.y, /¬P /y}, (v.a) Ωk∗ ∪ {t.v.y,
/s.y.w/, t.z.w, /s.v.z/}, (v.b) Ωk∗∪{t.v.y, /s.y.w/, t.z.w, /s.v.z/},
(vi) Ωk∗∪{/s.t.y/, y.t.u, /s.z.u/, z.t.u}, (vii.a) Ωk∗∪{y ≥ s, t.y.u,
z ≥∗ s, u.t.z}, (vii.b) Ωk∗ ∪ {y ≥] s, t.y.u, z ≤ s, u.t.z}, (viii.a)
Ωk∗ ∪ {y � u, s.y} or (viii.b) Ωk∗ ∪ {u � y, t.y}.
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(i) Suppose Ωk is Ωk−1. By assumption, Ωk−1 is consistent; so Ωk

is consistent.

(ii) Suppose Ωk is Ωk∗ = Ωk−1∪{P}. Then by construction, Ωk−1∪
{P} is consistent; so Ωk is consistent.

(iii) Suppose Ωk is Ωk∗ ∪{\s.y.z\, Py,¬Qz}. In this case, as above,
Ωk∗ is consistent and by construction, /¬(P → Q)/s ∈ Ωk∗ .
Suppose Ωk is inconsistent. Then there is some Av such that
Ωk∗∪{\s.y.z\, Py,¬Qz} `∗NR4x

/A/v and Ωk∗∪{\s.y.z\, Py,¬Qz}
`∗NR4x

\¬A\v. So reason as follows,

1 Ωk∗

2 \s.y.z\ A (g, →I)

3 Py A (g, →I)

4 ¬Qz A (c, ¬E)

5 /A/v from Ωk∗ ∪ {\s.y.z\, Py,¬Qz}
6 \¬A\v from Ωk∗ ∪ {\s.y.z\, Py,¬Qz}
7 Qz 4-6 ¬E

8 \P → Q\s 2-7 →I

where, by construction, y and z are not in Ωk∗ . So Ωk∗ `∗NR4x

\P → Q\s; but /¬(P → Q)/s ∈ Ωk∗ ; so Ωk∗ `∗NR4x
/¬(P → Q)/s;

so Ωk∗ is inconsistent. This is impossible; reject the assump-
tion: Ωk is consistent.

(iv) Suppose Ωk is Ωk∗ ∪ {s.y, /¬P /y}. In this case, as above, Ωk∗
is consistent and by construction, /¬�P /s ∈ Ωk∗ . Suppose
Ωk is inconsistent. Then there is some Au such that Ωk∗ ∪
{s.y, /¬P /y} `∗NR4x

/A/u and Ωk∗ ∪ {s.y, /¬P /y} `∗NR4x
\¬A\u.

So reason as follows,

1 Ωk∗

2 s.y A (g, �I)

3 /¬P /y A (c, ¬E)

4 /A/u from Ωk∗ ∪ {s.y, /¬P /y}
5 \¬A\u from Ωk∗ ∪ {s.y, /¬P /y}
6 \P \y 3-5 ¬E

7 \�P \s 2-6 �I

where, by construction, y is not in Ωk∗ . So Ωk∗ `∗NR4x
\�P \s;

but /¬�P /s ∈ Ωk∗ ; so Ωk∗ `∗NR4x
/¬�P /s; so Ωk∗ is inconsistent.

This is impossible; reject the assumption: Ωk is consistent.

(v) (a) Suppose Ωk is Ωk∗ ∪ {t.v.y, /s.y.w/, t.z.w, /s.v.z/}. In this
case, as above, Ωk∗ is consistent and by construction, /s.t.u/,
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u.v.w ∈ Ωk∗ . Suppose Ωk is inconsistent. Then there is some
Ax such that Ωk∗∪{t.v.y, /s.y.w/, t.z.w, /s.v.z/} `∗NR4x

/A/x and
Ωk∗ ∪ {t.v.y, /s.y.w/, t.z.w, /s.v.z/} `∗NR4x

\¬A\x. So reason as
follows,

1 Ωk∗

2 /s.t.u/ from Ωk∗

3 u.v.w from Ωk∗

4 t.v.y A (g, 2,3 AM9
10)

5 /s.y.w/

6 t.z.w A (g, 2,3 AM9
10)

7 /s.v.z/

8 ¬B0 A (c, ¬E)

9 \¬A\x from Ωk∗ ∪ {t.v.y, /s.y.w/, t.z.w, /s.v.z/}
10 /A/x from Ωk∗ ∪ {t.v.y, /s.y.w/, t.z.w, /s.v.z/}
11 B0 8-10 ¬E

12 B0 2,3,6-11 AM9
10

13 B0 2,3,4-12 AM9
10

where, by construction, y and z are not in Ωk∗ are not 0.
So Ωk∗ `∗NR4x B0; and similarly, Ωk∗ `∗NR4x ¬B0; so Ωk∗ is in-
consistent. This is impossible; reject the assumption: Ωk is
consistent. And similarly for (b).

(vi) Similar to (v).

(vii) Similar to (v).

(viii) Similar to (v).
———
For any i, Ωi is consistent.

L9.6 If Γ0 is consistent, then Γ′ is consistent.

Reasoning parallel to L2.6 and L6.6.

L9.7 If Γ0 is consistent, then Γ′ is a scapegoat set for →, �, C9/C10, C11,
C12 and CM.

For→: Suppose Γ0 is consistent and Γ′ `∗NR4x
/¬(A→ B)/s. By L9.6,

Γ′ is consistent; and by the constraints on subscripts, s is included in
Γ′. Since Γ′ is consistent, Γ′ 6`∗NR4x

\¬¬(A→ B)\s; so there is a stage
in the construction process where Ωi∗ = Ωi−1 ∪ {/¬(A → B)/s} and
Ωi = Ωi∗∪{\s.yz\, Ay,¬Bz}; so by construction, \s.y.z\ ∈ Γ′, Ay ∈ Γ′

and ¬Bz ∈ Γ′; so Γ′ `∗NR4x
\s.y.z\, Γ′ `∗NR4x Ay and Γ′ `∗NR4x ¬Bz. So

Γ′ is a scapegoat set for →.
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For �: Suppose Γ0 is consistent and Γ′ `∗NR4x
/¬�A/s. By L9.6, Γ′

is consistent; and by the constraints on subscripts, s is included in
Γ′. Since Γ′ is consistent, Γ′ 6`∗NR4x

\¬¬�A\s; so there is a stage in
the construction process where Ωi∗ = Ωi−1 ∪ {/¬�A/s} and Ωi =
Ωi∗ ∪ {s.y, /¬A/y}; so by construction, s.y ∈ Γ′ and /¬A/y ∈ Γ′; so
Γ′ `∗NR4x s.y and Γ′ `∗NR4x

/¬A/y. So Γ′ is a scapegoat set for �.

For C9/C10: Suppose Γ0 is consistent. (i) Suppose Γ `∗NR4x
/s.t.u/

and Γ `∗NR4x u.v.w. By L9.6, Γ′ is consistent; and by the con-
straints on subscripts, s, t, u, v, w are included in Γ′. Since Γ `∗NR4x

/s.t.u/ and Γ `∗NR4x u.v.w, Γ′ has just the same consequences as
Γ′ ∪ {/s.t.u/, u.v.w}; so Γ′ ∪ {/s.t.u/, u.v.w} is consistent, and for
any Ωj , Ωj ∪ {/s.t.u/, u.v.w} is consistent. So there is a stage in
the construction process where Ωi∗ = Ωi−1 ∪ {/s.t.u/, u.v.w} and
Ωi = Ωi∗ ∪ {t.v.y, /s.y.w/, t.z.w, /s.v.z/}; so by construction, t.v.y,
/s.y.w/, t.z.w, /s.v.z/ ∈ Γ′; so there is some y such that Γ `∗NR4x t.v.y
and Γ `∗NR4x

/s.y.w/, and there is some z such that Γ `∗NR4x t.z.w and
Γ `∗NR4x

/s.v.z/. (ii) And similarly if Γ `∗NR4x
/s.u.t/ and Γ `∗NR4x u.v.w.

And similarly in the other cases.

C(I) We construct an interpretation I = 〈W,M,N,N,R,R,�, h〉 based
on Γ′ as follows. Let W have a member ws corresponding to each
subscript s included in Γ′, except that if Γ′ `∗NR4x s ' t then ws =
wt (again, we might do this in the usual way by beginning with
equivalence classes on subscripts). Then set ws ∈ /N/ iff Γ′ `∗NR4x

/n/[s]; 〈ws, wt〉 ∈ M iff Γ′ `∗NR4x s.t; 〈ws, wt, wu〉 ∈ /R/ iff Γ′ `∗NR4x

/s.t.u/; 〈ws, wt〉 ∈ ≤ iff Γ′ `∗NR4x s ≤ t; 〈ws, wt〉 ∈ ≤∗ iff Γ′ `∗NR4x s ≤∗ t;
〈ws, wt〉 ∈ ≤] iff Γ′ `∗NR4x s ≤] t; and hws(/p/) = 1 iff Γ′ `∗NR4x

/p/s.

Note that the specification is consistent: Suppose ws = wt; then by
construction, Γ′ `∗NR4x s ' t; so by 'E, Γ′ `∗NR4x ps iff Γ′ `∗NR4x pt so
hws(p) = hwt(p). And similarly in other cases.

L9.8 If Γ0 is consistent then for 〈W,M,N,N,R,R,�, h〉 constructed as
above, for any s included in Γ′, hws(/A/) = 1 iff Γ′ `∗NR4x

/A/s.

Suppose Γ0 is consistent and s is included in Γ′. By L9.4, Γ′ is s-
maximal. By L9.6 and L9.7, Γ′ is consistent and a scapegoat set for
→ and �. Now by induction on the number of operators in /A/s,

Basis: If /A/s has no operators, then it is either /n/[s] or a parameter
/p/s. But hws [/n/(s)] = 1 iff ws ∈ /N/; and by construction,
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ws ∈ /N/ iff Γ′ `∗NR4x
/n/(s); so hws [/n/(s)] = 1 iff Γ′ `∗NR4x

/n/(s). And by construction, hws(/p/) = 1 iff Γ′ `∗NR4x
/p/s. So

hws(/A/) = 1 iff Γ′ `∗NR4x
/A/s.

Assp: For any i, 0 ≤ i < k, if /A/s has i operators, then hws(/A/) = 1
iff Γ′ `∗NR4x

/A/s.

Show: If /A/s has k operators, then hws(/A/) = 1 iff Γ′ `∗NR4x
/A/s.

If /A/s has k operators, then it is of the form ¬P , P ∧Q, P ∨Q,
P → Q, or �P , where P and Q have < k operators.

(¬)

(∧)

(∨)

(→) /A/s is /P → Q/s. (i) Suppose hws(/A/) = 1 but Γ′ 6`∗NR4x
/A/s;

then hws(/P → Q/) = 1, but Γ′ 6`∗NR4x
/P → Q/s. From

the latter, by s-maximality, Γ′ `∗NR4x
\¬(P → Q)\s; but since

Γ′ is a scapegoat set for →, there are some y, z such that
Γ′ `∗NR4x

/s.y.z/, Γ′ `∗NR4x Py, and Γ′ `∗NR4x ¬Qz; from the
last of these, by consistency, Γ′ 6`∗NR4x Qz; so by assumption,
hwy(P ) = 1 and hwz(Q) = 0; and since Γ′ `∗NR4x

/s.y.z/, by
construction, 〈ws, wy, wz〉 ∈ /R/; so there are some y,z ∈ W
such that s/R/yz and hwy(P ) = 1 but hwz(Q) = 0; so by
HR4x(→), hws(/P → Q/) = 0. This is impossible; reject the
assumption: if hws(/A/) = 1 then Γ′ `∗NR4x

/A/s.

(ii) Suppose Γ′ `∗NR4x
/A/s but hws(/A/) = 0; then Γ′ `∗NR4x

/P → Q/s but hws(/P → Q/) = 0. From the latter, by
HR4x(→), there are some t, u ∈ W such that s/R/tu and ei-
ther hwt(P ) = 1 but hwu(Q) = 0 or hwu(P ) = 1 but hwt(Q) =
0; so by construction, Γ′ `∗NR4x

/s.t.u/, and by assumption, ei-
ther (a) Γ′ `∗NR4x Pt but Γ′ 6`∗NR4x Qu or (b) Γ′ `∗NR4x P u but
Γ′ 6`∗NR4x Qt. Suppose (a); then Γ′ `∗NR4x Pt but Γ′ 6`∗NR4x Qu.
From the latter, by s-maximality, Γ′ `∗NR4x ¬Qu; so Γ′ `∗NR4x

/s.t.u/, Γ′ `∗NR4x
/P → Q/s, and Γ′ `∗NR4x Pt. So, by reasoning

as follows,

1 /s.t.u/ from Γ′

2 /P → Q/s from Γ′

3 Pt from Γ′

4 Qu 1-3 →E

Γ′ `∗NR4x Qu; then Γ′ is inconsistent. Suppose (b); then Γ′ `∗NR4x

P u but Γ′ 6`∗NR4x Qt; from the latter, by s-maximality Γ′ `∗NR4x
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¬Qt; so Γ′ `∗NR4x
/s.t.u/, Γ′ `∗NR4x

/P → Q/s, and Γ′ `∗NR4x P u.
So, by reasoning as follows,

1 /s.t.u/ from Γ′

2 /P → Q/s from Γ′

3 Pu from Γ′

4 Qt 1-3 →E

so Γ′ `∗NR4x Qt; so Γ′ is inconsistent. In either case, then, Γ′

is inconsistent. This is impossible; reject the assumption: if
Γ′ `∗NR4x

/A/s then hws(/A/) = 1.

So hws(/A/) = 1 iff Γ′ `∗NR4x
/A/s.

(�) /A/s is /�P /s. (i) Suppose hws(/A/) = 1 but Γ′ 6`∗NR4x
/A/s;

then hws(/�P /) = 1, but Γ′ 6`∗NR4x
/�P /s. From the latter, by

s-maximality, Γ′ `∗NR4x
\¬�P \s; so, since Γ′ is a scapegoat set

for �, there is some y such that Γ′ `∗NR4x s.y and Γ′ `∗NR4x
/¬P /y;

from the former of these, by construction, 〈ws, wy〉 ∈ M ;
and from the latter, by consistency, Γ′ 6`∗NR4x

/P /y; so by
assumption, hwy(/P /) = 0; but wsMwy; so by HR4x(�),
hws(/�P /) = 0. This is impossible; reject the assumption:
if hws(/A/) = 1, then Γ′ `∗NR4x

/A/s.

(ii) Suppose Γ′ `∗NR4x
/A/s but hws(/A/) = 0; then Γ′ `∗NR4x

/�P /s but hws(/�P /) = 0. From the latter, by HR4x(�), there
is some wt ∈ W such that wsMwt and hwt(/P /) = 0; so by
assumption, Γ′ 6`∗NR4x

/P /t; but since wsMwt, by construction,
Γ′ `∗NR4x s.t; so by (�E), Γ′ `∗NR4x

/P /t. This is impossible; reject
the assumption: if Γ′ ǸR4x

/A/s then hws(/A/) = 1.

So hws(/A/) = 1 iff Γ′ `∗NR4x
/A/s.

———
For any As, hws(/A/) = 1 iff Γ′ `∗NR4x

/A/s.

L9.9 If Γ0 is consistent, then 〈W,M,N,N,R,R,�, h〉 constructed as above
is an R4x interpretation.

For this, we need to show that the interpretation meets the con-
straints for NC and � along with C9/C10, C11, C12, CL and MC,
CM, ρ, σ and τ .

Suppose Γ0 is consistent. By L9.7, Γ′ is a scapegoat set for C9/C10,
C11, C12 and CM.

(NC) Suppose ws ∈ /N/; then by construction Γ′ `∗NR4x
/n/[s]. (i)

Suppose ws/R/wtwu; then by construction Γ′ `∗NR4x
/s.t.u/; so
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by NE, Γ′ `∗NR4x t ' u; so by construction wt = wu. (ii)
Suppose wt = wu; then by construction, Γ′ `∗NR4x t ' u; so by
NE, Γ′ `∗NR4x

/s.t.u/; so by construction, ws/R/wtwu.

(≤) Suppose 〈ws, wt〉 ∈ ≤; then Γ′ `∗NR4x s ≤ t. (i) Suppose
hws(p) = 1; then by construction, Γ′ `∗NR4x ps; so by ≤E,
Γ′ `∗NR4x pt; so by construction hwt(p) = 1. Suppose hwt(p) = 1;
then by construction Γ′ `∗NR4x pt; then,

1 s ≤ t from Γ′

2 pt from Γ′

3 ¬ps A (g ¬E)

4 ¬pt 1,3 ≤E

5 pt 2 R

6 ps 3-5 ¬E

Γ′ `∗NR4x ps; so by construction, hws(p) = 1. (ii) Suppose
wtRwxwy and ws 6∈ N ; then by construction Γ′ `∗NR4x t.x.y
and Γ′ 6`∗NR4x n(s) so that by s-maximality (with the washed out
overline for this expression) Γ′ `∗NR4x ¬n(s); so by ≤RE, Γ′ `∗NR4x

s.x.y; so by construction, wsRwxwy. Suppose wtRwxwy and
ws ∈ N ; then by construction Γ′ `∗NR4x t.x.y and Γ′ `∗NR4x n(s);
so by ≤RE, Γ′ `∗NR4x x ≤ y; so by construction, 〈wx, wy〉 ∈
≤. (iii) Suppose wsRwxwy and wt 6∈ N ; then by construc-
tion Γ′ `∗NR4x s.x.y and Γ′ 6`∗NR4x n(t) so that by s-maximality,
Γ′ `∗NR4x ¬n(t); so by ≤RE, Γ′ `∗NR4x t.x.y; so by construction,
wtRwxwy. Suppose wsRwxwy and wt ∈ N ; then by construc-
tion Γ′ `∗NR4x s.x.y and Γ′ `∗NR4x n(t); so by ≤RE, Γ′ `∗NR4x x ≤ y;
so by construction, 〈wx, wy〉 ∈ ≤.

(≤∗)
(≤])

(C9/C10) (i) Suppose there is a wu such that 〈ws, wt, wu〉 ∈ /R/ and
〈wu, wv, ww〉 ∈ R; then by construction, Γ′ `∗NR4x

/s.t.u/ and
Γ′ `∗NR4x u.v.w; so, since Γ′ is a C9/C10 scapegoat set, there is
a y such that Γ′ `∗NR4x t.v.y and Γ′ `∗NR4x

/s.y.w/, and there is a
z such that Γ′ `∗NR4x t.z.w and Γ′ `∗NR4x

/s.v.z/; so by construc-
tion, 〈wt, wv, wy〉 ∈ R, 〈ws, wy, ww〉 ∈ /R/, 〈wt, wz, ww〉 ∈ R
and 〈ws, wv, wz〉 ∈ /R/. (ii) Suppose there is a wu such that
〈ws, wu, wt〉 ∈ /R/ and 〈wu, wv, ww〉 ∈ R; then by construc-
tion, Γ′ `∗NR4x

/s.u.t/ and Γ′ `∗NR4x u.v.w; so, since Γ′ is a
C9/C10 scapegoat set, there is a y such that Γ′ `∗NR4x t.v.y
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and Γ′ `∗NR4x
/s.y.w/, and there is a z such that Γ′ `∗NR4x t.z.w

and Γ′ `∗NR4x
/s.v.z/; so by construction, 〈wt, wv, wy〉 ∈ R,

〈ws, wy, ww〉 ∈ /R/, 〈wt, wz, ww〉 ∈ R and 〈ws, wv, wz〉 ∈ /R/.
So C9 and C10 are satisfied.

(C11)

(C12)

(CL) (i) Suppose ws ∈ /N/; then by construction Γ′ `∗NR4x
/n/(s);

so by CL, Γ′ `∗NR4x
\n\(s); so by construction, ws ∈ \N\. (ii)

Suppose ws ∈ N ; then by construction, Γ′ `∗NR4x
/n/(s). Sup-

pose hws(/p/) = 1; then by construction Γ′ `∗NR4x
/p/s; so by

CL, Γ′ `∗NR4x
\p\s; so by construction hws(\p\) = 1. Suppose

hws(/p/) = 0; then by construction Γ′ 6`∗NR4x
/p/s; so by s-

maximality, Γ′ `∗NR4x
\¬p\s; so by CL, Γ′ `∗NR4x

/¬p/s; and with
consistency, Γ′ 6`∗NR4x

\p\s; and by construction, hws(\p\) = 0.

(MC)

(CM) (i) Suppose ws � wt and wtMwu; then by construction, Γ′ `∗NR4x

s � t and Γ′ `∗NR4x t.u; so since Γ′ is a scapegoat set for CM,
there is a y such that Γ′ `∗NR4x y � u and Γ′ `∗NR4x s.y; so by
construction 〈wy, wu〉 ∈ � and 〈ws, wy〉 ∈ M . (ii) Suppose
ws � wt and wsMwu; then by construction, Γ′ `∗NR4x s � t and
Γ′ `∗NR4x s.u; so since Γ′ is a scapegoat set for CM, there is a
y such that Γ′ `∗NR4x u � y and Γ′ `∗NR4x t.y; so by construction
〈wu, wy〉 ∈ � and 〈wt, wy〉 ∈M .

(ρ)

(σ)

(τ)

Map For any ws ∈W , set m(s) = ws; otherwise m(s) is arbitrary.

L9.10 If Γ0 is consistent, then hm(Γ0) = 1.

Reasoning parallel to L2.10 and L6.9.

Main result: Suppose Γ |=R4x A but Γ 6 ǸR4x A. Then Γ0 |=∗R4x A0 but
Γ0 6`∗NR4x A0. By (DN), if Γ0 `∗NR4x ¬¬A0, then Γ0 `∗NR4x A0; so Γ0 6`∗NR4x ¬¬A0;
so by L9.2, Γ0 ∪ {¬A0} is consistent; so by L9.9 and L9.10, there is an
R4x interpretation 〈W,M,N,N,R,R,�, h〉 constructed as above such that
hm(Γ0 ∪ {¬A0}) = 1; so hm(0)(¬A) = 1; so by HR4(¬), hm(0)(A) = 0; so
hm(Γ0) = 1 and hm(0)(A) = 0; so by VR4x*, Γ0 6|=∗R4x A0. This is impossible;
reject the assumption: if Γ |=R4x A, then Γ ǸR4x A.
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10 Many-Valued Modal Logics: KLx (appendix)

This section is developed again in terms as for section 7. This smooths
presentation, and applies to Priest as before.

10.1 Language / Semantic Notions

LKL The vocabulary consists of propositional parameters p0, p1 . . . with
the operators ¬, ∧, ∨, �, and ♦. Each propositional parameter is a
formula; if A and B are formulas, so are ¬A, (A∧B), (A∨B), �A,
and ♦A. A ⊃ B abbreviates ¬A ∨B. If A is a formula so formed, so
is A.

Let /A/ and \A\ represent either A or A where what is represented
is constant in a given context, but /A/ and \A\ are opposite.

IKL An interpretation is 〈W,R, h〉 where W is a set of worlds; R ⊆
R2 is a modal access relation; and hw(/p/) = 0 or hw(/p/) = 1.
Optionally interpretations are subject to,

exc for no p are both hw(p) = 1 and hw(p) = 0

exh for any p either hw(p) = 1 or hw(p) = 0

ρ Reflexivity: for all x, xMx.

σ Symmetry: for all x, y if xMy then yMx.

τ Transitivity: for all x, y, z if xMy and yMz then xMz.

We get KLP with exh, and KK3 with exc. KFDE has neither of these
constraints. We recover classical K with both. These logics may add
ρ, σ and τ in the natural way.

HKL For complex expressions,

(¬) hw(/¬P /) = 1 iff hw(\P \) = 0

(∧) hw(/P ∧Q/) = 1 iff hw(/P /) = 1 and hw(/Q/) = 1

(∨) hw(/P ∨Q/) = 1 iff hw(/P /) = 1 or hw(/Q/) = 1

(�) hw(/�P /) = 1 iff there is no x ∈ W such that wMx and
hx(/P /) = 0

(♦) hw(/♦P /) = 1 iff there is some x ∈ W such that wMx and
hx(/P /) = 1
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For a set Γ of formulas, hw(Γ) = 1 iff hw(/P /) = 1 for each /P / ∈ Γ; then,

VKL Γ |=KLx P iff there is no KLx interpretation 〈W,R, h〉 and w such that
hw(Γ) = 1 but hw(P ) = 0.

10.2 Natural Derivations: NKL

Derivations combine methods from modal and multi-valued logics in the
natural way. Allow subscripts to indicate worlds. (D) corresponds to exc
and (U) to exh.

D Ps

P s

R /P /s

/P /s

¬I /P /s

//Q//t
\\¬Q\\t
\¬P \s

¬E /¬P /s

//Q//t
\\¬Q\\t
\P \s

U P s

Ps

∧I /P /s
/Q/s

/P ∧Q/s

∧E /P ∧Q/s

/P /s

∧E /P ∧Q/s

/Q/s

∨I /P /s

/P ∨Q/s

∨I /P /s

/Q ∨ P /s

⊃I /P /s

\Q\s
\P ⊃ Q\s

⊃E \P ⊃ Q\s
/P /s

\Q\s

∨E /P ∨Q/s
/P /s

//R//t

/Q/s

//R//t
//R//t

AMρ

s.s

AMσ s.t

t.s

AMτ s.t

t.u

s.u

�I s.t

/P /t
/�P /s

where t does not appear in
any undischarged premise
or assumption

�E /�P /s
s.t

/P /t

♦I /P /t
s.t

/♦P /s

♦E /♦P /s
s.t
/P /t

//Q//u
//Q//u

where t does not appear in
any undischarged premise
or assumption and is not u
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Every subscript is 0, appears in a premise, or in the t place of an assump-
tion for �I or ♦E. Where the members of Γ and A are without overlines or
subscripts, let Γ0 be the members of Γ, each with subscript 0. Then,

NKL Γ ǸKLx
A iff there is an NKLx derivation of A0 from Γ0.

We allow standard two-way derived rules (including MN) with overlines
and subscripts constant throughout. MT, NB and DS appear in the forms,

MT /P ⊃ Q/s
\¬Q\s

/¬P /s

NB /P ≡ Q/s /P ≡ Q/s
\¬P \s \¬Q\s

/¬Q/s /¬P /s

DS /P ∨Q/s /P ∨Q/s
\¬P \s \¬Q\s

/Q/s /P /s

Examples. The first couple cases are matched to show an equivalent result
by different means.

�A ∧ ¬�B ǸKFDE
♦(A ∧ ¬B)

1 (�A ∧ ¬B)0 P

2 �A0 1 ∧E

3 ¬�B0 1 ∧E

4 ♦¬B0 3 MN

5 0.1 A (g 4♦E)

6 ¬B1

7 A1 2,5 �E

8 (A ∧ ¬B)1 7,6 ∧I

9 ♦(A ∧ ¬B)0 5,8 ♦I

10 ♦(A ∧ ¬B)0 4,5-9 ♦E

�A ∧ ¬�B ǸKFDE
¬�¬(A ∧ ¬B)

1 (�A ∧ ¬�B)0 P

2 �A0 1 ∧E

3 �¬(A ∧ ¬B)0 A (c, ¬I)

4 0.1 A (g, �I)

5 ¬B1 A (c, ¬E)

6 A1 2,4 �E

7 (A ∧ ¬B)1 6,5 ∧I

8 ¬(A ∧ ¬B) 3 �E

9 B1 5-8 ¬E

10 �B0 5-9 �I

11 ¬�B0 1 ∧E

12 ¬�¬(A ∧ ¬B)0 3-11 ¬I
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�A ǸKLPτ
��A

1 �A0 A (g, ⊃I)

2 0.1 A (g, �I)

3 1.2 A (g, �I)

4 0.2 2,3 AMτ

5 A2 1,4 �E

6 A2 5 U

7 �A1 3-6 �I

8 ��A0 2-7 �I

9 (�A ⊃ ��A)0 1-8 ⊃I

�(♦A ⊃ B) ǸKFDEστ
�(A ⊃ �B)

1 �(♦A ⊃ B)0 P

2 0.1 A (g, �I)

3 A1 A (g, ⊃I)

4 1.2 A (g, �I)

5 2.1 4 AMσ

6 ♦A2 3,5 ♦I

7 0.2 2,5 AMτ

8 (♦A ⊃ B)2 1,7 �E

9 B2 8,6 ⊃E

10 �B1 4-9 �I

11 (A ⊃ �B)1 3-10 ⊃I

12 �(A ⊃ �B)0 2-11 �I

10.3 Soundness and Completeness

Preliminaries: Begin with generalized notions of validity. For a model
〈W,R, h〉, let m be a map from subscripts into W . Then say 〈W,R, h〉m
is 〈W,R, h〉 with map m. Then, where Γ is a set of expressions of our lan-
guage for derivations, hm(Γ) = 1 iff for each /As/ ∈ Γ, hm(s)(/A/) = 1, and
for each s.t ∈ Γ, 〈m(s),m(t)〉 ∈ R. Now expand notions of validity for sub-
scripts, overlines, and alternate expressions as indicated in double brackets
as follows,

VKL* Γ |=∗KLx /A/s [[s.t]] iff there is no KLx interpretation 〈W,R, h〉m such
that hm(Γ) = 1 but hm(s)(/A/) = 0 [[〈m(s),m(t)〉 6∈ R]].

NKL* Γ ǸKLx
∗]/A/s [[s.t]] iff there is an NKLx derivation of /A/s [[s.t]] from

the members of Γ.
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These notions reduce to the standard ones when all the members of Γ and A
are without overlines and have subscript 0 (and so do not include expressions
of the sort s.t). As usual, for the following, cases omitted are like ones
worked, and so left to the reader.

Theorem 10.1 NKL is sound: If Γ ǸKLx
A then Γ |=KLx A.

L10.1 If Γ ⊆ Γ′ and Γ |=∗KLx /P /s [[s.t]] then Γ′ |=∗KLx /P /s [[s.t]].

Suppose Γ ⊆ Γ′ and Γ |=∗KLx /P /s [[s.t]], but Γ′ 6|=∗KLx /P /s [[s.t]]. From
the latter, by VKL*, there is some KLx interpretation 〈W,R, h〉m such
that hm(Γ′) = 1 but hm(s)(/P /) = 0 [[〈m(s),m(t)〉 6∈ R]]. But since
hm(Γ′) = 1 and Γ ⊆ Γ′, hm(Γ) = 1; so hm(Γ) = 1 but hm(s)(/P /) = 0
[[〈m(s),m(t)〉 6∈ R]]; so by VKL*, Γ 6|=∗KLx /P /s [[s.t]]. This is impos-
sible; reject the assumption: if Γ ⊆ Γ′ and Γ |=∗KLx /P /s [[s.t]], then
Γ′ |=∗KLx /P /s [[s.t]].

Main result: For each line in a derivation let Pi be the expression on line i
and Γi be the set of all premises and assumptions whose scope includes line
i. We set out to show “generalized” soundness: if Γ `∗NKLx P then Γ |=∗KLx P.
As above, this reduces to the standard result when P and all the members
of Γ are without overlines and have subscript 0. Suppose Γ `∗NKLx P. Then
there is a derivation of P from premises in Γ where P appears under the
scope of the premises alone. By induction on line number of this derivation,
we show that for each line i of this derivation, Γi |=∗KLx Pi. The case when
Pi = P is the desired result.

Basis: P1 is a premise or an assumption /A/s [[s.t]]. Then Γ1 = {/A/s}
[[{s.t}]]; so for any 〈W,R, h〉m, hm(Γ1) = 1 iff hm(s)(/A/) = 1 [[〈m(s),m(t)〉 ∈
R]]; so there is no 〈W,R, h〉m such that hm(Γ1) = 1 but hm(s)(/A/) = 0
[[〈m(s),m(t)〉 6∈ R]]. So by VKL*, Γ1 |=∗KLx /A/s [[s.t]], where this is
just to say, Γ1 |=∗KLx P1.

Assp: For any i, 1 ≤ i < k,Γi |=∗KLx Pi.

Show: Γk |=∗KLx Pk.

Pk is either a premise, an assumption, or arises from previous lines by
R, ∧I, ∧E, ∨I, ∨E, ¬I, ¬E, �I, �E, ♦I, ♦E or, depending on the system,
AMρ, AMσ, AMτ , D, or U. If Pk is a premise or an assumption, then
as in the basis, Γk |=∗KLx Pk. So suppose Pk arises by one of the rules.

(R)
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(∧I)

(∧E)

(∨I)

(∨E)

(¬I)

(¬E)

(�I) If Pk arises by �I, then the picture is like this,

s.t

j /A/t

k /�A/s

where j < k, t does not appear in any member of Γk (in any undis-
charged premise or assumption), and Pk is /�A/s. By assumption,
Γj |=∗KLx /A/t; but by the nature of access, Γj ⊆ Γk ∪ {s.t}; so by
L10.1, Γk ∪ {s.t} |=∗KLx /A/t. Suppose Γk 6|=∗KLx /�A/s; then by VKL*,
there is some KLx interpretation 〈W,R, h〉m such that hm(Γk) = 1
but hm(s)(/�A/) = 0; so by HKL(�), there is some w ∈ W such
that m(s)Rw and hw(/A/) = 0. Now consider a map m′ like m
except that m′(t) = w, and consider 〈W,R, h〉m′ ; since t does not
appear in Γk, it remains that hm′(Γk) = 1; and since m′(t) = w
and m′(s) = m(s), 〈m′(s),m′(t)〉 ∈ R; so hm′(Γk ∪ {s.t}) = 1; so
by VKL*, hm′(t)(/A/) = 1. But m′(t) = w; so hw(/A/) = 1. This
is impossible; reject the assumption: Γk |=∗KLx /�A/s, which is to say,
Γk |=∗KLx Pk.

(�E) If Pk arises by �E, then the picture is like this,

i /�A/s
j s.t

k /A/t

where i, j < k and Pk is /A/t. By assumption, Γi |=∗KLx /�A/s and
Γj |=∗KLx s.t; but by the nature of access, Γi ⊆ Γk and Γj ⊆ Γk; so
by L10.1, Γk |=∗KLx /�A/s and Γk |=∗KLx s.t. Suppose Γk 6|=∗KLx /A/t;
then by VKL*, there is some KLx interpretation 〈W,R, h〉m such
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that hm(Γk) = 1 but hm(t)(/A/) = 0; since hm(Γk) = 1, by VKL*,
hm(s)(/�A/) = 1 and 〈m(s),m(t)〉 ∈ R; from the first of these, by
HKL(�), any w such that m(s)Rw has hw(/A/) = 1; so hm(t)(/A/) =
1. This is impossible; reject the assumption: Γk |=∗KLx /A/t, which is
to say, Γk |=∗KLx Pk.

(♦I)

(♦E) If Pk arises by ♦E, then the picture is like this,

i /♦A/s
s.t
/A/t

j //B//u

k //B//u

where i, j < k, t does not appear in any member of Γk (in any
undischarged premise or assumption) and is not u, and Pk is //B//u.
By assumption, Γi |=∗KLx /♦A/s and Γj |=∗KLx //B//u; but by the na-
ture of access, Γi ⊆ Γk and Γj ⊆ Γk ∪ {s.t, /A/t}; so by L10.1,
Γk |=∗KLx /♦A/s and Γk∪{s.t, /A/t} |=∗KLx //B//u. Suppose Γk 6|=∗KLx //B//u;
then by VKL*, there is some KLx interpretation 〈W,R, h〉m such
that hm(Γk) = 1 but hm(u)(//B//) = 0; since hm(Γk) = 1, by VKL*,
hm(s)(/♦A/) = 1; so by HKL(♦), there is some w ∈ W such that
m(s)Rw and hw(/A/) = 1. Now consider a map m′ like m except that
m′(t) = w, and consider 〈W,R, h〉m′ ; since t does not appear in Γk,
it remains that hm′(Γk) = 1; and since m′(s) = m(s) and m′(t) = w,
hm′(t)(/A/) = 1 and 〈m′(s),m′(t)〉 ∈ R; so hm′(Γk ∪ {s.t, /A/t}) = 1;
so by VKL*, hm′(u)(//B//) = 1. But since t 6= u, m′(u) = m(u); so
hm(u)(//B//) = 1. This is impossible; reject the assumption: Γk |=∗KLx
//B//u, which is to say, Γk |=∗KLx Pk.

(AMρ)

(AMσ)

(AMτ)

(D) If Pk arises by D, then the picture is like this,

i As

k As
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where i < k and Pk is As. Where this rule is included in NKL,
KLx has condition exc, so no interpretation has hx(p) = {1, 0}. By
assumption, Γi |=∗KLx As; but by the nature of access, Γi ⊆ Γk; so

by L10.1a, Γk |=∗KLx As. Suppose Γk 6|=∗KLx As; then by VKL*, there
is some KLx interpretation 〈W,R, h〉m such that hm(Γk) = 1 but
hm(s)(A) = 0; since h(Γk) = 1, by VKL*, hm(s)(A) = 1. But for
these interpretations, for any A and any x ∈ W , if hx(A) = 1 then
hx(A) = 1.

Basis: A is a parameter p. Suppose hx(A) = 1; then hx(p) = 1; so
1 ∈ hx(p); so by exc, 0 6∈ hx(p); so hx(p) = 1; so hx(A) = 1.

Assp: For any i, 0 ≤ i < k, if A has i operators, and hx(A) = 1, then
hx(A) = 1.

Show: If A has k operators, and hx(A) = 1, then hx(A) = 1.

If A has k operators, then A is of the form, ¬P , P ∧Q, P ∨Q,
�P , or ♦P , where P and Q have < k operators.

(¬) A is ¬P . Suppose hx(A) = 1; then hx(¬P ) = 1; so by HKL(¬),
hx(P ) = 0; so by assumption, hx(P ) = 0; so by HKL(¬),
hx(¬P ) = 1, which is to say, hx(A) = 1.

(∧) A is P ∧ Q. Suppose hx(A) = 1; then hx(P ∧ Q) = 1; so
by HKL(∧), hx(P ) = 1 and hx(Q) = 1; so by assumption,
hx(P ) = 1 and hx(Q) = 1; so by HKL(∧), hx(P ∧Q) = 1,
which is to say hx(A) = 1.

(∨)

(�) A is �P . Suppose hx(A) = 1; then hx(�P ) = 1; so by HKL(�),
any w ∈W such that xRw has hw(P ) = 1; so by assumption,
any w ∈ W such that xRw has hw(P ) = 1; so by HKL(�),
hx(�P ) = 1, which is to say, hx(A) = 1.

(♦)
———
For any A and any x ∈W , if hx(A) = 1, then hx(A) = 1.

So, returning to the case for (D), hm(s)(A) = 1. This is impossible;

reject the assumption: Γk |=∗KLx A, which is to say, Γk |=∗KLx Pk.

(U)

———
For any i, Γi |=∗KLx Pi.
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Theorem 10.2 NKL is complete: if Γ |=KLx A then Γ ǸKLx
A.

Suppose Γ |=KLx A; then Γ0 |=∗KLx A0; we show that Γ0 `∗NKLx A0. As usual,
this reduces to the standard notion. For the following, fix on some particular
KLx. Then definitions of consistency etc. are relative to it.

Con Γ is consistent iff there is no As such that Γ `∗NKLx /A/s and Γ `∗NKLx
\¬A\s.

L10.2 If s is 0 or appears in Γ, and Γ 6`∗NKLx \¬P \s, then Γ ∪ {/P /s} is
consistent.

Reasoning as in L7.2.

L10.3 There is an enumeration of all the subscripted formulas, P1 P2 . . .
with access relations s.t.

Proof by construction as usual.

Max Γ is s-maximal iff for any As either Γ `∗NKLx /A/s or Γ `∗NKLx \¬A\s.

Sgt Γ is a scapegoat set iff for every formula of the form /¬�A/s, if
Γ `∗NKLx /¬�A/s then there is some t such that Γ `∗NKLx s.t and Γ `∗NKLx
/¬A/t.

C(Γ′) For Γ with unsubscripted formulas and the corresponding Γ0, we con-
struct Γ′ as follows. Set Ω0 = Γ0. By L10.3, there is an enumeration,
P1,P2 . . . of all the formulas, together with all the access relations s.t;
let E0 be this enumeration. Then for the first expression P in Ei−1
such that all its subscripts are 0 or introduced in Ωi−1, let Ei be like
Ei−1 but without P, and set,

Ωi = Ωi−1 if Ωi−1 `∗NKLx \¬A\s
Ωi∗ = Ωi−1 ∪ {/A/s} if Ωi−1 6`∗NKLx \¬A\s

and
Ωi = Ωi∗ if /A/s is not of the form /¬�P /s

Ωi = Ωi∗ ∪ {s.t, /¬P /t} if /A/s is of the form /¬�P /s

-where t is the first subscript not included in Ωi∗

then
Γ′ =

⋃
i≥0 Ωi

Note that there is always sure to be a subscript t not in Ωi∗ insofar
as there are infinitely many subscripts, and at any stage only finitely
many formulas are added – the only subscripts in the initial Ω0 being
0. Suppose s appears in Γ′; then there is some Ωi in which it is first
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appears; and any formula Pj in the original enumeration that has
subscript s is sure to be “considered” for inclusion at a subsequent
stage.

L10.4 For any s included in Γ′, Γ′ is s-maximal.

Reasoning as in L7.4.

L10.5 If Γ0 is consistent, then each Ωi is consistent.

Suppose Γ0 is consistent.

Basis: Ω0 = Γ0 and Γ0 is consistent; so Ω0 is consistent.

Assp: For any i, 0 ≤ i < k, Ωi is consistent.

Show: Ωk is consistent.

Ωk is either (i) Ωk−1, or (ii) Ωk∗ = Ωk−1 ∪ {/A/s} or (iii)
Ωk∗ ∪ {s.t, /¬P /t}.

(i) Suppose Ωk is Ωk−1. By assumption, Ωk−1 is consistent; so Ωk

is consistent.

(ii) Suppose Ωk is Ωk∗ = Ωk−1∪{/A/s}. Then by construction, s is
0 or in Ωk−1 and Ωk−1 6`∗NKLx \¬A\s; so by L10.2, Ωk−1∪{/A/s}
is consistent; so Ωk is consistent.

(iii) Suppose Ωk is Ωk∗ ∪ {s.t, /¬P /t}. In this case, as above, Ωk∗
is consistent and by construction, /¬�P /s ∈ Ωk∗ . Suppose Ωk

is inconsistent. Then there are //A//u and \\¬A\\u such that
Ωk∗ ∪ {s.t, /¬P /t} `∗NKLx //A//u and Ωk∗ ∪ {s.t, /¬P /t} `∗NKLx
\\¬A\\u. So reason as follows,

1 Ωk∗

2 s.t A (g, �I)

3 /¬P /t A (c, ¬E)

4 //A//u from Ωk∗ ∪ {s.t, /¬P /t}
5 \\¬A\\u from Ωk∗ ∪ {s.t, /¬P /t}
6 \P \t 3-5 ¬E

7 \�P \s 2-6 �I

where, by construction, t is not in Ωk∗ . So Ωk∗ `∗NKLx \�P \s;
but /¬�P /s ∈ Ωk∗ ; so Ωk∗ `∗NKLx /¬�P /s; so Ωk∗ is inconsistent.
This is impossible; reject the assumption: Ωk is consistent.

———
For any i, Ωi is consistent.
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L10.6 If Γ0 is consistent, then Γ′ is consistent.

Reasoning parallel to L2.6 and L6.6.

L10.7 If Γ0 is consistent, then Γ′ is a scapegoat set.

Suppose Γ0 is consistent and Γ′ `∗NKLx /¬�P /s. By L10.6, Γ′ is consis-
tent; and by the constraints on subscripts, s is included in Γ′. Since Γ′

is consistent, Γ′ 6`∗NKLx \¬¬�P \s; so there is a stage in the construction
process where Ωi∗ = Ωi−1 ∪ {/¬�P /s} and Ωi = Ωi∗ ∪ {s.t, /¬P /t};
so by construction, s.t ∈ Γ′ and /¬P /t ∈ Γ′; so Γ′ `∗NKLx s.t and
Γ′ `∗NKLx /¬P /t. So Γ′ is a scapegoat set.

C(I) We construct an interpretation I = 〈W,R, h〉 based on Γ′ as follows.
Let W have a member ws corresponding to each subscript s included
in Γ′. Then set 〈ws, wt〉 ∈ R iff Γ′ `∗NKLx s.t and hws(/p/) = 1 iff
Γ′ `∗NKLx /p/s.

L10.8 If Γ0 is consistent then for 〈W,R, h〉 constructed as above, and for
any s included in Γ′, hws(/A/) = 1 iff Γ′ `∗NKLx /A/s.

Suppose Γ0 is consistent and s is included in Γ′. By L10.4, Γ′ is
s-maximal. By L10.6 and L10.7, Γ′ is consistent and a scapegoat
set. Now by induction on the number of operators in /A/s,

Basis: If /A/s has no operators, then it is a parameter /p/s and by
construction, hws(/p/) = 1 iff Γ′ `∗NKLx /p/s. So hws(/A/) = 1
iff Γ′ `∗NKLx /A/s.

Assp: For any i, 0 ≤ i < k, if /A/s has i operators, then hws(/A/) = 1
iff Γ′ `∗NKLx /A/s.

Show: If /A/s has k operators, then hws(/A/) = 1 iff Γ′ `∗NKLx /A/s.

If /A/s has k operators, then it is of the form /¬P /s, /P ∧Q/s,
/P ∨Q/s, /�P /s, or /♦P /s, where P and Q have < k operators.

(¬)

(∧)

(∨)

(�) /A/s is /�P /s. (i) Suppose hws(/A/) = 1 but Γ′ 6`∗NKLx /A/s;
then hws(/�P /) = 1 but Γ′ 6`∗NKLx /�P /s. From the latter, by
s-maximality, Γ′ `∗NKLx \¬�P \s; so, since Γ′ is a scapegoat set,
there is some t such that Γ′ `∗NKLx s.t and Γ′ `∗NKLx /¬P /t; from
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the first, by construction, 〈ws, wt〉 ∈ R; and from the second,
by consistency, Γ′ 6`∗NKLx /P /t; so by assumption, hwt(/P /) = 0;
but wsRwt; so by HKL(�), hws(/�P /) = 0. This is impossible;
reject the assumption: if hws(/A/) = 1, then Γ′ `∗NKLx /A/s.

(ii) Suppose Γ′ `∗NKLx /A/s but hws(/A/) = 0; then Γ′ `∗NKLx
/�P /s but hws(/�P /) = 0. From the latter, by HKL(�), there
is some wt ∈ W such that wsRwt and hwt(/P /) = 0; so by
assumption, Γ′ 6`∗NKLx /P /t; but since wsRwt, by construction,
Γ′ `∗NKLx s.t; so by (�E), Γ′ `∗NKLx /P /t. This is impossible;
reject the assumption: if Γ′ ǸKLx

/A/s then hws(/A/) = 1. So
hws(/A/) = 1 iff Γ′ `∗NKLx /A/s.

(♦)

———
For any As, hws(/A/) = 1 iff Γ′ `∗NKLx /A/s.

L10.9 If Γ0 is consistent, then 〈W,R, h〉 constructed as above is an KLx
interpretation.

Reasoning parallel to L7.9a.

Map For any ws ∈W , set m(s) = ws; otherwise m(s) is arbitrary.

L10.10 If Γ0 is consistent, then hm(Γ0) = 1.

Reasoning parallel to L2.10 and L6.9.

Main result: Suppose Γ |=KLx A but Γ 6 ǸKLx A. Then Γ0 |=∗KLx A0 but
Γ0 6`∗NKLx A0. By (DN), if Γ0 `∗NKLx ¬¬A0, then Γ0 `∗NKLx A0; so Γ0 6 ǸKLx
∗]¬¬A0; so by L10.2, Γ0 ∪ {¬A0} is consistent; so by L10.9 and L10.10,
there is an KLx interpretation 〈W,R, h〉m constructed as above such that
hm(Γ0 ∪ {¬A0}) = 1; so hm(0)(¬A) = 1; so by HKL(¬), hm(0)(A) = 0; so
hm(Γ0) = 1 and hm(0)(A) = 0; so by VKL*, Γ0 6|=∗KLx A0. This is impossible;
reject the assumption: if Γ |=KLx A, then Γ ǸKLx

A.
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