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Abstract: Involving as it does impossible worlds and the like, the

Routley-Meyer worlds semantics for relevant logic has seemed unmo-

tivated to some. I set a version of relevant semantics in a context

to make sense of its different elements. Suppose a view which makes

room for structured properties — or related entities which combine in

arbitrary ways to form structured ones. Then it may seem natural to

say entailment supervenes upon the structures, so that P entails Q

just when part of the condition for being p is being q. If P stands in

this relation to Q, a result is that there is no possible world where P

but not Q, so that P classically entails Q. But the conditions are not

equivalent. For all possible worlds, but not all properties, are maximal

and consistent. I suggest that relevant semantics is naturally seen as

modeling entailment grounded in property structure and makes sense

insofar as it reflects this fundamental and intuitive notion.

1 Introduction

Against classical logic, relevant logics are typically motivated by syntacti-

cal examples, and the sorts of examples used to motivate relevant vis-à-vis

classical logics are well known. There are the paradoxes of material and

∗Thanks for helpful comments to Graham Priest. . .
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strict implication, that p ⊃ (q ⊃ p), ¬q ⊃ (q ⊃ p), �p −3 (q −3 p) and

�¬q −3 (q −3 p). There are the (related) principles that from a contradiction

anything follows, and that a theorem follows from anything. At bottom

these are because p ⊃ q is equivalent to ¬p ∨ q and it is possible to have

p ⊃ q when p is independent of q. There are also particular cases intended to

appeal to intuition. The following seem like cases that could be encountered

in an introductory logic or philosophy text (these are based on ones from

Routley et al., 1982, 6).

It is not the case that, if this road goes from Chicago to LA then

we will reach our destination. So this road goes from Chicago to

LA.

If Bob is a rational animal then Bob is human. So if Bob is

rational then Bob is human, or if Bob is animal then Bob is

human.

Prima facie, in each case, the premise can be true and the conclusion not.

Suppose our destination is Boston; then if this road goes from Chicago to

LA we will not reach our destination; and similarly if it goes from Chicago

to Seattle we will not reach our destination — either way it is not the case

that if the road goes from Chicago to LA we will reach our destination;

so the premise of the first argument may obtain though the conclusion is

false. And it is natural for the Aristotelian at least to deny both disjuncts

of the conclusion of the second: gods are rational but not animal and so

not human, and rabbits are animal but not rational and so not human;

so neither animality nor rationality is sufficient for humanity. If it can

be that the premises are true and the conclusion false, the arguments are

invalid. But their natural symbolizations, ¬(c ⊃ d) so c, and (r ∧ a) ⊃ h

so (r ⊃ h) ∨ (a ⊃ h) are classically valid. Again, this is because p ⊃ q

is equivalent to ¬p ∨ q. One might think problems go away with strict

implication. But this is not obviously right. At least the first argument

remains valid if we add that the general path of a road is essential to it, and

the second insofar as either rationality or animality is essential to a creature

that has it.1

1So, e.g., (r ∧ a) −3 h, a −3 �a |=S5 (r −3 h) ∨ (a −3 h). If one is bothered by the appeal

to S5, let the additional premise be ♦a ⊃ �a. This may seem no less acceptable than
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One response to such examples is to deny that anything has gone wrong:

to deny there is a problem with the paradoxes of implication, with the

principles that anything follows from a contradiction and that a theorem

follows from anything, or the arguments in the cases. Another response

is to grant the invalidity of the ordinary language arguments but to deny

that this is a problem for classical logic: in certain circumstances, ‘⊃’ and

‘−3’ do not and should not translate ‘if’; in these cases, either ‘if’ should

be translated some other way or standard classical and modal logics do not

apply; so standard classical and modal logics do not imply the arguments are

valid. The first response strikes me as implausible — at least as a response

to all the examples. The second is not so much a reason to adopt classical

logic as it is a reason to adopt a logic (perhaps including classical logic)

allowing for a natural translation of ‘if’ in a broad range of cases. Relevant

logics are supposed to be adequate to a range of argumentation to which

classical logic is not, and such logics do give the “right” results in many

cases.

But philosophers have not embraced relevant logics with open arms. Part

of the problem seems to be that as syntactical systems they come across as

mere ad hoc formulations. It is perhaps particularly difficult to adjudicate

intuitions about competing syntactical systems. And intuitions may go both

ways. So relevant systems not only block the paradoxes, but also principles

many hold dear — notoriously including disjunctive syllogism, the principle

that from P ∨Q and ¬P it follows that Q. One might have thought that, as

was arguably the case for modal logic, the provision of “worlds” semantics for

the logics would have undercut the objection. But the objection remains.

The semantics has appeared (to some) as a mere ad hoc formalism. In

particular, the Routley-Meyer worlds semantics has been attacked on the

ground that it is a mere formalism, useful from a technical point of view,

but otherwise uninteresting (see Copeland, 1979, 1983; van Benthem, 1984;

Lewis, 1982).

Consider this picture of the logical project: One begins with some do-

main of interest; expressions are “true” or “false” on members of that do-

the other, and permits the argument in K. Results are similar if we focus just on worlds

where Bob exists. And similarly with counterfactual conditionals of the sort discussed by

Stalnaker (1968) and Lewis (1973).
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main; an argument is logically valid when no member of the domain makes

the premises true and the conclusion not. Formal logic begins with some

modeling of that domain — perhaps by means of set theory. Formal ex-

pressions are true and false on models; an argument is semantically valid

when no model makes the premises true and the conclusion not. Derivation

systems introduce a syntactically defined notion of formal validity. Proofs

of soundness and completeness demonstrate that the same arguments are

formally valid as are semantically valid.

Suppose D is the original domain, M is a collection of models, and each

P from some class of expressions true or false on members of D has a formal

counterpart P ′ true or false on members of M. Then if for each d ∈ D there

is an m ∈ M such that a P is true at d iff P ′ is true at m, the situation is

as follows.

Logical Validity Semantic Validity Formal Validity� � -

If an argument is logically invalid, then there is some d ∈ D that makes

the premises true and conclusion not; but then there is an m ∈ M that

makes formal counterparts of the premises true and conclusion not; so the

corresponding formal argument is semantically invalid. Soundness and com-

pleteness guarantee that the same arguments are formally valid as are se-

mantically valid. The left-hand arrow does not go both ways, insofar as D

may be subject to constraints to which M is not, so that not every member

of M has a counterpart in D.

The picture should be familiar from the classical case, where D is a set

of worlds, M a set of models, and any world d ∈ D maps to a model m ∈M

such that a P is true at d iff P ′ is true at m. Thus if an argument is

semantically valid — if there is no model where the premises are true and

the conclusion not, then there is no world where the premises are true and

the conclusion not; so the argument is logically valid. But not every formal

model maps in this way to a world; so we have the familiar result that not

every argument logically valid is semantically valid. We are thus presented

a metaphysical picture underlying the classical notion of logical entailment,

one to which the logic is responsible. Other pictures might lead to other

logics, as intuitionistic logic, or whatever.
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From this perspective, the complaint about relevant logic concerns the

left-hand box. There are well-defined relevant derivation systems, with cor-

respondingly clear notions of formal validity. And there are structures, with

corresponding notions of semantic validity, such that an argument is for-

mally valid iff it is semantically valid on those structures. The complaint is

that the structures do not model any domain of interest. This is no problem,

if the object is to study a class of structures by means of its relation to some

syntactical derivation system, or if the object is to study a derivation system

by means of its relation to some class of structures. But, so far, the project

is like one of pure mathematics or, if you will, pure logic. Taken this way, it

is no wonder that philosophers have not embraced relevant logic as a tool for

reasoning. We make sense of relevant semantics, when we show that its se-

mantic structures are appropriately related to domains of interest. Perhaps

there is some domain or another to which the structures are appropriately

related. As indicated by examples with which we began, however, relevant

logic is supposed to capture something fundamental about entailment; so

we want to see how the structures are appropriately related to that. Prima

facie, however, there are significant obstacles to any such attempt:

(i) On the Routley-Meyer semantics, it may be that neither P nor ¬P or

both P and ¬P are true at a “world,” though disjunction and conjunction

work in the usual way. But then one wants to know why these work as usual

and the other not. Of course, there is no difficulty about the existence of

formal entities at which P and ¬P are each assigned 1 or each assigned 0. In

the ordinary case, though, we expect the formal entities to model a domain

of interest, and it is because of this relation that formal results, validity and

the like, matter. And it is not clear how worlds at which P and ¬P are

each assigned 1 or each assigned 0 model any domain of interest. Apart

from such an account, it is not suprising that the semantics based on worlds

should come across as a mere formalism.

(ii) The semantics includes a ternary relation R on the set W of worlds

such that P → Q holds at w ∈ W iff for all x, y ∈ W if wRxy and P holds

at x then Q holds at y. And various more or less unintuitive constraints are

placed on R. It is clear enough that the relation and constraints validate

principles of the relevant derivation systems. But it is less clear how they
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correspond to domains we care about. There is a familiar access relation

from modal logic for relative possibility; perhaps we understand this; and

different accounts of modal facts may suggest one access relation rather

than another — with corresponding differences in derivation systems. But

the relation from modal logic is binary, and so different from this ternary

relation for relevant semantics.

(iii) The semantics includes a unary relation ∗ on worlds such that w =

w∗∗ and ¬P holds at w iff P does not hold at w∗. But it is not clear why a

negation at one world should be determined by what is the case at another.

I do not object, as some have, that the ∗ relation is a mere formal trick.2

Once we accept worlds where expressions are, in some sense, both true and

false or neither, there has to be some specification of expressions that are

not false at w; this is just what w∗ does. But, given this, there is room to

wonder whether this work is appropriately done by other worlds. Suppose

neither Pa nor ¬Pa is false at some w (perhaps because a does not exist

there). One might resist the supposition that there is therefore a w∗ where

Pa and ¬Pa are both true. For reasons to allow that neither is false do

not automatically translate into reasons to allow that both are true. Star

does have certain formal virtues. However, I shall suggest that its formal

features disconnect it from domains that might motivate the semantics. Of

course, one might somehow constrain the ∗ relation to force an appropriate

connection. But then we will want to understand the constraint.

(iv) Finally, as for non-normal modal logic, relevant semantics identifies

certain designated “normal” world(s) at which validity is evaluated, and

at which special semantic conditions apply. Again, these are at least an

effective technical device for validating certain formulas. But it is natural

to ask how these worlds and conditions connect to things we care about.

In this paper, I set a version of relevant semantics in a context to make

sense of its different elements. The result is not a complete vindication of

all things relevant — thus, for example, I eschew the ∗ relation in favor of

2See, e.g., Copeland (1979). Early accounts of the relation do leave a lot to be desired.

Thus, e.g., we are told that “∗ is the ordinary reversal operation of turning inside out”

(with analogies to the reverse side of a gramophone record and, when w = w∗, to a Mobius

strip) Routley et al. (1982, 300), Routley (1980, 291). For a more significant account, see

Restall (1999).
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a four-valued approach, and fault certain standard constraints on R. Still,

I shall argue that the relevant approach exhibits a fundamental notion of

entailment, from the perspective of which classical and other logics may

profitably be understood. There are some technical results. In particular,

I develop the four-valued approach so as to make contact with standard

classical, modal and relevant systems (including the relevant system R),

and supply what I take to be an intuitive natural derivation system. But

this is meant to serve the main philosophical project. In section 2, I take up

the relevant system of first-degree entailment. This puts us in a position to

say something about worlds, possible and impossible. On the account I offer,

formal worlds model properties, and entailment supervenes on a domain of

properties. Negation is correspondingly developed along the lines of the

four-valued “American plan.” In section 3, I turn to relevant logics beyond

the first degree and ternary access. On the account I offer, ternary access

captures entailment just insofar as entailment is a two-place relation. In each

case, normal worlds constitute an “inner domain” of worlds which effect a

transform of results, and may be constrained to take on important features.

In the end, I suggest that relevant logic captures an important notion of

entailment, and at the same time makes room for ordinary classical logic.

Perhaps, then, we all can get along.

2 Properties, Worlds and First-Degree Entailment

I begin with discussion of properties and logical entailment. This leads to

the system of first-degree entailment from Anderson and Belnap (1975). The

first degree system is presented in two forms: there is a first version, and

then a “transform” of the results.

2.1 Properties

Consider a reasonably generic property theory. There are some basic prop-

erties akin, perhaps, to fundamental properties of physics. Other properties

are constructed from, or supervenient upon, combinations of these. A thing

instantiates a conjunction of properties when it instantiates them both, a

disjunction when it instantiates one or the other, and a negation when it
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instantiates a complement given some background class — as a thing is not

a pine when it is a cedar, an oak, or the like. Let us suppose that for any

set {being p, being q. . . } there are properties being p ∧ q ∧. . . , and

being p ∨ q ∨. . . . In addition, each being p has a negation, being ¬p.

Notice that for any being p there is being ¬p so that, given arbitrary con-

junctions, there is being p ∧ ¬p. This may seem natural, if we think of

properties as independent things subject to arbitrary combinations, and so

think of them along Platonistic lines. Of course, some properties formed

this way are not instantiable, but that does not make them properties any

the less.

Once we say this, it is apparent that the approach is incompatible with

accounts on which there are no uninstantiated properties (as Armstrong,

1997). Similarly, on our account, being p ∧ ¬p is one thing, and being q ∧
¬q is another. So the view is more fine-grained than one on which a property

is just the set of its this- and other-worldly instances (as Lewis, 1986). So

the view is not entirely generic. At the same time, with some pushing and

shoving, our purposes should be served apart from Platonism, and even

apart from the appeal to properties. So long as we retain the fine-grained

and structured picture, different versions of properties, and even competing

objects of philosophical analysis — along the lines of propositions, meanings

or the like should do as well. Depending on the objects, though, there may

be differences for the significance of entailment grounded in the structures —

and, as below, I think properties are particularly well-placed to explain why

we should care about entailment from the structures for reasoning about the

world. With this said, I simply return to the structured properties.

Given a view of this sort, it is reasonable to think that possible worlds

where a thing is P are ones where it is Q because of the way being p and

being q are. Without application to relevant logic (!) Michael Jubien makes

this point in a number of places.

It is a necessary truth that if something is red, then it is colored.

But where does this necessity come from?. . . The necessity comes

from the fact that part of what redness does in constituting some-

thing as being red is to constitute it as being colored. One way

of thinking about this (which may or may not be the way it actu-
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ally works) is to think of being colored as an integral part of

being red, a subcomplex. At any rate, being red bears a very

special relation to being colored, a relation that “supervenes”

on the intrinsic properties of the two complex entities. This re-

lation is such that anything that instantiates the first property

is thereby compelled to instantiate the second. Let’s call this

special “intrinsic” relation entailment. Jubien (1996, 119-120);

see also, Jubien (1993, 111-115), Jubien (2009, 92-94), and Roy

(1993, 2012).

Jubien speaks of property entailment. I have no problem with this. However,

it will be enough if properties are positioned so that they and their relations

are fit to function as a ground for entailment.

As Jubien suggests, the point about relations is particularly natural given

something like the structured picture from above. Given the nature of being

p ∨ q with being p and being q as parts, a thing which instantiates being

p instantiates a part of being p ∨ q which is sufficient for the instantiation

of that property; so a thing which instantiates being p thereby instantiates

being p ∨ q. And a thing which instantiates being p ∨ q thereby instan-

tiates being p or being q. Similarly a thing which instantiates being p ∧
q thereby instantiates being p and being q, and a thing which instantiates

being p and being q thereby instantiates being p ∧ q. Though it is easy

to speak this way, and I shall continue to do so, the point should not be

vacuous in the case of uninstantiable properties; the point is rather that the

condition for the instantiation of being p is included in the very condition

which must be met for the instantiation of being p ∧ q. And similarly in

other cases.

Say a set w of such properties is closed when any v ⊆ w is such that if

a thing instantiates the properties in v, then w includes also any properties

thereby instantiated by the thing. Corresponding to any such collection is

the complex property being w of having all the properties in w. Then the

instantiation conditions for any being p require that it be coinstantiated

with some closed being w of which it is a constituent. From the above, it is

natural to say of a closed being w that it has being p ∧ q as a constituent

iff it has being p and being q as constituents, and being p ∨ q as a
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constituent iff it has being p or being q as constituents.

Questions about negation are bound to be controversial. I do not propose

or defend a comprehensive theory. Rather, given the larger project, I simply

accept what I hope is a sensible picture. Perhaps our initial suggestion on

which there are some basic “positive” properties, with negations formed as

compliments against a background class, pushes in the direction of a picture

along the following lines.

'
&

$
%

P¬P

B '
&

$
%

'
&

$
%

B

P ∧Q

P ∨Q

P Q

First, as on the left, against some background B of conditions b1, b2 . . . we

are given that members of some collection are sufficient for being p and

of its complement for being ¬p. Thus, for example, the background may

be a set S = {s1, s2 . . .} of shapes, where being p includes ones sufficient

for being a parallelogram — being square, rectangular and the like, and the

negation ones in its complement — being round, triangular, and so forth.

Or maybe the background is a set C = {c1, c2 . . .} of colors, being p ones

sufficient for being red, where the negation includes being green, blue and

so forth. On this account of negations as compliments, being ¬¬p just is

being p.

If the background for P is the same as for Q, then for the case on the right

the background may simply carry over from the prior backgrounds. However,

with the examples from above, let the background be the “product” of the

prior backgrounds and so, being a red square, being a green square,

being a red circle, being a green circle, and so forth. Then the

condition for being p ∧ q is the intersection of the conditions for being

p and being q, and the condition for being p ∨ q is their union. And

negations appear again naturally as complements. A thing that satisfies

the compliment of being p ∨ q thereby satisfies the compliments of being

p and being q. So a thing that instantiates being ¬(p ∨ q) thereby
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instantiates being ¬p and being ¬q. And similarly the other way around.

And similarly, reasoning from the picture, with conjunction.3

Thus, where being w is closed, and so includes as a constituent any

property a thing thereby instantiates when it has being w, we arrive at the

following.

(neg) being w has being ¬¬p as a constituent iff it has being p as a

constituent.

(cnj) being w has being p ∧ q as a constituent iff it has being p and

being q as constituents; and being ¬(p ∧ q) as a constituent iff it

has being ¬p or being ¬q as constituents.

(dsj) being w has being p ∨ q as a constituent iff it has being p or

being q as constituents; and being ¬(p ∨ q) as a constituent iff it

has being ¬p and being ¬q as constituents.

So long as we are interested in sentential conditions, we shall be particularly

interested in properties that are completed states of worlds as, being such

that bob is happy, or being such that bob is taller than sue. These

properties behave according to these conditions no less than any others.

The suggestion has been that entailment supervenes on property struc-

tures. It is natural to express this point as follows,

LV P logically entails Q just in case no closed being w has being p as

a constituent without being q as a constituent.

Where entailment supervenes on property structures, we track entailment

over the domain of closed properties. Put roughly, P logically entails Q

just when anything that instantiates being p thereby instantiates being q.

Observe that, with the account of negations as compliments, this picture

leads us to expect that if P logically entails Q, then ¬Q logically entails

¬P . Suppose in instantiating being p a thing thereby instantiates being

3Relevant logic is not dependent on a simple picture of negations as complements as

above. Thus it is compatible with accounts on which being p and being ¬p are not

exclusive and not exhaustive — so that things may be both P and ¬P and neither. At

the same time, as below, neither are such accounts required for relevant logic. For relevant

logic on a more general account of negation as “otherness” see Routley and Routley (1985).
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q; then the conditions sufficient for being p are a subset of those sufficient

for being q.

P Q

B

So, with the above picture, the complement of being p is the entire shaded

area and of being q the outer; so the compliment of being q is a subset of

the compliment of being p; and in instantiating being ¬q a thing thereby

instantiates being ¬p.

So far, all this may seem the classical picture, or a good part of it, cast

in terms of a reasonably traditional picture of structured properties. But,

of course, part of the classical picture is missing. One might suggest that,

given the basic structure of negations as compliments, closed properties are

subject also to the constraint that being ¬p is a constituent of a closed

property if and only if being p is not. With this, the condition from (neg)

is redundant, and the double conditions from (cnj) and (dsj) collapse to

the usual classical form. But this proposed condition goes beyond closure

as requiring just what a thing thereby instantiates when it instantiates a

property. A thing may instantiate some being q without thereby instanti-

ating either being p or being ¬p. So it may be that a closed property has

neither as a constituent, and so fails to have being p ∨ ¬p as a constituent.

And similarly a closed property may include both being p and being ¬p
and so being p ∧ ¬p. On our fine-grained and structured picture, there is

nothing mysterious about incomplete and inconsistent properties. Thus the

proposed additional constraint does more than merely unpack conditions a

thing thereby does or does not satisfy when it instantiates being p or be-

ing ¬p. And so far as conditions on the intrinsic features of properties go,

conjunction and disjunction work classically but negation does not, so that

we are left with (neg), (dsj) and (cnj) for our account of closure.

Of course, nothing prevents applying the extra condition for the classical

result. Say a closed being w is world-like when for any being p it has either

being p or being ¬p as constituents but not both. Then,
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CV P classically entails Q just in case no closed, world-like being w has

being p as a constituent without being q as a constituent.

Clearly logical validity guarantees classical validity. But not the other way

around, for the world-like closed properties are a subset of all closed proper-

ties. So, on our account, LV does not express the classical notion of validity.

As we shall see, however, LV is consistent with the relevant approach — and

it may seem useful to separate the logical and classical notions of entailment.

There may be a direct intuition that this notion of property inclusion

captures an important notion of entailment. But there are theoretical mo-

tivations as well. As suggested in the quotation from Jubien, philosophers

have often looked, in one way or another, to the internal structure of proper-

ties (propositions, meanings, or whatever) for explanation of modal facts —

and so to the internal structure of “properties” for explanation of the way

possible worlds are. In one mode, even Quine (1980, 1976), allows meaning

and analyticity as a ground of modal claims. I defend a related but realist

view of the ground for modality (Roy, 1993, 2000, 2012). At any rate, the

basic idea seems natural. Insofar as entailment is defined classically over

the universe of possible worlds, property structures are thus supplied as a

ground for classical entailment. But, on an intuitive picture of the prop-

erties (propositions, meanings, or the like) on which they permit arbitrary

combinations, this cannot be the whole story. Rather, the classical notion

of entailment emerges from the structured picture, only when properties are

limited to ones that are world-like. We thus isolate a pair of metaphysical

notions underlying the classical account, and offer an account of how they

combine to result in the standard notion.

2.2 Basic System: FA

Anderson and Belnap’s system of first-degree entailment is a fragment of

standard relevant logics, including B, DW, TW, RW and R. In this section, I

develop the first-degree semantics from Dunn (1976). I begin with statement

of the details, and return to the question of significance.

Begin with a standard language for sentential logic with propositional

parameters p1, p2 . . ., operators ¬, ∧, ∨ and ⊃, and sentences formed in the

usual way. An interpretation is a function v that assigns to each parameter
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some subset of {1, 0}. So v(p) is φ, {1}, {0}, or {1, 0}. For now, leave this

uninterpreted. For complex expressions,

TFA (¬) 1 ∈ v(¬P ) iff 0 ∈ v(P )

0 ∈ v(¬P ) iff 1 ∈ v(P )

(∧) 1 ∈ v(P ∧Q) iff 1 ∈ v(P ) and 1 ∈ v(Q)

0 ∈ v(P ∧Q) iff 0 ∈ v(P ) or 0 ∈ v(Q)

(∨) 1 ∈ v(P ∨Q) iff 1 ∈ v(P ) or 1 ∈ v(Q)

0 ∈ v(P ∨Q) iff 0 ∈ v(P ) and 0 ∈ v(Q)

(⊃) 1 ∈ v(P ⊃ Q) iff 0 ∈ v(P ) or 1 ∈ v(Q)

0 ∈ v(P ⊃ Q) iff 1 ∈ v(P ) and 0 ∈ v(Q)

For a set Γ of formulas, 1 ∈ v(Γ) iff 1 ∈ v(P ) for each P ∈ Γ. Then,

VFA Γ |=FA P iff there is no FA interpretation v such that 1 ∈ v(Γ) but

1 6∈ v(P ).

If interpretations are constrained so that 1 ∈ v(p) iff 0 6∈ v(p), then v(p) =

{0} or v(p) = {1}, and these conditions are entirely classical. Without

such constraint, with four-valued interpretations, the result is relevant in

the sense that if P |=FA Q, then P and Q have some parameter in common.4

It is worth noting that there is no interpretation v such that 1 ∈ v(P ) and

1 6∈ v(Q) just in case there is no interpretation v such that 0 6∈ v(P ) and

0 ∈ v(Q). Thus corresponding to the “positive” condition for validity is an

equivalent “negative” condition.5

4To see this, suppose P and Q have no parameter in common; then there is an inter-

pretation v that assigns {1, 0} to each p in P and φ to each q in Q; then, by an easy

induction, v(P ) = {1, 0} and v(Q) = φ; so 1 ∈ v(P ) but 1 6∈ v(Q); and since there is such

an interpretation, P 6|=FA Q.
5 The point is from Dunn (1976, 165), cf. Dunn (2000). To see this, note that any

v for FA has a “dual” v∗ such that 1 ∈ v∗(p) iff 0 6∈ v(p) and 0 ∈ v∗(p) iff 1 6∈ v(p).

Then by a simple induction, 1 ∈ v∗(P ) iff 0 6∈ v(P ) and 0 ∈ v∗(P ) iff 1 6∈ v(P ). But if

P 6|=FA Q, there is a v such that 1 ∈ v(P ) but 1 6∈ v(Q); so 0 6∈ v∗(P ) but 0 ∈ v∗(Q); so if

an argument from P to Q fails the “positive” condition for validity, it fails the “negative”

one as well. And similarly in the other direction. (Another way to see the point is to note

that derivation rules from below are symmetric insofar as switching each /P / for \P \ in a

derivation results in a derivation, so that there is an FA derivation from P to Q iff there

is an FA derivation from P to Q.)
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There are different ways to approach derivations. What follows develops

a strategy from Woodruff (1970). Introduce expressions of the sort P and

P . Intuitively, P indicates that P is not false. Let /P / and \P \ represent

either P or P where what is represented is constant in a given context but

/P / and \P \ are opposite, and similarly for //P // and \\P \\ — though /P /

and //P // need not be the same. Rules are on the pattern of I- and E-rules

for standard Fitch systems, as in Bergmann et al. (2004) and Roy (draftC).

R /P /

/P /

¬I /P /

//Q//

\\¬Q\\
\¬P \

¬E /¬P /

//Q//

\\¬Q\\
\P \

∧I /P /

/Q/

/P ∧Q/

∧E /P ∧Q/

/P /

∧E /P ∧Q/

/Q/

∨I /P /

/P ∨Q/

∨I /P /

/Q ∨ P /

⊃I /P /

\Q\

\P ⊃ Q\

⊃E \P ⊃ Q\
/P /

\Q\

∨E /P ∨Q/
/P /

//R//

/Q/

//R//

//R//

Where the members of Γ and P are without overlines, Γ F̀A P iff there is a

derivation of P from the members of Γ. As an example, (A ∧ B) ⊃ C F̀A

(A ∧ ¬C) ⊃ ¬B.
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1 (A ∧B) ⊃ C prem

2 A ∧ ¬C A (⊃I)

3 B A (¬I)

4 A 2 ∧E

5 A ∧B 3,4 ∧I

6 C 1,5 ⊃E

7 ¬C 2 ∧E

8 ¬B 3-7 ¬I

9 (A ∧ ¬C) ⊃ ¬B 2-8 ⊃I

The derivation system is sound and complete, Γ F̀A P iff Γ |=FA P , and

remains sound and complete for classical logic if interpretations are con-

strained so that 1 ∈ v(p) iff 0 6∈ v(p), and we add a rule moving from

/P / to \P \. For further examples, with demonstrations of soundness and

completeness, see §6 of Roy (2006).

Say an interpretation v is a “world.” Then worlds are structures at which

an expression P may be assigned both 1 and 0 or neither. If worlds model

some domain of concern, it is natural to ask what sort of thing members

of this domain may be. On response is that they are, well, worlds — of

the sort that can be and are actual — where 1 ∈ v(P ) iff P is true at a

world, and 0 ∈ v(P ) iff P is false. So P may be both true and false at a

world or neither. That P may be both true and false seems suggested by

Priest (2001, §7.6 - 7.9); compare Priest (1987, §9.7) for discussion of related

issues. Priest has many interesting things to say — like Lewis on worlds,

he makes interesting arguments for conclusions that elicit the “incredulous

stare.” However, even if he is right and there are true contradictions at

worlds of the sort that may be actual, I do not think the relevant notion of

logical validity is to be understood this way. For it is not Priest’s view that

for any old contradiction, there is a possible world where it is true. He argues

for true contradictions under certain conditions — as under conditions of

self-reference. But such considerations are not reasons to think that, say,

there are possible worlds where he both is and is not over six feet tall. So

an argument from the premise that he is and is not over six feet tall to the

conclusion that kangaroos fly is logically valid on the domain of such worlds,

just because there is no possible world where he is and is not over six feet
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tall.6 Something similar might be said for expressions that are neither true

nor false: Perhaps considerations about failed reference or the like induce

us to allow that some expressions may be neither true nor false at a world.

But such considerations will not obviously apply to arbitrary expressions,

and so will not generally underwrite the relevant notion of entailment.

Other authors appeal to entities which may, in some sense, uncontrover-

sially accommodate arbitrary inconsistencies and gaps. Thus, for example,

one might appeal to theories, to information, to sets of propositions, to

properties or the like (see Belnap, 1977; Restall, 1996a; Mares, 1996, 2004).

Depending on one’s ontology, some of these may come to very much the

same thing. But there are twin pressures: We need to see not only how

the entities accommodate inconsistencies and gaps, but also whether and

how they are appropriately constrained. As above, I think interpretations

naturally model closed properties.

It is, in fact, a very short step from logical validity as described above,

to the semantic conditions for FA. For some closed property being w set

1 ∈ v(P ) just in case being p is a constituent of being w and 0 ∈ v(P ) just

in case being ¬p is a constituent of being w. Consistent with constraints

on being w, it may be that being p is a constituent of being w, that being

¬p is a constituent of being w, that both are constituents, or that neither

are constituents. So there are the options that v(P ) = φ, {1}, {0}, and

{1, 0}. Turning to the conditions for TFA: By the modeling, 1 ∈ v(P ∧ Q)

iff being p ∧ q is a constituent of being w; by (cnj) iff being p and being

q are constituents of being w; by the modeling, iff 1 ∈ v(P ) and 1 ∈ v(Q).

Similarly, by the modeling, 0 ∈ v(P ∧Q) iff being ¬(p ∧ q) is a constituent

of being w; by (cnj) iff being ¬p or being ¬q are constituents of being

w; by the modeling, iff 0 ∈ v(P ) or 0 ∈ v(Q). And similarly for (∨). For

negation, by the modeling, 1 ∈ v(¬P ) iff being ¬p is a constituent of being

w; by the modeling again, iff 0 ∈ v(P ). And by the modeling, 0 ∈ v(¬P ) iff

being ¬¬p is a constituent of being w; by (neg) iff being p is a constituent

of being w; by the modeling iff 1 ∈ v(P ). So, supposing ⊃ abbreviates an

expression in ¬ and ∧ or ∨, we recover the conditions from TFA. One might

6In conversation, he seems inclined either to allow that such arguments are in fact valid,

or to appeal to impossible worlds — ones not themselves motivated by the considerations

from self-reference and the like. On the latter, see Priest (2001, §9.7).
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object that it is too short a step from the theory of properties to the semantic

conditions — the theory of properties is somehow engineered to make the

semantics go. But I think this is a mistake. Rather, the standard conditions

have, presumably, been intended all along to characterize these properties.

So we are left with the following picture: There is a domain D of closed

properties. P logically entails Q just in case there is no being w ∈ D

such that being p is a constituent of being w but being q is not. These

conditions are modeled by the semantics for FA. And the derivation system

for FA is adequate to this semantics. So we seem to have all the elements

to represent the First Degree system as reflecting an account of entailment

as grounded in the nature of properties.

2.3 Results Revised: FB

Actually, FA is not quite FDE as described by Anderson and Belnap. FDE

has an operator →, where formation rules for other operators are as usual,

and if A and B are sentences without any instance of →, then A → B is

a sentence. FDE is then developed as an axiom system with derivations

and theorems in the usual way. But FA has no theorems at all.7 So the

systems are not equivalent. Rather, as Dunn shows, they are related so

that, P |=FA Q iff F̀DE P → Q. But we can convert our valid arguments into

theorems as for FDE. This comes to a sort of transformation, one that will

introduce normal worlds for the first time. Again, I begin with details, and

return to the question of significance.

Let the language have parameters p1, p2 . . . and operators, ¬, ∧, ∨, ⊃ and

→. Each propositional parameter is a formula; if P and Q are formulas,

so are ¬P , P ∧ Q, P ∨ Q, P ⊃ Q, and P → Q. Then, for this first-

degree system, a sentence is any formula where no instance of → appears

in the scope of another. An interpretation is 〈W,N,N, v〉 where W is a set

of worlds; N,N ⊆ W are sets of normal worlds for truth and non-falsity

respectively; and v is a valuation which assigns to each parameter some

subset of {1, 0} at each w ∈ W . This time, it will be convenient to specify

a valuation h directly for expressions of the sort that have so far appeared

7To see this, consider an interpretation v such that for any p, v(p) = φ; then by an

easy induction, v(P ) = φ; and since there is such an interpretation, 6|=FA P .
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in derivations. Say /P / holds at w just in case hw(/P /) = 1 and otherwise

fails.

HFB (B) hw(p) = 1 iff 1 ∈ vw(p); hw(p) = 1 iff 0 6∈ vw(p)

(¬) hw(/¬P /) = 1 iff hw(\P \) = 0

(∧) hw(/P ∧Q/) = 1 iff hw(/P /) = 1 and hw(/Q/) = 1

(∨) hw(/P ∨Q/) = 1 iff hw(/P /) = 1 or hw(/Q/) = 1

(⊃) hw(/P ⊃ Q/) = 1 iff hw(\P \) = 0 or hw(/Q/) = 1

(→) for w ∈ /N/, hw(/P → Q/) = 1 iff there is no x ∈ W such

that hx(//P //) = 1 and hx(//Q//) = 0; otherwise hw(/P → Q/) is

arbitrary

Conditions for the classical operators ¬, ∧, ∨ and ⊃ parallel ones from

before. And from the perspective of a world in /N/, the condition for /P →
Q/ “looks” just like the double condition for validity in FA — the conditional

holds when there is no world where //P // holds but //Q// does not. Where

the members of Γ and P are without overlines, hw(Γ) = 1 iff hw(A) = 1 for

each A ∈ Γ; and,

VFB Γ |=FB P iff there is no FB interpretation 〈W,N,N, v〉 and w ∈ N

such that hw(Γ) = 1 but hw(P ) = 0.

Again, if interpretations are constrained so that 1 ∈ vw(p) iff 0 6∈ vw(p), and

N is set equal to N then (given that validity is evaluated in normal worlds),

results are as in classical modal logic, with → the strict conditional.

For a derivation system, where s is any integer, let /P /s be a subscripted

formula. Intuitively, subscripts indicate worlds, where /P /s when /P / holds

at world s. /n/[s] indicates that world s is in /N/. Rules for ¬, ∧, ∨ and ⊃
are a natural development from FA.

R /P /s

/P /s

¬I /P /s

//Q//t

\\¬Q\\t
\¬P \s

¬E /¬P /s

//Q//t

\\¬Q\\t
\P \s
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∧I /P /s

/Q/s

/P ∧Q/s

∧E /P ∧Q/s

/P /s

∧E /P ∧Q/s

/Q/s

∨I /P /s

/P ∨Q/s

∨I /P /s

/Q ∨ P /s

⊃I /P /s

\Q\s

\P ⊃ Q\s

⊃E \P ⊃ Q\s
/P /s

\Q\s

∨E /P ∨Q/s
/P /s

//R//t

/Q/s

//R//t

//R//t

NI

n[0]

→I /n/[s]

//P //t

//Q//t

/P → Q/s
where t does not appear in

any undischarged premise

or assumption

→E /n/[s]

/P → Q/s

//P //t

//Q//t

C /n/[s] /n/[s]

//P //s

\\P \\s \n\[s]

Any subscript is 0 or introduced as t in an assumption for →I. For this

first-degree system, derivations are required to respect formation rules, so

no instance of → appears in the scope of another. The basic FB system

takes all the rules except (C). Where the members of Γ and P are without

subscripts or overlines, let Γ0 be those same expressions, each with subscript

0. Then Γ F̀B P iff there is an FB derivation of P0 from the members of

Γ0. Corresponding to the above example for FA, F̀B [(A ∧ B) ⊃ C] →
[(A ∧ ¬C) ⊃ ¬B].
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1 n[0] NI

2 [(A ∧B) ⊃ C]1 A (→I)

3 (A ∧ ¬C)1 A (⊃I)

4 B1 A (¬I)

5 A1 3 ∧E

6 (A ∧B)1 4,5 ∧I

7 C1 2,6 ⊃E

8 ¬C1 3 ∧E

9 ¬B1 4-8 ¬I

10 [(A ∧ ¬C) ⊃ ¬B]1 3-9 ⊃I

11 ([(A ∧B) ⊃ C]→ [(A ∧ ¬C) ⊃ ¬B])0 1,2-10 →I

The derivation system is sound and complete, so that Γ F̀B P iff Γ |=FB P
(Roy and Fry, draftB, §7). And results from FA are converted into theorems

so that P F̀A Q iff F̀B P → Q [A1].8 We therefore recover Anderson and

Belnap’s FDE in the sense that, F̀B P → Q iff F̀DE P → Q. More generally,

we recover the complete first degree fragment of relevant logics including B,

DW, TW and RW — but not, without further constraint, R; thus, where

the members of Γ and P are sentences in the current language, and Sx is

one of these standard relevant logics, Γ F̀B P iff Γ S̀x P [A2].

So entailments in FA are converted to theorems in FB. So theorems

carry over motivations from before, and to this extent motivate current

machinery. But the notion of conversion has application only to theorems —

and it is left open what to make of normal worlds, with semantic and formal

validity more generally in FB. By way of response, observe that, at worlds

in N where validity is measured, the condition for truth of conditionals

looks like the condition for validity in FA, but the condition for their non-

falsity is left wide open. Conditions for truth and non-falsity of conditionals

come together with the requirement that N = N . And normal worlds are

given a consistent interpretation as world-like by imposing as a full classical

constraint,

CL (i) w ∈ N iff w ∈ N

(ii) for any w ∈ N , 0 6∈ vw(p) iff 1 ∈ vw(p).

8References in square brackets are to the Appendix.
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Then, if for a system FBc we accept rule (C), without change to theorems

of the sort P → Q, we recover ordinary classical logic: for classical forms,

Γ F̀Bc P iff Γ C̀L P . In fact, nothing stops us augmenting the language to

include � (and ♦), moving to interpretations 〈W,M,N,N, v〉 where M ⊆W 2

is a modal access relation which might be restricted in the usual ways.

Then, where modal access from a normal world is restricted just to other

normal worlds, still without change to theorems of the sort P → Q, we

recover ordinary modal logic as well.9 This sacrifices a complete match to

the first-degree fragment of ordinary relevant systems. However, in this

way, normal worlds are interpreted. And the classical notions coexist with

relevant entailment, insofar as the classical notions depend on just a subset

of all the worlds, where entailment applies to them all.

The resultant picture has attractions from both the classical and relevant

perspectives. Say FBc includes modal notions and the classical constraint

CL. Then all of ordinary classical and modal logic remains. There is an

additional operator → to represent entailment in the sense of LV. And it

may be useful to have some such notion. Perhaps this is immediate from our

initial examples. But similarly for various substantive topics in philosophy.

So for example, in one place, a proposed analysis, “if it is within S’s power

to bring it about that P and if that P entails that Q, then it is within

S’s power to bring it about that Q” is summarily rejected: this principle

“is obviously false: Neil Armstrong’s being the first human to walk on the

moon entails that 2 + 2 = 4, but neither Armstrong nor anyone else has

ever had the power to bring it about that this arithmetical proposition is

true” (Hasker, 1989, 108). The proposed analysis may very well be false.

But, from the present perspective, this move seems too fast. For nothing

prevents �Q without P → Q, as |=FBc �(q∨¬q) but 6|=FBc p→ �(q∨¬q) — for

the one depends just on normal worlds, and the other not. Examples could

be multiplied. Insofar as philosophers are generally interested in analysis of

properties, as analyses of supervenience, truthmaking, intrinsic properties

and the like, it seems natural to employ a notion of entailment no less fine-

9So, we require (MC) if w ∈ /N/ and wMx, then x ∈ /N/, and augment HFB to

include, (�) hw(/�P /) = 1 iff there is no x ∈ W such that wMx and hx(/P /) = 0.

Optionally, we might require reflexivity, (ρ) for all x, xMx; symmetry, (σ) for all x, y if

xMy then yMx; transitivity (τ) for all x, y, z if xMy and yMz then xMz; or the like.
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grained than the properties themselves (whatever their ontological account).

And given such a notion of entailment, there is no reason to reject analyses

as above.10

And from the other side, FBc still has its relevant conditional. Once

inconsistent and incomplete worlds are allowed, it is hard to see why one

might not be interested in a class of them where the classical constraints

apply — so that members model “world-like” properties, and may be in-

teresting for precisely that reason. In these systems with theorems, logical

entailment is indicated by →, not |=. Thus |=FBc indicates just what obtains

at classically characterized worlds — though this may itself depend on ones

not so constrained. So, turning to a couple of the cases with which we be-

gan, 6|=FBc (p∧¬p)→ q; for p∧¬p might hold at a non-normal world, though

q does not. It remains that p ∧ ¬p |=FBc q; but this merely reflects a feature

of normal worlds; given the classical constraint, vacuously, q holds at every

normal world where p∧¬p holds. Corresponding to this case is the standard

relevant treatment of disjunctive syllogism: 6|=FBc [(q ∨ p)∧¬p]→ q. For the

full range of worlds includes ones where p and ¬p hold but q does not. At

the same time, q ∨ p,¬p |=FBc q. But this obtains only given the additional

constraint that not both p and ¬p hold at normal worlds. So classical logic

reappears, but subject to its own special constraints, and seems thus ex-

plained from the relevant point of view, without impugning or removing the

relevant account of entailment.11

3 Ternary Access and Logics Beyond First Degree

I begin this section with a concern that arises for our modeling when a

property may have entailment properties as constituents, and then consider

ternary access as a response. This leads to a pair of relevant systems beyond

10Observe that, though the logic is paraconsistent in the sense that it accommodates

inconsistent premises, the applications are not to a special domain (though this is possible)

but to relations in which we may be specially interested. For a positive application of

relevant logic to the analysis of intrinsic properties see (Dunn, 1987, 1990; Dunn and

Restall, 2002, §5.6). Restall (1996b) suggests an application to truthmaking.
11There is no unanimity about merging classical and relevant principles. Compare

(Restall, 1999, §4) and (Belnap and Dunn, 1981, §5) for positive and then negative assess-

ments.
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the first degree. Again, there is a first version, and a transform of the results.

Systems from this section are based on Routley (1984) and Roy (draftA).

3.1 Following

Nothing prevents dropping constraints on formation rules for →, and cor-

responding constraints on semantics and derivations. But the result is not

relevant logic. If →I applies at arbitrary worlds, we might reason as follows

to show, say, p→ (q → q).

1 p1 A (→I)

2 q2 A (→I)

3 q2 2 R

4 (q → q)1 2-3 →I

5 [p→ (q → q)]0 1-4 →I

So A → B where A and B have no parameter in common. But this is to

be expected. We have thought of properties as subject to arbitrary combi-

nations, and entailment as defined over a domain of closed properties. We

now have entailment properties as constituents of closed properties. But we

do not so far have the capacity to model arbitrary entailment properties as

constituents. Indeed, supposing the substantive condition from HFB(→) is

extended to arbitrary worlds, being (such that) p → p is a constituent of

any closed property represented by our models. There is no world where //P //

both holds and does not; so /P → P / holds at every world. So we represent

being p → p as a constituent of any closed property. But given arbitrary

combinations, we expect closed properties with neither being p → p nor

being ¬(p → p) as constituents, and closed properties with both. Where

entailment properties are constituents of closed properties, our approach to

entailment requires some means of modeling them all.

The Routley-Meyer semantics for relevant logics enables a model of the

full range of entailment properties by ternary access. Where a binary access

relation gives a world access to individual worlds, a ternary access relation

gives a world access to pairs of others. The basic strategy is to model

entailment by access to world-pairs, where the condition for P → Q requires

that there is no accessible world-pair 〈x, y〉 such that P holds at x but Q
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fails at y. Then, though there is no x where P holds and does not hold, a

world w might have access to a pair 〈x, y〉 such that P holds at x but not at

y — so that P → P fails at w. And we are similarly positioned to represent

arbitrary entailment properties as constituents of closed properties. So far,

then, this seems to fulfill a requirement for the property-based picture of

entailment.

Insofar as entailment and the associated notion of one property being

included in another are two-place relations, the strategy may seem natural.

A binary access relation gives a world access to a set of individuals. A ternary

access relation gives a world access to a set of pairs. But entailment and

inclusion are binary relations, and the standard way to represent a binary

relation is by a set of pairs. Since we want to represent just such a relation,

ternary access is natural in this context. Different notions of necessity,

alethic, deontic, epistemic and whatever are represented as generalizations

over worlds by a modal access relation. And similarly, there may be a class

of binary notions naturally represented as generalizations over world-pairs.

So, for example, suppose worlds are divided into a universe of temporal

“slices.” Say slice b t-follows slice a just in case a is prior to b in the temporal

ordering of the world from which a and b are carved. Then we might say Q

necessarily t-follows P just in case there is no 〈a, b〉 such that b t-follows a,

where P is true at a, but Q is not true at b. Perhaps this is an interesting

notion about which we could reason in different ways — and something of the

sort might arise naturally in a logic with both modal and temporal operators.

Given the temporal picture, one might impose restrictions on access to pairs

corresponding to different structures for the “t-follows” relation. But the

point here is just that necessary following appears as a generalization over

slice pairs. Or, more fancifully, suppose world y “follows” x just when David

Lewis prefers y to x. Then we might say Q is unambiguously preferable to P

at w just in case there are no x, y such that wRxy where P is true at x but

Q is not true at y. And there might be a corresponding logic of “Lewisian

preferences.”

But entailment is a binary notion similarly structured. One might in-

terpret the relevant access relation by means that presuppose already some-

thing like the required notion of entailment. So Meyer (2004) has wRxy just
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in case w is a domain of laws; x inputs to the laws; and y outputs given the

inputs; arrow statements are syntactical expressions of the laws (Beall et al.,

2012, is a useful survey of approaches to the access relation). This will not

illuminate entailment for those who do not already understand it. But it is

not required. The three place relation gives worlds access to pairs for which

we already have a substantive account in terms of inclusion. Entailment

then arises as a generalization over entities standing in this relation.

Necessary t-following and unambiguous preference may seem relatively

intuitive insofar as, from a Humean perspective at least, there are no a-

priori restrictions on options for accessible world-pairs. Lewis might prefer

any world to another; and slice a might be followed by any b. So ways these

properties can be are naturally represented by access to arbitrary pairs. But

we have seen the first-degree relevant picture driven by a notion of property

inclusion, where one property is “followed” by another when it is included

as a constituent of the other. And access to individual worlds may seem

sufficient to represent property inclusions. However this is to leave out an

important part of the picture. Not every entailment or inclusion property is

instantiated. Where entailment properties are constituents of closed proper-

ties, and properties come in arbitrary combinations, the range of entailment

properties is broader than the range of entailments. Correspondingly, the

range of entailment properties is modeled only over a range of property pairs

broader than the range of actual inclusions. Thus we need the power to rep-

resent arbitrary closed properties as standing in this relation — very much

as in the necessary t-following and unambiguous preference cases. So we let

a world w represent that x is a constituent of a closed y when it has access

to an arbitrary pair 〈x, y〉.

3.2 Basic System: 4A

For this, consider a language like the one for FB, but without constraints

on formation rules for →. We treat ⊃ as an abbreviation, defined in terms

of ¬ and ∨ in the usual way. An interpretation is 〈W,R,R, v〉 where W is

a set of worlds, R,R ⊆ W 3 are relevant access relations for truth and non-

falsity respectively; and v is a valuation which assigns to each parameter

some subset of {1, 0} at each w ∈ W . Definition H4 carries over semantic
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conditions for parameters, ¬, ∧, and ∨ from HFB. Then,

H4 (→) hw(/P → Q/) = 1 iff there are no x, y ∈W such that w/R/xy

and either hx(P ) = 1 but hy(Q) = 0, or hy(P ) = 1 but

hx(Q) = 0.

Where the members of Γ and P are without overlines, hw(Γ) = 1 iff hw(A) =

1 for each A ∈ Γ; and,

V4A Γ |=4A P iff there is no 4A interpretation 〈W,R,R, v〉 and w ∈W such

that hw(Γ) = 1 but hw(P ) = 0.

The move to ternary access allows truth and falsity for arbitrary condition-

als. Separating R and R allows models of closed properties where truth and

(non)falsity for conditionals are independent. So we model closed properties

with neither being p → q nor being ¬(p → q) as constituents, and ones

with both.

Observe that H4(→) reflects the move to world-pairs, and the picture of

access to a pair 〈x, y〉 as representing the inclusion of x in y. On our general

picture for entailment, if being p entails being q, (i) being p is included

in being q — so that if P holds at x, Q holds at y, and (ii) with negations

as compliments, being ¬q is included in being ¬p — so that if ¬Q holds

at x, ¬P holds at y — or alternatively if ¬P does not hold at y (if P holds

at y) then ¬Q does not hold at x (Q holds at x). Thus the inclusion picture

leads to the double condition as above.

For a derivation system, allow expressions of the sort, s.t.u and s.t.u.

Intuitively, /s.t.u/ just in case s/R/tu. Rules R, ¬I, ¬E, ∧I, ∧E, ∨I, and ∨E

(along with ⊃I and ⊃E) carry over from FB. Then,

→E /s.t.u/ /s.t.u/

/P → Q/s /P → Q/s

Pt Pu

Qu Qt

→I /s.t.u/ /s.t.u/

Pt Pu

Qu Qt
/P → Q/s /P → Q/s

where t and u do not appear in any undis-

charged premise or assumption

As before, any subscript is 0 or introduced as t or u in an assumption for

→I. Where Γ is a set of unsubscripted expressions without overlines, let
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Γ0 be those same expressions, each with subscript 0. Then Γ 4̀A P iff

there is a 4A derivation of P0 from the members of Γ0. Here is an example

beyond what can be established or even represented in FB. A→ (B → C),

A→ (D → ¬B) 4̀A A→ [B → (C ∧ ¬D)].

1 (A→ (B → C))0 prem

2 (A→ (D → ¬B))0 prem

3 0.1.2 A (→I)

4 A1

5 (B → C)2 3,1,4 →E

6 (D → ¬B)2 3,2,4 →E

7 2.3.4 A (→I)

8 B3

9 C4 7,5,8 →E

10 D4 A (¬I)

11 ¬B3 7,6,10 →E

12 B3 8 R

13 ¬D4 10-12 ¬I

14 (C ∧ ¬D)4 9,13 ∧I

15 [B → (C ∧ ¬D)]2 7-14 →I

16 (A→ [B → (C ∧ ¬D)])0 3-15 →I

The derivation system is sound and complete, Γ 4̀A P iff Γ |=4A P (Roy and

Fry, draftB, §9). And we recover the relevant system DW as FA recovers

FDE, P 4̀A Q iff D̀W P → Q [A3].

As one might expect, nothing prevents imposing constraints on R and

R to reach certain other relevant systems. Thus corresponding to standard

constraints from the star semantics, consider,

D3/4 If a/R/bx and xRcd then there is a y such that bRcy and a/R/yd,

and a z such that bRzd and a/R/cz. And if a/R/xb and xRcd then

there is a y such that bRcy and a/R/yd, and a z such that bRzd and

a/R/cz.

D5 If a/R/bc then there is a y such that a/R/by and yRbc and a z such

that a/R/zc and zRbc.
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And, given a family of inclusions such that if a ≤ b then if P holds at a, P

holds at b; if a ≤∗ b then if P holds at a, P holds at b; and if a ≤] b then if

P holds at a, P holds at b,

D6 If aRbc then for some y ≥ a, bRyc, and for some z ≥∗ a, cRbz. And

if aRbc then for some y ≥] a, bRyc, and for some z ≤ a, cRbz.12

Such principles may be incorporated into derivations, and enable contact

with other standard relevant systems.

There may be motivations from the inclusion picture for something like

D3/4.13 I see no basis for D5 or D6. But that is not terribly important

here. It is, no doubt, a technical advantage to accommodate a wide range

of formal systems from a single semantic framework. However, insofar as we

are after an account of entailment in the sense of LV, that we can impose

some constraints to achieve other relevant systems is surely not sufficient

12These numbers parallel say Restall (1993) and Routley (1984). This last condition

diverges from proposals considered in Routley (1984). It is however relatively natural

given the parallel condition required for the simplified version of the star semantics as

discussed in Restall and Roy (2009). For discussion see Roy (draftA).
13Consider the first clause. Suppose a/R/bx and xRcd; then according to world a, b is

included in x; so according to a any entailment property in b is included in x; so if x has

access to some 〈c, d〉 that counterexample some conditional, then a must “think” b has

access to worlds with this effect — worlds that counterexample all the same conditionals.

Now consider the constraint,

a/R/bx, xRcdPPPPPPq

��
��

��1 exists y, a/R/yd

exists z, a/R/cz

XXXXXX

���
���

bRcy

bRzd
(bRcd)

Suppose a/R/bx and xRcd. We are not given bRcd. However, there is a y that a thinks is

included in d such that bRcy, and a z such that a thinks c is included in it where bRzd.

But if y is included in d and bRcy, then b has access at least to counterexamples for all

the same conditionals as x from xRcd; and if c is included in z and bRzd, then b has

access at least to counterexamples for all the same conditionals as x from xRcd. In either

case, there are worlds to which b bears R and, according to a, give b access to the very

counterexamples x has by xRcd. So these are sufficient for a to sustain its claim that b is

included in x. Similar reasoning applies to the other clause.

Another natural consequence from this reasoning might seem to be bRzy. This verifies

[(A→ B) ∧ (C → D)]→ [(B → C)→ (A→ D)] in standard systems.



3 TERNARY ACCESS 30

to say we should. Clearly the situation for constraints on a ternary R is

complex. Perhaps there is no semantic motivation for stronger constraints.

And this may be reason to reject them as part of an account of entailment.

A few comments: First, in his presentation of related systems (as in the

next section), Routley represents the different relevant access relations R

and R as a sort of cost relative to the star semantics, which requires only

one. Perhaps there is a sort of cost, but I do not think it is substantive. In

the star semantics, apart from special constraints on access, worlds accessible

to w are independent of worlds accessible to w∗. So worlds relevant to the

truth of A → B at w are independent of worlds relevant to its non-falsity.

So the effect is as with R and R. On either account, independent access

makes possible models for arbitrary entailment properties.

Similarly, one might think the disjunctive condition for H4(→) is a cost

relative to the star semantics, which makes the truth of A→ B at w depend

on just whether there are x, y ∈W such that wRxy where A is true at x but

B not at y. However relevant systems as strong as DW require that if wRxy

then wRy∗x∗. But then, where P ’s truth at w∗ corresponds to its non-falsity

at w, the truth of a conditional A→ B at w generally requires that there is

no 〈x, y〉 to which w has access such that A is true at x but B is not at y,

or A is not false at y but B is false at x. So the effect is the same. We have

seen the double condition from the first-degree account of entailment and

from the picture of properties. Perhaps, then, the four-valued approach, for

all its relative inelegance, is useful insofar as it brings to the surface how

different conditions work.

Finally, one might think star worlds are themselves a cost relative to the

four-valued approach. I think they are a cost — at least insofar as one is

interested in seeing connection to domains of closed properties. But tech-

nically, for systems considered here, symmetries are such that star worlds

“do no harm.” Roughly, the point is this: Say A → B holds at w. Then

on our account there are no x, y such that wRxy where A holds at x but B

does not hold at y, or A holds at y but B does not hold at x. But then the

conditional continues to hold if there are worlds x′ and y′ such that truths

and non-falsities are exchanged relative to x and y and wRy′x′. For then

the “truth” condition on 〈x, y〉 corresponds to the non-falsity one on 〈y′, x′〉,
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and the non-falsity condition on 〈x, y〉 to the truth condition on 〈y′, x′〉. So

results need not change when models are such that any world has a mate

with truths and non-falsities exchanged. One might let pairs 〈w,w∗〉 model

closed properties. But this is at least obscure relative to our picture on

which worlds correspond to them directly.

On either approach, then, it is possible adopt our basic picture: There

is a domain D of closed properties, now with entailment properties as con-

stituents. P logically entails Q just in case there is no being w ∈ D such

that being p is a constituent of being w but being q is not. These

conditions are modeled by the semantics for 4A (or perhaps some 4Ax with

appropriate constraints on R and R). And the derivation system is adequate

to the semantics. So again we seem to have all the elements to represent the

approach as reflecting an account of entailment.

3.3 Results Revised: 4B

As before, what we have is not the same as standard relevant systems. DW

for example, is developed as an axiom system with derivations and theorems

in the usual way. But 4A has no theorems. Rather, P 4̀A Q iff D̀W P → Q.

But we can convert our valid arguments into theorems. Again, this comes to

a sort of transform, useful insofar as it puts us in a position to draw further

connections and consequences.

For a complete description of the resultant system, see Appendix B. Ba-

sically, an interpretation is 〈W,N,N,R,R, v〉 where N,N ⊆ W are normal

worlds for truth and non-falsity respectively. As a constraint on interpreta-

tions, we require a normality condition,

NC For any w ∈ /N/, w/R/xy iff x = y.

And there may be constraints on R and R as before. Then where the

members of Γ and P are without overlines, and x is empty or indicates some

combination of optional constraints,

V4Bx Γ |=4Bx P iff there is no 4Bx interpretation 〈W,N,N,R,R, v〉 and

w ∈ N such that hw(Γ) = 1 but hw(P ) = 0.
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Given NC, the condition for P → Q at a normal world “looks” like the

condition for validity in 4Ax. At a normal world, P → Q just in case no

individual world is such that //P // holds but //Q// does not.

In addition to rules from before, to accommodate normality derivations

require,

NE /n/[a] /n/[a]

s ' t /a.s.t/

/a.s.t/ s ' t

'I

s ' s

'E s ' t
P(s)

P(t)

Then, corresponding to the above example for 4A we have, 4̀B ([A→ (B →
C)] ∧ [A→ (D → ¬B)])→ (A→ [B → (C ∧ ¬D)]).

1 0.1.2 A (→I)

2 ([A→ (B → C)] ∧ [A→ (D → ¬B)])1

3 n[0] NI

4 1 ' 2 1,3 NE

5 ([A→ (B → C)] ∧ [A→ (D → ¬B)])2 2,4 'E

6 [A→ (B → C)]2 5 ∧E

7 [A→ (D → ¬B)]2 5 ∧E

8 2.3.4 A (→I)

9 A3

10 (B → C)4 8,6,9 →E

11 (D → ¬B)4 8,7,9 →E

12 4.5.6 A (→I)

13 B5

14 C6 12,10,13 →E

15 D6 A (¬I)

16 ¬B5 12,11,15 →E

17 B5 13 R

18 ¬D6 15-17 ¬I

19 (C ∧ ¬D)6 14,18 ∧I

20 [B → (C ∧ ¬D)]4 12-19 →I

21 (A→ [B → (C ∧ ¬D)])2 8-20 →I

22 [([A→ (B → C)] ∧ [A→ (D → ¬B)])→ (A→ [B → (C ∧ ¬D)])]0 1-21 →I
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Derivations are sound and complete, Γ 4̀Bx P iff Γ |=4Bx P (Roy and Fry,

draftB, §9). Where Sx is a standard relevant system from DW, TW, RW

and R with constraints parallel to D3 - D6, Γ |=4Bx P iff Γ |=Sx P (Roy,

draftA). Where x includes CL, and the derivation system (C), we recover

all of classical logic, so that for classical forms, Γ C̀L P iff Γ 4̀Bx P . In

addition, nothing prevents expanding the language to include � (and ♦) with

interpretations, 〈W,M,N,N,R,R, v〉 where M is a two-place modal access

relation — again possibly restricted in the usual way. Then, developed as

before, we recover also all of ordinary modal logic.14

Again, the move from 4A to 4B effects a sort of conversion on results.

Entailments from 4A appear as theorems in 4B [A3]. So we retain the sort

of motivations for theorems that have application to 4A. Again, though, the

notion of conversion only takes us so far. So it leaves open what to make of

normal worlds and validity more generally in the 4Bx systems. And the 4B

normality constraint NC seems to require of conditionals classical behavior

for truth at normal worlds, but not for falsity, and not for anything else.

This is a peculiar asymmetry which recapitulates what we saw from FB and

seems unmotivated from our perspective. The asymmetry is nowhere to be

found in FA or 4A. And, as for FBc, it is removed in a 4Bc, which accepts

(CL) and so identifies N and N , and builds in also a clarified role for normal

worlds as world-like. Again in 4Bc, as in in FBc, ‘→’ appears just as an

additional operator strengthening and extending a standard tool set as does,

say, ‘�’ in the ordinary case. Perhaps, then, the more natural paraconsistent

systems are FA and 4A, and natural “converted” systems are something like

FBc and 4Bc, none of which involve the asymmetry.15

14This time we acquire also full-fledged relevant modal logics with characteristic prin-

ciples as T: �A → A; B: A → �♦A and 4: �A → ��A with the standard constraints on

access. Without constraint, A → B |=4Bx �A → �B; (A → B) → (�A → �B) comes with

an additional constraint, (κρ) if a/R/bx and xMc then there is a y such that bMy and

a/R/yc, and if a/R/xb and xMc, there is a y such that bMy and a/R/cy; the K principle

�(A → B) → (�A → �B) then comes together with reflexivity. This constraint has a

motivation like that for D3/4 (see note 13). It is possible to obtain the K principle inde-

pendently, but the required constraint with conditions like, (κ) if a/R/bx and xMc, then

there are y, z such that aMy, bMz and y/R/zc, is not so easy to motivate. For discussion

see Fuhrmann (1990).
15The reason for dividing N and N , both here and for FB, is to make contact with
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4 Conclusion

I do not say there is a direct path from the initial picture of logical en-

tailment to relevant systems like DW,TW, 4A or 4Bc. One might end up

with related systems, or ones quite different. I do say relevant systems like

ones we have considered make sense as based on the theory of entailment.

The relevant approach grounds entailment in property inclusion, and so of-

fers an account of intuitions with which we began in terms of this notion;

inclusion or something like it is already required for classical validity and

to this extent available; and the semantics is matched to objects of philo-

sophical analysis so as to lay claim to a legitimate and fundamental notion

of entailment.16 The relevant systems offer a way to see classical logic as

arising from the account of entailment, subject to constraints that matter.

Thus the relevant derivations and semantics appear as more than merely

ad hoc systems to satisfy certain syntactical intuitions. Rather, whatever

its relation to syntactical intuitions, the relevant approach seems grounded

in a sensible semantic picture. Insofar as the semantic picture satisfies also

syntactical intuitions, the result may be a pleasing reflective equilibrium.

standard relevant systems. Having made contact, a consequence may be grounds for

criticism — or, at least, apart from the point about conversion, I have offered no account

of normal worlds in the divided case.
16There might be an account on which relevant semantics models theories or informa-

tion that is isomorphic to the one offered here. In this case, I have no decisive objection —

and perhaps reason to applaud. Still, there may be considerations in favor of the present

approach: (i) Validity is defined classically on a universe of worlds. The shift to proper-

ties is continuous with that account — both in the sense that it accommodates classical

validity, and that it matters similarly for reasoning about the world. (ii) Information is

not intrinsically constrained so that when it includes p ∨ q then it includes p or q. So

information has to be constrained in ways that may seem ad hoc. The parallel constraints

fall naturally out of the account based on closed properties. (iii) There might very well be

an informational notion of containment parallel to property inclusion. However (crucial

for making sense of relevant semantics) if, as above, the relevant access relation is given its

account in terms of “entailments” already present in the information, the account will not

illuminate entailment for those who do not already understand it. The “metaphysical”

picture makes progress toward illumination.
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Appendix A

A1 P F̀A Q iff F̀B P → Q. Given that the systems are sound and complete:

Suppose P 6|=FA Q; then there is an interpretation v such that 1 ∈ v(P ) but

1 6∈ v(Q); but then an FB interpretation, 〈W,N,N, v′〉 with some w ∈W such

that v′w(p) = v(p) has hw(P ) = 1 and hw(Q) = 0; so 6|=FB P → Q. Suppose

6|=FB P → Q; then there is an interpretation 〈W,N,N, v′〉 with some w ∈ W
such that hw(P ) = 1 and hw(Q) = 0 or hw(P ) = 1 and hw(Q) = 0; in the first

case, an FA interpretation v with v(p) = v′w(p) has 1 ∈ v(P ) but 1 6∈ v(Q); in

the second case, an interpretation v∗ constructed as in note 5 has 1 ∈ v∗(P )

but 1 6∈ v∗(Q); in either case, P 6|=FA Q.

A2 In the language for FB, Γ F̀B P iff Γ S̀x P . Consider the standard simpli-

fied semantics for relevant logic as in Restall (1993); Restall and Roy (2009);

Priest (2001), but numbers for conditions are different in Priest. Given that

the systems are sound and complete: (i) Suppose Γ 6|=Sx P ; then there is a

relevant interpretation 〈W, g,≤,R, ?, v〉 such that g(Γ) = 1 but g(P ) = 0.

Corresponding to 〈W, g,R, ?,≤ v〉 consider 〈W,N,N, v〉 with w ∈ W corre-

sponding to each w ∈W; set N = {g}, and N = φ; let 1 ∈ vw(p) iff vw(p) = 1

and 0 6∈ vw(p) iff vw?(p) = 1; then for w 6∈ N set hw(P → Q) = vw(P → Q)

and for w 6∈ N , hw(P → Q) = vw?(P → Q). Then by a straightforward in-

duction, hg(Γ) = 1 but hg(P ) = 0; so Γ 6|=FB P . (ii) Suppose Γ 6|=FB P ; then

there is 〈W,N,N, v〉 with w ∈ N such that hw(Γ) = 1 but hw(P ) = 0; first

generate a parallel interpretation with N = {w} and N = φ, setting arbi-

trary assignments so that all the same formulas hold at all the same worlds.

Then consider 〈W, g,R, ?,≤, v〉 where for each a ∈ W there are a, a+ ∈W

with g = w; ? the set of all pairs 〈a, a+〉, 〈a+, a〉; va(p) = 1 iff 1 ∈ va(p) and

va+(p) = 1 iff 0 6∈ va(p). Now, simply picking access relations that will satisfy

the relevant conditions: (a) To capture D20 with D1 - D5 and so any of B, DW

and TW, set w ≥ w and R = {〈g, x, x〉, 〈x, x, x〉 | x ∈W}; (b) To capture D20,

D3, D4, and D6 and so RW set w ≥ w and R = {〈g, x, x〉, 〈x, g, x〉, 〈x, x?, g?〉|
x ∈W}. Then, in any case, for w 6∈ N reset hw(P → Q) = vw(P→ Q). This

is an Sx interpretation such that vg(Γ) = 1 but vg(P ) = 0; so Γ 6|=Sx P .

A3 P 4̀Ax Q iff 4̀Bx P → Q. Given that the systems are sound and complete: (i)

Suppose 6|=4Bx P → Q; then there is a 4Bx interpretation 〈W,N,N,R,R, v〉,
and w ∈ N such that hw(P → Q) = 0; so by H4B(→), there are x, y ∈ W
such that hx(P ) = 1 but hy(Q) = 0, or hy(P ) = 1 but hx(Q) = 0; since

w ∈ N , by NC, x = y, so there is an x ∈ W such that either hx(P ) = 1 but

hx(Q) = 0, or hx(P ) = 1 but hx(Q) = 0. By a lemma from the demonstration

of soundness, there is a corresponding 4Bx interpretation 〈W,N,N,R,R, v〉
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with w and w∗ corresponding to each w such that hw(/A/) = 1 iff hw(/A/) = 1

and hw∗(/A/) = 1 iff hw(\A\) = 1. So hx(P ) = 1 and hx(Q) = 0, or hx∗(P ) = 1

and hx∗(Q) = 0. One way or the other, there is an a ∈W such that ha(P ) = 1

and ha(Q) = 0. But then, by a simple induction, a parallel 4Ax interpretation

with w, R, R, and v all the same has ha(P ) = 1 but ha(Q) = 0. So P 6|=4Ax Q.

(ii) Suppose P 6|=4Ax Q; then there is a 4Ax interpretation 〈W,R,R, v〉 and

w ∈ W such that hw(P ) = 1 but hw(Q) = 0. Consider 〈W,N,N,R,R, v〉
where W = W ∪ {n}; N = {n}; N = φ; R = R ∪ {〈n,w,w〉 | w ∈ W};
R = R∪{〈n,w,w〉 |w ∈W}; and v is extended to paramaters at n in arbitrary

ways. If 〈W,R,R, v〉 is a 4Ax interpretation, then 〈W,N,N,R,R, v〉 is a 4Bx

interpretation. But then, nRww and, by a simple induction, hw(P ) = 1 but

hw(Q) = 0; so by HFB(→), hn(P → Q) = 0; so 6|=4Bx P → Q. This last result

extends only to logics with conditions D1 - D5, and not all the way to R, as

consideration of an expression like [(p→ p)→ q]→ q will show.

Appendix B

Complications for systems up to R are treated in Roy and Fry (draftB). Here I

collect elements of the main system from this paper.

B1 The vocabulary consists of propositional parameters p0, p1 . . . with the op-

erators ¬, ∧, ∨, � and →. Each propositional parameter is a formula; if A

and B are formulas, so are ¬A, (A ∧ B), (A ∨ B), �A and (A → B). A ⊃ B

abbreviates ¬A∨B, ♦A abbreviates ¬�¬A. If A is a formula so formed, so is

A.

Let /A/ and \A\ represent either A or A where what is represented is constant

in a given context, but /A/ and \A\ are opposite. And similarly for other

expressions with overlines as below.

B2 An interpretation is 〈W,M,N,N,R,R, v〉 where W is a set of worlds;

M ⊆ W is a modal access relation; N,N ⊆ W are normal worlds for truth

and non-falsity respectively; R,R ⊆ W 3 are access relations for truth and

non-falsity respectively; and v is a valuation which assigns to each /p/ some

subset of {1, 0} at each w ∈W . Interpretations are subject to,

NC For any w ∈ /N/, w/R/xy iff x = y

MC If w ∈ /N/ and wMx, then x ∈ /N/

and optionally,

D3/4 If a/R/bx and xRcd then there is a y such that bRcy and a/R/yd, and

a z such that bRzd and a/R/cz. And if a/R/xb and xRcd then there is

a y such that bRcy and a/R/yd, and a z such that bRzd and a/R/cz
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CL (i) w ∈ N iff w ∈ N
(ii) for any w ∈ N , hw(p) = hw(p)

MS κρ if a/R/bx and xMc then there is a y such that bMy and a/R/yc,

and if a/R/xb and xMc, there is a y such that bMy and a/R/cy

ρ Reflexivity: for all x, xMx

σ Symmetry: for all x, y if xMy then yMx

τ Transitivity: for all x, y, z if xMy and yMz then xMz

B3 For complex expressions,

(B) hw(p) = 1 iff 1 ∈ vw(p); hw(p) = 1; iff 0 6∈ vw(p)

(¬) hw(/¬P /) = 1 iff hw(\P \) = 0

(∧) hw(/P ∧Q/) = 1 iff hw(/P /) = 1 and hw(/Q/) = 1

(∨) hw(/P ∨Q/) = 1 iff hw(/P /) = 1 or hw(/Q/) = 1

(→) hw(/P → Q/) = 1 iff there are no x, y ∈ W such that w/R/xy and

hx(P ) = 1 but hy(Q) = 0, or hy(P ) = 1 but hx(Q) = 0

(�) hw(/�P /) = 1 iff there is no x ∈W such that wMx and hx(/P /) = 0

For a set Γ of formulas, hw(Γ) = 1 iff hw(/P /) = 1 for each /P / ∈ Γ; then,

V4Bx Γ |=4Bx P iff there is no 4Bx interpretation 〈W,M,N,N,R,R, v〉 and

w ∈ N such that hw(Γ) = 1 but hw(P ) = 0.

B4 For all the rules of 4B, allow overlines, subscripts, and expressions of the sort

s.t, /r.s.t/, /n/[s], and s ' t.

R /P /s

/P /s

¬I /P /s

//Q//t
\\¬Q\\t
\¬P \s

¬E /¬P /s

//Q//t
\\¬Q\\t
\P \s

∧I /P /s
/Q/s

/P ∧Q/s

∧E /P ∧Q/s

/P /s

∧E /P ∧Q/s

/Q/s
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∨I /P /s

/P ∨Q/s

∨I /P /s

/Q ∨ P /s

⊃I /P /s

\Q\s
\P ⊃ Q\s

⊃E \P ⊃ Q\s
/P /s

\Q\s

∨E /P ∨Q/s
/P /s

//R//t

/Q/s

//R//t
//R//t

→E /s.t.u/ /s.t.u/

/P → Q/s /P → Q/s

Pt Pu

Qu Qt

→I /s.t.u/ /s.t.u/

Pt Pu

Qu Qt
/P → Q/s /P → Q/s

where t and u do not appear in any

undischarged premise or assumption

C /n/[s] /n/[s]

//P //s

\\P \\s \n\[s]

NI

n[0]

NE /n/[a] /n/[a]

s ' t /a.s.t/

/a.s.t/ s ' t

'I

s ' s

'E s ' t
P(s)

P(t)

�I s.t

/P /t
/�P /s

where t does

not appear in

any undischarged

premise or as-

sumption

�E /�P /s

s.t

/P /t

MC /n/[s]

s.t

/n/[t]

AMρ

s.s

AMσ s.t

t.s

AMτ s.t

t.u

s.u

AMκ
ρ

/a.b.x/

x.c

b.y

/a.y.c/

//P //w
//P //w

/a.x.b/

x.c

b.y

/a.c.y/

//P //w
//P //w

AM3
4

/a.b.x/

x.c.d

b.c.y

/a.y.d/

//P //w
//P //w

/a.b.x/

x.c.d

b.y.d

/a.c.y/

//P //w
//P //w

/a.x.b/

x.c.d

b.c.y

/a.y.d/

//P //w
//P //w

/a.x.b/

x.c.d

b.y.d

/a.c.y/

//P //w
//P //w

where y does not appear in any undischarged premise or assumption and is not w
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