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Preface

There is, I think, a gap between what many students learn in their first course in
formal logic, and what they are expected to know for their second. While courses in
mathematical logic with metalogical components often cast only the barest glance
at mathematical induction or even the very idea of reasoning from definitions, a first
course may also leave these untreated, and fail explicitly to lay down the definitions
upon which the second course is based. The aim of this text is to integrate material
from these courses and, in particular, to make serious mathematical logic accessible to
students I teach. The first parts introduce classical symbolic logic as appropriate for
beginning students; the last parts build to Gödel’s completeness and incompleteness
results. A distinctive feature of the last section is a complete development of Gödel’s
second incompleteness theorem.

Accessibility, in this case, includes components which serve to locate this text
among others: First, assumptions about background knowledge are minimal. I do
not assume particular content about computer science, or about mathematics much
beyond high school algebra. Officially, everything is introduced from the ground up.
No doubt, the material requires a certain sophistication—which one might acquire
from other courses in critical reasoning, mathematics, or computer science. But the
requirement does not extend to particular contents from any of these areas.

Second, I aim to build skills, and to keep conceptual distance for different applica-
tions of ‘so’ relatively short. Authors of books that are completely correct and precise
may assume skills and require readers to recognize connections not fully explicit.
It may be that this accounts for some of the reputed difficulty of the material. The
results are often elegant. But this can exclude a class of students capable of grasping
and benefiting from the material, if only it is adequately explained. Thus I attempt
explanations and examples to put the student at every stage in a position to understand
the next. In some cases, I attempt this by introducing relatively concrete methods for
reasoning. The methods are, no doubt, tedious or unnecessary for the experienced
logician. However, I have found that they are valued by students, insofar as students
are presented with an occasion for success. These methods are not meant to wash over
or substitute for understanding details, but rather to expose and clarify them. Clarity,
beauty, and power come, I think, by getting at details, rather than burying or ignoring
them.

iv



PREFACE v

Third, the discussion is ruthlessly directed at core results. Results may be rendered
inaccessible to students, who have many constraints on their time and schedules,
simply because the results would come up in, say, a second course rather than a first.
My idea is to exclude side topics and problems, and to go directly after (what I see as)
the core. One manifestation is the way definitions and results from earlier sections
feed into ones that follow. Thus simple integration is a benefit. Another is the way
predicate logic with identity is introduced as a whole in Part I. Though it is possible
to isolate sentential logic from the first parts of Chapter 2 through Chapter 6, and so to
use the text for separate treatments of sentential and predicate logic, the guiding idea is
to avoid repetition that would be associated with independent treatments for sentential
logic, or perhaps monadic predicate logic, the full predicate logic, and predicate logic
with identity.

Also (though it may suggest I am not so ruthless about extraneous material as I
would like to think), I try to offer some perspective about what is accomplished along
the way. Some of this is by organization; some by asides to the main text; and some
built into the main content. So for example the text may be of particular interest to
those who have, or desire, an exposure to natural deduction in formal logic. In this
case, insight arises from the nature of the system. In the first part, I introduce both
axiomatic and natural derivation systems; and in Part III, show how they are related.

There are different ways to organize a course around this text. Chapters locate
and order material conceptually. But in many contexts the conceptual order will be
other than the best pedagogical order, and content may be taken in different ways. For
students who are likely to complete the whole, a straightforward option is to proceed
sequentially through the text from beginning to end (but postponing Chapter 3 until
after Chapter 6). Taken as wholes, Part II depends on Part I; parts III and IV on parts I
and II. At the level of whole chapters, dependencies are as in the box on the next page.
At a more fine-grained level, one might construct a sequence, like one I have regularly
offered, as follows:

informal notions: Chapter 1
sentential logic: first parts of chapters 2, 4, 5, 6
predicate logic: latter parts of chapters 2, 4, 5, 6

transitional: chapters 3, 7, first parts of 8
advanced topics: metalogic: 8.3, Part III; and/or incompleteness: 8.4, Part IV

For predicate logic I have preferred to cover material in the order 2, 6, 4, 5 to convey a
sense of the formal language “by immersion” prior to chapters 4 and 5. Thus the text
is compatible with different course organizations—and may (should) be customized
to your own needs!

A remark about Chapter 7 especially for the instructor: By a formally restricted
system for reasoning with semantic definitions, Chapter 7 aims to leverage derivation
skills from earlier chapters to informal reasoning with definitions. I have had a difficult
time convincing instructors to try this material—and even been told flatly that these
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Chapter dependencies. Though there are cross references throughout, the following repre-
sent reasonable sequences for study:

Chapter 1

Chapter 2

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 3
%
%
%
%
%
%
%
%
%%

. . . . . . . . . .
. . . . . . . . . .

. . . . . . .

````````̀

Chapter 9
   

   
   

Chapter 12
```

```
``̀

Chapter 10

Chapter 11

Chapter 13 Chapter 14

         

````````̀

The relation between Chapter 6 and Chapter 3 is pedagogical rather than logical, and might
be ignored for students with sufficient technical background (but see the caution in the box
on page 69 of Chapter 3).

skills “cannot be taught.” In my experience, this is false (and when I have been able
to convince others to try the chapter, they have quickly seen its value). Perhaps the
difficulty is just that the strategy is unfamiliar. Of course, if one is presented with
students whose mathematical sophistication is sufficient for advanced work, it is not
necessary. But if (as is often the case, especially for students in philosophy) one
obtains one’s mathematical sophistication from courses in logic, this chapter is an
important part of the bridge from earlier material to later. Additionally, the chapter is
an important “takeaway” even for students who will not continue to later material. The
chapter closes an open question from Chapter 4—how it is possible to demonstrate
quantificational validity. But further, the ability to reason closely with definitions is a
skill from which students in (sentential or) predicate logic, even though they never
go on to formalize another sentence or do another derivation, will benefit both in
philosophy and more generally.

Another remark about the (long) sections 13.3, 13.4, and 13.5. These develop in
PA the “derivability conditions” for Gödel’s second incompleteness theorem. They
are perhaps for enthusiasts. Still, in my experience many students are enthusiasts
and, especially from an introduction, benefit by seeing the conditions derived—else



PREFACE vii

the very idea of proving in a formal theory results about provability may remain
mysterious. There are different ways to treat the sections. One might work through
them in some detail. However, even if you skim demonstrations lightly, there is an
advantage having a panorama at which to gesture and say “thus it is accomplished!”

Naturally, results in this book are not innovative. If there is anything original,
it is in presentation. Even here, I am greatly indebted to others, especially perhaps
Bergmann, Moor, and Nelson, The Logic Book, Mendelson, Introduction to Math-
ematical Logic, and Smith, An Introduction to Gödel’s Theorems. I thank my first
logic teacher, G.J. Mattey, who communicated to me his love for the material. And
I thank especially my colleagues John Mumma and Darcy Otto for many helpful
comments. Hannah Baehr and Catlin Andrade provided comments and some of the
answers to exercises. In addition I have received helpful feedback from Ramachandran
Venkataraman and Steve Johnson, along with students in different logic classes at
California State University San Bernardino. Hannah and Steve Baehr produced the
cover.

This text evolved over a number of years starting modestly from notes originally
provided as a supplement to other texts. The current version divides naturally into
two volumes, the first (including Parts I and II) for reasoning in logic, and the second
(including Parts III and IV) for reasoning about it. These volumes are available
in hardcopy from Amazon.com. In addition, both the text and answers to selected
exercises are available as PDF downloads at https://tonyroyphilosophy.net/
symbolic-logic/. The website includes also a forum for comment and discussion.
I recommend working from the hardcopy: for a text that you do not merely read but
rather work through, it makes a difference to see more than a “screen’s worth” at a
time, mark on pages, and such. (The hardcopy is available at the lowest allowable
price, without royalties for me, so this is no self-interested recommendation.) Of
course, the electronic version is useful too—an advantage over the hardcopy is that its
many internal links are live.

I think this is fascinating material, and consider it great reward when students
respond “cool!” as they sometimes do. I hope you will have that response more than
once along the way.

T.R. Summer 2023

https://www.amazon.com
https://tonyroyphilosophy.net/symbolic-logic/
https://tonyroyphilosophy.net/symbolic-logic/


Contents

Preface iv

Contents viii

Quick Reference Guides xi

I The Elements: Four Notions of Validity 1

1 Logical Validity and Soundness 5
1.1 Consistent Stories . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 The Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Some Consequences . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Formal Languages 31
2.1 Introductory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 Sentential Languages . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3 Quantificational Languages . . . . . . . . . . . . . . . . . . . . . . 46

3 Axiomatic Deduction 65
3.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.2 Sentential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.3 Quantificational . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.4 Application: PA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4 Semantics 93
4.1 Sentential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.2 Quantificational . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5 Translation 134
5.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.2 Sentential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.3 Quantificational . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

viii



CONTENTS ix

6 Natural Deduction 198
6.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
6.2 Sentential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
6.3 Quantificational . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
6.4 Applications: Q and PA . . . . . . . . . . . . . . . . . . . . . . . . 299

II Transition: Reasoning About Logic 314

7 Direct Semantic Reasoning 316
7.1 Introductory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
7.2 Sentential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
7.3 Quantificational . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334

8 Mathematical Induction 360
8.1 General Characterization . . . . . . . . . . . . . . . . . . . . . . . 360
8.2 Preliminary Examples . . . . . . . . . . . . . . . . . . . . . . . . . 366
8.3 Further Examples (for Part III) . . . . . . . . . . . . . . . . . . . . 379
8.4 Additional Examples (for Part IV) . . . . . . . . . . . . . . . . . . 389

III Classical Metalogic: S̊oundness and C̊ompleteness 405

9 Preliminary Results 408
9.1 Semantic Validity Implies Logical Validity . . . . . . . . . . . . . . 408
9.2 Validity in AD Implies Validity in ND . . . . . . . . . . . . . . . . 413
9.3 Validity in ND Implies Validity in AD . . . . . . . . . . . . . . . . 420
9.4 Extending to ND+ . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

10 Main Results 445
10.1 S̊oundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
10.2 Sentential C̊ompleteness . . . . . . . . . . . . . . . . . . . . . . . 452
10.3 Quantificational C̊ompleteness: Basic Version . . . . . . . . . . . . 463
10.4 Quantificational C̊ompleteness: Full Version . . . . . . . . . . . . . 475

11 More Main Results 490
11.1 Expressive Completeness . . . . . . . . . . . . . . . . . . . . . . . 490
11.2 Unique Readability . . . . . . . . . . . . . . . . . . . . . . . . . . 494
11.3 Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
11.4 Beginning Model Theory . . . . . . . . . . . . . . . . . . . . . . . 502



CONTENTS x
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The Elements: Four Notions of
Validity
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Introductory

Symbolic logic is a tool for argument evaluation. In this part of the text we introduce
the basic elements of that tool. Those parts are represented in the following diagram:

Ordinary
Arguments

Symbolic
Language

Proof and
Validity

Truth and
Validity

Metalogical
Consideration

- �
�
���

@
@
@@R

@
@
@@R

�
�
���

The starting point is ordinary arguments. Such arguments come in various forms and
contexts—from politics and ordinary living, to mathematics and philosophy. Here is a
classic, simple case:

(A)

All humans are mortal.
Socrates is a human.

Socrates is mortal.

This argument has premises listed above a line, with a conclusion listed below. The
premises are supposed to demonstrate the conclusion. Here is another case which may
seem less simple:

(B)

If the maid did it, then it was done with a revolver only if it was done in the
parlor. But if the butler is innocent, then the maid did it unless it was done in
the parlor. The maid did it only if it was done with a revolver, while the butler is
guilty if it did happen in the parlor. So the butler is guilty.

It is fun to think about this; from the given evidence, it follows that the butler did it!
Here is an argument that is both controversial and significant:

(C)

There is evil. If god is good, then there is no evil unless god has morally
sufficient reasons for allowing it. If god is both omnipotent and omniscient, then
god does not have morally sufficient reasons for allowing evil. So god is not
good, omnipotent, and omniscient.

2



PART I. THE ELEMENTS 3

A being is omnipotent if it is all-powerful, and omniscient if all-knowing. Thus this is
a version of the famous “problem of evil” for traditional theism. It matters whether
the conclusion is true! Roughly, an argument is good if it does what it is supposed to
do, if its premises demonstrate the conclusion; and an argument is bad if it does not
do what it is supposed to do, if its premises fail to demonstrate the conclusion. So a
theist (someone who accepts that there is a god) may want to hold that (C) is a bad
argument, but an atheist (someone who denies that there is a god) that it is good.

We begin in Chapter 1 with an account of success for ordinary arguments (the
leftmost box). So we say what it is for an argument to be good or bad. This introduces
us to the fundamental notions of logical validity and logical soundness. These will
be our core concepts for argument evaluation. But just as it is one thing to know
what honesty is, and another to know whether someone is honest, so it is one thing to
know what logical validity and logical soundness are, and another to know whether
an argument is valid or sound. In some cases, it may be obvious. But others are not
so clear—as, for example, cases (B) or (C) above, along with complex arguments in
mathematics and philosophy. Thus symbolic logic is introduced as a sort of machine
or tool to identify validity and soundness.

This machine begins with certain symbolic representations of ordinary arguments
(the box second from the left). That is why it is symbolic logic. We introduce these
representations in Chapter 2, and translate from ordinary arguments to the symbolic
representations in Chapter 5. Once arguments have this symbolic representation, there
are different methods of operating upon them. We develop three such methods, each
with its own distinctive advantages and disadvantages.

An account of truth and validity is developed for the symbolic representations
in Chapter 4 and Chapter 7 (the upper box). On this account, truth and validity are
associated with clearly defined criteria for their evaluation. And validity from this
upper box implies logical validity for the ordinary arguments that are symbolically
represented. Thus we obtain clearly defined criteria to identify the logical validity
of arguments we care about. Evaluation of validity for the butler and evil cases is
entirely routine given the methods from Chapter 2, Chapter 4, and Chapter 5—though
the soundness of (C) will remain controversial!

One account of proof and validity is developed for the symbolic representations
in Chapter 3, and another in Chapter 6. So there are separate applications of the proof
method (the lower box). Again, on these accounts, proof and validity are associated
with clearly defined criteria for their evaluation. And validity by the proof methods
implies logical validity for the ordinary arguments that are symbolically represented.
In each case the result is another well-defined approach to the identification of log-
ical validity. Evaluation of validity for the butler and evil cases is entirely routine
given the methods from, say, Chapter 2, Chapter 3, and Chapter 5, or alternatively,
Chapter 2, Chapter 5, and Chapter 6—though, again, the soundness of (C) will remain
controversial.
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These, then, are the elements of our logical “machine”—we start with the funda-
mental notion of logical validity, then there are symbolic representations of ordinary
reasonings, along with approaches to evaluation from truth and validity, and from
proof and validity. These elements are developed in this part. In later parts we turn
to thinking about how these parts work together (the right-hand box). In particular,
we begin thinking how to reason about logic (Part II), demonstrate that the same
arguments come out valid by the truth method as by the proof methods (Part III), and
establish limits on application of logic and computing to arithmetic (Part IV). But first
we have to say what the elements are. And that is the task we set ourselves in this part.



Chapter 1

Logical Validity and Soundness

We have said that symbolic logic is a tool or machine for the identification of argument
goodness. In this chapter we begin, not with the machine, but with an account of this
“argument goodness” that the machinery is supposed to identify. In particular, we
introduce the notions of logical validity and logical soundness.

An argument is made up of sentences one of which is taken to be supported by
the others.

AR An argument is some sentences, one of which (the conclusion) is taken to be
supported by the remaining sentences (the premises).

(Important definitions are often offset and given a short name as above; then there
may be appeal to the definition by its name, in this case, ‘AR’.) So an argument has
premises which are taken to support a conclusion. Such support is often indicated
by words or phrases of the sort, ‘so’, ‘it follows’, ‘therefore’, or the like. We will
typically represent arguments in standard form with premises listed as complete
sentences above a line, and the conclusion under. Roughly, an argument is good if
the premises do what they are taken to do, if they actually support the conclusion. An
argument is bad if they do not accomplish what they are taken to do, if they do not
actually support the conclusion.

Logical validity and soundness correspond to different ways an argument can go
wrong. Consider the following two arguments:

(A)

Only citizens can vote
Hannah is a citizen

Hannah can vote

(B)

All citizens can vote
Hannah is a citizen

Hannah can vote

The line divides premises from conclusion, indicating that the premises are supposed
to support the conclusion. Thus these are arguments. But these arguments go wrong
in different ways. The premises of argument (A) are true; as a matter of fact, only

5
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citizens can vote, and Hannah (my daughter) is a citizen. But she cannot vote; she
is not old enough. So the conclusion is false. Thus, in argument (A), the relation
between the premises and the conclusion is defective. Even though the premises
are true, there is no guarantee that the conclusion is true as well. We will say that
this argument is logically invalid. In contrast, argument (B) is logically valid. If its
premises were true, the conclusion would be true as well. So the relation between the
premises and conclusion is not defective. The problem with this argument is that the
premises are not true—not all citizens can vote. So argument (B) is defective, but in a
different way. We will say that it is logically unsound.

The task of this chapter is to define and explain these notions of logical validity
and soundness. I begin with some preliminary notions in section 1.1, then turn to
official definitions of logical validity and soundness (section 1.2), and finally to some
consequences of the definitions (section 1.3).

1.1 Consistent Stories

Given a certain notion of a possible or consistent story, it is easy to state definitions
for logical validity and soundness. So I begin by identifying the kind of stories that
matter. Then we will be in a position to state the definitions, and apply them in some
simple cases.

Let us begin with the observation that there are different sorts of possibility.
Consider, say, ‘Hannah could make it in the WNBA (that is, in the Women’s National
Basketball Association)’. This seems true. She is reasonably athletic, and if she were
to devote herself to basketball over the next few years, she might very well make it
in the WNBA. But wait! Hannah is only a kid—she rarely gets the ball even to the
rim from the top of the key—so there is no way she could make it in the WNBA. So
we have said both that she could and that she could not make it. But this cannot be
right. What is going on? Here is a plausible explanation: Different sorts of possibility
are involved. When we hold fixed current abilities, we are inclined to say there is no
way she could make it. When we hold fixed only general physical characteristics, and
allow for development, it is natural to say that she might. Similarly, I sometimes ask
students if it is possible to drive the 60 miles from our campus in San Bernardino to
Los Angeles in 30 minutes. From natural assumptions about Los Angeles traffic, law
enforcement, and the like, most say it is not. But some, under different assumptions,
allow that it can be done! In each example, the scope of what is possible varies with
whatever constraints are in play: the weaker the constraints, the broader the range of
what is possible. In ordinary contexts, constraints are understood—so when you ask a
friend if she can make it to your party in thirty minutes, rocket ships and jet cars are
not an option. That is how we manage to communicate.

The sort of possibility we are interested in is very broad, and constraints are
correspondingly weak. We will allow that a story is possible or consistent so long as
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it involves no internal contradiction. A story is impossible when it collapses from
within. For this it may help to think about the way you respond to ordinary fiction.
Consider, say, J.K. Rowling’s Harry Potter and the Prisoner of Azkaban. Harry and
his friend Hermione are at wizarding school. Hermione acquires a “time turner” which
allows time travel, and uses it in order to take classes that are offered at the same time.
Such devices are no part of the actual world, but they fit into the wizarding world of
Harry Potter. So far, then, the story does not contradict itself. So you go along.

At one stage, though, Harry is at a lakeshore under attack by a bunch of fearsome
“dementors.” His attempts to save himself appear to have failed when a figure across
the lake drives the dementors away. But the figure who saves Harry is Harry himself
who has come back from the future. Somehow then, as often happens in these stories,
the past depends on the future, at the same time as the future depends on the past:
Harry is saved only insofar as he comes back from the future, but he comes back from
the future only insofar as he is saved. This, rather than the time travel itself, generates
an internal conflict. The story makes it the case that you cannot have Harry’s rescue
apart from his return, and cannot have Harry’s return apart from his rescue. This
might make sense if time were always repeating in an eternal loop. But, according to
the story, there were times before the rescue and after the return. So the story faces
internal collapse. Notice: the objection does not have anything to do with the way
things actually are—with existence of time turners or the like; it has rather to do with
the way the story hangs together internally.1 Similarly, we want to ask whether stories
hold together internally. If a story holds together internally, it counts for our purposes
as consistent and possible. If a story does not hold together, it is not consistent or
possible.

In some cases, stories may be consistent with things we know are true in the real
world. Thus Hannah could grow up to play in the WNBA. There is nothing about our
world that rules this out. But stories may remain consistent though they do not fit with
what we know to be true in the real world. Here are cases of time travel and the like.
Stories become inconsistent when they collapse internally—as when a story says that
some time both can and cannot happen apart from another.

As with a movie or novel, we can say that different things are true or false in our
stories. In Harry Potter it is true that Harry and Hermione travel through time with a
timer turner, but false that they go through time in a DeLorean (as in the Back to the
Future films). In the real world, of course, it is false that there are time turners, and
false that DeLoreans go through time. Officially, a complete story is always maximal

1In more consistent cases of time travel (in fiction) time seems to move on different paths so that
after today and tomorrow, there is another today and another tomorrow. So time does not return to the
very point at which it first turns back. In the trouble cases, time seems to move in a sort of “loop” so that
a point on the path to today (this very day) goes through tomorrow. With this in mind, it is interesting to
think about say, the Terminator (1984, 1991) and Back to the Future (1985, 1989, 1990) films along
with, maybe more consistent, Groundhog Day (1993) and, very much like it, Happy Death Day (2017).
Even if I am wrong, and the Potter story is internally consistent, the overall point should be clear. And it
should be clear that I am not saying anything serious about time travel.



CHAPTER 1. LOGICAL VALIDITY AND SOUNDNESS 8

in the sense that any sentence is either true or false in it. A story is inconsistent when
it makes some sentence both true and false. Since, ordinarily, we do not describe
every detail of what is true and what is false when we tell a story, what we tell is only
part of a maximal story. In practice, however, it will be sufficient for us merely to give
or fill in whatever details are relevant in a particular context.

But there are a couple of cases where we cannot say when sentences are true or
false in a story. The first is when stories we tell do not fill in relevant details. In The
Wizard of Oz (film, 1939) it is true that Dorothy wears red shoes. But the film has
nothing to say about whether she likes Twinkies. By itself, then, the film does not give
us enough information to say that ‘Dorothy likes Twinkies’ is either true or false in the
story. Similarly, there is a problem when stories are inconsistent. Suppose according
to some story,

(a) All dogs can fly

(b) Fido is a dog

(c) Fido cannot fly

Given (a), all dogs fly; but from (b) and (c), it seems that not all dogs fly. Given (b),
Fido is a dog; but from (a) and (c) it seems that Fido is not a dog. Given (c), Fido
cannot fly; but from (a) and (b) it seems that Fido can fly. The problem is not that
inconsistent stories say too little, but rather that they say too much. When a story is
inconsistent, we will refuse to say that it makes any sentence (simply) true or false.2

It will be helpful to consider some examples of consistent and inconsistent stories:
(a) The real story, “Everything is as it actually is.” Since no contradiction is

actually true, this story involves no contradiction; so it is internally consistent and
possible.

(b) “All dogs can fly: over the years, dogs have developed extraordinarily
large and muscular ears; with these ears, dogs can fly.” It is bizarre, but not obviously
inconsistent. If we allow the consistency of stories according to which monkeys fly,
as in The Wizard of Oz, or elephants fly, as in Dumbo (films 1941, 2019), then we
should allow that this story is consistent as well.

(c) “All dogs can fly, but my dog Fido cannot; Fido’s ear was injured while he was
chasing a helicopter, and he cannot fly.” This is not internally consistent. If all dogs
can fly and Fido is a dog, then Fido can fly. You might think that Fido retains a sort of
flying nature—just because Fido remains a dog. In evaluating internal consistency,
however, we require that meanings remain the same.

2The intuitive picture developed above should be sufficient for our purposes. However, we are
on the verge of vexed issues. For further discussion, you may want to check out the vast literature
on “possible worlds.” Contributions of my own include the introductory article, “Modality,” in The
Continuum Companion to Metaphysics.
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Fido cannot fly
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All dogs can fly

flying nature�
�
�
�

Q
Q
Q
Q

Q
Q

Q
Q

�
�

�
�

T

T F

F

If ‘can fly’ means ‘is able to fly’ then in the story it is true that Fido cannot fly, but not
true that all dogs can fly (since Fido cannot). If ‘can fly’ means ‘has a flying nature’
then in the story it is true that all dogs can fly, but not true that Fido cannot (because
he remains a dog). The only way to keep both ‘all dogs fly’ and ‘Fido cannot fly’ true
is to switch the sense of ‘can fly’ from one use to another. So long as ‘can fly’ means
the same in each use, the story is sure to fall apart insofar as it says both that Fido is
and is not that sort of thing.

(d) “Germany won WWII; the United States never entered the war; after a long
and gallant struggle, England and the rest of Europe surrendered.” It did not happen;
but the story does not contradict itself. For our purposes, then, it counts as possible.

(e) “1 1 = 3; the numerals ‘2’ and ‘3’ are switched (the numerals are ‘1’, ‘3’,
‘2’, ‘4’, ‘5’, ‘6’, . . . ); so that one and one are three.” This story does not hang together.
Of course numerals can be switched—so that people would correctly say, ‘1 1 = 3’.
But this does not make it the case that one and one are three! We tell stories in our
own language (imagine that you are describing a foreign-language film in English).
Take a language like English except that ‘fly’ means ‘bark’; and consider a movie
where dogs are ordinary, so that people in the movie correctly assert, in their language,
‘dogs fly’. But changing the words people use to describe a situation does not change
the situation. It would be a mistake to tell a friend, in English, that you saw a movie
in which there were flying dogs. Similarly, according to our story, people correctly
assert, in their language, ‘1 1 = 3’. But it is a mistake to say in English (as our story
does), that this makes one and one equal to three.

Last notes:
� Some authors prefer talk of “possible worlds,” “possible situations,” or the like

to that of consistent stories. It is conceptually simpler to stick with stories, as I
have, than to have situations and distinct descriptions of them. However, it is
worth recognizing that our consistent stories are or describe possible situations,
so that the one notion matches up directly with the others.

� It is essential to success that you work a significant body of exercises success-
fully and independently: In learning logic, you acquire a skill. Just as a coach
might help you to understand how to hit a baseball—but you learn to hit only by
practice—so an instructor (or this book) may help you to understand concepts
of logic, but you gain the skill only by practice. So do not neglect exercises!

� As you approach exercises, note that answers to problems indicated by star are
available at https://tonyroyphilosophy.net/symbolic-logic/.

https://tonyroyphilosophy.net/symbolic-logic/


CHAPTER 1. LOGICAL VALIDITY AND SOUNDNESS 10

E1.1. Say whether each of the following stories is internally consistent or inconsis-
tent. In either case, explain why.

*a. Smoking cigarettes greatly increases the risk of lung cancer, although most
people who smoke cigarettes do not get lung cancer.

b. Joe is taller than Mary, but Mary is taller than Joe.

*c. Abortion is always morally wrong, though abortion is morally right in order
to save a woman’s life.

d. Mildred is Dr. Saunders’s daughter, although Dr. Saunders is not Mildred’s
father.

*e. No rabbits are nearsighted, though some rabbits wear glasses.

f. Ray got an ‘A’ on the final exam in both Phil 200 and Phil 192. But he got a
‘C’ on the final exam in Phil 192.

*g. Barack Obama was never president of the United States, although Michelle is
president right now.

h. Egypt, with about 100 million people is the most populous country in Africa,
and Africa contains the most populous country in the world. But the United
States has over 200 million people.

*i. The death star is a weapon more powerful than that in any galaxy, though there
is, in a galaxy far, far away, a weapon more powerful than it.

j. Luke and the Rebellion valiantly battled the evil Empire, only to be defeated.
The story ends there.

E1.2. For each of the following, (i) say whether the sentence is true or false in
the real world and then (ii) say, if you can, whether the sentence is true or false
according to the accompanying story. In each case, explain your answers. Do not
forget about contexts where we refuse to say whether sentences are simply true or
false. The first problem is worked as an example.

a. Sentence: Aaron Burr was never a president of the United States.

Story: Aaron Burr was the first president of the United States, however he
turned traitor and was impeached and then executed.

(i) It is true in the real world that Aaron Burr was never a president of the
United States. (ii) But the story makes the sentence false, since the story says
Burr was the first president.
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b. Sentence: In 2006, there were still buffalo.

Story: A thundering herd of buffalo overran Phoenix, Arizona in early 2006.
The city no longer exists.

*c. Sentence: After overrunning Phoenix in early 2006, a herd of buffalo overran
Newark, New Jersey.

Story: A thundering herd of buffalo overran Phoenix, Arizona in early 2006.
The city no longer exists.

d. Sentence: There has been an all-out nuclear war.

Story: After the all-out nuclear war, John Connor organized the resistance
against the machines—who had taken over the world for themselves.

*e. Sentence: Barack Obama has swum the Atlantic.

Story: No human being has swum the Atlantic. Barack Obama and Leonardo
DiCaprio and you are all human beings, and at least one of you swam all the
way across.

f. Sentence: Some people have died as a result of nuclear explosions.

Story: As a result of a nuclear blast that wiped out most of this continent, you
have been dead for over a year.

*g. Sentence: Your instructor is not a human being.

Story: No beings from other planets have ever made it to this country. However,
your instructor made it to this country from another planet.

h. Sentence: Lassie is both a television and movie star.

Story: Dogs have super-big ears and have learned to fly. Indeed, all dogs can
fly. Among the many dogs are Lassie and Rin Tin Tin.

*i. Sentence: The Yugo is the most expensive car in the world.

Story: Jaguar and Rolls Royce are expensive cars. But the Yugo is more
expensive than either of them.

j. Sentence: Lassie is a bird who has learned to fly.

Story: Dogs have super-big ears and have learned to fly. Indeed, all dogs can
fly. Among the many dogs are Lassie and Rin Tin Tin.
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1.2 The Definitions

The definition of logical validity depends on what is true and false in consistent stories.
The definition of soundness builds directly on the definition of validity. Note: in
offering these definitions, I stipulate the way the terms are to be used; there is no
attempt to say how they are used in ordinary conversation; rather, we say what they
will mean for us in this context.

LV An argument is logically valid if and only if (iff) there is no consistent story in
which all the premises are true and the conclusion is false.

LS An argument is logically sound iff it is logically valid and all of its premises are
true in the real world.

Observe that logical validity has entirely to do with what is true and false in consistent
stories. Only with logical soundness is validity combined with premises true in the
real world.

Logical (deductive) validity and soundness are to be distinguished from inductive
validity and soundness. For the inductive case, it is natural to focus on the plausibility
or the probability of stories—where an argument is relatively strong when stories
that make the premises true and conclusion false are relatively implausible. Logical
(deductive) validity and soundness are thus a sort of limiting case, where stories that
make premises true and conclusion false are not merely implausible, but impossible.
In a deductive argument, conclusions are supposed to be guaranteed; in an inductive
argument, conclusions are merely supposed to be made probable or plausible. For
mathematical logic, we set the inductive case to the side, and focus on the deductive.

Also, do not confuse truth with validity and soundness. A sentence is true in
the real world when it correctly represents how things are in the real world, and true
in a story when it correctly represents how things are in the story. An argument is
valid when there is no consistent story that makes the premises true and conclusion
false, and sound when it is valid and all its premises are true in the real world. The
definitions for validity and soundness depend on truth and falsity for the premises
and conclusion in stories and then in the real world. But truth and falsity do not even
apply to arguments: just as it is a “category” mistake to say that the number three is
tall or short, so it is a mistake to say that an argument is true or false.3

1.2.1 Invalidity

It will be easiest to begin thinking about invalidity. From the definition, if an argu-
ment is logically valid, there is no consistent story that makes the premises true and

3From an introduction to philosophy of language, one might wonder (with good reason) whether the
proper bearers of truth are sentences rather than, say, propositions. This question is not relevant to the
simple point made above.
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conclusion false. So to show that an argument is invalid, it is enough to produce even
one consistent story that makes premises true and conclusion false. Perhaps there
are stories that result in other combinations of true and false for the premises and
conclusion; this does not matter for the definition. However, if there is even one story
that makes premises true and conclusion false then, by definition, the argument is not
logically valid—and if it is not valid, by definition, it is not logically sound.

We can work through this reasoning by means of a simple invalidity test. Given
an argument, this test has the following four stages:

IT a. List the premises and negation of the conclusion.

b. Produce a consistent story in which the statements from (a) are all true.

c. Apply the definition of validity.

d. Apply the definition of soundness.

We begin by considering what needs to be done to show invalidity. Then we do it.
Finally we apply the definitions to get the results. For a simple example, consider the
following argument:

(D)

Eating brussels sprouts results in good health
Ophelia has good health

Ophelia has been eating brussels sprouts

We apply the invalidity test (IT), to show that this argument is both invalid and
unsound.

The definition of validity has to do with whether there are consistent stories in
which the premises are true and the conclusion false. Thus, in the first stage, we
simply write down what would be the case in a story of this sort.

a. List premises and
negation of conclu-
sion.

In any story with the premises true and conclusion false,

1. Eating brussels sprouts results in good health
2. Ophelia has good health
3. Ophelia has not been eating brussels sprouts

Observe that the conclusion is reversed! At this stage we are not giving an argument.
Rather we merely list what is the case when the premises are true and conclusion
false. Thus there is no line between premises and the last sentence, insofar as there
is no suggestion of support. It is easy enough to repeat the premises for (1) and (2).
Then for (3) we say what is required for the conclusion to be false. Thus, ‘Ophelia has
been eating brussels sprouts’ is false if Ophelia has not been eating brussels sprouts. I
return to this point below, but that is enough for now.

An argument is invalid if there is even one consistent story that makes the premises
true and the conclusion false—so, since the conclusion is reversed, an argument is
invalid if there is even one consistent story in which the statements from (a) are all
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true. Thus, to show invalidity, it is enough to produce a consistent story that “hits the
target” from (a).

b. Produce a consis-
tent story in which
the statements from
(a) are all true.

Story: Eating brussels sprouts results in good health, but
eating spinach does so as well; Ophelia is in good health
but has been eating spinach, not brussels sprouts.

For the statements listed in (a): the story satisfies (1) insofar as eating brussels sprouts
results in good health; (2) is satisfied since Ophelia is in good health; and (3) is
satisfied since Ophelia has not been eating brussels sprouts. The story explains
how she manages to maintain her health without eating brussels sprouts, and so the
consistency of (1)–(3) together. The story does not have to be true—and, of course,
many different stories will do. All that matters is that there is a consistent story in
which the premises of the original argument are true, and the conclusion is false.

Producing a story that makes the premises true and conclusion false is the creative
part. What remains is to apply the definitions of validity and soundness. By LV, an
argument is logically valid only if there is no consistent story in which the premises
are true and the conclusion is false. So if, as we have demonstrated, there is such a
story, the argument cannot be logically valid.

c. Apply the definition
of validity.

This is a consistent story that makes the premises true and
the conclusion false; thus, by definition, the argument is
not logically valid.

By LS, for an argument to be sound, it must have its premises true in the real world
and be logically valid. Thus if an argument fails to be logically valid, it automatically
fails to be logically sound.

d. Apply the definition
of soundness.

Since the argument is not logically valid, by definition, it
is not logically sound.

Given an argument, the definition of validity depends on stories that make the
premises true and the conclusion false. Thus, in step (a) we simply list claims required
of any such story. To show invalidity, in step (b), we produce a consistent story that
satisfies each of those claims. Then in steps (c) and (d) we apply the definitions to get
the final results.

It may be helpful to think of stories as a sort of “wedge” to pry the premises of
an argument off its conclusion. We pry the premises off the conclusion if there is a
consistent way to make the premises true and the conclusion not. If it is possible to
insert such a wedge between the premises and conclusion, then a defect is exposed in
the way premises are connected to the conclusion. Observe that the flexibility we allow
in consistent stories (with flying dogs and the like) corresponds directly to the strength
of the required connection between premises and conclusion. If the connection is
sufficient to resist all such attempts to wedge the premises off the conclusion, then it is
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significant indeed. Observe also that our method reflects what we did with argument
(A) at the beginning of the chapter: Faced with the premises that only citizens can
vote and Hannah is a citizen, it was natural to worry that she might be underage and
so cannot vote. But this is precisely to produce a story that makes the premises true
and conclusion false. Thus our method is not “strange” or “foreign”! Rather, it makes
explicit what has seemed natural from the start.

Here is another example of our method. Though the argument may seem on its
face not to be a very good one, we can expose its failure by our methods—in fact,
again, our method may formalize or make rigorous a way you very naturally think
about cases of this sort. Here is the argument:

(E)
I shall run for president

I shall be one of the most powerful men on earth

To show that the argument is invalid, we turn to our standard procedure:

a. In any story with the premise true and conclusion false,

1. I shall run for president
2. I shall not be one of the most powerful men on earth

b. Story: I do run for president, but get no financing and gain no votes; I lose the
election. In the process, I lose my job as a professor and end up begging for
scraps outside a Domino’s Pizza restaurant. I fail to become one of the most
powerful men on earth.

c. This is a consistent story that makes the premise true and the conclusion false;
thus, by definition, the argument is not logically valid.

d. Since the argument is not logically valid, by definition, it is not logically sound.

This story forces a wedge between the premise and the conclusion. Thus we use the
definition of validity to explain why the conclusion does not properly follow from
the premises. It is, perhaps, obvious that running for president is not enough to make
me one of the most powerful men on earth. Our method forces us to be very explicit
about why: running for president leaves open the option of losing, so that the premise
does not force the conclusion. Once you get used to it, then, our method may appear
as a natural approach to argument evaluation.

If you follow this method for showing invalidity, the place where you are most
likely to go wrong is stage (b), telling stories where the premises are true and the
conclusion false. Be sure that your story is consistent, and that it verifies each of the
claims from stage (a). If you do this, you will be fine.

E1.3. Use our invalidity test to show that each of the following arguments is not
logically valid, and so not logically sound. Understand terms in their most natural
sense.
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*a. If Joe works hard, then he will get an ‘A’
Joe will get an ‘A’

Joe works hard

b. Harry had his heart ripped out by a government agent

Harry is dead

c. Everyone who loves logic is happy
Jane does not love logic

Jane is not happy

d. Our car will not run unless it has gasoline
Our car has gasoline

Our car will run

e. Only citizens can vote
Hannah is a citizen

Hannah can vote

1.2.2 Validity

Suppose I assert that no student at California State University San Bernardino is
from Beverly Hills, and attempt to prove it by standing in front of the library and
buttonholing students to ask if they are from Beverly Hills—I do this for a week and
never find anyone from Beverly Hills. Is the claim that no CSUSB student is from
Beverly Hills thereby proved? Of course not, for there may be students I never meet.
Similarly, failure to find a story to make the premises true and conclusion false does
not show that there is not one—for all we know, there might be some story we have
not thought of yet. So, to show validity, we need another approach. If we could show
that every story which makes the premises true and conclusion false is inconsistent,
then we could be sure that no consistent story makes the premises true and conclusion
false—and so, from the definition of validity, we could conclude that the argument is
valid. Again, we can work through this by means of a procedure, this time a validity
test.

VT a. List the premises and negation of the conclusion.

b. Expose the inconsistency of such a story.

c. Apply the definition of validity.

d. Apply the definition of soundness.

In this case, we begin in just the same way. The key difference arises at stage (b). For
an example, consider this argument:
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(F)

No car is a person
My mother is a person

My mother is not a car

We apply the validity test (VT), to show that this argument is valid and then to evaluate
soundness.

Since LV has to do with stories where the premises are true and the conclusion
false, as before, we begin by listing the premises together with the negation of the
conclusion.

a. List premises and
negation of conclu-
sion.

In any story with the premises true and conclusion false,

1. No car is a person
2. My mother is a person
3. My mother is a car

Any story where ‘My mother is not a car’ is false, is one where my mother is a car
(perhaps along the lines of the 1965 TV series, My Mother the Car).

For invalidity, we would produce a consistent story in which (1)–(3) are all true.
In this case, to show that the argument is valid, we show that this cannot be done.
That is, we show that no story that makes each of (1)–(3) true is a consistent story.

b. Expose the incon-
sistency of such a
story.

In any such story,

Given (1) and (3),
4. My mother is not a person
Given (2) and (4),
5. My mother is and is not a person

The reasoning should be clear if you focus just on the specified lines. Given (1) and
(3), if no car is a person and my mother is a car, then my mother is not a person. But
then my mother is a person from (2) and not a person from (4). So we have our goal:
any story with (1)–(3) as members contradicts itself and therefore is not consistent.
Observe that we could have reached this result in other ways. For example, we might
have reasoned from (1) and (2) that (40), my mother is not a car; and then from (3) and
(40) to the result that (50) my mother is and is not a car. Either way, an inconsistency is
exposed. Thus, as before, there are different options for this creative part.

Now we are ready to apply the definitions of logical validity and soundness. First,

c. Apply the definition
of validity.

So no consistent story makes the premises true and con-
clusion false; so by definition, the argument is logically
valid.

For the invalidity test, we produce a consistent story that “hits the target” from stage
(a) to show that the argument is invalid. For the validity test, we show that any attempt
to hit the target from stage (a) must collapse into inconsistency: No consistent story
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includes each of the elements from stage (a) so that there is no consistent story in
which the premises are true and the conclusion false. So by application of LV the
argument is logically valid.

Given that the argument is logically valid, LS makes logical soundness depend on
whether the premises are true in the real world. Suppose we think the premises of our
argument are in fact true. Then,

d. Apply the definition
of soundness.

In the real world no car is a person and my mother is a
person, so all the premises are true; so since the argument
is also logically valid, by definition, it is logically sound.

Observe that LS requires for logical soundness that an argument is logically valid and
that its premises are true in the real world. Validity depends just on truth and falsity
in consistent stories; setting stories to the side, soundness requires in addition that
premises really are true. And we do not say anything at this stage about claims other
than the premises of the original argument. Thus we do not make any claim about the
truth or falsity of the conclusion, ‘My mother is not a car’. Rather, the observations
have entirely to do with the two premises, ‘No car is a person’ and ‘My mother is a
person’. When an argument is valid and the premises are true in the real world, by LS,
it is logically sound.

But it will not always be the case that a valid argument has true premises. Say
My Mother the Car is (surprisingly) a documentary about a person reincarnated as
a car (the premise of the show) and therefore a true account of some car that is a
person. Then some cars are persons and the first premise is false; so you would have
to respond as follows:

d0. Since in the real world some cars are persons, the first premise is not true. So,
though the argument is logically valid, by definition it is not logically sound.

Another option is that you are in doubt about reincarnation into cars, and in particular
about whether some cars are persons. In this case you might respond as follows:

d00. Although in the real world my mother is a person, I cannot say whether no car is
a person; so I cannot say whether the first premise is true. So though the argument
is logically valid, I cannot say whether it is logically sound.

So once we decide that an argument is valid, for soundness there are three options:

(i) You are in a position to identify all of the premises as true in the real world. In this
case, you should do so, and apply the definition for the result that the argument is
logically sound.

(ii) You are in a position to say that one or more of the premises is false in the real
world. In this case, you should do so, and apply the definition for the result that
the argument is not logically sound.
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(iii) You cannot identify any premise as false, but neither can you identify them all as
true. In this case, you should explain the situation and apply the definition for the
result that you are not in a position to say whether the argument is logically sound.

So given a valid argument, there remains a substantive question about soundness. In
some cases, as for example (C) on page 2, this can be the most controversial part.

Again, given an argument, we say in step (a) what would be the case in any story
that makes the premises true and the conclusion false. Then, at step (b), instead of
finding a consistent story in which the premises are true and conclusion false, we show
that there is no such thing. Steps (c) and (d) apply the definitions for the final results.

Notice that there is an “inverse relation” between stories and validity: Stories with
premises true and conclusion false attack an argument. If some attack succeeds, the
argument fails; and if all attacks fail, the argument succeeds. So IT shows that an
argument fails by finding a successful attack; VT shows that an argument succeeds by
showing that attacks fail. Observe also that only one method can be correctly applied
in a given case. If we can produce a consistent story according to which the premises
are true and the conclusion is false, then it is not the case that no consistent story
makes the premises true and the conclusion false. Similarly, if no consistent story
makes the premises true and the conclusion false, then we will not be able to produce
a consistent story that makes the premises true and the conclusion false.

For showing validity, the most difficult steps are (a) and (b), where we say what
happens in every story where the premises true and the conclusion false. For an
example, consider the following argument:

(G)

All collies can fly
All collies are dogs

All dogs can fly

It is invalid. We can easily tell a story that makes the premises true and the conclusion
false—say one where collies fly but dachshunds do not. Suppose, however, that we
proceed with the validity test as follows:

a. In any story with the premises true and conclusion false,

1. All collies can fly
2. All collies are dogs
3. No dogs can fly

b. In any such story,

Given (1) and (2),
4. Some dogs can fly
Given (3) and (4),
5. Some dogs can and cannot fly
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c. So no consistent story makes the premises true and conclusion false; so by
definition, the argument is logically valid.

d. Since in the real world collies cannot fly, the first premise is not true. So, though
the argument is logically valid, by definition it is not logically sound.

The reasoning at (b), (c), and (d) is correct. Any story with (1)–(3) is inconsistent. But
something is wrong. (Can you see what?) There is a mistake at (a): It is not the case
that every story that makes the premises true and conclusion false includes (3). The
negation of ‘All dogs can fly’ is not ‘No dogs can fly’, but rather, ‘Not all dogs can fly’
(or ‘Some dogs cannot fly’). All it takes to falsify the claim that all dogs fly is some
dog that does not (on this, see the extended discussion on the following page). So for
argument (G) we have indeed shown that every story of a certain sort is inconsistent,
but have not shown that every story which makes the premises true and conclusion
false is inconsistent. In fact, as we have seen, there are consistent stories that make
the premises true and conclusion false.

Similarly, in step (b) it is easy to get confused if you consider too much information
at once. Ordinarily, if you focus on sentences singly or in pairs, it will be clear what
must be the case in every story including those sentences. It does not matter which
sentences you consider in what order, so long as in the end, you reach a contradiction
according to which something is and is not so.

So far, we have seen our procedures applied in contexts where it is given ahead
of time whether an argument is valid or invalid. But not all situations are so simple.
In the ordinary case, it is not given whether an argument is valid or invalid. In this
case, there is no magic way to say ahead of time which of our two tests, IT or VT
applies. The only thing to do is to try one way—if it works, fine. If it does not, try the
other. It is perhaps most natural to begin by looking for stories to pry the premises
off the conclusion. If you can find a consistent story to make the premises true and
conclusion false, the argument is invalid. If you cannot find any such story, you may
begin to suspect that the argument is valid. This suspicion does not itself amount
to a demonstration of validity. But you might try to turn your suspicion into such a
demonstration by attempting the validity method. Again, if one procedure works, the
other better not!

E1.4. Use our validity procedure to show that each of the following is logically valid,
and decide (if you can) whether it is logically sound.

*a. If Barack is president, then Michelle is first lady
Michelle is not first lady

Barack is not president
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Negation and Quantity
In general you want to be careful about negations. To negate any claim P it is
always correct to write simply, it is not the case that P . So ‘It is not the case that
all dogs can fly’ negates ‘All dogs can fly’. You may choose this approach for
conclusions in the first step of our procedures. At some stage, however, you will
need to understand what the negation comes to. It is easy enough to see that,

My mother is a car and My mother is not a car

negate one another. However, there are cases where caution is required. This is
particularly the case with terms involving quantities.

Say the conclusion of your argument is, ‘There are at least ten apples in the basket’.
Clearly a story according to which there are, say, three apples in the basket makes
this conclusion false. However, there are other ways to make the conclusion false—
as if there are two apples or seven. Any of these are fine for showing invalidity.

But when you show that an argument is valid, you must show that any story that
makes the premises true and conclusion false is inconsistent. So it is not sufficient to
show that stories with (the premises true and) three apples in the basket contradict.
Rather, you need to show that any story that includes the premises and fewer than
ten apples fails. Thus in step (a) of our procedure we always say what is so in every
story that makes the premises true and conclusion false. So in (a) you would have
the premises and, ‘There are fewer than ten apples in the basket’.

If a statement is included in some range of consistent stories, then its negation says
what is so in all the others—all the ones where it is not so.

P

not-P

all consistent stories

That is why the negation of ‘there are at least ten’ is ‘there are fewer than ten’.

The same point applies with other quantities. Consider some grade examples:
First, if a professor says that everyone will not get an ‘A’, she says something
disastrous—nobody in your class will get an ‘A’. In order too deny it, to show that
she is wrong, all you need is at least one person that gets an ‘A’. In contrast, if
she says that someone will not get an ‘A’, she says only what you expect from the
start—that not everyone will get an ‘A’. To deny this, you would need that everyone
gets an ‘A’. Thus the following pairs negate one another:

Everyone will not get an ‘A’ and Someone will get an ‘A’
Someone will not get an ‘A’ and Everyone will get an ‘A’

It is difficult to give rules to cover all the cases. The best is just to think about what
you are saying, perhaps with reference to examples like these.
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b. Only fools find love
Elvis was no fool

Elvis did not find love

c. If there is a good and omnipotent god, then there is no evil
There is evil

There is no good and omnipotent god

d. All sparrows are birds
All birds fly

All sparrows fly

e. All citizens can vote
Hannah is a citizen

Hannah can vote

E1.5. Use our procedures to say whether the following are logically valid or invalid,
and sound or unsound. Hint: You may have to do some experimenting to de-
cide whether the arguments are logically valid or invalid—and so decide which
procedure applies.

a. If Barack is president, then Michelle is first lady
Barack is president

Michelle is first lady

b. Most professors are insane
TR is a professor

TR is insane

*c. Some dogs have red hair
Some dogs have long hair

Some dogs have long, red hair

d. If you do not strike the match, then it does not light
The match lights

You strike the match

e. Brittney is taller than Steph
Steph is at least as tall as TR

Steph is taller than TR
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1.3 Some Consequences

We now know what logical validity and soundness are, and should be able to identify
them in simple cases. Still, it is one thing to know what validity and soundness are,
and another to know why they matter. So in this section I turn to some consequences
of the definitions.

1.3.1 Soundness and Truth

First, a consequence we want: The conclusion of every sound argument is true in the
real world. Observe that this is not part of what we require to show that an argument
is sound. LS requires just that an argument is valid and that its premises are true.
However it is a consequence of validity plus true premises that the conclusion is true
as well.

sound � valid true premises
true conclusion

By themselves, neither validity nor true premises guarantee a true conclusion. How-
ever, taken together they do. To see this, consider a two-premise argument. Say the
real story describes the real world; so the sentences of the real story are all true in the
real world. Then in the real story, the premises and conclusion of our argument must
fall into one of the following combinations of true and false:

1 2 3 4 5 6 7 8
T T T F T F F F
T T F T F T F F
T F T T F F T F

combinations for

the real story

These are all the combinations of T and F. Say the premises are true in the real story;
this leaves open that the real story has the conclusion true as in (1) or false as in (2);
so the conclusion of an argument with true premises may or may not be true in the real
world. Say the argument is logically valid; then no consistent story makes the premises
true and the conclusion false; but the real story is a consistent story; so we can be sure
that the real story does not result in combination (2); again, though, this leaves open
any of the other combinations and so that the conclusion of a valid argument may or
may not be true in the real world. Now say the argument is sound; then it is valid and
all its premises are true in the real world; again, since it is valid, the real story does not
result in combination (2); and since the premises of a sound argument are true in the
real world, the premises do not fall into any of the combinations (3)–(8); (1) is the only
combination left: in the real story, and so in the real world, the conclusion of a sound
argument is true. And not only in this case but in general, if an argument is sound
then its conclusion is true in the real world: Since a sound argument is valid, there is
no consistent story where its premises are true and conclusion false; so the real story
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does not have the premises true and conclusion false; and since the premises really
are true, the conclusion is not false—and so (given the maximality of our stories) true.
Put another way, if an argument is sound, its premises are true in the real story; but
then if the conclusion is not true, and so false, the real story has the premises true and
conclusion false—and since there is such a story, the argument is not valid. So if an
argument is sound, if it is valid and its premises are true, it has a true conclusion.

Note again: We do not need that the conclusion is true in the real world in order
to decide that an argument is sound; saying that the conclusion is true is no part of
our procedure for validity or soundness. Rather, by discovering that an argument is
logically valid and that its premises are true, we establish that it is sound; this gives us
the result that its conclusion therefore is true. And that is just what we want.

1.3.2 Validity and Form

It is worth observing a connection between what we have done and argument form.
Some of the arguments we have seen so far are of the same general form. Thus both
arguments at (H) have the form on the right.

(H)

If Joe works hard, then
he will get an ‘A’
Joe works hard

Joe will get an ‘A’

If Hannah is a citizen,
then she can vote
Hannah is a citizen

Hannah can vote

If P then Q

P

Q

As it turns out, all arguments of this form are valid. In contrast, the following
arguments with the indicated form are not.

(I)

If Joe works hard, then
he will get an ‘A’
Joe will get an ‘A’

Joe works hard

If Hannah can vote,
then she is a citizen
Hannah is a citizen

Hannah can vote

If P then Q

Q

P

There are stories where, say, Joe cheats for the ‘A’, or Hannah is a citizen but not old
enough to vote. In these cases, it may be that P results in Q, although there are ways
to have Q without P —this is what the stories bring out. And, generally, it is often
possible to characterize arguments by their forms, where a form is valid iff it has no
instance that makes the premises true and the conclusion false. On this basis, form
(H) above is valid, and (I) is not.

In chapters to come, we take advantage of certain very general formal or structural
features of arguments to identify ones that are valid and ones that are invalid. For now,
though, it is worth noting that some presentations of critical reasoning (which you
may or may not have encountered), take advantage of patterns like those above, listing
typical ones that are valid, and typical ones that are not (for example, Cederblom
and Paulsen, Critical Reasoning). A student may then identify valid and invalid
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arguments insofar as they match the listed forms. This approach has the advantage of
simplicity—and one may go quickly to applications of the logical notions for concrete
cases. But the approach is limited to application of listed forms, and so to a very
narrow range of arguments. LV has application to any argument whatsoever. And for
our logical machine, within a certain range, we shall develop an account of validity
for quite arbitrary forms. So we are pursuing a general account or theory of validity
that goes well beyond the mere lists of these other more traditional approaches.

1.3.3 Relevance

Another consequence seems less welcome. Consider the following argument:

(J)

Snow is white
Snow is not white

All dogs can fly

It is natural to think that the premises are not connected to the conclusion in the right
way—for the premises have nothing to do with the conclusion—and that this argument
therefore should not be logically valid. But if it is not valid, by definition, there is a
consistent story that makes the premises true and the conclusion false. And in this
case there is no such story, for no consistent story makes the premises true; so no
consistent story makes the premises true and the conclusion false; so, by definition,
this argument is logically valid. The procedure applies in a straightforward way.
Thus,

a. In any story with the premises true and conclusion false,

1. Snow is white
2. Snow is not white
3. Some dogs cannot fly

b. In any such story,

Given (1) and (2),
4. Snow is and is not white

c. So no consistent story makes the premises true and conclusion false; so by
definition, the argument is logically valid.

d. Since in the real world snow is white, the second premise is not true. So, though
the argument is logically valid, by definition it is not logically sound.

This seems bad! Intuitively, there is something wrong with the argument. But, on
our official definition, it is logically valid. One might rest content with the observation
that, even though the argument is logically valid, it is not logically sound. But this
does not remove the general worry. For this argument,
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(K)
There are fish in the sea

Nothing is round and not round

has all the problems of the other and is logically sound as well. (Why?) One might,
on the basis of examples of this sort, decide to reject the (classical) account of validity
with which we have been working. Some do just this.4 But, for now, let us see
what can be said in defense of the classical approach. (And the classical approach is,
no doubt, the approach you have seen or will see in any standard course on critical
thinking or logic.)

As a first line of defense, one might observe that the conclusion of every sound
argument is true and ask, “What more do you want?” We use arguments to demonstrate
the truth of conclusions. And nothing we have said suggests that sound arguments
do not have true conclusions: An argument whose premises are inconsistent is sure
to be unsound. And an argument whose conclusion cannot be false is sure to have a
true conclusion. So soundness may seem sufficient for our purposes. Even though we
accept that there remains something about argument goodness that soundness leaves
behind, we can insist that soundness is useful as an intellectual tool. Whenever it is
the truth or falsity of a conclusion that matters, we can profitably employ the classical
notions.

But one might go further, and dispute even the suggestion that there is something
about argument goodness that soundness leaves behind. Consider the following two
argument forms:

(ds) P or Q, not-P

Q

(add) P

P or Q

According to ds (disjunctive syllogism), if you are given that P or Q and that not-P ,
you can conclude that Q. If you have cake or ice cream, and you do not have cake, you
have ice cream; if you are in California or New York, and you are not in California,
you are in New York; and so forth. Thus ds seems hard to deny. And similarly for
add (addition). Where ‘or’ means ‘one or the other or both’, when you are given that
P , you can be sure that P or anything. Say you have cake, then you have cake or ice
cream, cake or brussels sprouts, and so forth; if grass is green, then grass is green or
pigs have wings, grass is green or dogs fly, and so forth.

Return now to our problematic argument. As we have seen, it is valid according
to the classical definition LV. We get a similar result when we apply the ds and add
principles.

4Especially the so-called “relevance” logicians. For an introduction, see Graham Priest, Non-
Classical Logics. But his text presumes mastery of material corresponding to Part I and Part II of this
one. So the non-classical approaches develop or build on the classical one developed here.
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1. Snow is white premise
2. Snow is not white premise
3. Snow is white or all dogs can fly from 1 and add
4. All dogs can fly from 2 and 3 and ds

If snow is white, then snow is white or anything. So snow is white or dogs fly. So we
use line 1 with add to get line 3. But if snow is white or dogs fly, and snow is not
white, then dogs fly. So we use lines 2 and 3 with ds to reach the final result. So our
principles ds and add go hand in hand with the classical definition of validity. The
argument is valid on the classical account; and with these principles, we can move
from the premises to the conclusion. If we want to reject the validity of this argument,
we will have to reject not only the classical notion of validity, but also one of our
principles ds or add. And it is not obvious that one of the principles should go. If we
decide to retain both ds and add then, seemingly, the classical definition of validity
should stay as well. If we have intuitions according to which ds and add should stay,
and also that the definition of validity should go, we have conflicting intuitions. Thus
our intuitions might, at least, sensibly be resolved in the classical direction.

These issues are complex, and a subject for further discussion. For now, it is
enough for us to treat the classical approach as a useful tool: It is useful in contexts
where what we care about is whether conclusions are true. And alternate approaches
to validity typically develop or modify the classical approach. So it is natural to begin
where we are, with the classical account. At any rate, this discussion constitutes a
sort of acid test: If you understand the validity of the “snow is white” and “fish in the
sea” arguments (J) and (K), you are doing well—you understand how the definition of
validity works, with its results that may or may not now seem controversial. If you
do not see what is going on in those cases, then you have not yet understood how the
definitions work and should return to section 1.2 with these cases in mind.

E1.6. Use our procedures to say whether the following are logically valid or invalid,
and sound or unsound. Hint: You may have to do some experimenting to de-
cide whether the arguments are logically valid or invalid—and so decide which
procedure applies.

a. Bob is over six feet tall
Bob is under six feet tall

Bob is disfigured

b. Marilyn is not over six feet tall
Marilyn is not under six feet tall

Marilyn is not in the WNBA

c. There are fish in the sea

Nothing is round and not round
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Classical Validity
As we have mentioned, there are approaches to validity other than classical. But
the classical account remains the one developed in any standard course on critical
reasoning or logic. Not every course “exposes” cases like (J) but, insofar as the
classical definition is employed, all have the same result. Still, there are different
formulations of the classical account which may obscure underlying equivalence.
Here are some different formulations, the first three bad, the last three good:

(1) Sometimes it is said that an argument is valid iff the premises logically entail
the conclusion. On its face, this defines validity by a notion equally in need
of definition. It might be made adequate by an account of logical entailment,
perhaps along the lines of one of the accounts below.

(2) It will not do to characterize valid arguments saying, “if the premises are true
then the conclusion is true.” For consider a true conclusion, as ‘Dogs bark’;
then any premises are such that if they are true then the conclusion is true.
But, say, the argument “There are fish in the sea, so Dogs bark” has stories
with the premise true and conclusion false and so is not logically valid.

(3) Similarly it is a mistake to characterize valid arguments saying “if the
premises are true then the conclusion must be true. For consider a valid
argument as, “I am less than 100 miles from Los Angeles, so I am less than
200 miles from Los Angeles.” The premise is true (of me now); so on this
account, the conclusion must be true; but the conclusion ‘I am less than 200
miles from Los Angeles’ is not such that it must be true—there are consistent
stories where I am, say, in London right now.

(4�) Perhaps, though, (3) is a sloppy way of saying, “it must be that if the premises
are true then the conclusion is true.” So the conditional, not the conclusion,
is true in all consistent stories. This is equivalent to LV. The conditional
is necessarily true iff every consistent story with the premises true has the
conclusion true; and this is so just in case none has the premises true and
conclusion false.

(5�) Given the match between stories and possibility, LV is straightforwardly
equivalent to an account on which an argument is logically valid iff it is not
possible for the premises to be true and the conclusion false—although, by
the appeal to stories, we have attempted to give some substance to the relevant
notion of possibility.

(6�) Another option is to say an argument is valid iff it has some valid form
(see section 1.3.2). This is not equivalent to LV, but remains a version of
the classical account. Formally valid arguments are logically valid. But an
argument can be logically valid without being formally valid. Return to the
example from (3). It is valid by LV. But it has form “P so Q” of which there
are (many) instances with the premise true and conclusion false. Still, (J)
has form “P , not-P , so Q” of which there are no instances that make the
premises true—thus the form comes out valid, and (J) as well.
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*d. Cheerios are square
Chex are round

There is no round square

e. All dogs can fly
Fido is a dog
Fido cannot fly

I am blessed

E1.7. Respond to each of the following.

*a. Create another argument of the same form as the first set of examples (H)
from section 1.3.2, and then use our regular procedures to decide whether it is
logically valid and sound. Is the result what you expect? Explain.

b. Create another argument of the same form as the second set of examples (I)
from section 1.3.2, and then use our regular procedures to decide whether it is
logically valid and sound. Is the result what you expect? Explain.

E1.8. Which of the following are true, and which are false? In each case, explain
your answers, with reference to the relevant definitions. The first is worked as an
example.

a. A logically valid argument is always logically sound.

False. An argument is sound iff it is logically valid and all of its premises are
true in the real world. Thus an argument might be valid but fail to be sound if
one or more of its premises is false in the real world.

b. A logically sound argument is always logically valid.

*c. If the conclusion of an argument is true in the real world, then the argument
must be logically valid.

d. If the premises and conclusion of an argument are true in the real world, then
the argument must be logically sound.

*e. If a premise of an argument is false in the real world, then the argument cannot
be logically valid.

f. If an argument is logically valid, then its conclusion is true in the real world.

*g. If an argument is logically sound, then its conclusion is true in the real world.

h. If an argument has contradictory premises (its premises are true in no consis-
tent story), then it cannot be logically valid.
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*i. If the conclusion of an argument cannot be false (is false in no consistent
story), then the argument is logically valid.

j. The premises of every logically valid argument are relevant to its conclusion.

E1.9. For each of the following concepts, explain in an essay of about two pages,
so that (high-school age) Hannah could understand. In your essay, you should
(i) identify the objects to which the concept applies, (ii) give and explain the
definition, and give and explicate examples of your own construction (iii) where
the concept applies, and (iv) where it does not. Your essay should exhibit an
understanding of methods from the text.

a. Logical validity

b. Logical soundness

E1.10. Do you think we should accept the classical account of validity? In an essay
of about two pages, explain your position, with special reference to difficulties
raised in section 1.3.3.



Chapter 2

Formal Languages

Having said in Chapter 1 what validity and soundness are, we now turn to our logical
machine. As depicted in the picture of elements for symbolic logic on page 2, this
machine begins with symbolic representations of ordinary reasoning. In this chapter
we introduce the formal languages by introducing their grammar or syntax. After
some brief introductory remarks in section 2.1, the chapter divides into sections that
introduce grammar for a sentential language Ls (section 2.2), and then the grammar
for an extended quantificational language Lq (section 2.3).

2.1 Introductory

There are different ways to introduce a formal language. It is natural to introduce
expressions of a new language in relation to expressions of one that is already familiar.
Thus a traditional course in a foreign language is likely to present vocabulary lists of
the sort,

chou: cabbage
petit: small
:::

But the terms of a foreign language are not originally defined by such lists. Rather
French, in this case, has conventions of its own such that sometimes ‘chou’ corre-
sponds to ‘cabbage’ and sometimes it does not. It is not a legitimate criticism of
a Frenchman who refers to his sweetheart as mon petit chou to observe that she is
no cabbage! (Indeed, in this context, chou is chou à la crème—a “cabbage-shaped”
cream puff—and works like ‘sweet’ or ‘honey’ in English.) Although it is possible
to use such lists to introduce the conventions of a new language, it is also possible
to introduce a language “as itself”—the way a native speaker learns it. In this case,
one avoids the danger of importing conventions and patterns from one language onto
the other. Similarly, the expressions of a formal language might be introduced in

31
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correlation with expressions of, say, English. But this runs the risk of obscuring just
what the official definitions accomplish. Since we will be concerned extensively with
what follows from the definitions, it is best to introduce our languages in their “pure”
forms.

In this chapter, we develop the grammar of our formal languages. Consider the
following algebraic expressions:

a b = c a = c

Until we know what numbers are assigned to the terms (as a = 1; b = 2; c = 3/, we
cannot evaluate the first for truth or falsity. Still, we can say that it is grammatical
and so capable of truth and falsity in a way that the other is not. Similarly, we
shall be able to evaluate the grammar of formal expressions apart from truth and
falsity—we do not have to know what the language represents in order to decide if its
expressions are grammatically correct. Or, again, just as a computer can check the
spelling and grammar of English without reference to meaning, so we can introduce
the vocabulary and grammar of our formal languages without reference to what their
expressions mean or what makes them true. The grammar, taken alone, is completely
straightforward. Taken this way, we work directly from the definitions, without
“pollution” from associations with English or whatever.

So we want the definitions. Even so, it may be helpful to offer some hints that
foreshadow how things will go. Do not take these as defining anything! Still, it is nice
to have a sense of how it fits together. Consider some simple sentences of an ordinary
language, say, ‘The butler is guilty’ and ‘The maid is guilty’. It will be convenient to
introduce capital letters corresponding to these, say, B and M . Such sentences may
combine to form ones that are more complex as, ‘It is not the case that the butler is
guilty’ or ‘If the butler is guilty, then the maid is guilty’. We shall find it convenient
to express these, ‘�the butler is guilty’ and ‘the butler is guilty! the maid is guilty’,
with operators � and!. Putting these together we get, �B and B !M . Operators
may be combined in obvious ways so that B ! �M says that if the butler is guilty
then the maid is not. And so forth. We shall see that incredibly complex expressions
of this sort are possible!

In this case, simple sentences, ‘The butler is guilty’ and ‘The maid is guilty’
are “atoms” and complex sentences are built out of them. This is characteristic of
the sentential languages to be considered in section 2.2. For the quantificational
languages of section 2.3, certain sentence parts are taken as atoms. So quantificational
languages expose structure beyond that for the sentential case. Perhaps, though, this
will be enough to give you a glimpse of the overall strategy and aims for the formal
languages of which we are about to introduce the grammar.
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2.2 Sentential Languages

Just as algebra or English have their own vocabulary or symbols and then grammatical
rules for the way the vocabulary is combined, so our formal language has its own
vocabulary and then grammatical rules for the way the vocabulary is combined. In
this section we introduce the vocabulary for a sentential language, introduce the
grammatical rules, and conclude with some discussion of abbreviations for official
expressions.

2.2.1 Vocabulary

We begin, then, with the vocabulary. In this section, we say which symbols are
included in the language, and introduce some conventions for talking about the
symbols.

For any sentential language L, vocabulary includes,

VC (p) Punctuation symbols: . /

(o) Operator symbols: � !

(s) A non-empty countable collection of sentence letters

And that is all. � is tilde and! is arrow.1 In order to fully specify the vocabulary
of any particular sentential language, we need to identify its sentence letters—so far
as definition VC goes, different languages may differ in their collections of sentence
letters. The only constraint on such specifications is that the collections of sentence
letters be non-empty and countable. A collection is non-empty iff it has at least one
member. So any sentential language has at least one sentence letter. A collection
is countable iff its members can be matched one-to-one with all (or some) of the
non-negative integers. Thus we might let the sentence letters be A;B; : : : ; Z, where
these correlate with the integers 1 : : : 26. Or we might let there be infinitely many
sentence letters, S0; S1; S2; : : : where the letters are correlated with the integers by
their subscripts.

So there is room for different sentential languages. Having made this point,
though, we immediately focus on a standard sentential language Ls whose sentence
letters are Roman italics A : : : Z with or without positive integer subscripts. Thus,

A B K Z

are sentence letters of Ls. Similarly,

A1 B3 K7 Z23

1Sometimes sentential languages are introduced with different symbols, for example, : for �, or
� for!. It should be easy to convert between presentations of the different sorts. And sometimes
sentential languages include operators in addition to � and! (for example, _, ^,$). Such symbols
will be introduced in due time—but as abbreviations for complex official expressions.
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are sentence letters of Ls. We will not use the subscripts very often, but they do
guarantee that we never run out of sentence letters. Perhaps surprisingly, as described
in the box on the next page (and E2.2), these letters too can be correlated with the
non-negative integers. Official sentences of Ls are built out of this vocabulary.

To proceed, we need some conventions for talking about expressions of a language
like Ls. Here, Ls is an object language—the thing we want to talk about; and we
require conventions for the metalanguage—for talking about the object language. In
general, for any formal object language L, an expression is a sequence of one or more
elements of its vocabulary. Thus .A! B/ is an expression of Ls, but .A ? B/ is not.
(What is the difference?) We shall use script characters A : : :Z as variables that range
over expressions. Then ‘�’, ‘!’, ‘.’, and ‘/’ represent themselves. And concatenated
or joined symbols in the metalanguage represent the concatenation of the symbols
they represent.

To see how this works, think of metalinguistic expressions as “mapping” to object-
language ones. Thus, for example, where S represents an arbitrary sentence letter,
�S may represent any of, �A, �B , or �Z. But �S does not represent �.A! B/,
for it does not consist of a tilde followed by a sentence letter. With S restricted to
sentence letters, there is a straightforward map from �S onto �A, �B , or �Z, but
not from �S onto �.A! B/.

(A)

�A �B �Z �

‹‚ …„ ƒ
.A! B/

�S �S �S �S

?? ?? ?? ?

In the first three cases,�maps to itself, and S to a sentence letter. In the last case there
is no map. We might try mapping S to A or B; but this would leave the rest of the
expression unmatched. While there is no map from �S to �.A! B/, there is a map
from�P to�.A! B/ if we let P represent any arbitrary expression, for�.A! B/

consists of a tilde followed by an expression of some sort. Metalinguistic expressions
give the form of ones in the object language. An object-language expression has some
form just when there is a complete map from the metalinguistic expression to it.

Say P represents any arbitrary expression. Then by similar reasoning, .A !
B/! .A! B/ is of the form P ! P .

(B) ‚ …„ ƒ
.A! B/!

‚ …„ ƒ
.A! B/

P ! P

?��	 @@R

In this case, P maps to all of .A! B/ and! to itself. A constraint on our maps is
that the use of the metavariables A : : :Z must be consistent within a given map. Thus
.A! B/! .B ! B/ is not of the form P ! P .
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Countability
To see the full range of languages which are allowed under VC, observe how
multiple infinite series of sentence letters may satisfy the countability constraint.
Thus, for example, suppose we have two series of sentence letters, A0; A1; : : : and
B0; B1; : : : : These can be correlated with the non-negative integers as follows:

A0 B0 A1 B1 A2 B2
j j j j j j � � �

0 1 2 3 4 5

For any non-negative integer n, An is matched with 2n, and Bn with 2n 1. So
each sentence letter is matched with some non-negative integer; so the sentence
letters are countable. If there are three series, they may be correlated,

A0 B0 C0 A1 B1 C1
j j j j j j � � �

0 1 2 3 4 5

so that every sentence letter is matched to some non-negative integer. And similarly
for any finite number of series. And there might be 26 such series, as for our
language Ls.

In fact even this is not the most general case. If there are infinitely many series of
sentence letters, we can still line them up and correlate them with the non-negative
integers. Here is one way to proceed. Order the letters as follows:

A0 ! A1 A2 ! A3 � � �

. % .

B0 B1 B2 B3
# % .

C0 C1 C2 C3
.

D0 D1 D2 D3
:
:
:

so that any letter appears somewhere along the arrows. Then following the arrows,
match them accordingly with the non-negative integers,

A0 A1 B0 C0 B1 A2
j j j j j j � � �

0 1 2 3 4 5

so that, again, any sentence letter is matched with some non-negative integer. It
may seem odd that we can line symbols up like this, but it is hard to dispute that
we have done so. Thus we may say that VC is compatible with a wide variety of
specifications, but also that all legitimate specifications have something in common:
If a collection is countable, it is possible to sort its members into a series with a
first member, a second member, and so forth.



CHAPTER 2. FORMAL LANGUAGES 36

(C) ‚ …„ ƒ
.A! B/!

‹‚ …„ ƒ
.B ! B/

P ! P

?��	 or ‹‚ …„ ƒ
.A! B/!

‚ …„ ƒ
.B ! B/

P ! P

? @@R

We are free to associate P with whatever we want. However, within a given map,
once P is associated with some expression, we have to use it consistently within that
map.

Observe again that �S and P ! P are not expressions of Ls. Rather, we use
them to talk about expressions of Ls. And it is important to see how we can use the
metalanguage to make claims about a range of expressions all at once. Given that �A,
�B , and �Z are all of the form �S , when we make some claim about expressions
of the form �S , we say something about each of them—but not about �.A! B/.
Similarly, if we make some claim about expressions of the form P ! P , we say
something with application to a range of expressions. In the next section, for the
specification of formulas, we use the metalanguage in just this way.

E2.1. Assuming that S may represent any sentence letter, and P any arbitrary
expression of Ls, use maps to determine whether each of the following expressions
is (i) of the form .S ! �P / and then (ii) whether it is of the form .P ! �P /.
In each case, explain your answers.

a. .A! �A/

b. .A! �.R! �Z//

c. .�A! �.R! �Z//

d. ..R! �Z/! �.R! �Z//

*e. ..! �/! �.! �//

E2.2. On the pattern of examples from the countability guide on page 35, show that
the sentence letters of Ls are countable—that is, that they can be correlated with
the non-negative integers. On the scheme you produce, what numbers correlate
with A, B1, and C10? Hint: Supposing that A without subscript is like A0, for
any subscript n, you should be able to produce a formula for the position of An,
and similarly for Bn, Cn, and the like. Then it will be easy to find the position of
any letter, even if the question is about, say, L125.

2.2.2 Formulas

We are now in a position to say which expressions of a sentential language are its
grammatical formulas and sentences. The specification itself is easy. We will spend a
bit more time explaining how it works. For a given sentential language L,
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FR (s) If S is a sentence letter, then S is a formula.

(�) If P is a formula, then �P is a formula.

(!) If P and Q are formulas, then .P ! Q/ is a formula.

(CL) Any formula may be formed by repeated application of these rules.

And we simply identify the formulas with the sentences. For any sentential language
L, an expression is a sentence iff it is a formula.

FR is a first example of a recursive definition. Such definitions always build from
the parts to the whole. Frequently we can use “tree” diagrams to see how they work.
Thus, for example, by repeated applications of the definition, �.A! .�B ! A// is
a formula and sentence of Ls.

(D)

A B A These are formulas by FR(s)
A
A
A
A
A
A
A
A
A
AA

�
�
�
�
�
��

�B

@
@
@

Since B is a formula, this is a formula by FR(�)

.�B ! A/

�
�
�

Since �B and A are formulas, this is a formula by FR(!)

.A! .�B ! A// Since A and .�B ! A/ are formulas, this is a formula by FR(!)

�.A! .�B ! A// Since .A! .�B ! A// is a formula, this is a formula by FR(�)

By FR(s), the sentence letters, A, B , and A are formulas; given this, clauses FR(�)
and FR(!) let us conclude that other, more complex, expressions are formulas as well.
Notice that, in the definition, P and Q may be any expressions that are formulas: By
FR(�), if B is a formula, then tilde followed by B is a formula; but similarly, if �B
and A are formulas, then an opening parenthesis followed by �B , followed by!
followed by A and then a closing parenthesis is a formula; and so forth as on the tree
above. You should follow through each step very carefully.

A recursive definition always involves some “basic” starting elements, in this
case, sentence letters. These occur across the top row of our tree. Other elements
are constructed, by the definition, out of ones that come before. The last, closure,
clause tells us that any formula is built this way. To demonstrate that an expression is
a formula and a sentence, it is sufficient to construct it, according to the definition, on
a tree. If an expression is not a formula, there will be no way to construct it according
to the rules. Thus .A�B/ for example, is not a formula. A is a formula and �B is
a formula; but there is no way to put them together, by the definition, without! in
between.

Here are a couple of last examples which emphasize the point that you must
maintain and respect parentheses in the way you construct a formula. Thus consider,
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(E)

A

@
@
@

B

�
�
�

These are formulas by FR(s)

.A! B/ Since A and B are formulas, this is a formula by FR(!)

�.A! B/ Since .A! B/ is a formula, this is a formula by FR(�)

And compare it with,

(F)

A B

�
�
�
�
�
��

These are formulas by FR(s)

�A

@
@
@

Since A is a formula, this is a formula by FR(�)

.�A! B/ Since �A and B are formulas, this is a formula by FR(!)

Once you have .A ! B/ as in the first case, the only way to apply FR(�) puts the
tilde on the outside. To get the tilde inside the parentheses it has to go on first, as in
the second case. The significance of this point emerges immediately below.

It will be helpful to have some additional definitions, each of which may be
introduced in relation to the trees. Restrict attention to trees that branch in the usual
way: without extraneous nodes not required for the result, and without nodes used
more than once (so for every node, there is a unique upward path from the root to it).
Then for any formula P , each formula which appears in the tree for P including P

itself is a subformula of P . Thus �.A! B/ has subformulas:

A B .A! B/ �.A! B/

In contrast, .�A! B/ has subformulas:

A B �A .�A! B/

So it matters for the subformulas how the tree is built. The immediate subformulas
of a formula P are the subformulas to which P is directly connected by lines. Thus
�.A! B/ has one immediate subformula, .A! B/; .�A! B/ has two, �A and
B . The atomic subformulas of a formula P are the sentence letters that appear across
the top row of its tree. Thus both �.A! B/ and .�A! B/ have A and B as their
atomic subformulas. Finally, the main operator of a formula P is the last operator
added in its tree. Thus � is the main operator of �.A ! B/, and! is the main
operator of .�A ! B/. So, again, it matters how the tree is built. We sometimes
speak of a formula by means of its main operator: A formula of the form �P is a
negation; a formula of the form .P ! Q/ is a (material) conditional, where P is the
antecedent of the conditional and Q is the consequent. Because it operates on the two
immediate subformulas,! is a binary operator; because it has just one � is unary.
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E2.3. For each of the following expressions, demonstrate that it is a formula and a
sentence of Ls with a tree. Then on the tree (i) bracket all the subformulas, (ii)
box the immediate subformula(s), (iii) star the atomic subformulas, and (iv) circle
the main operator. A first case for ..�A! B/! A/ is worked as an example.

A? B?

�
�
�
�
�
��

A?

�
�
�
�
�
�
�
�
�
��

These are formulas by FR(s)

�A

@
@
@

From A, formula by FR(�)

.�A! B/

@
@
@

From �A and B , formula by FR(!)

..�A! B/
�
 �	! A/ From .�A! B/ and A, formula by FR(!)

�
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*a. A

b. ���A

c. �.�A! B/

d. .�C ! �.A! �B//

e. .�.A! B/! .C ! �A//

E2.4. Explain why the following expressions are not formulas or sentences of Ls.
Hint: You may find that an attempted tree will help you see what is wrong.

a. .A � B/

Parts of a Formula
The parts of a formula are here defined in relation to its tree.

SB Each formula which appears in the tree for formula P including P itself is a
subformula of P .

IS The immediate subformulas of a formula P are the subformulas to which P

is directly connected by lines.

AS The atomic subformulas of a formula P are the sentence letters that appear
across the top row of its tree.

MO The main operator of a formula P is the last operator added in its tree.
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*b. .P ! Q/

c. .�B/

d. .A! �B ! C/

e. ..A! B/! �.A! C/! D/

E2.5. For each of the following expressions, determine whether it is a formula and
sentence of Ls. If it is, show it on a tree, and exhibit its parts as in E2.3. If it is
not, explain why as in E2.4.

*a. �..A! B/! .�.A! B/! A//

b. �.A! B ! .�.A! B/! A//

*c. �.A! B/! .�.A! B/! A/

d. ���.���A! ���A/

e. ..�.A! B/! .�C ! D//! �.�.E ! F /! G//

2.2.3 Abbreviations

We have completed the official grammar for our sentential languages. So far, the
languages are relatively simple. When we turn to reasoning about logic (in later parts),
it will be good to have our languages as simple as we can. However, for applications of
logic it will be advantageous to have additional expressions which, though redundant
with expressions of the language already introduced, simplify the work. I begin by
introducing these additional expressions, and then turn to the question about how to
understand the redundancy.

Abbreviating. As may already be obvious, formulas of a sentential language like Ls

can get complicated quickly. Abbreviated forms give us ways to manipulate official
expressions without undue pain. First, for any formulas P and Q,

AB (_) .P _Q/ abbreviates .�P ! Q/

(^) .P ^Q/ abbreviates �.P ! �Q/

($) .P $ Q/ abbreviates �..P ! Q/! �.Q! P //

The last of these is easier than it looks; I say something about this below. _ is
wedge, ^ is caret, and $ is double arrow. An expression of the form .P _Q/

is a disjunction with P and Q as disjuncts; it has the standard reading, (P or Q).
An expression of the form .P ^Q/ is a conjunction with P and Q as conjuncts;
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it has the standard reading, (P and Q). An expression of the form .P $ Q/ is a
(material) biconditional; it has the standard reading, (P iff Q).2 Again, we do not
use ordinary English to define our symbols. All the same, this should suggest how the
extra operators extend the range of what we are able to say in a natural way.

With the abbreviations, we are in a position to introduce derived clauses for FR.
Suppose P and Q are formulas; then by FR(�), �P is a formula; so by FR(!),
.�P ! Q/ is a formula; but this is just to say that .P _Q/ is a formula. And
similarly in the other cases. (If you are confused by such reasoning, work it out on a
tree.) Thus we arrive at the following conditions:

FR0 (_) If P and Q are formulas, then .P _Q/ is a formula.

(^) If P and Q are formulas, then .P ^Q/ is a formula.

($) If P and Q are formulas, then .P $ Q/ is a formula.

Once FR is extended in this way, the additional conditions may be applied directly in
trees. Thus, for example, if P is a formula and Q is a formula, we can safely move in
a tree to the conclusion that .P _Q/ is a formula by FR0(_). Similarly, for a more
complex case, ..A$ B/ ^ .�A _ B// is a formula.

(G)

A

@
@
@

B

�
�
�

A B

�
�
�
�
�
��

These are formulas by FR(s)

.A$ B/

\
\
\
\
\
\\

�A

@
@
@

These are formulas by FR0($) and FR(�)

.�A _ B/
�

���
��

This is a formula by FR0(_)

..A$ B/ ^ .�A _ B// This is a formula by FR0(^)

In a derived sense, expressions with the new symbols have subformulas, atomic
subformulas, immediate subformulas, and main operator all as before. Thus on the
diagram immediately above, with notation from exercises—bracket for subformulas,
star for atomic subformulas, box for immediate subformulas, and circle for main
operator:

2Common alternatives are & for ^, and� for$. Less common nowadays is a dot (period) for ^.
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(H)

A?

@
@@

B?

�
��

A? B?

�
�
�
�
�
��

These are formulas by FR(s)

.A$ B/

e
e
e
e
e
e

�A

@
@@

These are formulas by FR0($) and FR(�)

.�A _ B/
!!!!!

This is a formula by FR0(_)

..A$ B/
�
�	^ .�A _ B// This is a formula by FR0(^)

�
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In the derived sense, ..A$ B/ ^ .�A _ B// has immediate subformulas .A$ B/

and .�A _ B/, and main operator ^.
Return to the case of .P $ Q/ and observe that it can be thought of as based on a

simple abbreviation of the sort we expect. That is, ..P ! Q/ ^ .Q! P // is of the
sort .A ^B/; so by AB(^), it abbreviates �.A! �B/; but with .P ! Q/ for A

and .Q! P / for B, this is just, �..P ! Q/! �.Q! P // as in AB($). So you
may think of .P $ Q/ as an abbreviation of ..P ! Q/ ^ .Q! P //, which in turn
abbreviates the more complex �..P ! Q/! �.Q! P //. This is what we expect:
a double arrow is like an arrow going from P to Q and an arrow going from Q to P .

A couple of additional abbreviations concern parentheses. First, it is sometimes
convenient to use a pair of square brackets [ ] in place of parentheses ( ). This is
purely for visual convenience; for example ((()())) may be more difficult to absorb
than ([()()]). Second, if the very last step of a tree for some formula P is justified by
FR(!), FR0(^), FR0(_), or FR0($), we feel free to abbreviate P with the outermost
set of parentheses or brackets dropped. Again, this is purely for visual convenience.
Thus, for example, we might write, A ! .B ! C/ in place of .A ! .B ! C//.
As it turns out, where A, B, and C are formulas, there is a difference between
..A! B/! C/ and .A! .B ! C//, insofar as the main operator shifts from one
case to the other. In .A! B ! C/, however, it is not clear which arrow should be
the main operator. That is why we do not count the latter as a grammatical formula or
sentence. Similarly there is a difference between �.A! B/ and .�A! B/; again,
the main operator shifts. However, there is no room for ambiguity when we drop just
an outermost pair of parentheses and write .A! B/! C for ..A! B/! C/; and
similarly when we write A! .B ! C/ for .A! .B ! C//. The same reasoning
applies for abbreviations with ^, _, or$. So dropping outermost parentheses counts
as a legitimate abbreviation.

An expression which uses the extra operators, square brackets, or drops outermost
parentheses is a formula just insofar as it is a sort of shorthand for an official formula
which does not. But we will not usually distinguish between the shorthand expressions
and official formulas. Thus, again, the new conditions may be applied directly
in trees and, for example, the following is a legitimate tree to demonstrate that
A _ .ŒA! B� ^ B/ is a formula:
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(I)

A

S
S
S
S
S
S
S
S
S
SS

A

@
@
@

B

�
�
�

B

�
�
�
�
�
��

Formulas by FR(s)

ŒA! B�
H
HHH

HH

Formula by FR(!), with [ ]

.ŒA! B� ^ B/
���

���

Formula by FR0(^)

A _ .ŒA! B� ^ B/ Formula by FR0(_), with outer ( ) dropped

So we use our extra conditions for FR0, introduce square brackets instead of paren-
theses, and drop parentheses in the very last step. The only case where you can omit
parentheses is if they would have been added in the very last step of the tree. So long
as we do not distinguish between shorthand expressions and official formulas, we
regard a tree of this sort as sufficient to demonstrate that an expression is a formula
and a sentence.

Unabbreviating. As we have suggested, there is a certain tension between the
advantages of a simple language, and one that is more complex. When a language
is simple, it is easier to reason about; when it has additional resources, it is easier to
use. Expressions with ^, _, and$ are redundant with expressions that do not have
them—though it is easier to work with a language that has ^, _, and$ than with one
that does not (something like reciting the Pledge of Allegiance in English, and then in
Morse code; you can do it in either, but it is easier in the former). If all we wanted was
a simple language to reason about, we would forget about the extra operators. If all
we wanted was a language easy to use, we would forget about keeping the language
simple. To have the advantages of both, we have adopted the position that expressions
with the extra operators abbreviate, or are a shorthand for, expressions of the original
language. It will be convenient to work with abbreviations in many contexts. But
when it comes to reasoning about the language, we set the abbreviations to the side
and focus on the official language itself.

For this to work, we have to be able to undo abbreviations when required. It is, of
course, easy enough to substitute parentheses back for square brackets, or to replace
outermost dropped parentheses. For formulas with the extra operators, it is always
possible to work through trees, using AB to replace formulas with unabbreviated
forms, one operator at a time. Consider an example:
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(J)

A

@
@@

B

�
��

A B

�
�
�
�
�
��

.A$ B/

\
\
\
\
\
\\

�A

@
@@
.�A_B/
�

����
..A$ B/^ .�A_B//

A

@
@@

B

�
��

A B

�
�
�
�
�
��

�..A! B/!�.B ! A//

\
\
\
\
\
\\

�A

@
@@

.��A! B/
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����
�.�..A! B/!�.B ! A//!�.��A! B//

The tree on the left is (G) from above. The tree on the right uses AB to “unpack”
each of the expressions on the left. Atomics remain as before. Then, at each stage,
given an unabbreviated version of the parts, we give an unabbreviated version of the
whole. First, .A $ B/ abbreviates �..A ! B/ ! �.B ! A//; this is a simple
application of AB($). �A is not an abbreviation and so remains as before. From
AB(_), .P _Q/ abbreviates .�P ! Q/; in this case, P is �A and Q is B; so we
take tilde the P arrow the Q (so that we get two tildes). For the final result, we
combine the input formulas according to the unabbreviated form for ^. It is more a
bookkeeping problem than anything: There is one formula P that is the unabbreviated
version of .A$ B/, another Q that is the unabbreviated version of .�A _ B/; these
are combined into .P ^Q/ and so by AB(^) into �.P ! �Q/. You should be able
to see that this is just what we have done. There is a tilde and a parenthesis; then the
P ; then an arrow and a tilde; then the Q; and a closing parenthesis. Not only is the
abbreviation more compact but, as we shall see, there is a corresponding advantage
when it comes to grasping what an expression says.

Here is another example, this time from (I). In this case, we replace also square
brackets and restore dropped outer parentheses.

(K)
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.ŒA! B�^B/
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����
A_ .ŒA! B�^B/
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.A! B/
H
HHHH
�..A! B/!�B/

�
����

.�A!�..A! B/!�B//

In the right-hand tree, we reintroduce parentheses for the square brackets. Similarly,
we apply AB(^) and AB(_) to unpack shorthand symbols. And outer parentheses are
reintroduced at the very last step. Thus A _ .ŒA ! B� ^ B/ is a shorthand for the
unabbreviated expression, .�A! �..A! B/! �B//.

Observe that these right-hand trees are not ones of the sort you would use directly
to show that an expression is a formula by FR! FR does not let you move directly from
that .A! B/ is a formula and B is a formula, to the result that �..A! B/! �B/



CHAPTER 2. FORMAL LANGUAGES 45

is a formula as just above. Of course, if .A! B/ and B are formulas, then �..A!
B/ ! �B/ is a formula, and nothing stops a tree to show it. This is the point of
our derived clauses for FR0. In fact, this is a good check on your unabbreviations: If
the result is not a formula, you have made a mistake. But you should not think of
trees as on the right as involving application of FR. Rather they are unabbreviating
trees, having exactly one node corresponding to each node on the left; by AB the
unabbreviating tree unpacks each expression from the left into its unabbreviated form.
The combination of a formula constructed with FR0 and then unabbreviated by AB

always results in an expression that meets all the requirements from FR.

E2.6. For each of the following expressions, demonstrate that it is a formula and a
sentence of Ls with a tree. Then on the tree (i) bracket all the subformulas, (ii)
box the immediate subformula(s), (iii) star the atomic subformulas, and (iv) circle
the main operator.

*a. .A ^ B/! C

b. �.ŒA! �K14� _ C3/

c. B ! .�A$ B/

d. .B ! A/ ^ .C _ A/

e. .A _�B/$ .C ^ A/

*E2.7. For each of the formulas in E2.6a–e, produce an unabbreviating tree to find
the unabbreviated expression it represents.

*E2.8. For each of the unabbreviated expressions from E2.7a–e, produce a complete
tree to show by direct application of FR that it is an official formula.

E2.9. In the text, we introduced derived clauses to FR by reasoning as follows:
“Suppose P and Q are formulas; then by FR(�), �P is a formula; so by FR(!),
.�P ! Q/ is a formula; but this is just to say that .P _Q/ is a formula. And
similarly in the other cases” (page 41). Supposing that P and Q are formulas,
produce the similar reasoning to show that .P ^Q/ and .P $ Q/ are formulas.
Hint: Again, it may help to think about trees.
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E2.10. For each of the following concepts, explain in an essay of about two pages,
so that (high-school age) Hannah could understand. In your essay, you should
(i) identify the objects to which the concept applies, (ii) give and explain the
definition, and give and explicate examples of your own construction (iii) where
the concept applies, and (iv) where it does not. Your essay should exhibit an
understanding of methods from the text.

a. The vocabulary for a sentential language, and use of the metalanguage.

b. A formula of a sentential language.

c. The parts of a formula.

d. The abbreviation and unabbreviation for an official formula of a sentential
language.

2.3 Quantificational Languages

The methods by which we define the grammar of a quantificational language are very
much the same as for a sentential language. Of course, in the quantificational case,
additional expressive power is associated with additional complications. We will
introduce a class of terms before we get to the formulas, and there will be a distinction
between formulas and sentences. As before, however, there is the vocabulary and
then the grammatical elements. After introducing the vocabulary, we build to terms,
formulas, and sentences. The chapter concludes with some discussion of abbreviations,
and of a particular language with which we shall be concerned later in the text.

Here is a brief intuitive picture: At the start of section 2.2 we introduced ‘The
butler is guilty’ and ‘The maid is guilty’ as atoms for sentential languages, and the rest
of the section went on to fill out that picture. For the quantificational languages of this
section, our atoms are certain sentence parts. Thus we introduce a class of individual
terms which work to pick out objects. In the simplest case, we might introduce b and
m to pick out the butler and the maid. Similarly, we introduce a class of predicate
expressions as .x is guilty) and .x killed y/ indicating them by capitals as G1 or K2

(with the superscript to indicate the number of object places). Then G1b says that
the butler is guilty, and K2bm that the butler killed the maid. We shall read 8xG1x
to say for any thing x, it is guilty—that everything is guilty. (The upside-down ‘A’
for all is the universal quantifier.) As indicated by this reading, the variable x works
very much like a pronoun in ordinary language. And, of course, our notions may be
combined. Thus, 8xG1x ^K2bm says that everything is guilty and the butler killed
the maid. Thus we expose structure buried in sentence letters from before. Insofar as
the language includes quantifiers (upside-down ‘A’) and predicates (as G1 or K2) it
is said to be a language for quantificational (or predicate) logic. Of course we have
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so-far done nothing to define such a language. But this should give you a picture of
the direction in which we aim to go.

2.3.1 Vocabulary

We begin by specifying the vocabulary or symbols of our quantificational languages.
For now, do not worry about what the symbols mean or how they are used. Our task
is to identify the symbols and give some conventions for talking about them. For any
quantificational language L the vocabulary consists of,

VC (p) Punctuation symbols: . /

(o) Operator symbols: � ! 8

(v) A countably infinite collection of variable symbols

(s) A countable collection of sentence letters

(c) A countable collection of constant symbols

(f) For any integer n 1, a countable collection of n-place function symbols

(r) For any integer n 1, a countable collection of n-place relation symbols

Each of the countable collections may be empty except that there are always the
variable symbols, and there must be at least one relation symbol. Unless otherwise
noted, ‘D’ is always included among the 2-place relation symbols, and the variable
symbols are i : : : z with or without positive integer subscripts. Notice that all the
punctuation symbols, operator symbols and sentence letters remain from before
(except that the collection of sentence letters may be empty). There is one new
operator symbol, with the new variable symbols, constant symbols, function symbols,
and relation symbols.

This definition VC is parallel to definition VC from section 2.2. For definitions with
both sentential and quantificational versions, I adopt the convention of naming the
initial sentential version in small caps, and the quantificational version in large.

In order to fully specify the vocabulary of any particular language, we need to
specify its variable symbols, sentence letters, constant symbols, function symbols,
and relation symbols. Our general definition VC leaves room for languages with
different collections of these symbols. As before, the requirement that the collections
be countable is compatible with multiple series; for example, there may be sentence
letters A;A1; A2; : : : ; B; B1; B2; : : : : So, again VC is compatible with a wide variety
of specifications, but legitimate specifications always require that variable symbols,
sentence letters, constant symbols, function symbols, and relation symbols can be
sorted into series with a first member, a second member, and so forth.

As a sample for these specifications, we shall adopt a generic quantificational
language Lq which includes the standard variables, the equality symbol ‘D’ and,
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More on Countability
Given what was said on page 35, one might think that every collection is countable.
However, this is not so. This amazing and simple result was proved by G. Cantor
in 1873. Consider the collection which includes every countably infinite series of
digits 0 through 9 (or, if you like, decimal representations of real numbers between
0 and 1). Suppose that the members of this collection can be correlated one-to-one
with the non-negative integers. Then there is some list,

0 � a0 a1 a2 a3 a4 � � �

1 � b0 b1 b2 b3 b4
2 � c0 c1 c2 c3 c4
3 � d0 d1 d2 d3 d4
4 � e0 e1 e2 e3 e4

:
:
:

which matches each series of digits with a non-negative integer. For any digit x, say
x0 is the digit after it in the standard ordering (where 0 follows 9). Now consider
the digits along the diagonal, a0; b1; c2; : : : and ask: does the series a00; b

0
1; c
0
2; : : :

appear anywhere in the list? It cannot be the first member, because a0 = a00; it
cannot be the second, because b1 = b01; it cannot be the third because c2 = c02; and
similarly for every member. So a00; b

0
1; c
0
2; : : : does not appear in the list. So we

have failed to match all the infinite series of digits with non-negative integers.

One might suggest simply adding a00; b
0
1; c
0
2; : : : ; say at position 0 and pushing the

other members down—but then, from the diagonal of this new list, a000; a
0
1; b
0
2; c
0
3; : : :

is missing. And similarly for any attempt! Insofar as its members cannot be matched
to the non-negative integers, the set of all infinite series of digits is uncountable.

As an example, consider the following attempt to line up the non-negative integers
with the series of digits: For each non-negative integer, repeat its digits, except that
for “duplicate” cases—1 and 11, 2 and 22, 12 and 1212—prefix enough 0s so that
no later series duplicates an earlier one.

0 � 0 0 0 0 0 0 0 0 0 0 0 0 0 � � �

1 � 1 1 1 1 1 1 1 1 1 1 1 1 1
2 � 2 2 2 2 2 2 2 2 2 2 2 2 2
3 � 3 3 3 3 3 3 3 3 3 3 3 3 3
4 � 4 4 4 4 4 4 4 4 4 4 4 4 4
5 � 5 5 5 5 5 5 5 5 5 5 5 5 5
6 � 6 6 6 6 6 6 6 6 6 6 6 6 6
7 � 7 7 7 7 7 7 7 7 7 7 7 7 7
8 � 8 8 8 8 8 8 8 8 8 8 8 8 8
9 � 9 9 9 9 9 9 9 9 9 9 9 9 9
10 � 1 0 1 0 1 0 1 0 1 0 1 0 1
11 � 0 1 1 1 1 1 1 1 1 1 1 1 1
12 � 1 2 1 2 1 2 1 2 1 2 1 2 1

:
:
:

Then, by the above method, from the diagonal,
1 2 3 4 5 6 7 8 9 0 2 2 2 � � �

cannot appear anywhere on the list. And similarly, any list has some missing series.



CHAPTER 2. FORMAL LANGUAGES 49

Sentence letters: uppercase Roman italics A : : : Z with or without positive integer
subscripts

Constant symbols: lowercase Roman italics a : : : hwith or without positive integer
subscripts

Function symbols: for any integer n 1, superscripted lowercase Roman italics
an : : : zn with or without positive integer subscripts

Relation symbols: for any integer n 1, superscripted uppercase Roman italics
An : : : Zn with or without positive integer subscripts.

Observe that constant symbols and variable symbols partition the lowercase alphabet:
a : : : h for constants, and i : : : z for variables. Function symbols are distinguished
from constant and variable symbols by their superscripts; similarly relation symbols
are distinguished from sentence letters by their superscripts. Function symbols with
a superscript 1 (a1 : : : z1) are one-place function symbols; function symbols with
a superscript 2 (a2 : : : z2) are two-place function symbols; and so forth. Similarly,
relation symbols with a superscript 1 (A1 : : : Z1) are one-place relation symbols;
relation symbols with a superscript 2 (A2 : : : Z2) are two-place relation symbols; and
so forth. Subscripts merely guarantee that we never run out of symbols of the different
types. Notice that superscripts and subscripts suffice to distinguish all the different
symbols from one another. Thus for example A and A1 are different symbols—one a
sentence letter, and the other a one-place relation symbol; A1, A11, and A2 are distinct
as well—the first two are one-place relation symbols, distinguished by the subscript,
the latter is a completely distinct two-place relation symbol. In practice, again, we
will not see subscripts very often. (And we shall even find ways to abbreviate away
some superscripts.)

The metalanguage works very much as before. We use script letters A : : :Z

and a : : : : to represent expressions of an object language like Lq. Again, ‘�’, ‘!’,
‘8’, ‘D’, ‘(’, and ‘)’ represent themselves. And concatenated or joined symbols of
the metalanguage represent the concatenation of the symbols they represent. As
before, the metalanguage lets us make general claims about ranges of expressions
all at once. Thus, where x is a variable, 8x is a universal x-quantifier. Here, ‘8x’
is not an expression of an object language like Lq (Why?) Rather, we have said of
object language expressions that 8x is a universal x-quantifier, 8y2 is a universal
y2-quantifier, and so forth. In the metalinguistic expression, ‘8’ stands for itself, and
‘x’ for the arbitrary variable. Again, as in section 2.2.1, it may help to use maps to see
whether an expression is of a given form. Thus given that x maps to any variable, 8x
and 8y are of the form 8x, but 8c and 8f 1z are not.

(L)

8x 8y 8c‹ 8

‹‚…„ƒ
f 1z

8x 8x 8x 8x

?? ?? ? ?
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In the leftmost two cases, 8 maps to itself, and x to a variable. In the next, ‘c’ is a
constant so there is no variable to which x can map. In the rightmost case, there is a
variable z in the object expression, but if x is mapped to it, the function symbol f 1 is
left unmatched. So the rightmost two expressions are not of the form 8x.

E2.11. Assuming that R1 may represent any one-place relation symbol, h2 any
two-place function symbol, x any variable, and c any constant of Lq, use
maps to determine whether each of the following expressions is (i) of the form,
8x.R1x! R1c/ and then (ii) of the form, 8x.R1x! R1h2xc/.

*a. 8k.A1k ! A1d/

b. 8h.J 1h! J 1b/

c. 8w.S1w ! S1g2wb/

d. 8w.S1w ! S1c2xc/

e. 8vL1v ! L1yh2

2.3.2 Terms

With the vocabulary of a language in place, we can turn to specification of its gram-
matical expressions. For this, in the quantificational case, we begin with terms.

TR (v) If t is a variable x, then t is a term.

(c) If t is a constant c, then t is a term.

(f) If hn is an n-place function symbol and t1 : : : tn are n terms, then
hnt1 : : : tn is a term.

(CL) Any term may be formed by repeated application of these rules.

TR is another example of a recursive definition. As before, we can use tree diagrams
to see how it works. This time, basic elements are constants and variables. Complex
elements are put together by clause (f). Thus, for example, f 1g2h1xc is a term of
Lq.

(M)

x c

�
�
�
�
�
��

x is a term by TR(v), and c is a term by TR(c)

h1x

@
@
@

since x is a term, this is a term by TR(f)

g2h1xc since h1x and c are terms, this is a term by TR(f)

f 1g2h1xc since g2h1xc is a term, this is a term by TR(f)
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Superscripts of a function symbol indicate the number of places that take terms. Thus
x is a term, and h1 followed by x to form h1x is another term. But then, given that
h1x and c are terms, g2 followed by h1x and then c is another term. And so forth.

Just as a formula is made up of operator symbols and other formulas, so a complex
term is made of function symbols and other terms. While terms may have other
terms as parts, each stage in the tree counts as a single unit for the next. Thus in the
third row of (M), g2 is followed by the two terms h1x and c. And in the last stage,
f 1 is followed by the one term g2h1xc. In contrast, neither h1xc nor f 1h1xc are
terms—in each case, the problem is that the one-place function symbol is followed
by two terms: x and c are terms, and h1x and c are terms, but a one-place function
symbol followed by two terms does not form a term. And similarly, g2h1x and g2c
are not terms—the function symbol g2 must be followed by a pair of terms to form a
new term. You will find that there is always only one way to build a term on a tree.

Here is another example:

(N)

x

T
T
T
T
T
TT

c z

�
�
�
�
�
��

x

,
,

,
,
,

,
,
,

these are terms by TR(v), TR(c), TR(v), and TR(v)

h1c since c is a term, this is a term by TR(f)

f 4xh1czx given the four input terms, this is a term by TR(f)

Again, there is always just one way to build a term by the definition. If you are
confused about the makeup of a term, build it on a tree, and all will be revealed. To
demonstrate that an expression is a term, it is sufficient to construct it, according to
the definition, on such a tree. If an expression is not a term, there will be no way to
construct it according to the rules.

E2.12. For each of the following expressions, demonstrate that it is a term of Lq with
a tree.

a. f 1c

b. g2yf 1c

*c. h3cf 1yx

d. g2h3xyf 1cx

e. h3f 1f 1xcg2f 1za

E2.13. Explain why the following expressions are not terms of Lq. Hint: You may
find that an attempted tree will help you see what is wrong.

a. X
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b. g2

c. zc

*d. g2yf 1xc

e. h3f 1f 1cg2f 1za

E2.14. For each of the following expressions, determine whether it is a term of Lq; if
it is, demonstrate with a tree; if not, explain why.

*a. g2g2xyf 1x

*b. h3cf 2yx

c. f 1g2xh3yf 2yc

d. f 1g2xh3yf 1yc

e. h3g2f 1xcg2f 1zaf 1b

2.3.3 Formulas

With the terms in place, we are ready for the central notion of a formula. Again, the
definition is recursive.

FR (s) If S is a sentence letter, then S is a formula.

(r) If Rn is an n-place relation symbol and t1 : : : tn are n terms, then
Rnt1 : : : tn is a formula.

(�) If P is a formula, then �P is a formula.

(!) If P and Q are formulas, then .P ! Q/ is a formula.

(8) If P is a formula and x is a variable, then 8xP is a formula.

(CL) Any formula can be formed by repeated application of these rules.

Again, we can use trees to see how it works. In this case, FR(r) depends on which
expressions are terms. So it is natural to split the diagram into two, with applications of
TR above a division, and FR below. Then, for example, 8x.A1f 1x ! �8yB2cy/
is a formula.
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(O)

x c

D
D
D
D
D
DD

y

�
�
�
�
�
��

Terms by TR(v), TR(c), and TR(v)

f 1x Term by TR(f)

. . . . . . . . . . . . . . . . . . . . . . . .

A1f 1x

C
C
C
C
C
C
C
C
C
CC

B2cy Formulas by FR(r)

8yB2cy Formula by FR(8)

�8yB2cy

�
�
�

Formula by FR(�)

.A1f 1x ! �8yB2cy/ Formula by FR(!)

8x.A1f 1x ! �8yB2cy/ Formula by FR(8)

By now, the basic strategy should be clear. We construct terms by TR just as before.
Given that f 1x is a term, FR(r) gives us that A1f 1x is a formula, for it consists of a
one-place relation symbol followed by a single term; and given that c and y are terms,
FR(r) gives us that B2cy is a formula, for it consists of a two-place relation symbol
followed by two terms. From the latter, by FR(8), 8yB2cy is a formula. Then FR(�)
and FR(!) work just as before. The final step is another application of FR(8).

For another example consider tree (P) in the upper box on page 55. By the tree,
8x�.L ! 8yB3f 1ycx/ is a formula of Lq. L is a sentence letter; so it does not
require any terms to be a formula. B3 is a three-place relation symbol, so by FR(r) it
takes three terms to make a formula. After that, other formulas are constructed out of
ones that come before.

If an expression is not a formula, then there is no way to construct it by the rules.
Thus, for example, .A1x/ is not a formula of Lq. A1x is a formula; but the only way
parentheses are introduced is in association with!; the parentheses in .A1x/ are not
introduced that way; so there is no way to construct it by the rules, and it is not a
formula. Similarly, A2x and A2f 2xy are not formulas; in each case, the problem is
that the two-place relation symbol is followed by just one term. You should be clear
about these in your own mind, particularly for the second case.

Before turning to the official notion of a sentence, we introduce some additional
definitions, each directly related to the trees—and to notions you have seen before.
Again, require that trees branch in the usual way: without extraneous nodes, and
without nodes used more than once. Then where ‘!’, ‘�’, and any 8x is an operator,
a formula’s main operator is the last operator added in its tree. Every formula in the
formula portion of a diagram for P , including P itself, is a subformula of P . Notice
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that terms are not formulas, and so are not subformulas. An immediate subformula of
P is a subformula to which P is directly connected by lines. A subformula is atomic
iff it contains no operators and so appears in the top line of the formula part of a tree.

Thus with notation from exercises before—bracket for subformulas, star for
atomic subformulas, box for immediate subformulas, and circle for main operator—
tree (Q) in the lower box on the next page identifies the parts from tree (P). The
main operator is 8x, and the immediate subformula is �.L! 8yB3f 1ycx/. The
atomic subformulas are L and B3f 1ycx. The atomic subformulas are the most basic
formulas. Given this, everything is as one would expect from before. In general, if
P and Q are some formulas and x is a variable, then the main operator of 8xP is
the quantifier, and the immediate subformula is P ; the main operator of �P is the
tilde, and the immediate subformula is P ; the main operator of .P ! Q/ is the arrow,
and the immediate subformulas are P and Q—for you would build these formulas
by getting P , or P and Q, and then adding the quantifier, tilde, or arrow as the last
operator. Insofar as they operate on a single immediate subformula, quantifiers and
tilde are unary operators, while! is binary.

Now if a formula includes an operator, that operator’s scope is just the subformula
in which the operator first appears. Though the notion applies generally, we shall
be particularly interested in quantifier scope. Using underlines to indicate quantifier
scope,

(R)

z x

A
A
A

y

�
�
�

. . . . . . . . . . . . . . . . . . . . . . . .

A1z

C
C
C
C
C
C
C
C
C
C
CC

B2xy

8xB2xy The scope of the x-quantifier is 8xB2xy

8y8xB2xy

�
�
�

The scope of the y-quantifier is 8y8xB2xy

.A1z ! 8y8xB2xy/

8z.A1z ! 8y8xB2xy/ The scope of the z-quantifier is the entire formula

A variable x is bound iff it appears in the scope of an x-quantifier, and a variable
is free iff it is not bound. In the above diagram, each variable is bound. The x-
quantifier binds both instances of x; the y-quantifier binds both instances of y; and
the z-quantifier binds both instances of z. In 8xR2xy, however, both instances of x
are bound, but the y is free. An open formula is a formula with free variables. And
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(P)

y c x

�
�
�
�
�
��

Terms by TR(v), TR(c), and TR(v)

f 1y

@
@
@

Term by TR(f)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

L

\
\
\
\
\
\\

B3f 1ycx Formulas by FR(s), and FR(r)

8yB3f 1ycx
�
���

��

Formula by FR(8)

.L! 8yB3f 1ycx/ Formula by FR(!)

�.L! 8yB3f 1ycx/ Formula by FR(�)

8x�.L! 8yB3f 1ycx/ Formula by FR(8)

(Q)

y c x

�
�
�
�
�
��

f 1y

@
@
@

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

L?

\
\
\
\
\
\\

B3f 1ycx?

8yB3f 1ycx
��

����
.L! 8yB3f 1ycx/

�.L! 8yB3f 1ycx/

�
 �	8x �.L! 8yB3f 1ycx/

�
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finally, an expression is a sentence iff it is a formula and it has no free variables. To
determine whether an expression is a sentence, use a tree to see if it is a formula. If it
is a formula, use underlines to check whether any variable x has an instance that falls
outside the scope of an x-quantifier. If it is a formula, and there is no such instance,
then the expression is a sentence. From diagram (R), 8z.A1z ! 8y8xB2xy/ is a
formula and a sentence. But as follows, 8y.�Q1x ! 8xDxy/ is not.

(S)

x x

A
A
A

y

�
�
�

. . . . . . . . . . . . . . . . . . . . . . . .

Q1x Dxy

�Q1x

@
@
@

8xDxy

�
�
�

The scope of the x-quantifier is 8xDxy

.�Q1x ! 8xDxy/

8y.�Q1x ! 8xDxy/ The scope of the y-quantifier is the entire formula

Recall that ‘D’ is a two-place relation symbol. The expression has a tree, so it is
a formula. The x-quantifier binds the last two instances of x, and the y-quantifier
binds both instances of y. But the first instance of x is free. Since it has a free
variable, although it is a formula, 8y.�Q1x ! 8xDxy/ is not a sentence. Notice
that 8xR2ax, for example, is a sentence as the only variable is x (a being a constant)
and all the instances of x are bound.

E2.15. For each of the following expressions, (i) Demonstrate that it is a formula of
Lq with a tree. (ii) On the tree bracket all the subformulas, box the immediate
subformulas, star the atomic subformulas, circle the main operator, and indicate
quantifier scope with underlines. Then (iii) say whether the formula is a sentence,
and if it is not, explain why.

a. H 1x

*b. .A1x ! B2cf 1x/

c. 8x.�Dxc ! A1g2ay/

d. �8x.B2xc ! 8y�A1g2ay/

e. .S ! �.8wB2f 1wh1a! �8z.H 1w ! B2za///



CHAPTER 2. FORMAL LANGUAGES 57

E2.16. Explain why the following expressions are not formulas or sentences of Lq.
Hint: You may find that an attempted tree will help you see what is wrong.

a. H 1

b. g2ax

*c. 8xB2xg2ax

d. �.�8aA1a! .S ! �B2zg2xa//

e. 8x.Dax ! 8z�K2zg2xa/

E2.17. For each of the following expressions, determine whether it is a formula and
a sentence of Lq. If it is a formula, show it on a tree, and exhibit its parts as in
E2.15. If it fails one or both, explain why.

a. �.L! �V /

b. 8x.�L! K1h3xb/

c. 8z8w.8xR2wx ! �K2zw/! �M 2zz/

*d. 8z.L1z ! .8wR2wf 3axw ! 8wR2f 3azww//

e. �..8w/B2f 1wh1a! �.8z/.H 1w ! B2za//

2.3.4 Abbreviations

That is all there is to the official grammar. Having introduced the official grammar,
though, it is nice to have in hand some abbreviated versions for official expressions.
As before, abbreviated forms give us ways to manipulate official expressions without
undue pain. First, for any variable x and formulas P and Q,

AB (_) .P _Q/ abbreviates .�P ! Q/

(^) .P ^Q/ abbreviates �.P ! �Q/

($) .P $ Q/ abbreviates �..P ! Q/! �.Q! P //

(9) 9xP abbreviates �8x�P

The first three are as from AB. The last is new. For any variable x, an expression of
the form 9x is an existential quantifier. 9xP is read, ‘there exists an x such that P ’.

As before, these abbreviations make possible derived clauses to FR. Suppose P is
a formula and x is a variable; then by FR(�), �P is a formula; so by FR(8), 8x�P

is a formula; so by FR(�) again, �8x�P is a formula; but this is just to say that
9xP is a formula. With results from before, we are thus given,
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FR0 (^) If P and Q are formulas, then .P ^Q/ is a formula.

(_) If P and Q are formulas, then .P _Q/ is a formula.

($) If P and Q are formulas, then .P $ Q/ is a formula.

(9) If P is a formula and x is a variable, then 9xP is a formula.

The first three are from before. The last is new. And, as before, we can incorporate
these conditions directly into trees for formulas. Thus 9x.�A1x ^ 9yA2yx/ is a
formula.

(T)

x y

A
A
A

x

�
�
�

These are terms by TR(v)

. . . . . . . . . . . . . . . . . . .

A1x A2yx These are formulas by FR(r)

�A1x

@
@
@

9yA2yx

�
�
�

These are formulas by FR(�) and FR0(9)

.�A1x ^ 9yA2yx/ This is a formula by FR0(^)

9x.�A1x ^ 9yA2yx/ This is a formula by FR0(9)

In a derived sense, we carry over additional definitions from before. Thus, where
operators include the derived symbols ^, _,$, and 9x, a formula’s main operator
is the last operator added in its tree, subformulas are all the formulas in the formula
part of the tree, atomic subformulas are the ones in the upper row of the formula
part, and immediate subformulas are the one(s) to which the formula is directly
connected by lines. Thus the main operator of 9x.�A1x ^ 9yA2yx/ is the leftmost
existential quantifier and the immediate subformula is .�A1x^9yA2yx/. In addition,
a variable is in the scope of an existential quantifier iff it would be in the scope of
the unabbreviated universal one. So it is possible to discover whether an expression
is a sentence directly from diagrams of this sort. Thus, as indicated by underlines,
9x.�A1x ^ 9yA2yx/ is a sentence.

To see what it is an abbreviation for, we can reconstruct the formula on an
unabbreviating tree, one operator at a time.
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(U)

x y

A
A
A

x

�
�
�

. . . . . . . . . . . . . . . . . . .

A1x A2yx

�A1x

@
@
@

9yA2yx

�
�
�

.�A1x ^ 9yA2yx/

9x.�A1x ^ 9yA2yx/

x y

A
A
A

x

�
�
�

. . . . . . . . . . . . . . . . . . .

A1x A2yx

�A1x

@
@
@

�8y�A2yx

�
�
�

By AB(9)

�.�A1x ! ��8y�A2yx/ By AB(^)

�8x��.�A1x ! ��8y�A2yx/ By AB(9)

First the existential quantifier is replaced by the unabbreviated form. Then, where
P and Q are joined by FR0(^) to form .P ^Q/, the corresponding unabbreviated
expressions are combined into the unabbreviated form, �.P ! �Q/. At the last
step the existential quantifier is replaced again. So 9x.�A1x ^ 9yA2yx/ abbreviates
�8x��.�A1x ! ��8y�A2yx/. Again, abbreviations are nice! Notice that the
resultant expression is a formula and a sentence, as it should be.

As before, it is sometimes convenient to use a pair of square brackets [ ] in place
of parentheses ( ). And if the very last step of a tree for some formula is justified
by FR(!), FR0(_), FR0(^), or FR0($), we may abbreviate that formula with the
outermost set of parentheses or brackets dropped. In addition, for terms t1 and
t2 we will frequently represent the formula Dt1t2 as .t1 D t2/. Notice the extra
parentheses. This lets us see the equality symbol in its more usual “infix” form.
When there is no danger of confusion, we will sometimes omit the parentheses and
write, t1 D t2. Also, where there is no potential for confusion, we sometimes omit
superscripts. Thus in Lq we might omit superscripts on relation symbols—simply
assuming that the terms following a relation symbol give its correct number of places.
Thus Ax abbreviates A1x; Axy abbreviates A2xy; Axf 1y abbreviates A2xf 1y;
and so forth. Notice that Ax and Axy, for example, involve different relation symbols.
In formulas of Lq, sentence letters are distinguished from relation symbols insofar
as relation symbols are followed immediately by terms, where sentence letters are
not. Notice, however, that we cannot drop superscripts on function symbols in Lq—
thus, even given that f and g are function symbols rather than constants, apart from
superscripts, there is no way to distinguish the terms in, say, Afgxyzw.

As a final example, 9y�.c D y/ _ 8xRxf 2xd is a formula and a sentence.
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(V)

c

D
D
D
D
D
DD

y

�
�
�
�
�
��

x

D
D
D
D
D
DD

x

A
A
A

d

�
�
�

f 2xd

�
�
�

. . . . . . . . . . . . . . . . . . . . . . . .

.c D y/ Rxf 2xd

�.c D y/ 8xRxf 2xd

�
�
�
�
�
��

9y�.c D y/

@
@
@

9y�.c D y/ _ 8xRxf 2xd

c

D
D
D
D
D
DD

y

�
�
�
�
�
��

x

D
D
D
D
D
DD

x

A
A
A

d

�
�
�

f 2xd

�
�
�

. . . . . . . . . . . . . . . . . . . . . . . .

Dcy R2xf 2xd

�Dcy 8xR2xf 2xd

�
�
�
�
�
��

�8y��Dcy

@
@
@

.��8y��Dcy ! 8xR2xf 2xd/

The abbreviation drops a superscript, uses the infix notation for equality, uses the
existential quantifier and wedge, and drops outermost parentheses. As before, the right-
hand diagram is not a direct demonstration that .��8y��Dcy ! 8xR2xf 2xd/
is a sentence. However, it unpacks the abbreviation and we know that the result is an
official sentence insofar as the left-hand tree, with its application of derived rules, tells
us that 9y�.c D y/ _ 8xRxf 2xd is an abbreviation of formula and a sentence, and
the right-hand diagram tells us what that expression is.

E2.18. For each of the following expressions, (i) Demonstrate that it is a formula of
Lq with a tree. (ii) On the tree bracket all the subformulas, box the immediate
subformulas, star the atomic subformulas, circle the main operator, and indicate
quantifier scope with underlines. Then (iii) say whether the formula is a sentence,
and if it is not, explain why.

a. .A! �B/$ .A ^ C/

b. 9xFx ^ 8yGxy

*c. 9xAf 1g2ah3zwf 1x _ S

d. 8x8y8z.Œ.x D y/ ^ .y D z/�! .x D z//

e. 9yŒc D y ^ 8xRxf 1xy�

*E2.19. For each of the formulas in E2.18, produce an unabbreviating tree to find the
unabbreviated expression it represents.
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Grammar Quick Reference
VC For any quantificational language L the vocabulary consists of,

(p) Punctuation symbols: ( )

(o) Operator symbols: � ! 8

(v) A countably infinite collection of variable symbols

(s) A countable collection of sentence letters

(c) A countable collection of constant symbols

(f) For any integer n 1, a countable collection of n-place function symbols

(r) For any integer n 1, a countable collection of n-place relation symbols

TR (v) If t is a variable x, then t is a term.

(c) If t is a constant c, then t is a term.

(f) If hn is an n-place function symbol and t1 : : : tn are n terms, then hnt1 : : : tn is a term.

(CL) Any term may be formed by repeated application of these rules.

FR (s) If S is a sentence letter, then S is a formula.

(r) If Rn is an n-place relation symbol and t1 : : : tn are n terms, Rnt1 : : : tn is a formula.

(�) If P is a formula, then �P is a formula.

(!) If P and Q are formulas, then .P ! Q/ is a formula.

(8) If P is a formula and x is a variable, then 8xP is a formula.

(CL) Any formula can be formed by repeated application of these rules.

Subformulas are all the formulas in the tree; atomic subformulas appear in the top formula row;
immediate subformulas are the ones to which a formula is directly connected by lines; the main
operator is the last operator added. An operator’s scope includes just the formula in which it is
introduced; a variable x is bound iff it is in the scope of an x-quantifier and free iff it is not; an open
formula is one with free variables; an expression is a sentence iff it is a formula with no free variables.

AB (_) .P _Q/ abbreviates .�P ! Q/

(^) .P ^Q/ abbreviates �.P ! �Q/

($) .P $ Q/ abbreviates �..P ! Q/! �.Q! P //

(9) 9xP abbreviates �8x�P

FR0 (^) If P and Q are formulas, then .P ^Q/ is a formula.

(_) If P and Q are formulas, then .P _Q/ is a formula.

($) If P and Q are formulas, then .P $ Q/ is a formula.

(9) If P is a formula and x is a variable, then 9xP is a formula.

The generic language Lq includes the equality symbol ‘D’ along with,

Variable symbols: i : : : z with or without positive integer subscripts

Sentence letters: A : : : Z with or without positive integer subscripts

Constant symbols: a : : : h with or without positive integer subscripts

Function symbols: for any n 1, an : : : zn with or without positive integer subscripts

Relation symbols: for any n 1, An : : : Zn with or without positive integer subscripts



CHAPTER 2. FORMAL LANGUAGES 62

*E2.20. For each of the unabbreviated expressions from E2.19, produce a complete
tree to show by direct application of FR that it is an official formula. In each case,
using underlines to indicate quantifier scope, is the expression a sentence? does
this match with the result of E2.18?

2.3.5 Another Language

To emphasize the generality of our definitions VC, TR, and FR, let us introduce
a language like one with which we will be much concerned later in the text. LNT

<

is like a minimal language we shall introduce later for number theory. Recall that
VC leaves open what are the variable symbols, constant symbols, function symbols,
sentence letters, and relation symbols of a quantificational language. So far, our
generic language Lq fills these in by certain conventions. LNT

< replaces these with the
standard variables and,

Constant symbol: ;

One-place function symbol: S

Two-place function symbols: C;�

Two-place relation symbols: D; <

and that is all. Later we shall introduce a language like LNT
< except without the <

symbol; for now, we leave it in. Notice that Lq uses capitals for sentence letters and
lowercase for function symbols. But there is nothing sacred about this. Similarly,
Lq indicates the number of places for function and relation symbols by superscripts,
where in LNT

< the number of places is simply built into the definition of the symbol. In
fact, LNT

< is an extremely simple language! Given the vocabulary, TR and FR apply
in the usual way. Thus ;, S;, and SS; are terms—as is easy to see on a tree. And
<;SS; is an atomic formula.

As with our treatment for equality, for terms m and n, we often abbreviate official
terms of the sort, Cmn and �mn as .mC n/ and .m � n/; similarly, it is often
convenient to abbreviate an atomic formula <mn as .m < n/. And we will drop
these parentheses when there is no danger of confusion. Officially, we have not said a
word about what these expressions mean. It is natural, however, to think of them with
their usual meanings, with S the successor function—so that the successor of zero,
S; is one, the successor of the successor of zero SS; is two, and so forth. But we do
not need to think about that for now.

As an example, we show that 8x8y.x D y ! Œ.x C y/ < .x C Sy/�/ is (an
abbreviation of) a formula and a sentence.
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(W)

x

C
C
C
C
C
C
C
C
C
CC

y x

A
A
A

y

�
�
�

x

D
D
D
D
D
DD

y Terms by TR(v)

.x C y/

L
L
L
L
L
LL

Sy

�
�
�

Terms by TR(f) for 2- and 1-place symbols

.x C Sy/

�
�
�

Term by TR(f) for 2-place function symbol

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x D y

Q
Q
Q
Q

Œ.x C y/ < .x C Sy/�

�
�
�

Formulas by FR(r) for 2-place symbols

.x D y ! Œ.x C y/ < .x C Sy/�/ Formula by FR(!)

8y.x D y ! Œ.x C y/ < .x C Sy/�/ Formula by FR(8)

8x8y.x D y ! Œ.x C y/ < .x C Sy/�/ Formula by FR(8)

And we can show what it abbreviates by unpacking the abbreviation in the usual way.
This time, we need to pay attention to abbreviations in the terms as well as formulas.

(X)

x

C
C
C
C
C
C
C
C
C
CC

y x

A
A
A

y

�
�
�

x

D
D
D
D
D
DD

y

.x C y/

L
L
L
L
L
LL

Sy

�
�
�

.x C Sy/

�
�
�

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x D y

Q
Q
Q
Q

Œ.x C y/ < .x C Sy/�

�
�
�

.x D y ! Œ.x C y/ < .x C Sy/�/

8y.x D y ! Œ.x C y/ < .x C Sy/�/

8x8y.x D y ! Œ.x C y/ < .x C Sy/�/

x

C
C
C
C
C
C
C
C
C
CC

y x

A
A
A

y

�
�
�

x

D
D
D
D
D
DD

y

Cxy

L
L
L
L
L
LL

Sy

�
�
�

CxSy

�
�
�

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dxy

Q
Q
Q
Q

<CxyCxSy

�
�
�

.Dxy ! <CxyCxSy/

8y.Dxy ! <CxyCxSy/

8x8y.Dxy ! <CxyCxSy/

The official (Polish) notation on the right may seem strange. But it follows the
official definitions TR and FR. And it conveniently reduces the number of parentheses
from the more typical infix presentation. (You may also be familiar with Polish
notation from certain computer applications.) If you are comfortable with grammar
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and abbreviations for this language LNT
< , you are doing well with the grammar for our

formal languages.

E2.21. For each of the following expressions, (i) Demonstrate that it is a formula of
LNT
< with a tree. (ii) On the tree bracket all the subformulas, box the immediate

subformulas, star the atomic subformulas, circle the main operator, and indicate
quantifier scope with underlines. Then (iii) say whether the formula is a sentence,
and if it is not, explain why.

a. �ŒS; D .S; � SS;/�

*b. 9x8y.x � y D x/

c. 8xŒ�.x D ;/! 9y.y < x/�

d. 8yŒ.x < y _ x D y/ _ y < x�

e. 8x8y8zŒ.x � .y C z// D ..x � y/C .x � z//�

*E2.22. For each of the formulas in E2.21, produce an unabbreviating tree to find the
unabbreviated expression it represents.

E2.23. For each of the following concepts, explain in an essay of about two pages,
so that (high-school age) Hannah could understand. In your essay, you should
(i) identify the objects to which the concept applies, (ii) give and explain the
definition, and give and explicate examples of your own construction (iii) where
the concept applies, and (iv) where it does not. Your essay should exhibit an
understanding of methods from the text.

a. The vocabulary for a quantificational language and then for Lq and LNT
< .

b. A formula and a sentence of a quantificational language.

c. An abbreviation for an official formula and sentence of a quantificational
language.



Chapter 3

Axiomatic Deduction

We have not yet said what our sentences mean. This is just what we do in the next
chapter. However, just as it is possible to do grammar without reference to meaning,
so it is possible to do derivations without reference to meaning. Derivations are
defined purely in relation to the syntax of formal expressions. That is why it is crucial
to show that derivations stand in important relations to validity and truth, as we do
in Part III. And that is why it is possible to do derivations without knowing what
the expressions mean. In this chapter we develop an axiomatic derivation system
without any reference to meaning and truth. Apart from relations to meaning and
truth, derivations are perfectly well-defined—counting at least as a sort of puzzle or
game with, perhaps, a related “thrill of victory” and “agony of defeat.” And as with a
game, it is possible to build derivation skills to become a better player. Later, we will
show how derivation games matter.1

Derivation systems are constructed for different purposes. Introductions to mathe-
matical logic typically employ an axiomatic approach. We will see a natural deduction
system in Chapter 6. The advantage of axiomatic systems is their extreme simplicity.
From a practical point of view, when we want to think about logic, it is convenient to
have a relatively simple object to think about. Axiomatic systems have this advantage,
though they can be relatively difficult to apply. The axiomatic approach makes it
natural to build toward increasingly complex and powerful results. However, in the
beginning at least, axiomatic derivations can be challenging!

We will introduce our system in stages: After some general remarks in section 3.1
about what an axiom system is supposed to be, we will introduce the sentential
component of our system (section 3.2). After that, we will turn to the full system
for forms with quantifiers and equality (section 3.3), and finally to a mathematical
application (section 3.4).

1This chapter has its place to crystallize the point about form. However it is out of order from a
learning point of view. Having developed the grammar of our formal languages, a sensible course in
mathematical logic will skip to Chapter 4 and return only after Chapter 6. You might attempt section 3.1
to get the basic idea. But then compare the box on page 69.

65
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3.1 General

Before turning to the derivations themselves, it will be helpful to make a point about
the metalanguage and form. We are familiar with the idea that different formulas may
be of the same form. Thus, for example, where P and Q are formulas, A! B and
A! .B _C/ are both of the form P ! Q—in the one case Q maps to B , and in the
other to .B _ C/. But, similarly, one form may map to another. Thus, for example,
P ! Q maps to A! .B _ C/.

(A)

‚ …„ ƒ
.R ^ S/! .

‚ …„ ƒ
.R ^ T /_U/

A!
‚ …„ ƒ
.B _ C/

P ! Q

��	 @@R QQs

?���

And, by a sort of derived map, any formula of the form A! .B _ C/ is of the form
P ! Q as well. In this chapter we frequently apply one form to another—depending
on the fact that all formulas of one form are of another.

Given a formal language L, an axiomatic logic AL consists of two parts. There
is a set of axioms and a set of rules. Different axiomatic logics result from different
axioms and rules. For now, the set of axioms is just some privileged collection of
formulas. A rule tells us that one formula follows from some others. One way to
specify axioms and rules is by form. Thus, for example, modus ponens may be
included among the rules.

MP
P ! Q;P

Q

According to this rule, for any formulas P and Q, the formula Q follows from P ! Q

together with P . Thus, as applied to Ls, B follows by MP from A! B and A; but
also .B $ D/ follows from .A! B/! .B $ D/ and .A! B/. And for a case
put in the metalanguage, quite generally, a formula of the form .B _ C/ follows from
A! .B _ C/ and A—for any formulas of the form A! .B _ C/ and A are of
the forms P ! Q and P as well. Axioms also may be specified by form. Thus, for
some language with formulas P and Q, a logic might include among its axioms all
formulas of the forms,

^1 .P ^Q/! P ^2 .P ^Q/! Q ^3 P ! .Q! .P ^Q//

Then in Ls,

.A ^ B/! A, .A ^ A/! A ..A! B/ ^ C/! .A! B/

are all axioms of form ^1. Insofar as each has indefinitely many instances, ^1–^3
are axiom schemas (or schemata). So far, for a given axiomatic logic AL, there are
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no constraints on just which formulas will be the axioms, and just which rules are
included. The point is only that we specify an axiomatic logic when we specify some
collection of axioms and rules.

Suppose we have specified some axioms and rules for an axiomatic logic AL. Then
where � (Gamma) is a set of formulas—taken as the formal premises of an argument,

AV (p) If P is a premise (a member of �), then P is a consequence in AL of � .

(a) If P is an axiom of AL, then P is a consequence in AL of � .

(r) If Q1 : : :Qn are consequences in AL of � , and there is a rule of AL such
that P follows from Q1 : : :Qn by the rule, then P is a consequence in AL
of � .

(CL) Any consequence in AL of � may be obtained by repeated application of
these rules.

The first two clauses make premises and axioms consequences in AL of � . And if,
say, MP is a rule of AL and P ! Q and P are consequences in AL of � , then by
AV(r), Q is a consequence in AL of � as well. If P is a consequence in AL of some
premises � , then the premises prove P in AL and equivalently the argument is valid
in AL; in this case we write �

ÀL
P . The ` symbol is the single turnstile (to contrast

with a double turnstile � from Chapter 4). If Q1 : : :Qn are the members of � , we
sometimes write Q1 : : :Qn ÀL

P in place of �
ÀL

P . If � has no members and
�

ÀL
P , then P is a theorem of AL. In this case we simply write,

ÀL
P .

Before turning to our official axiomatic system AD, it will be helpful to consider
a preliminary example. Suppose an axiomatic derivation system AP has MP as its
only rule, and just formulas of the forms ^1, ^2, and ^3 as axioms. AV is a recursive
definition like ones we have seen before. Thus nothing stops us from working out its
consequences on trees. Thus we can show that A ^ .B ^ C/

ÀP
C ^B as follows:

(B)

C ! .B! .C ^B//

A
A
A
A
A
A
A
A
AA

.B ^C/! C

\
\
\
\
\
\

A^ .B ^C/

HHH
HH

.A^ .B ^C//! .B ^C/

���
��

.B ^C/! B

,
,

,
,
,

,
,

B ^C
���

��

HHH
HH

C
�������

B

,
,

,
,
,

,
,

B! .C ^B/
XXXXXXXXXX

C ^B

In this case, the only member of � is the premise, A ^ .B ^ C/. For definition AV,
the basic elements are the premises and axioms. These occur across the top row. Thus,
reading from the left, the first form is an instance of ^3. The second is of type ^2.
The third is the premise. Any formula of the form .A ^ .B ^ C//! .B ^ C/ is
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of the form, .P ^Q/! Q; so the fourth is of the type ^2. And the last is of the
type ^1. So by AV(a) and AV(p) they are all consequences in AP of � . After that,
all the results are by MP, and so consequences by AV(r). Thus for example, in the
second row, .A ^ .B ^ C//! .B ^ C/ and A ^ .B ^ C/ are of the sort P ! Q

and P , with A ^ .B ^ C/ for P and .B ^ C/ for Q; thus B ^ C follows from them
by MP. So B ^ C is a consequence in AP of � by AV(r). And similarly for the other
consequences. Notice that applications of MP and of the axiom forms are independent
from one use to the next. The expressions that count as P or Q must be consistent
within a given application of the axiom or rule, but may vary from one application
of the axiom or rule to the next. If you are familiar with another derivation system,
perhaps the one from Chapter 6, you may think of an axiom as a rule without inputs.
Then the axiom applies to expressions of its form in the usual way.

These diagrams can get messy, and it is traditional to represent the same informa-
tion as follows, using annotations to indicate relations among formulas:

(C)

1. A ^ .B ^ C/ prem(ise)
2. .A ^ .B ^ C//! .B ^ C/ ^2
3. B ^ C 2,1 MP
4. .B ^ C/! B ^1
5. B 4,3 MP
6. .B ^ C/! C ^2
7. C 6,3 MP
8. C ! .B ! .C ^B// ^3
9. B ! .C ^B/ 8,7 MP

10. C ^B 9,5 MP

Each of the forms (1)–(10) is a consequence of A ^ .B ^ C/ in AP. As indicated
on the right, the first is a premise, and so a consequence by AV(p). The second is
an axiom of the form ^2, and so a consequence by AV(a). The third follows by MP
from the forms on lines (2) and (1), and so is a consequence by AV(r). And so forth.
Such a demonstration is an axiomatic derivation. This derivation contains the very
same information as the tree diagram (B), only with geometric arrangement replaced
by line numbers to indicate relations between forms. Observe that we might have
accomplished the same end with a different arrangement of lines. For example, we
might have listed all the axioms first, with applications of MP after. The important
point is that in an axiomatic derivation, each line is either an axiom, a premise, or
follows from previous lines by a rule. Just as a tree is sufficient to demonstrate that
�

ÀL
P , that P is a consequence of � in AL, so an axiomatic derivation is sufficient

to show the same. In fact, we shall typically use derivations rather than trees to show
that �

ÀL
P .

Notice that we have been reasoning with sentence forms. Thus we treat both
general forms and particular formulas as “instances” of an axiom scheme. Corre-
spondingly, we have shown that a formula of the form C ^B follows in AP from one
of the form A ^ .B ^ C/. Given this, we freely appeal to results of one derivation
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in the process of doing another. Thus, if we were to encounter a formula of the form
A ^ .B ^ C/ in an AP derivation, we might simply cite the derivation (C) completed
above, and move directly to the conclusion that C ^B. The resultant derivation
would be an abbreviation of an official one which includes each of the above steps to
reach C ^B. In this way, derivations remain manageable, and we are able to build
toward results of increasing complexity. (Compare the way theorems build upon one
another from your high school experience of Euclidian geometry.) All of this should
become more clear as we turn to the official and complete axiomatic system, AD.

E3.1. Where AP is as above with rule MP and axioms ^1–^3, construct derivations
to show each of the following.

*a. A ^ .B ^ C/
ÀP

B

b. A;B;C
ÀP

A ^ .B ^ C/

c. A ^ .B ^ C/
ÀP
.A ^B/ ^ C

d. .A ^B/ ^ .C ^D/
ÀP

B ^ C

e.
ÀP
..A ^B/! A/ ^ ..A ^B/! B/

E3.2. Demonstrate E3.1a by a tree diagram, as for (B) above.

On a course in symbolic logic: Unless you have a special reason for studying
axiomatic systems, or are just looking for some really challenging puzzles, you
should pass over the rest of this chapter until you have completed Chapter 6. At
that stage, you will be better prepared for this one. Chapter 3 is not required for
any of chapters 4–7. It makes sense here to locate derivations in the conceptual
order, and so to underline the point that derivations are defined apart from notions
of validity and truth as we encounter them in Chapter 4—and thus to highlight the
importance of showing that the same arguments come out valid on the different
accounts, as we do in Part III. But this chapter is out of order from a learning point
of view. After Chapter 6 you can return to this chapter, while recognizing its place
in the conceptual order (see note 1 on page 65).

3.2 Sentential

We begin by focusing on sentential forms, forms involving just � and! (and so ^,
_, and$). The sentential component ADs of our official axiomatic logic AD tells us
how to manipulate such forms, whether they be forms for expressions in a sentential
language like Ls, or in a quantificational language like Lq. ADs includes three axiom
forms and one rule:



CHAPTER 3. AXIOMATIC DEDUCTION 70

ADs A1. P ! .Q! P /

A2. .O ! .P ! Q//! ..O ! P /! .O ! Q//

A3. .�Q! �P /! ..�Q! P /! Q/

MP. Q follows from P ! Q and P

We have already encountered MP. To take some cases to appear immediately below,
the following are both of the sort A1:

A! .A! A/ .B ! C/! ŒA! .B ! C/�

Observe that P and Q need not be different. You should be clear about these cases.
Although MP is the only rule, we allow free movement between an expression and
its abbreviated forms, with justification, ‘abv’. That is it! As above, �

ÀDs
P just in

case P is a consequence of � in ADs. �
ÀDs

P just in case there is an ADs derivation
of P from premises in � .

The following is a series of derivations where, as we shall see, each may depend
on ones from before. At first, do not worry so much about strategy, as about the
mechanics of the system.

T3.1.
ÀDs

A! A

1. .A! .ŒA! A�! A//! ..A! ŒA! A�/! .A! A// A2
2. A! .ŒA! A�! A/ A1
3. .A! ŒA! A�/! .A! A/ 1,2 MP
4. A! ŒA! A� A1
5. A! A 3,4 MP

Line (1) is an axiom of the form A2 with A for O, A! A for P , and A for Q.
Notice again that O and Q may be any formulas, so nothing prevents them from being
the same. Line (2) is an axiom of the form A1 with A! A for Q. Similarly, line (4)
is an axiom of the form A1 with A in place of both P and Q. The applications of MP
should be straightforward.

T3.2. A! B;B ! C
ÀDs

A! C

1. ŒA! .B ! C/�! Œ.A! B/! .A! C/� A2
2. .B ! C/! ŒA! .B ! C/� A1
3. B ! C prem
4. A! .B ! C/ 2,3 MP
5. .A! B/! .A! C/ 1,4 MP
6. A! B prem
7. A! C 5,6 MP

Line (1) is an instance of A2 which gives us our goal with two applications of MP—
that is, from (1), A! C follows by MP if we have A! .B ! C/ and A! B. But
the second of these is a premise, so the only real challenge is getting A! .B ! C/.
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But since B ! C is a premise, we can use A1 to get anything arrow it—and that is
just what we do on lines (2)–(4).

T3.3. A! .B ! C/
ÀDs

B ! .A! C/

1. ŒA! .B ! C/�! Œ.A! B/! .A! C/� A2
2. A! .B ! C/ prem
3. .A! B/! .A! C/ 1,2 MP
4. B ! .A! B/ A1
5. B ! .A! C/ 4,3 T3.2

In this case, the first four steps are very much like ones you have seen before. But
the last is not. T3.2 lets us move from A! B and B ! C to A! C ; it is a sort of
transitivity or “chain” principle which lets us move from a first form to a last through
some middle term. We have B ! .A! B/ on line (4), and .A! B/! .A! C/

on line (3). These are of the form to be inputs to T3.2—with B for A, A! B for
B, and A! C for C . In this case, A! B is the middle term. So at line (5), we
simply observe that lines (4) and (3), together with the reasoning from T3.2, give us
the desired result.

T3.2 is an important principle, of significance comparable to MP for the way you
think about derivations. If you have X ! A and want A, it makes sense to go for X

towards an application of MP. But if you have A! X and want A! B, it makes
sense to go for X ! B toward an application of T3.2. And similarly if you have
X ! B and want A! B, it makes sense to go for A! X for T3.2. At (3) of the
above derivation we are in a situation of this latter sort, and so obtain (4).

What we have produced above is not an official derivation where each step is a
premise, an axiom, or follows from previous lines by a rule. But we have produced an
abbreviation of one. And nothing prevents us from unabbreviating by including the
routine from T3.2 to produce a derivation in the official form. To see this, first observe
that the derivation for T3.2 has its premises at lines (3) and (6), where lines with the
corresponding forms in the derivation for T3.3 appear at (3) and (4). However, it is a
simple matter to reorder the derivation for T3.2 so that it takes its premises from those
same lines. Thus here is another demonstration for T3.2:

(D)

3. B ! C prem
4. A! B prem
5. ŒA! .B ! C/�! Œ.A! B/! .A! C/� A2
6. .B ! C/! ŒA! .B ! C/� A1
7. A! .B ! C/ 6,3 MP
8. .A! B/! .A! C/ 5,7 MP
9. A! C 8,4 MP

Compared to the original derivation for T3.2, all that is different is the order of a few
lines, and corresponding line numbers. The reason for reordering the lines is for a
merge of this derivation with the one for T3.3.
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But now, although we are after expressions of the form A! B and B ! C , the
actual forms we want for T3.3 are B ! .A! B/ and .A! B/! .A! C/. But
we can convert derivation (D) to one with those very forms by uniform substituation
of B for every A; .A! B/ for every B; and .A! C/ for every C—that is, we
apply our original map to the entire derivation (D). The result is as follows:

(E)

3. .A! B/! .A! C/ prem
4. B ! .A! B/ prem
5. ŒB ! ..A! B/! .A! C//�! Œ.B ! .A! B//! .B ! .A! C//� A2
6. ..A! B/! .A! C//! ŒB ! ..A! B/! .A! C//� A1
7. B ! ..A! B/! .A! C// 6,3 MP
8. .B ! .A! B//! .B ! .A! C// 5,7 MP
9. B ! .A! C/ 8,4 MP

You should trace the parallel between derivations (D) and (E) all the way through. And
you should verify that (E) is a derivation on its own. This is an application of the point
that our derivation for T3.2 applies to any premises and conclusions of that form. The
result is a direct demonstration that B ! .A! B/; .A! B/ ! .A! C/

ÀDs

B ! .A! C/.
And now it is a simple matter to merge the lines from (E) into the derivation for

T3.3 to produce a complete demonstration that A! .B ! C/
ÀDs

B ! .A! C/.

(F)

1. ŒA! .B ! C/�! Œ.A! B/! .A! C/� A2
2. A! .B ! C/ prem
3. .A! B/! .A! C/ 1,2 MP
4. B ! .A! B/ A1
5. ŒB ! ..A! B/! .A! C//�! Œ.B ! .A! B//! .B ! .A! C//� A2
6. ..A! B/! .A! C//! ŒB ! ..A! B/! .A! C//� A1
7. B ! ..A! B/! .A! C// 6,3 MP
8. .B ! .A! B//! .B ! .A! C// 5,7 MP
9. B ! .A! C/ 8,4 MP

Lines (1)–(4) are the same as from the derivation for T3.3, and include what are the
premises to (E). Lines (5)–(9) are the same as from (E). The result is a demonstration
for T3.3 in which every line is a premise, an axiom, or follows from previous lines
by MP. Again, you should follow each step. It is hard to believe that we could think
up this last derivation—particularly at this early stage of our career. However, if we
can produce the simpler derivation, we can be sure that this more complex one exists.
Thus we can be sure that the final result is a consequence of the premise in ADs.
That is the point of our direct appeal to T3.2 in the original derivation of T3.3. And
similarly in cases that follow. In general, we are always free to appeal to prior results
in any derivation—so that our toolbox gets bigger at every stage. With this in mind,
you may find the ADs summary on page 78 helpful.
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T3.4.
ÀDs

.B ! C/! Œ.A! B/! .A! C/�

1. ŒA! .B ! C/�! Œ.A! B/! .A! C/� A2
2. .B ! C/! ŒA! .B ! C/� A1
3. .B ! C/! Œ.A! B/! .A! C/� 2,1 T3.2

Again we have an application of T3.2. In this case, the middle term (the B) from T3.2
maps to A! .B ! C/. Once we see that the consequent of what we want is like
the consequent of A2, we should be “inspired” by T3.2 to go for (2) as a link between
the antecedent of what we want and antecedent of A2. As it turns out, this is easy to
get as an instance of A1. It is helpful to say to yourself in words, what the various
axioms and theorems do. Thus, given some P , A1 yields anything arrow it. And T3.2
is a simple transitivity principle.

T3.5.
ÀDs

.A! B/! Œ.B ! C/! .A! C/�

1. .B ! C/! Œ.A! B/! .A! C/� T3.4
2. .A! B/! Œ.B ! C/! .A! C/� 1 T3.3

T3.5 is like T3.4 except that A! B and B ! C switch places. But T3.3 precisely
switches terms in those places—with B ! C for A, A! B for B, and A! C for
C . Again, often what is difficult about these derivations is “seeing” what you can
do. Thus it is good to say to yourself in words what the different principles give you.
Once you realize what T3.3 does, it is obvious that you have T3.5 immediately from
T3.4.

T3.6. B;A! .B ! C/
ÀDs

A! C

Hint: You can get this in the basic system using just A1 and A2. But you can get
it in just four lines if you use T3.3.

T3.7.
ÀDs

.�A! A/! A

Hint: This follows in just three lines from A3, with an instance of T3.1.

T3.8.
ÀDs

.�B ! �A/! .A! B/

1. .�B ! �A/! Œ.�B ! A/! B� A3
2. ŒA! .�B ! A/�! Œ..�B ! A/! B/! .A! B/� T3.5
3. A! .�B ! A/ A1
4. ..�B ! A/! B/! .A! B/ 2,3 MP
5. .�B ! �A/! .A! B/ 1,4 T3.2

The idea behind this derivation is that the antecedent of A3 is the antecedent of our goal.
So we can get the goal by T3.2 with (1) and (4). That is, given .�B ! �A/! X,
what we need to get the goal by an application of T3.2 is X ! .A! B/. But that
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is just what (4) is. The challenge is to get (4). Our strategy uses T3.5 with A1. This
derivation is not particularly easy to see. Here is another approach, which is not all
that easy either:

(G)

1. .�B ! �A/! Œ.�B ! A/! B� A3
2. .�B ! A/! Œ.�B ! �A/! B� 1 T3.3
3. A! .�B ! A/ A1
4. A! Œ.�B ! �A/! B� 3,2 T3.2
5. .�B ! �A/! .A! B/ 4 T3.3

This derivation also begins with A3. The idea this time is to use T3.3 to “swing”
�B ! A out, “replace” it by A with T3.2 and A1, and then use T3.3 to “swing” A

back in.

T3.9.
ÀDs
�A! .A! B/

Hint: You can do this in three lines with T3.8 and an instance of A1.

T3.10.
ÀDs
��A! A

Hint: You can do this in three lines wih instances of T3.7 and T3.9.

T3.11.
ÀDs

A! ��A

Hint: You can do this in three lines with instances of T3.8 and T3.10.

*T3.12.
ÀDs

.A! B/! .��A! ��B/

Hint: Use T3.5 and T3.10 to get .A! B/! .��A! B/; then use T3.4
and T3.11 to get .��A! B/! .��A! ��B/; the result follows easily by
T3.2.

T3.13.
ÀDs

.A! B/! .�B ! �A/

Hint: You can do this in three lines with instances of T3.8 and T3.12.

T3.14.
ÀDs

.�A! B/! .�B ! A/

Hint: Use T3.4 and T3.10 to get .�B ! ��A/! .�B ! A/; the result fol-
lows easily with an instance of T3.13.

T3.15.
ÀD
.A! �B/! .B ! �A/

Hint: This time you will be able to use T3.5 and T3.11 with T3.13.
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T3.16.
ÀDs

.A! B/! Œ.�A! B/! B�

Hint: Use T3.13 and A3 to get .A! B/! Œ.�B ! A/! B�; then use T3.5
and T3.14 to get Œ.�B ! A/! B�! Œ.�A! B/! B�; the result follows
easily by T3.2.

*T3.17.
ÀDs

A! Œ�B ! �.A! B/�

Hint: Use T3.1 and T3.3 to get A! Œ.A! B/! B�; then use T3.13 to “turn
around” the consequent. This idea of deriving conditionals in “reversed” form,
and then using one of T3.13–T3.15 to turn them around, is frequently useful for
getting tilde outside of a complex expression.

T3.18.
ÀDs

A! .A _B/

1. �A! .A! B/ T3.9
2. A! .�A! B/ 1 T3.3
3. A! .A _B/ 2 abv

We set as our goal the unabbreviated form. We have this at (2). Then, in the last line,
simply observe that the goal abbreviates what has already been shown.

T3.19.
ÀDs

A! .B _A/

Hint: Go for A! .�B ! A/. Then, as above, you can get the desired result in
one step by abv.

T3.20.
ÀDs

.A ^B/! B

T3.21.
ÀDs

.A ^B/! A

*T3.22. A! .B ! C/
ÀDs

.A ^B/! C

T3.23. .A ^B/! C
ÀDs

A! .B ! C/

T3.24. A;A$ B
ÀDs

B

Hint: A$ B abbreviates the same thing as .A! B/ ^ .B ! A/; you may
thus move to this expression from A$ B by abv.

T3.25. B;A$ B
ÀDs

A
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T3.26. �A;A$ B
ÀDs
�B

T3.27. �B;A$ B
ÀDs
�A

*E3.3. Provide derivations for T3.6–T3.7, T3.9–T3.17, and T3.19–T3.27. Again,
as you are working these problems, you may find it helpful to refer to the ADs
summary on page 78.

E3.4. For each of the following, expand derivations to include all the steps from
theorems. The result should be a derivation in which each step is either a premise
an axiom, or follows from previous lines by a rule. Hint: It may be helpful to
proceed in stages as for (D), (E), and then (F) above.

a. Expand your derivation for T3.7.

*b. Expand the above derivation for T3.4.

E3.5. Consider an axiomatic system A� which takes ^ and � as primitive operators,
and treats P ! Q as an abbreviation for �.P ^�Q/. Forms for the axioms and
rule are,

A� A1. P ! .P ^P /

A2. .P ^Q/! P

A3. .O ! P /! Œ�.P ^Q/! �.Q ^O/�

MP. �.P ^�Q/;P
À�

Q (so that P ! Q;P
À�

Q)

Provide derivations for each of the following, where derivations may appeal to
any prior result (no matter what you have done).

*a. A! B;B ! C `
A�
�.�C ^A/ *b. `

A�
�.�A ^A/

*c. `
A�
��A! A *d. `

A�
�.A ^B/! .B ! �A/

e. `
A�

A! ��A f. `
A�

.A! B/! .�B ! �A/

*g. �A! �B `
A�

B ! A h. A! B `
A�

.C ^A/! .B ^ C/

*i. A! B;B ! C ;C ! D `
A�

A! D j. `
A�

A! A

k. `
A�

.A ^B/! .B ^A/ l. A! B;B ! C `
A�

A! C

m. �B ! B `
A�

B n. B ! �B `
A�
�B

o. `
A�

.A ^B/! B p. A! B;C ! D `
A�

.A ^ C/! .B ^D/



CHAPTER 3. AXIOMATIC DEDUCTION 77

q. B ! C `
A�

.A ^B/! .A ^ C/ r. A! B;A! C `
A�

A! .B ^ C/

s. `
A�

Œ.A ^B/ ^ C �! ŒA ^ .B ^ C/� t. `
A�

ŒA ^ .B ^ C/�! Œ.A ^B/ ^ C �

*u. `
A�

ŒA! .B ! C/�! Œ.A ^B/! C/� v. `
A�

Œ.A ^B/! C �! ŒA! .B ! C/�

w. A! .B ! C/ `
A�

B ! .A! C/ *x. A! B;A! .B ! C/ `
A�

A! C

y. `
A�

A! ŒB ! .A ^B/� z. `
A�

A! .B ! A/

Hints: (i): Apply (a) to the first two premises and (f) to the third; then recognize that you
have the makings for an application of A3. (j): Apply A1, two instances of (h), and an
instance of (i) to get A! ..A ^A/ ^ .A ^A//; the result follows easily with A2 and
(i). (m): �B ! B is equivalent to�.�B^�B/; and�B ! .�B^�B/ is immediate
from A1; you can turn this around by (f) to get �.�B ^�B/! ��B; then it is easy.
(u): Use abv so that you are going for �ŒA ^��.B ^�C/�! �Œ.A ^B/ ^�C �;
plan on getting to this by (f). (v): Structure your proof very much as with (u). (x): Use (u)
to set up a “chain” to which you can apply transitivity.

E3.6. For each of the following concepts, explain in an essay of about two pages,
so that (high-school age) Hannah could understand. In your essay, you should
(i) identify the objects to which the concept applies, (ii) give and explain the
definition, and give and explicate examples of your own construction (iii) where
the concept applies, and (iv) where it does not. Your essay should exhibit an
understanding of methods from the text.

a. The syntactical character of derivation systems.

b. A consequence of � in some axiomatic logic AL, and then a consequence of
� in ADs.

3.3 Quantificational

In this section we complete the system AD by introducing a rule and axioms for
quantifies and equality. A1–A3 and MP remain from before. There will be two
axioms and one rule for manipulating quantifiers, and three axioms for features of
equality. As you work through the full system AD, you may find it helpful to refer to
the AD guide on page 84 (as well as the ADs guide on the following page).

3.3.1 Quantifiers

First, ADq extends ADs by the addition of two axioms and one rule for quantified
expressions. To state the new axioms, we need a couple of definitions. First, for
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any formula A, variable x, and term t, say Ax
t is A with all the free instances of

x replaced by t. And say t is free for x in A iff all the variables in the replacing
instances of t remain free after substitution in Ax

t . Thus, for example, where A is
8xRxy _ Px,

(H) .8xRxy _ Px/xy is 8xRxy _ Py

There are three instances of x in 8xRxy _ Px, but only the last is free; so y is
substituted only for that instance. Since the substituted y is free in the resultant
expression, y is free for x in 8xRxy _ Px. Similarly,

(I) Œ8x.x D y/ _Ryx�
y

f 1x
is 8x.x D f 1x/ _Rf 1xx

Both instances of y in 8x.x D y/ _Ryx are free; so our substitution replaces both.
But the x in the first instance of f 1x is bound upon substitution; so f 1x is not free

ADs Quick Reference

ADs A1. P ! .Q! P /

A2. .O! .P ! Q//! ..O! P /! .O! Q//

A3. .�Q!�P /! ..�Q! P /! Q/

MP. Q follows from P ! Q and P

T3.1 ÀD A!A

T3.2 A! B;B! C ÀD A! C

T3.3 A! .B! C/ ÀD B! .A! C/

T3.4 ÀD .B! C/! Œ.A! B/! .A! C/�

T3.5 ÀD .A! B/! Œ.B! C/! .A! C/�

T3.6 B;A! .B! C/ ÀD A! C

T3.7 ÀD .�A!A/!A

T3.8 ÀD .�B!�A/! .A! B/

T3.9 ÀD �A! .A! B/

T3.10 ÀD ��A!A

T3.11 ÀD A!��A

T3.12 ÀD .A! B/! .��A!��B/

T3.13 ÀD .A! B/! .�B!�A/

T3.14 ÀD .�A! B/! .�B!A/

T3.15 ÀD .A!�B/! .B!�A/

T3.16 ÀD .A! B/! Œ.�A! B/! B�

T3.17 ÀD A! Œ�B!�.A! B/�

T3.18 ÀD A! .A_B/

T3.19 ÀD A! .B _A/

T3.20 ÀD .A^B/! B

T3.21 ÀD .A^B/!A

T3.22 A! .B! C/ ÀD .A^B/! C

T3.23 .A^B/! C ÀD A! .B! C/

T3.24 A;A$ B ÀD B

T3.25 B;A$ B ÀD A

T3.26 �A;A$ B ÀD �B

T3.27 �B;A$ B ÀD �A

(abv) allows free movement between an expression and its abbveviated forms.
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for y in 8x.x D y/_Ryx. In contrast, f 1z goes into the same places but is free for
y in 8x.x D y/ _Ryx.

Some quick applications: If x is not free in A, then replacing every free instance
of x in A with some term results in no change; so if x is not free in A, then Ax

t is
A. Similarly, Ax

x is just A itself. Further, any variable x is sure to be free for itself
in a formula A—if every free instance of variable x is “replaced” with x, then the
replacing instances are sure to be free. Similarly variable-free terms (like constants)
are sure to be free for a variable x in a formula A; if a term has no variables, no
variable in the replacing term is bound upon substitution for free instances of x. And
if A is quantifier-free then any t is free for variable x in A; if A has no quantifiers,
then no variable in t can be bound upon substitution.

Now we are ready for our axioms and rule. For the quantificational version
ADq of our axiomatic derivation system, we add axioms A4 and A5, and a rule Gen
(Generalization) for the universal quantifier.

ADq Includes the axioms and rule of ADs and,

A4. 8xP ! P x
t where t is free for x in P

A5. 8x.P ! Q/! .P ! 8xQ/ where x is not free in P

Gen. 8xP follows from P

A1, A2, A3, and MP remain from before; then ADq adds two axioms and a rule.
A4 is a conditional whose antecedent has an x-quantifier as main operator; the

consequent drops the quantifier, and substitutes term t for each resulting free instance
of variable x—subject to the constraint that t is free for x in P . Thus the first line
below lists instances of A4 but the second does not.

(J)
8xRx ! Rx 8xRx ! Ry 8xRx ! Ra 8xRx ! Rf 1z 8x8yRxy ! 8yRzy

8x8yRxy ! 8yRyy 8x8yRxy ! 8yRf 1yy

One the first line, the consequents drop the (main) quantifier and substitute a term
that is free for x. On the second line, we drop the quantifier and substitute as before;
but the substituted terms are not free; so the constraint on A4 is violated, and those
formulas do not qualify as instances of the axiom.

A5 also comes with a constraint. Instances of A5 have antecedent 8x.P ! Q/

and consequent .P ! 8xQ/ so long as x is not free in P . Thus the first cases below
are instances of A5, where the last is not.

(K)
8x.Ry ! Sx/! .Ry ! 8xSx/ 8x.Ra! Sx/! .Ra! 8xSx/

8x.Rx ! Sx/! .Rx ! 8xSx/

In the first cases, the variable x is not free in P . In the last, however, x is free in P so
that it fails to be an instance of A5.



CHAPTER 3. AXIOMATIC DEDUCTION 80

Gen is a new rule; it lets you move from a formula to its universal quantification.
So, for example, by Gen you might move from Px to 8xPx or from Ay ! By to
8y.Ay ! By/. Continue to move freely between an expression and its abbreviated
forms with justification, abv. That is it!

Because the axioms and rule from before remain available, nothing blocks rea-
soning with sentential forms as before. Thus, for example, 8xRx ! 8xRx and,
more generally, 8xA! 8xA are of the form A! A, and we might derive them
by exactly the five steps for T3.1 above. Or we might just write them down with
justification, T3.1. Similarly any theorem from ADs is a theorem of the larger ADq.

Here is a way to get 8xRx ! 8xRx without either A1 or A2:

(L)

1. 8xRx ! Rx A4
2. 8x.8xRx ! Rx/ 1 Gen
3. 8x.8xRx ! Rx/! .8xRx ! 8xRx/ A5
4. 8xRx ! 8xRx 3,2 MP

The x is sure to be free for x inRx; so (1) is an instance of A4. And the only instances
of x are bound in 8xRx; so (3) satisfies the constraint on A5. The reasoning is similar
in the more general case.

T3.28.
ÀDq
8xA! 8vAx

v where v is not free in 8xA but free for x in A

1. 8xA! Ax
v A4

2. 8v.8xA! Ax
v / 1 Gen

3. 8v.8xA! Ax
v /! .8xA! 8vAx

v / A5
4. 8xA! 8vAx

v 3,2 MP

Given the constraints, this derivation works for exactly the same reasons as before.
If v is free for x in A, then (1) is a straightforward instance of A4. And if v is not
free in 8xA, the constraint on A5 is sure to be met. The result of derivation (L) is an
instance of this more general theorem. The difference is that T3.28 makes room for
variable exchange. A simple instance of T3.28 in Lq is

ÀDq
8xRx ! 8vRv. If you

are confused about restrictions on the axioms, think about the derivation as applied to
this case. While our quantified instances of T3.1 could have been derived by sentential
rules, T3.28 cannot; 8xA! 8xA has sentential form A! A; but when x is not
the same as v , 8xA! 8vAx

v has sentential form, A! B.

T3.29. A! B
ÀDq

A! 8xB where x is not free in A

1. A! B prem
2. 8x.A! B/ 1 Gen
3. 8x.A! B/! .A! 8xB/ A5
4. A! 8xB 3,2 MP

From the restriction on the theorem, (3) is an instance of A5.
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*T3.30.
ÀDq

Ax
t ! 9xA where t is free for x in A

Hint: As in sentential cases, show the unabbreviated form, Ax
t ! �8x�A and

get the final result by abv. You should find 8x�A! �Ax
t to be a useful instance

of A4. Notice that Œ�A�xt is the same expression as�ŒAx
t �, as all the replacements

must go on inside the A.

T3.31.
ÀDq
8x.A! B/! .9xA! B/ where x is not free in B

Hint: Go for an unabbreviated form, and then get the goal by abv. You will find it
convenient to apply Gen and then A5 to 8x.A! B/! .�B ! �A/.

T3.32. A! B
ÀDq
9xA! B where x is not free in B.

This is a simple application of T3.31.

With these few examples we complete our presentation of the fragment of AD for both
sentential operators and quantifiers. It remains to add axioms for equality.

*E3.7. Provide derivations for T3.30, T3.31, and T3.32, explaining in words for every
step that has a restriction how you know the restriction is met.

E3.8. Provide derivations to show each of the following.

*a. 8x.Hx ! Rx/;8yHy
ÀDq
8zRz

b. 8y.Fy ! Gy/
ÀDq
9zF z ! 9xGx

*c.
ÀDq
9x8yRxy ! 8y9xRxy

d. 8y8x.F x ! By/
ÀDq
8y.9xFx ! By/

e.
ÀDq
9x.F x ! 8yGy/! 9x8y.F x ! Gy/

E3.9. Some systems have a rule like T3.29 with neither A5 nor Gen. Show that this
is possible by providing derivations to show P ` 8xP and, where x is not free
in P , ` 8x.P ! Q/! .P ! 8xQ/ with T3.29 but without A5 or Gen. Hint:
For the first, where > is any theorem without free variables, you will be able to
obtain > ! P and apply T3.29 to it. For the second consider uses of T3.22 and
T3.23.
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3.3.2 Equality

The full derivation system AD has the axioms and rule from ADs, the axioms and
rule from ADq, and three axiom forms governing equality. In this case, the axioms
assert particularly simple, or basic, facts. For any variables x1 : : :xn and y, n-place
function symbol hn, and n-place relation symbol Rn,

AD Includes the axioms and rules of ADs and ADq and,

A6. .y D y/

A7. .xi D y/! .hnx1 : : :xi : : :xn D hnx1 : : :y : : :xn/

A8. .xi D y/! .Rnx1 : : :xi : : :xn ! Rnx1 : : :y : : :xn/

From A6, x D x and z D z are axioms. Of course, these are abbreviations forDxx
andDzz. This should be straightforward. The others are complicated only by abstract
presentation. For A7, hnx1 : : :xi : : :xn differs from hnx1 : : :y : : :xn just in that
variable xi is replaced by variable y. xi may be any of the variables in x1 : : :xn.
Thus, for example,

(M) x D y ! f 1x D f 1y x D y ! f 3wxy D f 3wyy

are simple examples of A7. In the one case, we have a “string” of one variable and
replace the only member based on the equality. In the other case, the string is of
three variables, and we replace the second. Similarly, Rnx1 : : :xi : : :xn differs from
Rnx1 : : :y : : :xn just in that variable xi is replaced by y. xi may be any of the
variables in x1 : : :xn. Thus, for example,

(N) x D z ! .A1x ! A1z/ z D w ! .A2xz ! A2xw/

are simple examples of A8.

This completes the axioms and rules of our full derivation system AD. As examples,
let us begin with some fundamental principles of equality. Suppose that r, s, and t

are arbitrary terms.

T3.33.
ÀD

t D t reflexivity of equality

1. y D y A6
2. 8y.y D y/ 1 Gen
3. 8y.y D y/! .t D t/ A4
4. t D t 3,2 MP

Since y D y has no quantifiers, any term t is sure to be free for y in it. So (3) is sure
to be an instance of A4. This theorem strengthens A6 insofar as the axiom applies
only to variables, but the theorem has application to arbitrary terms. Thus z D z is an
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instance of the axiom; z D z remains an instance of the theorem, but f 2xy D f 2xy
is an instance of the theorem as well. We convert variables to terms by Gen with A4
and MP. This pattern repeats in the following.

T3.34.
ÀD

t D s! s D t symmetry of equality

1. x D y ! .x D x ! y D x/ A8
2. x D x A6
3. x D y ! y D x 1,2 T3.6
4. 8y.x D y ! y D x/ 3 Gen
5. 8x8y.x D y ! y D x/ 4 Gen
6. 8x8y.x D y ! y D x/! 8y.t D y ! y D t/ A4
7. 8y.t D y ! y D t/ 6,5 MP
8. 8y.t D y ! y D t/! .t D s! s D t/ A4
9. t D s! s D t 8,7 MP

In (1), x D x is (an abbreviation of an expression) of the form Dxx, and y D x is
the same but with the first instance of x replaced by y. Thus (1) is an instance of A8.
At line (3) we have symmetry expressed at the level of variables. Then the task is just
to convert from variables to terms as before. (8) is sure to be an instance of A4 insofar
as there is no quantifier in the consequent. For (6), to meet the restriction on A4, we
require that y is not a variable in t—if y does appear in t, just uniformly replace y in
this derivation with a different variable.

T3.35.
ÀD

r D s! .s D t ! r D t/ transitivity of equality

Hint: Start with y D x ! .y D z ! x D z/ as an instance of A8—being
sure that you see how it is an instance of A8. Then you can use T3.34 to get
x D y ! .y D z ! x D z/, and all you have to do is convert from variables to
terms as above.

T3.36. r D s, s D t
ÀD

r D t

Hint: This is a mere recasting of T3.35 and follows directly from it.

T3.37.
ÀD

ti D s! hnt1 : : : ti : : : tn D hnt1 : : :s : : : tn

Hint: For any given instance of this theorem, you can start with xi D y !

hnx1 : : : xi : : : xn D hnx1 : : : y : : : xn as an instance of A7. Then it is easy to
convert x1 : : : xn to t1 : : : tn, and y to s.

T3.38.
ÀD

ti D s! .Rnt1 : : : ti : : : tn ! Rnt1 : : :s : : : tn/

Hint: As for T3.37, for any given instance of this theorem, you can start with
xi D y ! .Rnx1 : : : xi : : : xn ! Rnx1 : : : y : : : xn/ as an instance of A8. Then
it is easy to convert x1 : : : xn to t1 : : : tn, and y to s.
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We will see further examples of AD derivations and especially the equality axioms in
the context of the extended application in the next section.

E3.10. Provide demonstrations for T3.35 and T3.36.

E3.11. Provide demonstrations for the following instances of T3.37 and T3.38. Then,
in each case, say in words how you would go about showing the results for an
arbitrary number of places.

a. f 1x D g2xy ! h3zf 1xf 1z D h3zg2xyf 1z

*b. .s D t/! .Ars! Art/

AD Quick Reference

AD A1. P ! .Q! P /

A2. .O ! .P ! Q//! ..O ! P /! .O ! Q//

A3. .�Q! �P /! ..�Q! P /! Q/

A4. 8xP ! P x
t where t is free for x in P

A5. 8x.P ! Q/! .P ! 8xQ/ where x is not free in P

A6. .x D x/

A7. .xi D y/! .hnx1 : : :xi : : :xn D hnx1 : : :y : : :xn/

A8. .xi D y/! .Rnx1 : : :xi : : :xn ! Rnx1 : : :y : : :xn/

MP. Q follows from P ! Q and P

Gen. 8xP follows from P

(abv) allows movement between an expression and its abbreviated forms. Then there are all the
theorems listed in the ADs guide and,

T3.28 ÀD 8xA! 8vAx
v where v is not free in 8xA but is free for x in A

T3.29 A! B ÀD A! 8xB where x is not free in A

T3.30 ÀD Ax
t ! 9xA where t is free for x in A

T3.31 ÀD 8x.A! B/! .9xA! B/ where x is not free in B

T3.32 A! B ÀD 9xA! B where x is not free in B

T3.33 ÀD t D t

T3.34 ÀD t D s! s D t

T3.35 ÀD r D s! .s D t ! r D t/

T3.36 r D s, s D t ÀD r D t

T3.37 ÀD ti D s! hnt1 : : : ti : : : tn D hnt1 : : :s : : : tn

T3.38 ÀD ti D s! .Rnt1 : : : ti : : : tn ! Rnt1 : : :s : : : tn/
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3.4 Application: PA

We turn now to a substantive application with which we shall be much concerned
in Part IV. If you have postponed this chapter to after Chapter 6, then you have
already encountered Peano Arithmetic. However, we may develop consequences of
the Peano axioms directly in AD. For this, LNT is a language like LNT

< introduced
from section 2.3.5 but without <. There is the constant symbol ;, the one-place
function symbol S , two-place function symbols C, and �, and the relation symbol
D. Variables are any of a : : : z with or without positive integer subscripts. Let s � t

abbreviate 9u.uC s D t/ and s < t abbreviate 9u.SuC s D t/ where u is some
variable not in s or t. For all this, see the language of arithmetic reference (page 301).

We will say that a formula P is an AD theorem of Peano Arithmetic just in case
P follows in AD given as premises the following axioms for Peano Arithmetic:

PA 1. �.Sx D ;/

2. .Sx D Sy/! .x D y/

3. .x C ;/ D x

4. .x C Sy/ D S.x C y/

5. .x � ;/ D ;

6. .x � Sy/ D Œ.x � y/C x�

7. ŒP x
;
^ 8x.P ! P x

Sx/�! 8xP

In the ordinary case we suppress mention of PA1–PA7 as premises, and simply write
PA

ÀD
P to indicate that P is an AD theorem of Peano arithmetic—that there is an

AD derivation of P which may include appeal to any of PA1–PA7. As described in
Chapter 6, these axioms set up basic arithmetic on the non-negative integers. However,
insofar as we are working derivations without reference to meaning and truth, we do
not need to think about that for now.

PA7 represents the principle of mathematical induction. While PA1–PA6 are
particular formulas, like A1–A8 of AD, PA7 is an axiom schema insofar as indefinitely
many formulas might be of that form. Sometimes it is convenient to have the principle
of mathematical induction in rule form.

T3.39. In an AD derivation from the axioms of PA, 8xP follows from P x
;

and
8x.P ! P x

Sx/. A derived rule, Ind.

1. P x
;

prem
2. 8x.P ! P x

Sx/ prem
3. ŒP x

;
^ 8x.P ! P x

Sx/�! 8xP PA7
4. P x

;
! Œ8x.P ! P x

Sx/! 8xP � 3 T3.23
5. 8x.P ! P x

Sx/! 8xP 4,1 MP
6. 8xP 5,2 MP
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So if we encounter P x
;

and 8x.P ! P x
Sx/ in an AD derivation from the axioms of

PA, we can safely move to the conclusion that 8xP by this derived rule Ind.
We will have much more to say about the principle of mathematical induction in

Part II. For now, it is enough to recognize its instances. Thus, for example, if P is
�.x D Sx/, the corresponding instance of PA7 would be,

(O) Œ�.; D S;/ ^ 8x.�.x D Sx/! �.Sx D SSx//�! 8x�.x D Sx/

There is the formula with ; substituted for x, the formula itself, and the formula
with Sx substituted for x. If the entire antecedent is satisfied, then the formula
holds for every x. For the corresponding application of Ind (T3.39) you would
need �.; D S;/ and 8xŒ�.x D Sx/ ! �.Sx D SSx/� in order to move to the
conclusion that 8x�.x D Sx/. You should track these examples through. The
principle of mathematical induction turns out to be essential for deriving many general
results.

As before, if a theorem is derived from some premises, we use the theorem in
derivations that follow. Thus we build toward increasingly complex results. As you
work through these problems you may find the AD Peano reference on page 91 helpful.
Let us start with some simple generalizations of the axioms for application to arbitrary
terms. The derivations all follow the Gen / A4 / MP pattern we have seen before.

T3.40. PA
ÀD
�.St D ;/

1. �.Sx D ;/ PA1
2. 8x�.Sx D ;/ 1 Gen
3. 8x�.Sx D ;/! �.St D ;/ A4
4. �.St D ;/ 3,2 MP

As usual, because there is no quantifier in the consequent, (3) is sure to satisfy the
constraint on A4, no matter what t may be.

*T3.41. PA
ÀD
.St D Ss/! .t D s/

T3.42. PA
ÀD
.t C ;/ D t

corollary: PA
ÀD

t D .t C ;/

T3.43. PA
ÀD
.t C Ss/ D S.t C s/

corollary: PA
ÀD

S.t C s/ D .t C Ss/

T3.44. PA
ÀD
.t � ;/ D ;

corollary: PA
ÀD
; D .t � ;/
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T3.45. PA
ÀD
.t � Ss/ D Œ.t � s/C t�

corollary: PA
ÀD
Œ.t � s/C t� D .t � Ss/

In each case, the corollary is immediate from the theorem with T3.34 and MP. We
will not usually distinguish these theorems from their corollaries. And, in general, for
any theorem s D t, we will generally assume the corollary t D s. Notice that t and
s in these theorems may be any terms. Thus,

(P) x C ; D x .x � y/C ; D x � y .; C x/C ; D ;C x

are all straightforward instances of T3.42.
Given this much, we are ready for a series of results which are much more

interesting—for example, some general principles of commutativity and associativity.
For a first application of Ind, let P be .;C x/ D x; then P x

;
is .;C;/ D ; and P x

Sx

is .; C Sx/ D Sx.

T3.46. PA
ÀD
.; C t/ D t

1. .; C ;/ D ; T3.42
2. Œ.; C x/ D x�! ŒS.; C x/ D Sx� T3.37
3. S.; C x/ D .; C Sx/ T3.43
4. ŒS.; C x/ D .; C Sx/�! ŒS.; C x/ D Sx ! .; C Sx/ D Sx� T3.38
5. S.; C x/ D Sx ! .; C Sx/ D Sx 4,3 MP
6. Œ.; C x/ D x�! Œ.; C Sx/ D Sx� 2,5 T3.2
7. 8x.Œ.; C x/ D x�! Œ.; C Sx/ D Sx�/ 6 Gen
8. 8xŒ.; C x/ D x� 1,7 Ind
9. 8xŒ.; C x/ D x�! Œ.; C t / D t � A4

10. .; C t / D t 9,8 MP

The key to this derivation, and others like it, is bringing Ind into play. The basic
strategy for the beginning and end of these arguments is always the same. In this case,

1. .; C ;/ D ; T3.42
:::

6. Œ.; C x/ D x�! Œ.; C Sx/ D Sx�

7. 8x.Œ.; C x/ D x�! Œ.; C Sx/ D Sx�/ 6 Gen
8. 8xŒ.; C x/ D x� 1,7 Ind
9. 8xŒ.; C x/ D x�! Œ.; C t / D t � A4

10. .; C t / D t 9,8 MP

The goal is automatic by A4 and MP once you have 8xŒ.; C x/ D x� by Ind at
(8). For this, you need P x

;
and 8x.P ! P x

Sx/. We have P x
;

at (1) as an instance of
T3.42—and P x

;
is almost always easy to get. 8x.P ! P x

Sx/ is automatic by Gen
from (6). So the real work is getting (6). Thus, once you see what is going on, the
entire derivation for T3.46 boils down to lines (2)–(6). For this, begin by noticing that
the antecedent of what we want is like the antecedent of (2), and the consequent like
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what we want but for the equivalence in (3). We use T3.38 to switch the one term for
the equivalent one we want. The applications of T3.37 and then T3.38 in this theorem
are typical.

T3.47. PA
ÀD
.St C ;/ D S.t C ;/

1. .St C ;/ D St T3.42
2. t D .t C ;/ T3.42
3. Œt D .t C ;/�! ŒSt D S.t C ;/� T3.37
4. St D S.t C ;/ 3,2 MP
5. .St C ;/ D S.t C ;/ 1,4 T3.36

In this derivation, both (1) and (2) are instances of T3.42—where the instance on (1)
has St for t, and (2) is in the “reversed” corollary form. Then the key to the derivation
is that the left side of (1) is like what we want, and the right side of (1) is like what we
want but for the equality on (2). The goal then is to use T3.37 to switch the one term
for the equivalent one. This result forms the “zero-case” for the one that follows.

T3.48. PA
ÀD
.St C s/ D S.t C s/

See the derivation in the upper box on the next page.

The idea behind this longish derivation is to bring Ind into play, where formula P is
.St C x/ D S.t C x/. For now, do not worry about how we identified this formula
as P . Given that much, the following setup is automatic:

1. .St C ;/ D S.t C ;/ T3.47
:::

12. Œ.St C x/ D S.t C x/�! Œ.St C Sx/ D S.t C Sx/�

13. 8x.Œ.St C x/ D S.t C x/�! Œ.St C Sx/ D S.t C Sx/�/ 12 Gen
14. 8xŒ.St C x/ D S.t C x/� 1,13 Ind
15. 8xŒ.St C x/ D S.t C x/�! Œ.St C s/ D S.t C s/� A4
16. .St C s/ D S.t C s/ 15,14 MP

We have the zero-case from T3.47 on (1); the goal is automatic once we have the
result on (12). For (12), the antecedent at (2) is what we want, and the consequent is
right but for the equivalences on (3) and (9). We use T3.38 to substitute terms into the
consequent. The equivalence on (3) is a straightforward instance of T3.43. We had to
work (just a bit) starting again with T3.43 to get the equivalence on (9).

T3.49. PA
ÀD

t C s D sC t commutativity of addition

See the derivation in the lower box on the following page.

The pattern of this derivation is very much like ones we have seen before. Where P is
t C x D x C t we have the zero-case at (3), and the derivation effectively reduces to
getting (12). We get this by substituting into the consequent of (4) by means of the
equivalences on (5) and (9).
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T3.48

1. .St C ;/ D S.t C ;/ T3.47
2. Œ.St C x/ D S.t C x/�! ŒS.St C x/ D SS.t C x/� T3.37
3. S.St C x/ D .St C Sx/ T3.43
4. ŒS.St C x/ D .St C Sx/�!

.ŒS.St C x/ D SS.t C x/�! Œ.St C Sx/ D SS.t C x/�/ T3.38
5. ŒS.St C x/ D SS.t C x/�! Œ.St C Sx/ D SS.t C x/� 4,3 MP
6. Œ.St C x/ D S.t C x/�! Œ.St C Sx/ D SS.t C x/� 2,5 T3.2
7. S.t C x/ D .t C Sx/ T3.43
8. ŒS.t C x/ D .t C Sx/�! ŒSS.t C x/ D S.t C Sx/� T3.37
9. SS.t C x/ D S.t C Sx/ 8,7 MP

10. ŒSS.t C x/ D S.t C Sx/�!

.Œ.St C Sx/ D SS.t C x/�! Œ.St C Sx/ D S.t C Sx/�/ T3.38
11. Œ.St C Sx/ D SS.t C x/�! Œ.St C Sx/ D S.t C Sx/� 10,9 MP
12. Œ.St C x/ D S.t C x/�! Œ.St C Sx/ D S.t C Sx/� 6,11 T3.2
13. 8x.Œ.St C x/ D S.t C x/�! Œ.St C Sx/ D S.t C Sx/�/ 12 Gen
14. 8xŒ.St C x/ D S.t C x/� 1,13 Ind
15. 8xŒ.St C x/ D S.t C x/�! Œ.St C s/ D S.t C s/� A4
16. .St C s/ D S.t C s/ 15,14 MP

T3.49

1. t C ; D t T3.42
2. t D ;C t T3.46
3. t C ; D ;C t 1,2 T3.36
4. Œt C x D x C t�! ŒS.t C x/ D S.x C t/� T3.37
5. S.t C x/ D .t C Sx/ T3.43
6. ŒS.t C x/ D .t C Sx/�!

.ŒS.t C x/ D S.x C t/�! Œ.t C Sx/ D S.x C t/�/ T3.38
7. ŒS.t C x/ D S.x C t/�! Œ.t C Sx/ D S.x C t/� 6,5 MP
8. Œt C x D x C t�! Œ.t C Sx/ D S.x C t/� 4,7 T3.2
9. S.x C t/ D .Sx C t/ T3.48

10. ŒS.x C t/ D .Sx C t/�!

.Œt C Sx D S.x C t/�! Œt C Sx D Sx C t�/ T3.38
11. Œt C Sx D S.x C t/�! Œt C Sx D Sx C t� 10,9 MP
12. Œt C x D x C t�! Œt C Sx D Sx C t� 8,11 T3.2
13. 8x.Œt C x D x C t�! Œt C Sx D Sx C t�/ 12 Gen
14. 8xŒt C x D x C t� 3,13 Ind
15. 8xŒt C x D x C t�! Œt C s D sC t� A4
16. t C s D sC t 15,14 MP
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T3.50. PA
ÀD
.rC s/C ; D rC .sC ;/

Hint: Begin with .rC s/C ; D rC s as an instance of T3.42. The derivation
is then a matter of using T3.42 to replace s in the right-hand side with sC ;.

*T3.51. PA
ÀD
.rC s/C t D rC .sC t/ associativity of addition

Hint: For an application of Ind, let P be .rC s/C x D rC .sC x/. Start with
Œ.r C s/ C x D r C .s C x/� ! ŒS..r C s/ C x/ D S.r C .s C x//� as an
instance of T3.37, and substitute into the consequent as necessary by T3.43 to
reach Œ.rC s/C x D rC .sC x/� ! Œ.rC s/C Sx D rC .sC Sx/�. The
derivation is longish, but straightforward.

T3.52. PA
ÀD
; � t D ;

Hint: For an application of Ind, let P be ; � x D ;; then the derivation reduces
to showing Œ; � x D ;�! Œ; � Sx D ;�. This is easy enough if you use T3.42
and T3.45 to show that ; � x D ; � Sx.

T3.53. PA
ÀD
St � ; D .t � ;/C ;

Hint: This does not require application of Ind.

*T3.54. PA
ÀD

St � s D .t � s/C s

Hint: For an application of Ind, let P be St � x D .t � x/C x. The derivation
reduces to getting ŒSt�x D .t�x/Cx�! ŒSt�Sx D .t�Sx/CSx�. For this,
you can start with ŒSt�x D .t�x/Cx�! Œ.St�x/CSt D ..t�x/Cx/CSt�

as an instance of T3.37, and substitute into the consequent. You may find it helpful
to obtain xC St D tC Sx and from that .t � x/C .xC St/ D .t � Sx/C Sx

as a preliminary result.

T3.55. PA
ÀD

t � s D s � t commutativity of multiplication

Hint: For an application of Ind, let P be t � x D x � t. You can start with
Œt � x D x � t� ! Œ.t � x/ C t D .x � t/ C t� as an instance of T3.37, and
substitute into the consequent.

We will stop here. With the derivation system ND of Chapter 6, we obtain all these
results and more. But that system is easier to manipulate than what we have so far in
AD. Still, we have obtained some significant results! Perhaps you have heard from
your mother’s knee that aC b D b C a. But this is a sweeping general claim of the
sort that cannot ever have all its instances checked. We have derived it from the Peano
axioms.
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Peano Arithmetic (AD)

PA 1. �.Sx D ;/

2. .Sx D Sy/! .x D y/

3. .x C ;/ D x

4. .x C Sy/ D S.x C y/

5. .x � ;/ D ;

6. .x � Sy/ D Œ.x � y/C x�

7. ŒP x
;
^ 8x.P ! P x

Sx/�! 8xP

T3.39 In an AD derivation from the axioms of PA, 8xP follows from P x
;

and
8x.P ! P x

Sx/. (Ind)

T3.40 PA
ÀD
�.St D ;/

T3.41 PA
ÀD
.St D Ss/! .t D s/

T3.42 PA
ÀD
.t C ;/ D t

T3.43 PA
ÀD
.t C Ss/ D S.t C s/

T3.44 PA
ÀD
.t � ;/ D ;

T3.45 PA
ÀD
.t � Ss/ D Œ.t � s/C t�

T3.46 PA
ÀD
.; C t/ D t

T3.47 PA
ÀD
.St C ;/ D S.t C ;/

T3.48 PA
ÀD
.St C s/ D S.t C s/

T3.49 PA
ÀD

t C s D sC t commutativity of addition

T3.50 PA
ÀD
.rC s/C ; D rC .sC ;/

T3.51 PA
ÀD
.rC s/C t D rC .sC t/ associativity of addition

T3.52 PA
ÀD
; � t D ;

T3.53 PA
ÀD
St � ; D .t � ;/C ;

T3.54 PA
ÀD

St � s D .t � s/C s

T3.55 PA
ÀD

t � s D s � t commutativity of multiplication

Any theorem t D s has corollary s D t.
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*E3.12. Provide derivations to show each of T3.41–T3.45, and T3.50–T3.55.

E3.13. For each of the following concepts, explain in an essay of about two pages,
so that (high-school age) Hannah could understand. In your essay, you should
(i) identify the objects to which the concept applies, (ii) give and explain the
definition, and give and explicate examples of your own construction (iii) where
the concept applies, and (iv) where it does not. Your essay should exhibit an
understanding of methods from the text.

a. Term t being free for variable x in formula A along with the restrictions on
A4 and A5.

b. An AD theorem of Peano arithmetic.



Chapter 4

Semantics

Having introduced the grammar for our formal languages and even (if you did not
skip the last chapter) done derivations in them, we need to say something about
semantics—about the conditions under which their expressions are true and false. In
addition to logical validity from Chapter 1 and validity in AD from Chapter 3, this
will lead to a third, semantic notion of validity. Again, the discussion divides into the
relatively simple sentential case (section 4.1), and then the full quantificational version
(section 4.2). Recall that we are introducing formal languages in their “pure” form,
apart from associations with ordinary language. Having discussed, in this chapter,
conditions under which formal expressions are true and not, in the next chapter, we
will finally turn to translation, and so to ways formal expressions are associated with
ordinary ones.

4.1 Sentential

For any sentential or quantificational language, starting with a sentence and working
up its tree, let us say that its basic sentences are the first sentences that do not have
an operator from the sentential language (�,!, _, ^,$) as main operator. For a
sentential language, basic sentences are the sentence letters, as the atomics are the
first and only sentences without a main operator from the sentential language. In the
quantificational case, basic sentences may be more complex.1 In this section, we treat
basic sentences as atomic. Our initial focus is on forms with just operators � and
!. We begin with an account of the conditions under which sentences are true and
not true, learn to apply that account in arbitrary conditions, and turn to validity. The
section concludes with applications to our abbreviations, ^, _, and$.

1Thus the basic sentences of A^B are just the atomic subformulas A and B . However Fa^9xGx
has atomic subformulas Fa and Gx, but basic sentences Fa and 9xGx since the latter does not have an
operator from the sentential language as its main operator.

93
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4.1.1 Interpretations and Truth

Sentences are true and false relative to an interpretation of basic sentences. In the
sentential case, the notion of an interpretation is particularly simple. For any formal
language L, a sentential interpretation assigns a truth value true or false, T or F, to
each of its basic sentences. Thus, for Ls we might have interpretations I and J,

(A)

I
A B C D E F G H

T T T T T T T T
� � �

J
A B C D E F G H

T T F F T T F F
� � �

These assignments may be made in arbitrary ways. Any assignment of truth values to
the basic sentences counts as a sentential interpretation. When a sentence A is T on
an interpretation I, we write I[A] = T, and when it is F, we write, I[A] = F. Thus, in
the above case, J[B] = T and J[C ] = F.

Truth for complex sentences depends on truth and falsity for their parts. In
particular, for any interpretation I,

ST (�) For any sentence P , I[�P ] = T iff I[P ] = F; otherwise I[�P ] = F.

(!) For any sentences P and Q, I[.P ! Q/] = T iff I[P ] = F or I[Q] = T (or
both); otherwise I[.P ! Q/] = F.

Thus a basic sentence is true or false depending on the interpretation. For complex
sentences, �P is true iff P is not true; and .P ! Q/ is true iff P is not true or Q is.
It is traditional to represent the information from ST(�) and ST(!) in the following
truth tables:

T(�)
P �P

T F
F T

T(!)

P Q P ! Q

T T T
T F F
F T T
F F T

From ST(�), we have that if P is F then �P is T; and if P is T then �P is F. This is
just the way to read table T(�) from left to right in the bottom row, and then the top
row. Similarly, from ST(!), we have that P ! Q is T in conditions represented by
the first, third, and fourth rows of T(!). The only way for P ! Q to be F is when
P is T and Q is F as in the second row.

ST works recursively. Whether a basic sentence is true comes directly from
the interpretation; truth for other sentences depends on truth for their immediate
subformulas—and can be read directly off the tables. As usual, we can use trees to
see how it works. As we build a formula from its parts to the whole, so now we
calculate truth from parts to the whole. Suppose I[A] = T, I[B] = F, and I[C ] = F.
Then I[�.A! �B/! C ] = T.
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(B)

A.T/

L
L
L
L
L
LL

B.F/ C .F/

�
�
�
�
�
�
�
�
�
�
�
�
�
��

From I

�B.T/

�
�
�

By T(�), row 2

.A! �B/.T/ By T(!), row 1

�.A! �B/.F/

HH
HHHH

By T(�), row 1

�.A! �B/! C .T/ By T(!), row 4

The basic tree is the same as the one that shows �.A ! �B/ ! C is a formula.
From the interpretation, A is T, B is F, and C is F. These are across the top. Since B
is F, from the bottom row of table T(�), �B is T. Since A is T and �B is T, reading
across the top row of the table T(!), A! �B is T. And similarly, according to the
tree, for the rest. You should carefully follow each step.

Here is the same formula considered on another interpretation. With the interpre-
tation J on the previous page, J[�.A! �B/! C ] = F.

(C)

A.T/

L
L
L
L
L
LL

B.T/ C .F/

�
�
�
�
�
�
�
�
�
�
�
�
�
��

From J

�B.F/

�
�
�

By T(�), row 1

.A! �B/.F/ By T(!), row 2

�.A! �B/.T/

HH
HHHH

By T(�), row 2

�.A! �B/! C .F/ By T(!), row 2

This time, for both applications of ST(!), the antecedent is T and the consequent is F;
thus we are working on the second row of table T(!), and the conditionals evaluate
to F. Again, you should follow each step in the tree.

E4.1. Where the interpretation is J on the preceding page, with JŒA� = T, JŒB� = T
and JŒC � = F, use trees to decide whether the following sentences of Ls are T or
F.
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*a. �A b. ��C

c. A! C d. C ! A

*e. �.A! A/ *f. .�A! A/

g. �.A! �C/! C h. .�A! C/! C

*i. .A! �B/! �.B ! �A/ j. �.B ! �A/! .A! �B/

4.1.2 Arbitrary Interpretations

Sentences are true and false relative to an interpretation. But whether an argument
is semantically valid depends on truth and falsity relative to every interpretation. As
a first step toward determining semantic validity, in this section, we generalize the
method of the last section to calculate truth values relative to arbitrary interpretations.

First, any sentence has a finite number of basic sentences as components. It is thus
possible simply to list all the possible interpretations of those basic sentences. If an
expression has just one basic sentence A, then on any interpretation whatsoever, that
basic sentence must be T or F.

(D)
A

T
F

If an expression has basic sentences A and B, then the possible interpretations of its
basic sentences are,

(E)

A B

T T
T F
F T
F F

B can take its possible values, T and F when A is true, and B can take its possible
values, T and F when A is false. And similarly, every time we add a basic sentence,
we double the number of possible interpretations, so that n basic sentences always
have 2n possible interpretations. Thus the possible interpretations for three and four
basic sentences are,
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(F)

A B C

T T T
T T F
T F T
T F F

F T T
F T F
F F T
F F F

(G)

A B C D

T T T T
T T T F
T T F T
T T F F

T F T T
T F T F
T F F T
T F F F

F T T T
F T T F
F T F T
F T F F

F F T T
F F T F
F F F T
F F F F

Extra horizontal lines are added purely for visual convenience. There are 8 = 23

combinations with three basic sentences and 16 = 24 combinations with four. In
general, to write down all the possible combinations for n basic sentences, begin by
finding the total number r = 2n of combinations or rows. Then write down a column
with half that many (r=2) Ts and half that many (r=2) Fs; then a column alternating
half again as many (r=4) Ts and Fs; and a column alternating half again as many (r=8)
Ts and Fs—continuing to the nth column alternating groups of just one T and one F.
Thus, for example, with four basic sentences, r = 24 = 16; so we begin with a column
consisting of r=2 = 8 Ts and r=2 = 8 Fs; this is followed by a column alternating
groups of 4 Ts and 4 Fs, a column alternating groups of 2 Ts and 2 Fs, and a column
alternating groups of 1 T and 1 F. The result lists all the possible interpretations of the
basic sentences. And similarly in other cases.

Given an expression involving, say, four basic sentences, we could imagine doing
trees for each of the 16 possible interpretations. But, to exhibit truth values for each
of the possible interpretations, we can reduce the amount of work a bit—or at least
represent it in a relatively compact form. Suppose I[A] = T, I[B] = F, and I[C ] = F,
and consider the tree from (B) above, along with a “compressed” version of the same
information.
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(H)

A.T/

L
L
L
L
L
LL

B.F/ C .F/

�
�
�
�
�
�
�
�
�
�
�
�
�
��

�B.T/

�
�
�

.A! �B/.T/

�.A! �B/.F/

HH
HHHH
�.A! �B/! C .T/

A B C � .A ! �B/ ! C

T F F F T T T F T F

In the table on the right, we begin by simply listing the interpretation we will consider
in its left-hand part: A is T, B is F, and C is F. Then, under each basic sentence we
put its truth value, and for a non-basic sentence place its truth value under its main
operator. Notice that the calculation must proceed precisely as it does in the tree. It is
because B is F, that we put T under the second �. It is because A is T and �B is T
that we put a T under the first!. It is because .A! �B/ is T that we put F under
the first �. And it is because �.A! �B/ is F and C is F that we put a T under the
second!. In effect, then, we work “down” through the tree, only in this compressed
form. Or we might think of truth values from the tree as “squished” up into the one
row. Because there is a T under its main operator, we conclude that the whole formula,
�.A! �B/! C is T when I[A] = T, I[B] = F, and I[C ] = F. In this way, we might
conveniently calculate and represent the truth value of �.A ! �B/ ! C for all
eight of the possible interpretations of its basic sentences.

(I)

A B C � .A ! �B/ ! C

T T T T T F F T T T
T T F T T F F T F F
T F T F T T T F T T
T F F F T T T F T F

F T T F F T F T T T
F T F F F T F T T F
F F T F F T T F T T
F F F F F T T F T F

The emphasized column under the second! indicates the truth value of �.A !
�B/ ! C for each of the interpretations on the left—which is to say, for every
possible interpretation of the three basic sentences. So the only way for �.A !
�B/! C to be F is for C to be F, andA and B to be T. Our above tree (H) represents
just the fourth row of this table.

In practice, it is easiest to work these truth tables “vertically.” For this, begin
with the basic sentences in some standard order along with all their possible inter-
pretations in the left-hand column. For Ls let the standard order be alphanumeric
(A;A1; A2; : : : ; B; B1; B2; : : : ; C; : : :). And repeat truth values for basic sentences
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under their occurrences in the formula (this is not crucial, since truth values for basic
sentences are already listed on the left; it will be up to you whether to repeat values
for basic sentences). This is done in table (J) below.

(J)

A B C � .A ! �B/ ! C

T T T T T T
T T F T T F
T F T T F T
T F F T F F

F T T F T T
F T F F T F
F F T F F T
F F F F F F

(K)

A B C � .A ! �B/ ! C

T T T T F T T
T T F T F T F
T F T T T F T
T F F T T F F

F T T F F T T
F T F F F T F
F F T F T F T
F F F F T F F

Now, given the values for B as in (J), we are in a position to calculate the values for
�B; so get the T(�) table in you mind, put your eye on the column under B in the
formula (or on the left if you have decided not to repeat the values for B under its
occurrence in the formula). Then fill in the column under the second �, reversing the
values from under B . This is accomplished in (K). Given the values for A and �B ,
we are now in a position to calculate values for A! �B; so get the T(!) table in
your head, and put your eye on the columns under A and �B . Then fill in the column
under the first!, going with F only when A is T and �B is F. This is accomplished
in (L).

On alphanumeric order: It is worth asking what happens if basic sentences are
listed in some order other than alphanumeric.

A B

T T
T F
F T
F F

���:���9XXXzXXXy

B A

T T
T F
F T
F F

All the combinations are still listed, but their locations in a
table change.

Each of the above tables lists all of the combinations for the basic sentences. But
the first table has the interpretation I with I[A] = T and I[B] = F in the second
row, where the second table has this combination in the third. Similarly, the tables
exchange rows for the interpretation J with J[A] = F and J[B] = T. As it turns out,
the only real consequence of switching rows is that it becomes difficult to compare
tables as, for example, with the Answers to Selected Exercises. And it may matter
as part of the standard of correctness for exercises!

https://tonyroyphilosophy.net/symbolic-logic/
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(L)

A B C � .A ! �B/ ! C

T T T T F F T T
T T F T F F T F
T F T T T T F T
T F F T T T F F

F T T F T F T T
F T F F T F T F
F F T F T T F T
F F F F T T F F

(M)

A B C � .A ! �B/ ! C

T T T T T F F T T
T T F T T F F T F
T F T F T T T F T
T F F F T T T F F

F T T F F T F T T
F T F F F T F T F
F F T F F T T F T
F F F F F T T F F

Now we are ready to fill in the column under the first �. So get the T(�) table in your
head, and put your eye on the column under the first!. The column is completed
in table (M). And the table is finished as in (I) by completing the column under the
last!, based on the columns under the first � and under the C . Notice again that the
order in which you work the columns exactly parallels the order from the tree.

As another example, consider these tables for �.B ! A/, the first with truth
values repeated under basic sentences, the second without.

(N)

A B � .B ! A/

T T F T T T
T F F F T T
F T T T F F
F F F F T F

(O)

A B � .B ! A/

T T F T
T F F T
F T T F
F F F T

We complete the table as before. First, with our eye on the columns under B and
A, we fill in the column under!. Then, with our eye on that column, we complete
the one under �. For this, first, notice that � is the main operator. You would not
calculate �B and then the arrow! Rather, your calculations move from the smaller
parts to the larger; so the arrow comes first and then the tilde. Again, the order is
the same as on a tree. Second, if you do not repeat values for basic formulas, be
careful about B ! A; the leftmost column of table (O), under A, is the column for the
consequent and the column immediately to its right, under B , is for the antecedent; in
this case, then, the second row under arrow is T and the third is F. Though it is fine to
omit columns under basic sentences, as they are already filled in on the left side, you
should not skip other columns, as they are essential building blocks for the final result.

E4.2. For each of the following sentences of Ls construct a truth table to determine
its truth value for each of the possible interpretations of its basic sentences.

*a. ��A

b. �.A! A/

c. .�A! A/

*d. .�B ! A/! B
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e. �.B ! �A/! B

f. .A! �B/! �.B ! �A/

*g. C ! .A! B/

h. ŒA! .C ! B/�! Œ.A! C/! .A! B/�

*i. .�A! B/! .�C ! D/

j. �.A! �B/! �.C ! �D/

4.1.3 Validity

As we have seen, sentences are true and false relative to an interpretation. For any
interpretation, a sentence has some definite value. Now consider an argument whose
premises and conclusion are some formal sentences. So, for example, perhaps the
premises areA! B andA and the conclusion isB . A formal argument is sententially
valid depending on all the interpretations of the sentences that are its premises and
conclusion. Suppose a formal argument has premises P1 : : :Pn and conclusion Q.
Then,

P1 : : :Pn sententially entail Q (P1 : : :Pn �s Q) iff there is no sentential inter-
pretation I such that IŒP1� = T and . . . and IŒPn� = T but IŒQ� = F.

Premises entail a conclusion when no interpretation makes all the premises true and
the conclusion false (or, equivalently, when every interpretation is such that it does
not make the premises true and conclusion false). We can put the definition more
generally as follows: Suppose � (Gamma) is a set of formulas—these are the premises.
Say I[�] = T iff I[P ] = T for each P in � . Then,

SV � sententially entails Q (� �s Q) iff there is no sentential interpretation I such
that I[�] = T but I[Q] = F.

Where the members of � are P1 : : :Pn, this says the same as before. � sententially
entails Q when there is no sentential interpretation that makes each member of � true
and Q false. � does not sententially entail Q (� ²s Q) when there is some sentential
interpretation on which all the members of � are true, but Q is false.2

2Definition SV allows any collection of premises, and so relaxes the supposition that an argument
has finitely many premises. However, having made this observation, for the time being we set it to the
side: Any ordinary argument has finitely many premises—and methods from this chapter are restricted
to the finite case.
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Greek Characters
Greek characters frequently appear in logical contexts. In order to read them (as something
besides “funny squiggle”) unique characters and their names are listed here.

˛ alpha � iota � , † sigma, Sigma
ˇ beta � kappa � tau
 , � gamma, Gamma �, ƒ lambda, Lambda � , ‡ upsilon, Upsilon
ı, � delta, Delta � mu �, ˆ phi, Phi
� epsilon � nu � chi
� zeta �, „ xi, Xi  , ‰ psi, Psi
� eta � , … pi, Pi !, � omega, Omega
� , ‚ theta, Theta � rho

If � sententially entails Q we say the argument whose premises are the members
of � and conclusion is Q is sententially valid. To say that an argument is sententially
valid and that its premises sententially entail its conclusion is to say the same thing
only with a different grammatical subject: an argument is sententially valid just in
case its premises sententially entail the conclusion. We can think of the premises as
constraining the interpretations that matter: For validity it is just the interpretations
where the members of � are all true on which the conclusion Q cannot be false. If
� has no members then there are no constraints on relevant interpretations, and the
conclusion is valid iff it is true on every interpretation. In the case where there are no
premises, we simply write �s Q, and if Q is valid it is a tautology. Notice the new
double turnstile � for this semantic notion, in contrast to the single turnstile ` for
derivations.

Given that we are already in a position to exhibit truth values for arbitrary inter-
pretations, it is a simple matter to determine whether an argument is sententially valid.
Where the premises and conclusion of an argument include basic sentences B1 : : :Bn,
begin by calculating the truth values of the premises and conclusion for each of the
possible interpretations for B1 : : :Bn. Then look to see if any interpretation makes
all the premises true but the conclusion false. If no interpretation makes the premises
true and the conclusion not, then by SV the argument is sententially valid. If some
interpretation does make the premises true and the conclusion false, then it is not
valid.

Thus, for example, suppose we want to know whether the following argument is
sententially valid.

(P)

.�A! B/! C

B

C

By SV, the question is whether there is an interpretation that makes the premises
true and the conclusion not. So we begin by calculating the values of the premises
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and conclusion for each of the possible interpretations of the basic sentences in the
premises and conclusion.

A B C .�A ! B/ ! C B / C

T T T F T T T T T T T
T T F F T T T F F T F
T F T F T T F T T F T
T F F F T T F F F F F

F T T T F T T T T T T
F T F T F T T F F T F
F F T T F F F T T F T
F F F T F F F T F F F

Now we simply look to see whether any interpretation makes all the premises true
but the conclusion not. Interpretations represented by the top row, ones that make A,
B , and C all T, do not make the premises true and the conclusion not, because both
the premises and the conclusion come out true. In the second row, the conclusion is
false, but the first premise is false as well; so not all the premises are true and the
conclusion is false. In the third row, we do not have either all the premises true or the
conclusion false. In the fourth row, though the conclusion is false, the premises are
not true. In the fifth row, the premises are true, but the conclusion is not false. In the
sixth row, the first premise is not true, and in the seventh and eighth rows, the second
premise is not true. So no interpretation makes the premises true and the conclusion
false. So by SV, .�A! B/! C , B �s C . Notice that the only column that matters
for a complex formula is the one under its main operator—the one that gives the value
of the sentence for each of the interpretations; the other columns exist only to support
the calculation of the value of the whole.

In contrast, �Œ.B ! A/ ! B� ²s �.A ! B/. That is, an argument with
premise, �Œ.B ! A/! B� and conclusion �.A! B/ is not sententially valid.

(Q)

A B � Œ.B ! A/ ! B� / � .A ! B/

T T F T T T T T F T T T
T F T F T T F F T T F F
F T F T F F T T F F T T
F F T F T F F F F F T F (

In the first row, the premise is F. In the second, the conclusion is T. In the third,
the premise is F. However, in the last, the premise is T and the conclusion is F. So
there are interpretations (any interpretation that makes A and B both F) that make the
premise T and the conclusion F. So by SV, �Œ.B ! A/ ! B� ²s �.A ! B/, and
the argument is not sententially valid. All it takes is one interpretation that makes all
the premises T and the conclusion F to render an argument not sententially valid. Of
course, there might be more than one, but one is enough!

As a final example, consider table (I) for �.A! �B/! C on page 98 above.
From the table, there is an interpretation where the sentence is not true. Thus, by SV,
²s �.A! �B/! C . A sentence is valid only when it is true on every interpretation.
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Since there is an interpretation on which it is not true, the sentence is not valid (not a
tautology).

Since all it takes to demonstrate invalidity is one interpretation on which all the
premises are true and the conclusion is false, we do not actually need an entire table to
demonstrate invalidity. You may decide to produce a whole truth table in order to find
an interpretation to demonstrate invalidity. But we can sometimes work “backward”
from what we are trying to show to an interpretation that does the job. Thus, for
example, to find the result from table (Q), we need an interpretation on which the
premise is T and the conclusion is F. That is, we need a row like this:

(R)
A B � Œ.B ! A/ ! B� / � .A ! B/

T F

In order for the premise to be T, the conditional in the brackets must be F. And in
order for the conclusion to be F, the conditional must be T. So we can fill in this much:

(S)
A B � Œ.B ! A/ ! B� / � .A ! B/

T F F T

Since there are three ways for an arrow to be T, there is not much to be done with the
conclusion. But since the conditional in the premise is F, we know that its antecedent
is T and consequent is F. So we have:

(T)
A B � Œ.B ! A/ ! B� / � .A ! B/

T T F F F T

That is, .B ! A/ is T and B is F. But now we can fill in the information about B
wherever it occurs. The result is as follows:

(U)
A B � Œ.B ! A/ ! B� / � .A ! B/

F T F T F F F T F

Since the firstB in the premise is F, the first conditional in the premise is T irrespective
of the assignment to A. But, with B false, the only way for the conditional in the
argument’s conclusion to be T is for A to be false as well. The result is our completed
row:

(V)
A B � Œ.B ! A/ ! B� / � .A ! B/

F F T F T F F F F F T F

And we have recovered the row that demonstrates invalidity—without doing the entire
table. In this case, the full table had only four rows, and we might just as well have
done the whole thing. However, when there are many rows, this “shortcut” approach
can be attractive. A disadvantage is that sometimes it is not obvious just how to
proceed. In this example, each stage led to the next. At stage (S), there were three
ways to make the conditional subformula in the conclusion true. We were able to
proceed insofar as the premise forced the next step. But it might have been that neither
the premise nor the conclusion forced a definite next stage. In this sort of case, you
might decide to do the whole table, just so that you can can grapple with all the
different combinations in an orderly way.



CHAPTER 4. SEMANTICS 105

Notice what happens when we try this approach with an argument that is not
invalid. Returning to argument (P) above, suppose we try to find a row where the
premises are T and the conclusion is F. That is, we set out to find a row like this:

(W)
A B C .�A ! B/ ! C B / C

T T F

Immediately, we are in a position to fill in values for B and C :

(X)
A B C .�A ! B/ ! C B / C

T F T T F T F

Since the first premise is a true arrow with a false consequent, its antecedent .�A!
B/ must be F. But this requires that �A be T and that B be F:

(Y)
A B C .�A ! B/ ! C B / C

T F T F F/T T F T F

And there is no way to set B to F, as we have already seen that it has to be T in order
to keep the second premise true—and no interpretation makes B both T and F. At this
stage, we know, in our hearts, that there is no way to make both of the premises true
and the conclusion false. In Part II we will turn this knowledge into an official mode
of reasoning for validity. However, for now, let us consider a single row of a truth
table (or a marked row of a full table) sufficient to demonstrate invalidity, but require
a full table, exhibiting all the options, to show that an argument is sententially valid.

You may encounter odd situations where premises are never T, where conclusions
are never F, or whatever. But if you stick to the definition, always asking whether
there is any interpretation of the basic sentences that makes all the premises T and the
conclusion F, all will be well.

E4.3. For each of the following, use truth tables to decide whether the entailment
claims hold. Notice that a couple of the tables are already done from E4.2.

*a. A! �A �s �A

b. �A! A �s �A

*c. A! B , �A �s �B

d. A! B , �B �s �A

e. �.A! �B/ �s B

f. �s C ! .A! B/

*g. �s ŒA! .C ! B/�! Œ.A! C/! .A! B/�

h. .A! B/! �.B ! A/, �A, �B �s �.C ! C/

i. A! �.B ! �C/, B ! .�C ! D/ �s A! �.B ! �D/

j. �Œ.A! �.B ! �C//! D�, �D ! A �s C
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4.1.4 Abbreviations

We turn finally to applications for our abbreviations. Consider, first, a truth table for
P _Q, that is for �P ! Q:

T0._/

P Q �P ! Q

T T F T T T
T F F T T F
F T T F T T
F F T F F F

so that

P Q P _ Q

T T T
T F T
F T T
F F F

When P is T and Q is T, P _Q is T; when P is T and Q is F, P _Q is T; and so
forth. Thus, when P is T and Q is T, we know that P _Q is T, without going through
all the steps to get there in the unabbreviated form. Just as when P is a formula and
Q is a formula, we move directly to the conclusion that P _Q is a formula without
explicitly working all the intervening steps, so if we know the truth value of P and the
truth value of Q, we can move in a tree by the above table to the truth value of P _Q

without all the intervening steps. And similarly for the other abbreviating sentential
operators. For ^:

T0.^/

P Q � .P ! �Q/

T T T T F F T
T F F T T T F
F T F F T F T
F F F F T T F

so that

P Q P ^ Q

T T T
T F F
F T F
F F F

And for ($):

T0.$/

P Q � Œ.P ! Q/ ! � .Q ! P /�

T T T T T T F F T T T
T F F T F F T F F T T
F T F F T T T T T F F
F F T F T F F F F T F

so that

P Q P $ Q

T T T
T F F
F T F
F F T

As a help toward remembering these tables, notice that P _Q is F only when P is F
and Q is F; P ^Q is T only when P is T and Q is T; and P $ Q is T only when P

and Q are the same, and F when P and Q are different. The tables T0._/, T0.^/, and
T0.$/ represent derived additions to the definition for truth.

And nothing prevents direct application of the derived tables in trees. Suppose,
for example, I[A] = T, I[B] = F, and I[C ] = T. Then I[.B ! A/$ ..A ^ B/ _�C/]
= F.



CHAPTER 4. SEMANTICS 107

(Z)

B.F/

@
@
@

A.T/

�
�
�

A.T/

@
@
@

B.F/

�
�
�

C .T/ From I

.B ! A/.T/

l
l
l
l
l
l
l
l

.A ^ B/.F/

Q
Q
Q
Q

�C .F/

�
�
�
�

T(!); T0(^), row 2; T(�)

..A ^ B/ _�C/.F/
!!!!!!!

T0(_), row 4

.B ! A/$ ..A ^ B/ _�C/.F/ T0($), row 2

We might get the same result by working through the full tree for the unabbreviated
form. But there is no need. When A is T and B is F, we know that .A^B/ is F; when
.A^B/ is F and �C is F, we know that ..A^B/_�C/ is F; and so forth. Thus we
move through the tree directly by the derived tables.

Similarly, we can work directly with abbreviated forms in truth tables.

(AA)

A B C .B ! A/ $ ..A ^ B/ _ �C/

T T T T T T T T T T T F T
T T F T T T T T T T T T F
T F T F T T F T F F F F T
T F F F T T T T F F T T F

F T T T F F T F F T F F T
F T F T F F F F F T T T F
F F T F T F F F F F F F T
F F F F T F T F F F T T F

Tree (Z) represents just the third row of this table. As before, we construct the table
“vertically,” with tables for abbreviating operators in mind as appropriate.

Finally, given that we have tables for abbreviated forms, we can use them for evalu-
ation of arguments with abbreviated forms. Thus, for example, A$ B , A �s A ^ B .

Some perspective: There are different ways to understand tables for these new
operators: We have understood them as derived from basic tables T(�) and T(!).
However, as we shall see in Chapter 11, it is possible to take tables for operators
other than � and! as basic—say just T(�) and T0._/, or just T(�) and T0.^/—
and then to abbreviate! in terms of them. Challenge: Find an expression involving
just� and _ that has the same table as!; find one involving just� and ^. Another
option introduces all five as basic. Then the task is not showing that the table for _
is TTTF—that is given; rather we simply notice that P _Q, say, is redundant with
�P ! Q. The latter approach avoids abbreviation. The former options abbreviate
non-basic operators but preserve relative simplicity in the basic language.
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(AB)

A B .A $ B/ A / .A ^ B/

T T T T T T T T T
T F T F F T T F F
F T F F T F F F T
F F F T F F F F F

There is no row where each of the premises is true and the conclusion is false. So the
argument is sententially valid. And, from either of the following rows,

(AC)
A B C D .B ! A/ ^ .�C _ D/ .A $ �D/ ^ .�D ! B/ / B

F F T T F T F T F T T T F T F T T F T T F F
F F F T F T F T T F T T F T F T T F T T F F

we may conclude that .B ! A/ ^ .�C _D/, .A$ �D/ ^ .�D ! B/ ²s B . In
this case, the shortcut table is attractive relative to the full version with sixteen rows!

E4.4. For each of the following, use truth tables to decide whether the entailment
claims hold.

a. �s A _�A

b. A$ Œ�A$ .A ^�A/�, A! �.A$ A/ �s �A! A

*c. B _�C �s B ! C

d. �.A ^�B/ �s �A _ B

e. �s �.A$ B/$ .A ^�B/

*f. A _ B , �C ! �A, �.B ^�C/ �s C

g. A! .B _ C/, C $ B , �C �s �A

h. A ^ .B ! C/ �s .A ^ B/ _ .A ^ C/

i. A _ .B ^�C/, �.�B _ C/! �A �s �A$ �.C _�B/

j. A _ B , �D ! .C _ A/ �s B $ �C

E4.5. Complete the chart below to exhibit and explain step by step how to construct
one or both rows from table (AC).
A B C D .B ! A/ ^ .� C _ D/ .A $ �D/ ^ .�D ! B/ / B

1. T T F - premises T, conclusion F
2. F F T T F F - fill in values for B
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Semantics Quick Reference (sentential)
For any formal language L, starting with a sentence and working up its tree,
the basic sentences are the first sentences that do not have an operator from the
sentential language as main operator. A sentential interpretation assigns a truth
value true or false, T or F, to each basic sentence. Then for any interpretation I,

ST (�) For any sentence P , I[�P ] = T iff I[P ] = F; otherwise I[�P ] = F.

(!) For any sentences P and Q, I[.P ! Q/] = T iff I[P ] = F or I[Q] = T
(or both); otherwise I[.P ! Q/] = F.

And for abbreviated expressions,

ST0 (^) For any sentences P and Q, I[.P ^Q/] = T iff I[P ] = T and I[Q] = T;
otherwise I[.P ^Q/] = F.

(_) For any sentences P and Q, I[.P _Q/] = T iff I[P ] = T or I[Q] = T (or
both); otherwise I[.P _Q/] = F.

($) For any sentences P and Q, I[.P $ Q/] = T iff I[P ] = I[Q]; otherwise
I[.P $ Q/] = F.

These conditions result in tables as follows:

P Q �P P ! Q P _ Q P ^ Q P $ Q

T T F T T T T
T F F F T F F
F T T T T F F
F F T T F F T

If � is a set of formulas, I[�] = T iff I[P ] = T for each P in � . Then, where
the members of � are the formal premises of an argument, and sentence Q is its
conclusion,

SV � sententially entails Q (� �s Q) iff there is no sentential interpretation I
such that I[�] = T but I[Q] = F.

When � sententially entails Q, the argument with premises � and conclusion Q is
sententially valid. If � has no members and �s Q, then Q is a tautology.

We treat a single row of a truth table (or a marked row of a full table) as sufficient
to demonstrate invalidity, but require a full table, exhibiting all the options, to show
that an argument is sententially valid.
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E4.6. For each of the following, use truth tables to decide whether the entailment
claims hold. Hint: The trick here is to identify the basic sentences; after that,
everything proceeds in the usual way.

*a. 9xAx ! 9xBx, �9xAx �s 9xBx

b. 8xAx ! �9x.Ax ^ 8yBy/, 9x.Ax ^ 8yBy/ �s �8xAx

E4.7. For each of the following concepts, explain in an essay of about two pages,
so that (high-school age) Hannah could understand. In your essay, you should
(i) identify the objects to which the concept applies, (ii) give and explain the
definition, and give and explicate examples of your own construction (iii) where
the concept applies, and (iv) where it does not. Your essay should exhibit an
understanding of methods from the text.

a. Sentential interpretations and truth for complex sentences.

b. Sentential validity.

4.2 Quantificational

Semantics for the quantificational case work along the same lines as the sentential one.
Sentences are true or false relative to an interpretation; arguments are semantically
valid when there is no interpretation on which the premises are true and the conclusion
is not. But, corresponding to differences between sentential and quantificational
languages, the notion of an interpretation differs. And we introduce a preliminary
notion of a term assignment, along with a preliminary notion of satisfaction distinct
from truth, before we get to truth and validity. Certain issues are put off for Chapter 7
at the start of Part II. However, we should be able to do enough to see how the
definitions work. This time, we will say a bit more about connections to English,
though it remains important to see the definitions for what they are, and we leave
official discussion of translation to the next chapter.

4.2.1 Interpretations

Given a quantificational language L, formulas are true relative to a quantificational
interpretation. As in the sentential case, languages do not come associated with any
interpretation. Rather, a language consists of symbols which may be interpreted
in different ways. In the sentential case, interpretations assigned T or F to basic
sentences—and the assignments were made in arbitrary ways. Now assignments are
more complex, but remain arbitrary. In general,



CHAPTER 4. SEMANTICS 111

QI A quantificational interpretation I of language L consists of a nonempty set U,
the universe (or domain) of the interpretation, along with,

(s) An assignment of a truth value IŒS � to each sentence letter S of L.

(c) An assignment of a member IŒc� of U to each constant symbol c of L.

(r) An assignment of an n-place relation IŒRn� on U to each n-place relation
symbol Rn of L, where IŒD� is always assigned fho; oi j o 2 Ug.

(f) An assignment of a total n-place function IŒhn� from Un to U to each
n-place function symbol hn of L.

The notions of a relation and a function for clauses (r) and (f) come from set theory—if
these are in any way unfamiliar, you should refer now to the set theory reference
on the following page. Conceived literally and mathematically, these assignments
are themselves functions from symbols in the language L to objects. Each sen-
tence letter is associated with a truth value, T or F—this is no different than before.
Each constant symbol is associated with some element of U. Each n-place relation
symbol is associated with a subset of Un—with a set whose members are of the
sort ha1 : : : ani where a1 : : : an are elements of U. Each n-place function symbol
is associated with a set whose members are of the sort hha1 : : : ani; bi, where ev-
ery ha1 : : : ani 2 Un is matched to a single b 2 U. And where U = fa; b; c; : : :g,
IŒD� = fha; ai; hb; bi; hc; ci; : : :g. Note the (slight) typographical difference between
‘D’ in the object language and ‘=’ we use to express the relation. U may be any
non-empty set, and so need not be countable. Any such assignments count as a
quantificational interpretation.

Intuitively, the universe contains whatever objects are under consideration in a
given context. Thus one may ask whether “everyone” wants anchovies on their pizza,
and have in mind some limited collection of individuals—not literally everyone in
the world. Constant symbols work like proper names: Constant symbol a names
the object I[a] with which it is associated. So, for example, in Lq we might set I[b]
to Barack, and I[c] to Michelle. Relation symbols are interpreted like predicates:
Relation symbol Rn applies to the n-tuples with which it is associated. Thus in Lq,
where U is the set of all people, we might set I[H 1] to fo j o is happyg,3 and I[L2]
to fhm; ni jm loves ng. Then if Barack is happy, H applies to Barack, and if Barack
loves Michelle, L applies to hBarack, Michellei—though if she happens to be upset
with him, L might not apply to hMichelle, Baracki. Function symbols are used to pick
out one object by means of other(s). Thus, when we say that Bill’s father is happy, we
pick out an object (the father) by means of another (Bill). Similarly, function symbols
are like “oblique” names which pick out objects in response to inputs. Such behavior
is commonplace in mathematics when we say, for example that 3 3 is even—and we

3Or fhoi jo is happy g. As from the set theory reference, one-tuples are collapsed into their members.
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Basic Notions of Set Theory

I. A set is a thing that may have other things as elements or members. If m is
a member of set s we write m 2 s. One set is identical to another iff their
members are the same—so order is irrelevant. The members of a set may be
specified by list: fSally, Bob, Jimg, or by membership condition: fo j o is a
student at CSUSBg; read, ‘the set of all objects o such that o is a student at
CSUSB’. Since sets are things, one set may have other sets as members.

II. Like a set, an n-tuple is a thing with other things as elements or members.
For any positive integer n, an n-tuple has n elements, where order matters.
2-tuples are frequently referred to as “pairs.” An n-tuple may be specified by
list: hSally, Bob, Jimi, or by membership condition, ‘the first 5 people (taken
in order) in line at the Bursar’s window’. Nothing prevents sets of n-tuples, as
fhm; ni jm loves ng; read, ‘the set of all m/n pairs such that the first member
loves the second’. 1-tuples are frequently equated with their members. So,
depending on context, fSally, Bob, Jimg may be fhSallyi, hBobi, hJimig.

III. Set r is a subset of set s iff every member of r is also a member of s. If r is
a subset of s we write r � s. r is a proper subset of s (r � s) iff r � s but
r = s. Thus, for example, the subsets of fm; n; og are f g, fmg, fng, fog, fm; ng,
fm; og, fn; og, and fm; n; og. All but fm; n; og are proper subsets of fm; n; og.
Notice that the empty set f g (or ¿) is a subset of any set s, for it is sure to be
the case that any member of it is also a member of s.

IV. The union of sets r and s is the set of all objects that are members of r or s.
Thus, if r = fm; ng and s = fn; og, then the union of r and s, .r[s/ = fm; n; og.
Given a larger collection of sets, s1; s2; : : : the union of them all,

S
s1; s2; : : :

is the set of all objects that are members of s1, or s2, or. . . . Similarly, the
intersection of sets r and s is the set of all objects that are members of r and s.
Thus the intersection of r and s, .r \ s/ = fng, and

T
s1; s2; : : : is the set of

all objects that are members of s1, and s2, and. . . .

V. Let sn be the set of all n-tuples formed from members of s. Then an n-place
relation on set s is any subset of sn. Thus, for example, fhm; ni jm is married
to ng is a subset of the pairs of people, and so is a 2-place relation on the set of
people. An n-place function from rn to s is a set of pairs whose first member
is an element of rn and whose second member is an element of s—restricted
so that if hhm1 : : :mni; ai 2 f and hhm1 : : :mni; bi 2 f then a = b; so no
member of rn is paired with more than one member of s. Thus hh1; 1i; 2i
and hh1; 2i; 3i might be members of an addition function. hh1; 1i; 2i and
hh1; 1i; 3i could not be members of the same function. A total function from
rn to s is one that pairs each member of rn with some member of s. We think
of the first element of these pairs as an input, and the second as the function’s
output for that input. Thus if hhm; ni; oi 2 f we say f.m; n/ = o.
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are talking about 6. Thus we might assign fhm; ni j n is the father of mg to one-place
function symbol f and fhhm; ni; oi jm plus n = og to two-place function symbol p.

For some examples of interpretations, let us return to the language LNT
< from

section 2.3.5. Recall that LNT
< includes just constant symbol ;; two-place relation

symbols <, D; one-place function symbol S ; and two-place function symbols � and
C. Given these symbols, terms and formulas are generated in the usual way. Where
N is the set f0; 1; 2; : : :g of natural numbers and the successor of any natural number
is the number after it, the standard interpretation NN for LNT

< has universe N with,
NN NNŒ;� = 0

NNŒ<� = fhm; ni jm; n 2 N , and m is less than ng

NNŒS� = fhm; ni jm; n 2 N , and n is the successor of mg

NNŒC� = fhhm; ni; oi jm; n; o 2 N , and m plus n equals og

NNŒ�� = fhhm; ni; oi jm; n; o 2 N , and m times n equals og

where it is automatic from QI that NNŒD� is fh0; 0i; h1; 1i; h2; 2i; : : :g. These definitions
work just as we expect. Thus,

(AD)

NNŒ<� = fh0; 1i; h0; 2i; h0; 3i; : : : ; h1; 2i; h1; 3i; : : :g

NNŒS� = fh0; 1i; h1; 2i; h2; 3i; : : :g

NNŒC� = fhh0; 0i; 0i; hh0; 1i; 1i; hh0; 2i; 2i; : : : ; hh1; 0i; 1i; hh1; 1i; 2i; : : :g

NNŒ�� = fhh0; 0i; 0i; hh0; 1i; 0i; hh0; 2i; 0i; : : : ; hh1; 0i; 0i; hh1; 1i; 1i; : : :g

So < is assigned a set of pairs; S a one-place total function, that is fhh0i; 1i; hh1i; 2i;
hh2i; 3i; : : :g but with 1-tuples reduced to their members; andC and � are assigned
two-place total functions. The standard interpretation represents the way you have
understood these symbols since grade school.

But there is nothing sacred about this interpretation. Abbreviating, let Bar(ack)
and Mic(helle) be Barack and Michelle. Then, for example, we might introduce a J
with U = fBar, Micg and,

J JŒ;� = Bar

JŒ<� = fhMic, Mici, hMic, Barig

JŒS� = fhBar, Bari, hMic, Micig

JŒC� = fhhBar, Bari, Mici, hhBar, Mici, Mici, hhMic, Bari, Mici, hhMic, Mici, Micig

JŒ�� = fhhBar, Bari, Mici, hhBar, Mici, Bari, hhMic, Bari, Bari, hhMic, Mici, Barig

This assigns a member of the universe to the constant symbol; a set of pairs to the
two-place relation symbol (where the interpretation ofD is automatic); a total 1-place
function to S , and total 2-place functions toC and �. So it counts as an interpretation
of LNT

< . Observe that a total n-place function on an m-membered universe has mn

members—so our 1-place function has 21 = 2 members, and 2-place functions 22 = 4
members.

It is frequently convenient to link assignments with bits of (relatively) ordinary
language. This is a key to translation, as explored in the next chapter. But there is no
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requirement that we link up with ordinary language. All that is required is that we
assign a member of U to each constant symbol, a subset of Un to each n-place relation
symbol, and a total function from Un to U to each n-place function symbol. That is all
that is required—and nothing beyond that is required in order to say what the function
and predicate symbols “mean.” So J counts as a legitimate (though non-standard)
interpretation of LNT

< . With a language like Lq it is not always possible to specify
assignments for all the symbols in the language. Even so, we can specify a partial
interpretation—an interpretation for the symbols that matter in a given context.4

E4.8. Suppose Barack and Michelle have another child and name her Ama. Where
U = fBar, Mic, Amag, give another interpretation K for LNT

< . Arrange your
interpretation so that: (i) K[;] = Bar; (ii) there are exactly five pairs in K[<]; and
(iii) for any m, hhm, Bari, Amai and hhBar, mi, Amai are in K[C]. Include K[D]
in your account.

4.2.2 Term Assignments

In the sentential case, interpretations make assignments to basic sentences; assign-
ments to further expressions derive from them. And similarly here: An interpretation
(supplemented by a “variable assignment”) makes assignments to basic vocabulary;
assignments to complex expressions derive from basic assignments. We begin with
terms.

For some language L, say U = fo j o is a persong, one-place predicate H is
assigned the set of happy people, and constant b is assigned Barack. Perhaps H
applies to Barack. In this case, Hb comes out true. Intuitively, however, we cannot
say that Hx is either true or false on this interpretation, precisely because there is no
particular individual that x picks out—we do not know who is supposed to be happy.
However we will be able to say that Hx is satisfied or not when the interpretation is
supplemented with a variable (designation) assignment d associating each variable
with some individual in U.

Given a language L and interpretation I, a variable assignment d associates each
variable of L with some member of the universe U—a variable assignment is a total
function from the variables of L to objects in U. Conceived pictorially, where U =
fo1; o2; : : :g, d and e are variable assignments:

4There are alternatives to the (classical) notion of an interpretation developed here. So, for example,
it is possible to drop the assumptions that U is nonempty and that all assignments are to members of U.
Free logic does just this: It sets up “inner” and “outer” domains, allowing that an inner domain U might
be empty, and that not all assignments are to members of it. With our classical approach as background,
free logics are introduced in Priest, Non-Classical Logics. A potential application is to possible worlds
where not every object exists in the universe of every world.
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d
i j k l m n o p

# # # # # # # #

o1 o2 o3 o4 o5 o6 o7 o8

. . .

e
i j k l m n o p

# # . # # # # #

o1 o2 o3 o4 o5 o6 o7 o8

. . .

Observe that the total function from variables to things assigns some element of U to
every variable of L. But this leaves room for one thing assigned to different variables,
and things assigned to no variable at all. All that is required is that every variable is
associated with some thing. If d assigns o to x we write dŒx� = o. So dŒk� = o3 and
eŒk� = o2. For any assignment d, d.xjo/ is the assignment that is just like d except
that o is assigned to x. Thus, d.kjo2/ = e. Similarly,

f
i j k l m n o p

# # . & # # # #

o1 o2 o3 o4 o5 o6 o7 o8

. . .

d.kjo2; l jo5/ = e.l jo5/ = f. Of course, if some d already has o assigned to x, then
d.xjo/ is just d. Thus, for example, f.i jo1/ is just f itself. We will be willing to say
that Hx is satisfied or not satisfied relative to an interpretation supplemented by a
variable assignment.

But before we get to satisfaction, we need the general notion of a term assignment.
In general, a term contributes to a formula by picking out some member of the
universe U—terms act something like names. We have seen that an interpretation I
assigns a member I[c] of U to each constant symbol c. And a variable assignment d
assigns a member d[x] to each variable x. But these are assignments just to “basic”
terms. For function symbols an interpretation assigns, not individual members of
U, but certain complex sets. Still an interpretation I supplemented by a variable
assignment d is sufficient to associate a member IdŒt� of U with any term t of L.
Where hha1 : : : ani; bi 2 IŒhn�, let IŒhn�ha1 : : : ani = b; that is, IŒhn�ha1 : : : ani is the
thing the function I[hn] associates with input ha1 : : : ani. Thus, for example, from the
interpretations on page 113, NNŒC�h1; 1i = 2 and JŒC�hBar, Mici = Mic. Then for any
interpretation I and variable assignment d,

TA (c) If c is a constant, then IdŒc� = IŒc�.

(v) If x is a variable, then IdŒx� = dŒx�.

(f) If hn is a function symbol and t1 : : : tn are terms, then IdŒhnt1 : : : tn� =
IŒhn�hIdŒt1� : : : IdŒtn�i.
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The first two clauses take over assignments to constants and variables from I and d.
The last clause is parallel to the one by which terms are formed. The assignment
to a complex term hnt1 : : : tn depends on the interpretation of hn, together with
assignments to t1 : : : tn.

Again the definition is recursive, and we can see how it works on a tree—in this
case, one with the very same shape as the one by which we see that an expression is
in fact a term. Say the interpretation of LNT

< is J from page 113, and d[x] = Mic; then
JdŒS.Sx � ;/� = Bar.

(AE)

x[Mic] ;[Bar]

�
�
�
�
�
��

By TA(v) and TA(c)

Sx[Mic]

@
@
@

With the input, since hMic, Mici 2 JŒS�, by TA(f)

.Sx � ;/[Bar] With the inputs, since hhMic, Bari, Bari 2 JŒ��, by TA(f)

S.Sx � ;/[Bar] With the input, since hBar, Bari 2 JŒS�, by TA(f)

As usual, basic elements occur in the top row. After that, given the interpretation
of the parts we look to see the interpretation of the whole. In the simplest case,
the assignment to a term h1t is whatever object the interpretation of h1 pairs with
the object assigned to t; so from JdŒx� = Mic and hMic, Mici 2 JŒS�, JdŒSx� =
Mic. For hnt1 : : : tn we find the object paired with whatever objects are assigned
to t1 : : : tn taken in that order; so given JdŒSx� = Mic and JdŒ;� = Bar, with hhMic,
Bari, Bari 2 JŒ��, we get JdŒSx � ;� = Bar. Perhaps the hard part about definition
TA is just reading clause (f)—it may be easier to apply in practice than to read. For a
complex term, assignments to terms that are the parts together with the assignment
to the function symbol, determine the assignment to the whole. And this is just what
clause (f) says. For practice, convince yourself that Jd.xjBar/ŒS.Sx � ;/� = Mic; and
where NN is as above and dŒx� D 1, that NNdŒS.Sx � ;/� = 1.

E4.9. For LNT
< and interpretation NN from page 113, let d include,

d
w x y z

# # # #

1 2 3 4

and use trees to determine each of the following.

*a. NNdŒCxS;�

b. NNdŒx C .SS; � x/�

c. NNdŒw � S.; C .y � SSSz//�

*d. NNd.xj4/Œx C .SS; � x/�
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e. NNd.xj1;wj2/ŒS.x � .S; C Sw//�

E4.10. For LNT
< and interpretation J from page 113, let d include,

d
w x y z

# # # #

Bar Mic Mic Mic

and use trees to determine each of the following.

*a. JdŒCxS;�

b. JdŒx C .SS; � x/�

c. JdŒw � S.; C .y � SSSz//�

*d. Jd.xjBar/Œx C .SS; � x/�

e. Jd.xjBar;wjMic/ŒS.x � .S; C Sw//�

E4.11. Consider your interpretation K for LNT
< from E4.8. Supposing that dŒw� = Bar,

dŒy� = Mic, and dŒz� = Ama, determine KdŒw � S.; C .y � SSSz//�.

E4.12. For Lq and an interpretation L with universe U = fAmy, Bob, Chrisg with,

L LŒa� = Amy

LŒc� = Chris

LŒf 1� = fhAmy, Bobi; hBob, Chrisi; hChris, Amyig

LŒg2� = fhhAmy, Amyi, Amyi; hhAmy, Bobi, Chrisi; hhAmy, Chrisi, Bobi;
hhBob, Amyi, Chrisi; hhBob, Bobi, Bobi; hhBob, Chrisi, Amyi;
hhChris, Amyi, Bobi; hhChris, Bobi, Amyi; hhChris, Chrisi, Chrisig

where d.x/ = Bob, d.y/ = Amy and d.z/ = Bob, use trees to determine each of
the following.

a. LdŒf
1c�

*b. LdŒg
2yf 1c�

c. LdŒg
2g2axf 1c�

d. Ld.xjChris/Œg
2g2axf 1c�

e. Ld.xjAmy/Œg
2g2g2xyzg2f 1af 1c�
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4.2.3 Satisfaction

A term’s assignment depends on an interpretation supplemented by an assignment for
variables, that is, on some Id. Similarly, a formula’s satisfaction depends on both the
interpretation and variable assignment. If a formula P is satisfied on I supplemented
with d, we write IdŒP � = S; if P is not satisfied on I with d, IdŒP � = N. For any
interpretation I with variable assignment d,

SF (s) If S is a sentence letter, then IdŒS � = S iff IŒS � = T; otherwise IdŒS � = N.

(r) If Rn is an n-place relation symbol and t1 : : : tn are terms, IdŒRnt1 : : :

tn� = S iff hIdŒt1� : : : IdŒtn�i 2 IŒRn�; otherwise IdŒRnt1 : : : tn� = N.

(�) If P is a formula, then IdŒ�P � = S iff IdŒP � = N; otherwise IdŒ�P � = N.

(!) If P and Q are formulas, then IdŒ.P ! Q/� = S iff IdŒP � = N or IdŒQ� = S
(or both); otherwise IdŒ.P ! Q/� = N.

(8) If P is a formula and x is a variable, then IdŒ8xP � = S iff for any o 2 U,
Id.xjo/ŒP � = S; otherwise IdŒ8xP � = N.

SF(s) and SF(r) determine satisfaction for atomic formulas. Satisfaction for other
formulas depends on satisfaction of their immediate subformulas. SF(s), SF(�), and
SF(!) are closely related to ST from before, though satisfaction applies now to any
formulas and not only to sentences. SF(r) and SF(8) are new.

First, the satisfaction of a sentence letter works just like truth before: a sentence
letter is satisfied on some Id iff it is true on the interpretation I. Thus satisfaction
for sentence letters depends only on the interpretation, and not at all on the variable
assignment.

In contrast, to see if Rnt1 : : : tn is satisfied, we find out which things are assigned
to the terms, and then see if those objects, taken in order, are in the interpretation of
the relation symbol. It is natural to think about this on a tree like the one by which we
show that the expression is a formula. Thus given interpretation J for LNT

< from page
113, consider .x � S;/ < x; and compare cases with dŒx� = Bar, and hŒx� = Mic. It
will be convenient to think about the expression in its unabbreviated form, <�xS;x.

Jd W

x[Bar]

L
L
L
L
L
LL

;[Bar] x[Bar]

�
�
�
�
�
�
�
�
�
��

S;[Bar]

�
�
�

�xS;[Mic]

HHH
HHH

. . . . . . . . . . . . . . . . . . . . .

<�xS;x.S/

Jh W

x[Mic]

L
L
L
L
L
LL

;[Bar] x[Mic]

�
�
�
�
�
�
�
�
�
��

S;[Bar]

�
�
�

�xS;[Bar]

HH
HHHH

. . . . . . . . . . . . . . . . . . . . .

<�xS;x.N/
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Above the dotted line, we calculate term assignments in the usual way. But <�xS;x
is a formula of the sort <t1t2. From the left-hand tree, JdŒ�xS;� = Mic, and JdŒx� =
Bar. So the assignments to t1 and t2 are Mic and Bar. Since hMic, Bari 2 JŒ<�, by
SF(r), JdŒ<�xS;x� = S. But from the right-hand tree, JhŒ�xS;� = Bar, and JhŒx� =
Mic. And hBar, Mici … JŒ<�, so by SF(r), JhŒ<�xS;x� = N. Rnt1 : : : tn is satisfied
just in case the n-tuple of the thing assigned to t1 and . . . and the thing assigned to tn
is in the set assigned to the relation symbol. To decide if Rnt1 : : : tn is satisfied, we
find out what things are assigned to the term or terms, and then look to see whether
the relevant ordered sequence is in the interpretation. The simplest sort of case is
when there is just one term. IdŒR1t� = S just in case IdŒt� 2 IŒR1�. When there is
more than one term, we look for the objects taken in order.

SF(�) and SF(!) correspond to ST(�) and ST(!). And we could work out their
consequences on trees or tables for satisfaction as before. In this case though, to
accomodate quantifiers, it will be convenient to turn the “trees” on their sides. For
this, we begin by constructing the tree in the “forward direction,” from left to right,
and then determine satisfaction the other way—from the branch tips back to the trunk.
Where the members of U are fm; n; : : :g, the branch conditions are as follows:

B(s)

forward backward

IdŒS � no branching the tip is S iff IŒS � = T

B(r) IdŒRnt1 : : : tn� branches only
for terms

the tip is S iff hIdŒt1� : : : IdŒtn�i 2 IŒRn�

B(�) IdŒ�P �
�

IdŒP � the trunk is S iff the branch is N

B(!) IdŒ.P ! Q/�
!

IdŒP �

IdŒQ�

the trunk is S iff the top branch is N or the bottom
branch is S (or both)

B(8)
IdŒ8xP �

8x

Id.xjm/ŒP �

Id.xjn/ŒP �

:::

one branch for
each member
of U

the trunk is S iff every branch is S

A formula branches according to its main operator. If it is atomic, it does not branch (or
branches only for its terms). The trees Jd and Jh on the preceding page are examples
of branching for terms, only oriented vertically. If the main operator is �, a formula
has just one branch; if its main operator is!, it has two branches; and if its main
operator is 8 it has as many branches as there are members of U. This last condition
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makes it impractical to construct these trees in all but the most simple cases—and
impossible when U is infinite. Still, we can use them to see how the definitions work.

When there are no quantifiers, we should be able to recognize these trees as a
mere “sideways” variant of ones we have seen before. Thus, consider an interpretation
M with U = fBob, Sue, Jimg and,

M MŒA� = T

MŒB1� = fSueg

MŒC 2� = fhBob, Suei; hSue, Jimig

and variable assignment d such that dŒx� = Bob. Then,

(AF) MdŒ�A! Bx�.S/
!

MdŒBx�
.N/

..

..

MdŒ�A�
.N/

�
MdŒA�

.S/

x[Bob]

1 2 3

The main operator at stage (1) is!; so there are two branches. Bx on the bottom is
atomic, so the formula branches no further—though we use TA to calculate the term
assignment. On the top at (2), �A has main operator �. So there is one branch. And
we are done with the forward part of the tree. Given this, we can calculate satisfaction
from the tips back toward the trunk. Since MŒA� = T, by B(s), the top at (3) is S. And
since this is S, by B(�), the top at (2) is N. But since MdŒx� = Bob, and Bob … MŒB�,
by B(r), the bottom at (2) is N. And with both the top and bottom at (2) N, by B(!),
the formula at (1) is S. So MdŒ�A! Bx� = S. You should be able to recognize that
the diagram (AF) rotated counterclockwise by 90 degrees would be a mere variant
of diagrams we have seen before. And the branch conditions merely implement the
corresponding conditions from SF.

Things are more interesting when there are quantifiers. For a quantifier, there are
as many branches as there are members of U. First, working with a “stripped down”
version of M that has U = fBobg, consider MdŒ8y�Cxy�. With just one thing in the
universe, the tree branches as follows:

(AG)

1

MdŒ8y�Cxy�
.S/
8y

2

Md.yjBob/Œ�Cxy�
.S/
�

3

Md.yjBob/ŒCxy�
.N/

..

..

4

x[Bob]

y[Bob]��HH

The main operator at (1) is the universal quantifier. With one thing in U, there is the one
branch. Notice that the variable assignment d becomes d.yjBob/. The main operator
at (2) is �. So there is the one branch, carrying forward the assignment d.yjBob/.
The formula at (3) is atomic, so the only branching is for the term assignment. Then,
in the backward direction, Md.yjBob/ still assigns Bob to x; and Md.yjBob/ assigns Bob
to y. Since hBob, Bobi … MŒC 2�, the branch at (3) is N; so the branch at (2) is S. And
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since all the branches for the universal quantifier are S, by B(8), the formula at (1) is
S.

But M was originally defined with U = fBob, Sue, Jimg. In this case the quantifier
requires not one but three branches, and the tree is as follows:

(AH)

1

MdŒ8y�Cxy�
.N/
8y

2

Md.yjJim/Œ�Cxy�
.S/
�

Md.yjSue/Œ�Cxy�
.N/
�

Md.yjBob/Œ�Cxy�
.S/
�

3

Md.yjJim/ŒCxy�
.N/

Md.yjSue/ŒCxy�
.S/

Md.yjBob/ŒCxy�
.N/

..

..

..

..

..

..

4

x[Bob]

y[Jim]��HH

x[Bob]

y[Sue]��HH

x[Bob]

y[Bob]��HH

The quantifier has one branch for each member of U. Note the modification of d on
each branch, and the way the modified assignments carry forward and are used for
evaluation at the tips. d.yjSue/, say, has the same assignment to x as d, but assigns
Sue to y. And similarly for the rest. This time, not all the branches for the universal
quantifier are S. So the formula at (1) is N. You should convince yourself that it is S
on Mh where hŒx� = Jim. And it would be S with assignment d as above, but formula
8y�Cyx.

(AI) on page 123 is an example for 8xŒ.Sx < x/! 8y..Sy C ;/ D x/� using
interpretation J from page 113 and LNT

< . This case should help you to see how all the
parts fit together in a reasonably complex example. It turns out to be helpful to think
about the formula in its unabbreviated form, 8x.<Sxx ! 8yDCSy;x/. For this
case notice especially how when multiple quantifiers come off, a variable assignment
once modified is simply modified again for the new variable. If you follow through
the details of this case by the definitions, you are doing well.

A word of advice: Once you have the idea, constructing these trees to determine
satisfaction is a mechanical (and tedious) process. About the only way to go wrong or
become confused is by skipping steps or modifying the form of trees. But, very often,
skipping steps or modifying form does correlate with confusion. So it is best to stick
with the official pattern—and so to follow the way it forces you through definitions
SF and TA.

E4.13. Supplement interpretation L for E4.12 so that U = fAmy, Bob, Chrisg and,

L LŒa� = Amy

LŒc� = Chris

LŒf 1� = fhAmy, Bobi; hBob, Chrisi; hChris, Amyig

LŒg2� = fhhAmy, Amyi, Amyi; hhAmy, Bobi, Chrisi; hhAmy, Chrisi, Bobi;
hhBob, Amyi, Chrisi; hhBob, Bobi, Bobi; hhBob, Chrisi, Amyi;
hhChris, Amyi, Bobi; hhChris, Bobi, Amyi; hhChris, Chrisi, Chrisig



CHAPTER 4. SEMANTICS 122

LŒS� = T

LŒH1� = fAmy, Bobg

LŒL2� = fhAmy, Amyi; hAmy, Bobi; hAmy, Chrisi; hBob, Bobi; hBob, Chrisig

Where d.x/ = Amy, and d.y/ = Bob, use trees to determine whether the following
formulas are satisfied on L with d.

*a. Hx b. Lxa

c. Hf 1y d. 8xLyx

e. 8xLxg2cx *f. �8x.Hx ! �S/

*g. 8y�8xLxy h. 8y�8xLyx

i. 8x.Hf 1x ! Lxx/ j. 8x.Hx ! �8y�Lyx/

E4.14. For the previous problem, what if anything changes with the variable assign-
ment h where hŒx� = Chris and hŒy� = Amy? Challenge: Explain why differences
in the initial variable assignment cannot matter for the evaluation of (e)–(j).

4.2.4 Truth and Validity

It is a short step from satisfaction to definitions for truth and validity. As we have seen,
formulas are satisfied or not on an interpretation I together with a variable assignment
d. After that, truth runs through satisfaction: a formula is true on an interpretation
when it is satisfied relative to every variable assignment. A consequence is that truth
does not depend on the details of any particular assignment—and formulas are true
and false relative just to an interpretation I.

TI A formula P is true on an interpretation I iff with any d for I, IdŒP � = S. P is
false on I iff with any d for I, IdŒP � = N.

A formula is true on I just in case it is satisfied with every variable assignment for
I. From (AH), then, we are already in a position to see that 8y�Cxy is not true on
M—for there is a variable assignment d on which it is N; since there is an assignment
on which it is N, it is not satisfied on every assignment, and so is not true. Neither
is 8y�Cxy false on M, insofar as it is satisfied on the h that assigns Jim to x; since
there is an assignment on which it is S, it is not N on every assignment, and so is
not false. In contrast, from (AI), 8xŒ.Sx < x/ ! 8y..Sy C ;/ D x/� is true on
J. For some variable assignment d, the tree shows directly that JdŒ8xŒ.Sx < x/!

8y..Sy C ;/ D x/�� = S. But the reasoning for the tree makes no assumptions
whatsoever about d. That is, with any variable assignment, we might have reasoned in
just the same way to reach the conclusion that the formula is satisfied. Since it comes
out satisfied no matter what the variable assignment may be, by TI, it is true.
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In general, if a sentence is satisfied on some d for I, then it is satisfied on every d
for I. We shall demonstrate this more formally in Chapter 8. However, we are already
in a position to see the basic idea: In a sentence, every variable is bound; so by the
time you get to formulas without quantifiers at the tips of a tree, assignments are of
the sort, d.xjm;yjn; : : :/ for every variable in the formula; so satisfaction depends
just on assignments that are set on the branch itself, and the initial d is irrelevant to
satisfaction at the tips—and thus to evaluation of the formula as a whole. Adjustments
to the assignment that occur within the tree override the original assignment so that
every starting d gives the same result. So if a sentence is satisfied on some d for I, it is
satisfied on every d for I, and therefore true on I. Similarly, if a sentence is N on some
d for I, it is N on every d for I, and therefore false on I.

In contrast, a formula with free variables may be sensitive to the initial variable
assignment. If variable x is free in formula P , then the value for x at a branch tip
results from the original dŒx� rather than by adjustments to the assignment that are
set within the branch. Thus, in the ordinary case, Hx is not true and not false: There
may be an assignment d on which x is assigned an object in the interpretation of H
so that Hx is satisfied, and an assignment h on which x is assigned an object not in
the interpretation of H so that Hx is not satisfied; in this case, Hx is neither true nor
false. We have seen this pattern so far in examples and exercises: For formulas with
free variables, there may be variable assignments where they are satisfied, and variable
assignments where they are not. Therefore the formulas fail to be either true or false
by TI. Sentences, on the other hand, are satisfied on every variable assignment if they
are satisfied on any, and not satisfied on every assignment if they are not satisfied on
any. Therefore the sentences from our examples and exercises come out either true or
false.

But a word of caution is in order: Sentences are always true or false on an
interpretation. And, in the ordinary case, formulas with free variables are neither true
nor false. But this is not always so. Thus x D x is true on any I: given the fixed
interpretation of ‘D’, for any d and object IdŒx�, hIdŒx�; IdŒx�i is sure to be an element
of IŒD�, so that IdŒx D x� = S and IŒx D x� = T. Similarly, IŒHx� = T if IŒH � = U and
F if IŒH � = f g. And �8x.x D y/ is true on any I with a U that has more than one
member. To see this, suppose for some I, U = fm; n; : : :g; then for an arbitrary d the
tree is as follows:

(AJ)

1

IdŒ�8x.x D y/�
�

2

IdŒ8x.x D y/�
8x

3

Id.xjm/Œx D y�

Id.xjn/Œx D y�

:::

one branch for
each member of
U

4

..

..��HH
xŒm�

ydŒy�

..

..��HH
xŒn�

ydŒy�

No matter what d is like, exactly one branch at (3) is S. If dŒy� = m then the top
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branch at (3) is S and the rest are N. If dŒy� = n then the second branch at (3) is S and
the others are N. And so forth. So in this case where U has more than one member,
at least one branch is N for any d. So the universally quantified expression is N for
any d, and the negation at (1) is S for any d. So by TI it is true. So satisfaction for
an open formula may but need not be sensitive to the particular variable assignment
under consideration. Again, though, a sentence is always true or false depending only
on the interpretation. To show that a sentence is true, it is enough to show that it is
satisfied on some d, from which it follows that it is satisfied on any. For a formula
with free variables, the matter is more complex—though you can show that such a
formula is not true by finding an assignment that makes it N, and not false by finding
an assignment that makes it S.

Given the notion of truth, quantificational validity works very much as before.
Where � is a set of formulas, say IŒ�� = T iff IŒP � = T for each formula P 2 � . Then
for any formula P ,

QV � quantificationally entails P iff there is no quantificational interpretation I
such that IŒ�� = T but IŒP � = T.

� quantificationally entails P when there is no quantificational interpretation that
makes the premises true and the conclusion not. If � quantificationally entails P

we write, � � P , and say an argument whose premises are the members of � and
conclusion is P is quantificationally valid. � does not quantificationally entail P

(� ² P ) when there is some quantificational interpretation on which all the premises
are true but the conclusion is not true (notice that there is a difference between
being not true, and being false). As before, if Q1 : : :Qn are the members of � , we
sometimes write Q1 : : :Qn � P in place of � � P . In the case where � is empty
and there are no premises, we simply write � P . If � P , then P is a tautology.5

Notice again the double turnstile �, in contrast to the single turnstile ` for derivations.
In the quantificational case, demonstrating semantic validity is problematic. In

the sentential case, we could simply list all the ways a sentential interpretation could
make basic sentences T or F. In the quantificational case, it is not possible to list all
interpretations. Consider just interpretations with universe N: the interpretation of
a one-place relation symbol R might be f1g or f2g or f3g or. . . ; it might be f1; 2g
or f1; 3g or f1; 3; 5; : : :g, or whatever. There are infinitely many options for this one
relation symbol—and so at least as many for quantificational interpretations in general.
Similarly, when the universe is so large, by our methods, we cannot calculate even
satisfaction and truth in arbitrary cases—for quantifiers would have an infinite number

5In the quantificational case, ‘tautology’ may be differently defined. Many authors restrict tautolo-
gies to formulas whose form is sententially valid. On this account, Fx ! Fx with sentential form
P ! P is a tautology, while 8xFx ! Fx with form P ! Q is not. As we shall see, however, both
� Fx ! Fx and � 8xFx ! Fx—so that, on this alternative account, tautologies are a proper subset
of quantificationally valid formulas.
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of branches. One might begin to suspect that there is no way to demonstrate semantic
validity in the quantificational case. There is a way. And we respond to this concern
in Chapter 7.

For now, though, we rest content with demonstrating invalidity. To show that
an argument is invalid, we do not need to consider all possible interpretations; it is
enough to find one interpretation on which the premises are true and the conclusion is
not. (Compare the invalidity test from Chapter 1 and “shortcut” truth tables in this
chapter.) An argument is quantificationally valid just in case there is no I on which
its premises are true and its conclusion is not true. So to show that an argument is
not quantificationally valid, it is sufficient to produce an interpretation that violates
this condition—an interpretation on which its premises are true and conclusion is not.
And in some cases, including ones considered below, this can be done by very simple
interpretations. This should be enough at least to let us see how the definitions work,
and we postpone the larger question about showing quantificational validity to later.

For now, then, our idea is to produce an interpretation, and then to use trees in
order to show that the interpretation makes premises true but the conclusion not. Thus,
for example, for Lq we can show that �8xPx ² �Pa—that an argument with
premise �8xPx and conclusion �Pa is not quantificationally valid. To see this,
consider an I with U = f1; 2g, IŒP � = f1g, and IŒa� = 1. Then �8xPx is T on I.

(AK)

1

IdŒ�8xPx�.S/
�

2

IdŒ8xPx�.N/
8x

3

Id.xj1/ŒP x�
.S/

..

..

4

xŒ1�

Id.xj2/ŒP x�
.N/

..

.. xŒ2�

�8xPx is satisfied with this d for I; and since it is a sentence it is satisfied with any d
for I. So by TI it is true on I. But �Pa is not true on this I.

1

IdŒ�Pa�.N/
�

2

IdŒPa�.S/

..

..

3

aŒ1�

From the tree, IdŒ�Pa� = N; and since there an assignment on which it is not
satisfied, by TI, IŒ�Pa� = T. So there is an interpretation on which the premise is
true and the conclusion is not. So by QV, �8xPx ² �Pa, and the argument is not
quantificationally valid. Notice that it is sufficient to show that the conclusion is not
true—which is not always the same as showing that the conclusion is false.

Here is another example. We show that �8x�Px, �8x�Qx ² 8y.Py !
Qy/. In general, to show that an argument is not quantificationally valid, you want to
think “backward” to see what kind of interpretation you need to make the premises
true but the conclusion not true. In this case, to make the conclusion false, we need
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something that is P but not Q; the premises are true if something is P and something
Q. One way to do this is with an I that has U = f1; 2g where IŒP � = f1g and IŒQ� = f2g.
Then the premises are true.

(AL)

1

IdŒ�8x�Px�.S/
�

2

IdŒ8x�Px�.N/
8x

3

Id.xj1/Œ�Px�
.N/
�

Id.xj2/Œ�Px�
.S/
�

4

Id.xj1/ŒP x�
.S/

Id.xj2/ŒP x�
.N/

..

..

..

..

5

xŒ1�

xŒ2�

IdŒ�8x�Qx�.S/
�

IdŒ8x�Qx�.N/
8x

Id.xj1/Œ�Qx�
.S/
�

Id.xj2/Œ�Qx�
.N/
�

Id.xj1/ŒQx�
.N/

Id.xj2/ŒQx�
.S/

..

..

..

..

xŒ1�

xŒ2�

To make �8x�Px true, we require that there is at least one thing in IŒP �. We
accomplish this by putting 1 in its interpretation. This makes the top branch at stage
(4) S; this makes the top branch at (3) N; so the quantifier at (2) is N and the formula
at (1) comes out S. Since it is a sentence and satisfied on the arbitrary assignment,
it is true. �8x�Qx is true for related reasons. For it to be true, we require at least
one thing in IŒQ�. This is accomplished by putting 2 in its interpretation. But this
interpretation does not make the conclusion true.

1

IdŒ8y.Py ! Qy/�.N/
8y

2

Id.yj1/ŒPy ! Qy�.N/
!

Id.yj2/ŒPy ! Qy�.S/
!

3 4

Id.yj1/ŒPy�
.S/

..

.. yŒ1�

Id.yj1/ŒQy�
.N/

..

.. yŒ1�

Id.yj2/ŒPy�
.N/

..

.. yŒ2�

Id.yj2/ŒQy�
.S/

..

.. yŒ2�

The conclusion is not satisfied so long as something is in IŒP � but not in IŒQ�. We
accomplish this by making the thing in the interpretation of P different from the thing
in the interpretation of Q. Since 1 is in IŒP � but not in IŒQ�, there is an S/N pair at (3),
so that the top branch at (2) is N and the formula at (1) is N. Since the formula is not
satisfied, by TI it is not true. And since there is an interpretation on which the premises
are true and the conclusion is not, by QV, the argument is not quantificationally valid.

To show that an argument is not quantificationally valid it is to your advantage
to think of simple interpretations. Remember that U need only be non-empty. So
it will often do to work with universes that have just one or two members. And the
interpretation of a relation symbol might even be empty. It is often convenient to let
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the universe be some set of integers. If there is any interpretation that demonstrates
invalidity, there is sure to be one whose universe is some set of integers—but we will
get to this in Part III.

E4.15. For language Lq consider an interpretation I such that U = f1; 2g, and

I IŒa� = 1

IŒb� = 2

IŒA� = T

IŒP 1� = f1g
IŒf 1� = fh1; 2i; h2; 1ig

Use interpretation I and trees to show that (a) below is not quantificationally valid.
Then demonstrate that each of the others is invalid on an interpretation I� that
modifies just one assignment (line) from interpretation I. Hint: If you are having
trouble finding the appropriate modified interpretation, try working out the trees
on I, and think about a change to the interpretation that would have the result you
want.

a. Pa ² 8xPx

b. Pa ^ Pb ² 8xPx

c. 8xPx ² �Pa

*d. 8xPf 1x ² 8xPx

e. 8xPx ! A ² 8x.Px ! A/

E4.16. Find interpretations and use trees to demonstrate each of the following. Be
sure to explain why your interpretations and trees have the desired result.

*a. 8x.Qx ! Px/ ² 8x.Px ! Qx/

b. 8x.Px ! Qx/, 8x.Rx ! �Px/ ² 8y.Ry ! Qy/

c. �8xPx ² �8x�Px

*d. �8xPx ² 8x�Px

e. 8xPx ! 8xQx, Qb ² Pa! 8xQx

f. �.A! 8xPx/ ² 8x.A! �Px/

g. 8x.Px ! Qx/, �Qa ² 8x�Px

*h. �8y8xRxy ² 8x�8yRxy

i. 8x8y.Rxy ! Ryx/, 8x�8y�Rxy ² 8xRxx

j. 8x8yŒy D f 1x ! �.x D f 1y/� ² 8x.Px ! Pf 1x/
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4.2.5 Abbreviations

Finally, we turn to applications for abbreviations. Consider first a tree for .P ^Q/,
that is for �.P ! �Q/.

(AM)

1

IdŒ�.P ! �Q/�
�

2

IdŒP ! �Q�
!

3

IdŒP �

IdŒ�Q�
�

4

IdŒQ�

The formula at (1) is satisfied iff the formula at (2) is not. But the formula at (2) is not
satisfied iff the top at (3) is satisfied and the bottom is not satisfied. And the bottom at
(3) is not satisfied iff the formula at (4) is satisfied. So the formula at (1) is satisfied iff
P is satisfied and Q is satisfied. The only way for .P ^Q/ to be satisfied on some
I and d is for P and Q both to be satisfied on that I and d. If either P or Q is not
satisfied, then .P ^Q/ is not satisfied. Reasoning similarly for _,$, and 9, we get
the following derived branch conditions:

B0.^/ IdŒ.P ^Q/�
^

IdŒP �

IdŒQ�
the trunk is S iff both branches are S

B0._/ IdŒ.P _Q/�
_

IdŒP �

IdŒQ�
the trunk is S iff at least one branch is S

B0.$/ IdŒ.P $ Q/�
$

IdŒP �

IdŒQ�
the trunk is S iff both branches are S or both are N

B0.9/
IdŒ9xP �

9x

Id.xjm/ŒP �

Id.xjn/ŒP �

:::

one branch for
each member
of U

the trunk is S iff at least one branch is S

The conditions for ^, _, and $ work like ones from the sentential case. For 9,
consider a tree for �8x�P , that is for 9xP .
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(AN)

1

IdŒ�8x�P �
�

2

IdŒ8x�P �
8x

3

Id.xjm/Œ�P �
�

Id.xjn/Œ�P �
�

4

Id.xjm/ŒP �

Id.xjn/ŒP �
:::

one branch for each
member of U

The formula at (1) is satisfied iff the formula at (2) is not. But the formula at (2) is
not satisfied iff at least one of the branches at (3) is not satisfied. And for a branch at
(3) to be not satisfied, the corresponding branch at (4) has to be satisfied. So 9xP is
satisfied on I with assignment d iff for some o 2 U, P is satisfied on I with d.xjo/; if
there is no such o 2 U, then 9xP is N on I with d.

Given derived branch conditions, we can work directly with abbreviations in trees
for determining satisfaction and truth. And the definition of validity applies in the
usual way. Thus, for example, 9xPx^9xQx ² 9x.Px^Qx/. To see this, consider
an I with U = f1; 2g, IŒP � = f1g, and IŒQ� = f2g. The premise, 9xPx ^ 9xQx is true
on I. To see this, we construct a tree, making use of derived clauses as necessary.

(AO)

1

IdŒ9xPx ^ 9xQx�.S/
^

2

IdŒ9xPx�.S/
9x

IdŒ9xQx�.S/
9x

3 4

Id.xj1/ŒP x�
.S/

..

.. xŒ1�

Id.xj2/ŒP x�
.N/

..

.. xŒ2�

Id.xj1/ŒQx�
.N/

..

.. xŒ1�

Id.xj2/ŒQx�
.S/

..

.. xŒ2�

The existentials are satisfied because at least one branch is satisfied, and the con-
junction because both branches are satisfied, according to derived conditions B0.9/
and B0.^/. So the formula is satisfied, and because it is a sentence, is true. But the
conclusion, 9x.Px ^Qx/ is not true.
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1

IdŒ9x.Px ^Qx/�.N/
9x

2

Id.xj1/ŒP x ^Qx�
.N/

^

Id.xj2/ŒP x ^Qx�
.N/

^

3 4

Id.xj1/ŒP x�
.S/

..

.. xŒ1�

Id.xj1/ŒQx�
.N/

..

.. xŒ1�

Id.xj2/ŒP x�
.N/

..

.. xŒ2�

Id.xj2/ŒQx�
.S/

..

.. xŒ2�

The conjunctions at (2) are not satisfied, in each case because not both branches at
(3) are satisfied. And the existential at (1) requires that at least one branch at (2) be
satisfied; since none is satisfied, the main formula 9x.Px ^Qx/ is not satisfied, and
so by TI not true. Since there is an interpretation on which the premise is true and the
conclusion is not, by QV, 9xPx ^ 9xQx ² 9x.Px ^Qx/. As we will see in the
next chapter, the intuitive point is simple: just because something is P and something
is Q, it does not follow that something is both P and Q. And this is just what our
interpretation I illustrates.

E4.17. Produce interpretations to demonstrate each of the following. Use trees, with
derived clauses as necessary, to demonstrate your results. Be sure to explain why
your interpretations and trees have the results they do. Hint: In some cases, it
may be convenient to produce only that part of the tree which is necessary for the
result.

*a. 9xPx ² 9y.Py ^Qy/

*b. 9xPx ² 8yPy

c. 9xPx ² 9yPf 1y

d. Pa! 8xQx ² 9xPx ! 8xQx

e. 8x9yRxy ² 9y8xRxy

f. 8xPx $ 8xQx, 9x9y.Px ^Qy/ ² 9y.Py $ Qy/

*g. 8x.9yRxy $ �A/ ² 9xRxx _ A

h. 9x.Px ^ 9yQy/ ² 9x8y.Px ^Qy/

i. 8x9y.Px $ Qxy/, 9xPx ² 8x9yQxy

j. 9x9y�.x D y/ ² 8x8y9z.�.x D z/ ^�.y D z//
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Semantics Quick Reference (quantificational)
For a quantificational language L, a quantificational interpretation I consists of a nonempty
set U, the universe of the interpretation, along with,

QI (s) An assignment of a truth value IŒS � to each sentence letter S of L.

(c) An assignment of a member IŒc� of U to each constant symbol c of L.

(r) An assignment of an n-place relation IŒRn� on U to each n-place relation symbol
Rn of L, where IŒD� is always assigned fho; oi j o 2 Ug.

(f) An assignment of a total n-place function IŒhn� from Un to U to each n-place
function symbol hn of L.

Given a language L and interpretation I, a variable assignment d is a total function from
the variables of L to objects in the universe U. Then for any interpretation I and variable
assignment d,

TA (c) If c is a constant, then IdŒc� = IŒc�.

(v) If x is a variable, then IdŒx� = dŒx�.

(f) If hn is a function symbol and t1 : : : tn are terms, then IdŒhnt1 : : : tn� =
IŒhn�hIdŒt1� : : : IdŒtn�i.

SF (s) If S is a sentence letter, then IdŒS � = S iff IŒS � = T; otherwise IdŒS � = N.

(r) If Rn is an n-place relation symbol and t1 : : : tn are terms, then IdŒRnt1 : : :

tn� = S iff hIdŒt1� : : : IdŒtn�i 2 IŒRn�; otherwise IdŒRnt1 : : : tn� = N.

(�) If P is a formula, then IdŒ�P � = S iff IdŒP � = N; otherwise IdŒ�P � = N.

(!) If P and Q are formulas, then IdŒ.P ! Q/� = S iff IdŒP � = N or IdŒQ� = S (or
both); otherwise IdŒ.P ! Q/� = N.

(8) If P is a formula and x is a variable, then IdŒ8xP � = S iff for any o 2 U,
Id.xjo/ŒP � = S; otherwise IdŒ8xP � = N.

SF0 (^) If P and Q are formulas, then IdŒ.P ^Q/� = S iff IdŒP � = S and IdŒQ� = S;
otherwise IdŒ.P ^Q/� = N.

(_) If P and Q are formulas, then IdŒ.P _Q/� = S iff IdŒP � = S or IdŒQ� = S (or
both); otherwise IdŒ.P _Q/� = N.

($) If P and Q are formulas, then IdŒ.P $ Q/� = S iff IdŒP � = IdŒQ�; otherwise
IdŒ.P $ Q/� = N.

(9) If P is a formula and x is a variable, then IdŒ9xP � = S iff for some o 2 U,
Id.xjo/ŒP � = S; otherwise IdŒ9xP � = N.

TI A formula P is true on an interpretation I iff with any d for I, IdŒP � = S. P is false
on I iff with any d for I, IdŒP � = N.

QV � quantificationally entails P (� � P ) iff there is no quantificational interpretation I
such that IŒ�� = T but IŒP � = T.

If � � P , an argument whose premises are the members of � and conclusion is P is
quantificationally valid.
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E4.18. Produce interpretations to demonstrate each of the following (now in LNT
<).

Use trees to demonstrate your results. Be sure to explain why your interpretations
and trees have the results they do. Hint: When there are no premises, all you
need is an interpretation where the expression is not true. You need not use the
standard interpretation. Again, in some cases, it may be convenient to produce
only that part of the tree which is necessary for the result.

a. ² 8x.x < Sx/

b. ² .S; C S;/ D SS;

c. ² 9x�..x � x/ D x/

*d. ² 8x8y.�.x D y/! .x < y _ y < x//

e. ² 8x8y8z..x < y ^ y < z/! x < z/

E4.19. On page 129 we say that reasoning similar to that for ^ results in other branch
conditions. Give the reasoning similar to that for ^ and 9 to demonstrate from
trees the conditions B(_) and B($).

E4.20. For each of the following concepts, explain in an essay of about two pages,
so that (high-school age) Hannah could understand. In your essay, you should
(i) identify the objects to which the concept applies, (ii) give and explain the
definition, and give and explicate examples of your own construction (iii) where
the concept applies, and (iv) where it does not. Your essay should exhibit an
understanding of methods from the text.

a. Quantificational interpretations.

b. Term assignments, satisfaction, and truth.

c. Quantificational validity.



Chapter 5

Translation

We have introduced logical validity from Chapter 1, along with validity in an axiomatic
derivation system from Chapter 3, and semantic validity from Chapter 4. But logical
validity applies to arguments expressed in ordinary language, where the other notions
apply to arguments expressed in a formal language. Our guiding idea has been to
use the formal notions with application to ordinary arguments via translation from
ordinary language to formal language. It is to the translation task that we now turn.
After some general remarks in section 5.1, we will take up issues specific to the
sentential (section 5.2), and then the quantificational case (section 5.3).

5.1 General

As speakers of ordinary languages (at least English for those reading this book)
we presumably have some understanding of the conditions under which ordinary
language sentences are true and false. Similarly, we now have an understanding of
the conditions under which sentences of our formal languages are true and false. This
puts us in a position to recognize when the conditions under which ordinary sentences
are true are the same as the conditions under which formal sentences are true. And
that is what we want: Our goal is to translate the premises and conclusion of ordinary
arguments into formal expressions that are true when the ordinary sentences are true,
and false when the ordinary sentences are false. Insofar as validity has to do with
conditions under which sentences are true and false, our translations should thus be
an adequate basis for evaluations of validity.

We can put this point with greater precision. Formal sentences are true and false
relative to interpretations. As we have seen, many different interpretations of a formal
language are possible. In the sentential case, any sentence letter can be true or false—
so that there are 2n ways to interpret any n sentence letters. When we specify an
interpretation, we select just one of the many available options. Thus, for example,
we might set IŒB� = T and IŒM � = F. But we might also specify an interpretation as
follows:

134
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(A)
B: Barack is happy

M : Michelle is happy

intending B to take the same truth value as ‘Barack is happy’ and M the same as
‘Michelle is happy’. In this case, the single specification might result in different
interpretations, depending on how the world is: depending on how Barack and
Michelle are, the interpretation of B might be true or false, and similarly for M. That
is, specification (A) is really a function from ways the world could be (from maximal
and consistent stories) to interpretations of the sentence letters. It results in a specific
or intended interpretation relative to any way the world could be. Thus, where !
ranges over ways the world could be, (A) is a function II which results in an intended
interpretation II! corresponding to any such way—thus II! ŒB� is T if Barack is happy
at ! and F if he is not.

When we set out to translate some ordinary sentences into a formal language,
we always begin by specifying an interpretation function. In the sentential case, this
typically takes the form of a specification like (A). Then for ! any way the world
can be, there is an intended interpretation II! of the formal language. Given this, for
an ordinary sentence A, the aim is to produce a formal counterpart A0 such that for
any !, II! ŒA0� = T iff A is true at world !. This is the content of saying we want to
produce formal expressions that “are true when the ordinary sentences are true, and
false when the ordinary sentences are false.” In fact, we can turn this into a criterion
of goodness for translation:

CG Given some ordinary sentence A, a translation consisting of an interpreta-
tion function II and formal sentence A0 is good iff it captures available sen-
tential/quantificational structure and, where ! is any way the world can be,
II! ŒA0� = T iff A is true at !.

If there is a collection of sentences, a translation consisting of an II and some formal
sentences is good only if each ordinary A of the collection has a formal A0 where
for any !, II! ŒA0� = T iff A is true at !. Set aside the question of what it is
to capture “available” sentential/quantificational structure, this will emerge as we
proceed. For now, the point is simply that we want formal sentences to be true on
intended interpretations when originals are true at corresponding worlds, and false on
intended interpretations when originals are false. CG says that this correspondence is
necessary for goodness. And, supposing that sufficient structure is reflected, according
to CG such correspondence is sufficient as well.

The situation might be pictured as follows. There is a specification II which
results in an intended interpretation corresponding to any way the world can be. And
corresponding to ordinary sentences P and Q there are formal sentences P 0 and Q0.
Then with oval for worlds and box for interpretations built on them,
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#
"

 
!

P : true
Q: true

!1

*II

II!1 ŒP
0� = T

II!1 ŒQ
0� = T

#
"

 
!

P : true
Q: false

!2

*II

II!2 ŒP
0� = T

II!2 ŒQ
0� = F

#
"

 
!

P : false
Q: true

!3

*II

II!3 ŒP
0� = F

II!3 ŒQ
0� = T

#
"

 
!

P : false
Q: false

!4

*II

II!4 ŒP
0� = F

II!4 ŒQ
0� = F

The interpretation function results in an intended interpretation corresponding to each
world. The intended interpretations make assignments to basic vocabulary (in the
sentential case, to sentence letters). Then a translation is good only if no matter how
the world is, the values of P 0 and Q0 on the intended interpretations match the values
of the ordinary P and Q at the corresponding worlds or stories.

The premises and conclusion of an argument are some sentences. So the translation
of an argument is good iff the translation of the sentences that are its premises and
conclusion is good. And good translations of arguments put us in a position to use
our machinery to evaluate questions of validity. Of course, so far, this is an abstract
description of what we are about to do. But it should give some orientation, and help
you understand what is accomplished as we proceed.

5.2 Sentential

We begin with the sentential case. Again, the general idea is to recognize when the
conditions under which ordinary sentences are true are the same as the conditions
under which formal ones are true. Surprisingly perhaps, the hardest part is on the
side of recognizing truth conditions in ordinary language. With this in mind, let us
begin with some definitions whose application is to expressions of ordinary language;
after that, we will turn to a procedure for translation, and to discussion of particular
operators.

5.2.1 Some Definitions

In this section, we introduce a series of definitions whose application is to ordinary
language. These definitions are not meant to compete with anything you have learned
in English class. Rather they are specific to our purposes. With the definitions under
our belt, we will be able to say with some precision what we want to do.

First, a declarative sentence is a sentence which has a truth value—a sentence that
is either true or false. ‘Snow is white’ and ‘Snow is green’ are declarative sentences—
the first true and the second false. ‘Study harder!’ and ‘Why study?’ are sentences, but
not declarative sentences. Given this, a sentential operator is an expression containing
“blanks” such that when the blanks are filled with declarative sentences, the result is
a declarative sentence. In ordinary speech and writing, such blanks do not typically



CHAPTER 5. TRANSLATION 137

appear (!) however punctuation and expression typically fill the same role. Examples
are,

John believes that

John heard that

it is not the case that

and

‘John believes that snow is white’, ‘John believes that snow is green’, and ‘John
believes that dogs fly’ are all sentences—some more plausibly true than others. Still,
‘Snow is white’, ‘Snow is green’, and ‘Dogs fly’ are all declarative sentences, and
when we put them in the blank of ‘John believes that ’ the result is a declarative
sentence, where the same would be so for any declarative sentence in the blank; so
‘John believes that ’ is a sentential operator. Similarly, ‘Snow is white and dogs
fly’ is a declarative sentence—a false one, since dogs do not fly. And, so long as
we put declarative sentences in the blanks of ‘ and ’ the result is always a
declarative sentence. So ‘ and ’ is a sentential operator. In contrast,

when

is white

are not sentential operators. Though ‘Snow is white’ is a declarative sentence, ‘when
snow is white’ is an adverbial clause, not a declarative sentence. And, though ‘Dogs
fly’ and ‘Snow is green’ are declarative sentences, ‘dogs fly is white snow is green’ is
ungrammatical nonsense. If you can think of even one case where putting declarative
sentences in the blanks of an expression does not result in a declarative sentence, then
the expression is not a sentential operator. So these are not sentential operators.

Now, as in these examples, we can think of some declarative sentences as gen-
erated by the combination of sentential operators with other declarative sentences.
Declarative sentences generated from other sentences by means of sentential opera-
tors are compound; all others are simple. Thus, for example, ‘Bob likes Mary’ and
‘Socrates is wise’ are simple sentences, they do not have a declarative sentence in
the blank of any operator. In contrast, ‘John believes that Bob likes Mary’ and ‘Jim
heard that John believes that Bob likes Mary’ are compound. The first has a simple
sentence in the blank of ‘John believes that ’. The second puts a compound in
the blank of ‘Jim heard that ’.

For cases like these, the main operator of a compound sentence is that operator
not in the blank of any other operator. The main operator of ‘John believes that Bob
likes Mary’ is ‘John believes that ’. And the main operator of ‘Jim heard that
John believes that Bob likes Mary’ is ‘Jim heard that ’. The main operator of
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‘It is not the case that Bob likes Sue and it is not the case that Sue likes Bob’ is ‘
and ’, for that is the operator not in the blank of any other. Notice that the main
operator of a sentence need not be the first operator in the sentence. Observe also that
operator structure may not be obvious. Thus, for example, ‘Jim heard that Bob likes
Sue and Sue likes Jim’ is capable of different interpretations. It might be, ‘Jim heard
that Bob likes Sue and Sue likes Jim’ with main operator, ‘Jim heard that ’ and
the compound, ‘Bob likes Sue and Sue likes Jim’ in its blank. But it might be ‘Jim
heard that Bob likes Sue and Sue likes Jim’ with main operator, ‘ and ’. The
question is what Jim heard, and what the ‘and’ joins. As suggested above, punctuation
and expression often serve in ordinary language to disambiguate confusing cases.
These questions of interpretation are not peculiar to our purposes! Rather they are the
ordinary questions that might be asked about meaning. The underline structure serves
to disambiguate claims, to make it very clear how the operators apply.

We shall want to identify the operator structure of sentences. When faced with a
compound sentence, the best approach is start with the whole, rather than the parts. So
begin with blank(s) for the main operator. Thus, as we have seen, the main operator of
‘It is not the case that Bob likes Sue, and it is not the case that Sue likes Bob’ is ‘
and ’. So begin with lines for that operator, ‘It is not the case that Bob likes Sue
and it is not the case that Sue likes Bob’ (leaving space for lines above). Now focus
on the sentence in one of the blanks, say the left; that sentence, ‘It is not the case
that Bob likes Sue’ is a compound with main operator, ‘it is not the case that ’.
So add the underline for that operator, ‘It is not the case that Bob likes Sue and it is
not the case that Sue likes Bob’. The sentence in the blank of ‘it is not the case that

’ is simple. So turn to the sentence in the right blank of the main operator. That
sentence has main operator ‘it is not the case that ’. So add an underline. In this
way we end up with, ‘It is not the case that Bob likes Sue and it is not the case that
Sue likes Bob’. Thus a complex problem is reduced to ones that are progressively
simpler. Perhaps this problem was obvious from the start. But this approach will serve
you well as problems get more complex!

We come finally to the key notion of a truth functional operator. A sentential
operator is truth functional iff any compound generated by it has its truth value wholly
determined by the truth values of the sentences in its blanks. We will say that the truth
value of a compound is “determined” by the truth values of sentences in blanks just in
case there is no way to switch the truth value of the whole while keeping truth values
of sentences in the blanks constant.

This leads to a test for truth functionality: We show that an operator is not truth
functional, if we come up with some situation(s) where truth values of sentences in
the blanks are the same, but the truth value of the resulting compounds are not. To
take a simple case, consider ‘John believes that ’. If things are pretty much as
in the actual world, ‘There is a Santa’ and ‘Dogs fly’ are both false. But if John is a
small child it may be that,
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(B) John believes that
there is a Santa

dogs fly
T /F F

John believes there is a Santa, but knows perfectly well that dogs do not fly. So the
compound is true with one in the blank, and false with the other. Thus the truth value
of the compound is not wholly determined by the truth value of the sentence in the
blank. We have found a situation where sentences with the same truth value in the
blank result in a different truth value for the whole. Thus ‘John believes that ’ is
not truth functional. We might make the same point with a pair of sentences that are
true, say ‘Dogs bark’ and ‘There are infinitely many prime numbers’ (be clear in your
mind about how this works).

As a second example, consider, ‘ because ’. Suppose ‘You are happy’,
‘You understand the material’, ‘There are fish in the sea’, and ‘You woke up this
morning’ are all true.

(C)
You are happy

There are fish in the sea because
you understand the material
you woke up this morning

T T /F T

Still, it is natural to think that the truth value of the compound, ‘You are happy because
you understand the material’ may be true, while ‘There are fish in the sea because
you woke up this morning’ is false. For perhaps understanding the material makes
you happy, but the fish in the sea have nothing to do with your waking up. Thus there
are consistent situations or stories where sentences in the blanks have the same truth
values, but the compounds do not. Thus, by the definition, ‘ because ’ is
not a truth functional operator. To show that an operator is not truth functional it is
sufficient to produce some situation of this sort: where truth values for sentences in
the blanks match, but truth values for the compounds do not. Observe that in order
to meet this condition it would be sufficient to find, say, a case where sentences in
the first blank remain T, sentences in the second remain F but the value of the whole
flips from T to F. To show that an operator is not truth functional, any combination on
which the blanks remain constant but the whole flips value will do.

To show that an operator is truth functional, we need to show that no such cases
are possible. For this, we show how the truth value of what is in the blank determines
the truth value of the whole. As an example, consider first,

(D)
it is not the case that

F T
T F

In this table, we represent the truth value of whatever is in the blank by the column
under the blank, and the truth value for the whole by the column under the operator.
If we put something true according to a consistent story into the blank, the resultant
compound is sure to be false according to that story. Thus, for example, in the true
story, ‘Snow is white’, ‘2 2 = 4’, and ‘Dogs bark’ are all true; correspondingly, ‘It is
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not the case that snow is white’, ‘It is not the case that 2 2 = 4’, and ‘It is not the
case that dogs bark’ are all false. Similarly, if we put something false according to a
story into the blank, the resultant compound is sure to be true according to the story.
Thus, for example, in the true story, ‘Snow is green’ and ‘2 2 = 3’ are both false.
Correspondingly, ‘It is not the case that snow is green’ and ‘It is not the case that
2 2 = 3’ are both true. It is no coincidence that the above table for ‘it is not the case
that ’ looks like the table for �. We will return to this point shortly.

For a second example of a truth functional operator, consider ‘ and ’.
This seems to have table,

(E)

and
T T T
T F F
F F T
F F F

Consider a situation where Bob and Sue each love themselves, but hate each other.
Then ‘Bob loves Bob and Sue loves Sue’ is true. But if at least one blank has a
sentence that is false, the compound is false. Thus in that situation, ‘Bob loves Bob
and Sue loves Bob’ is false; ‘Bob loves Sue and Sue loves Sue’ is false; and ‘Bob
loves Sue and Sue loves Bob’ is false. For a compound, ‘ and ’ to be true,
the sentences in both blanks have to be true. And if they are both true, the compound
is itself true. So the operator is truth functional. Again, it is no coincidence that the
table looks so much like the table for ^. To show that an operator is truth functional,
it is sufficient to produce the table that shows how the truth values of the compound
are fixed by the truth values of the sentences in the blanks.

For an interesting sort of case, consider the operator ‘according to every consistent
story ’, and the following attempted table:

(F)
according to every consistent story

? T
F F

Say we put some sentence P that is false according to a consistent story into the
blank. Then since P is false according to that very story, it is not the case that P

according to every consistent story—and the compound is sure to be false. So we
fill in the bottom row under the operator as above. So far, so good. But consider
‘Dogs bark’ and ‘2 2 = 4’. Both are true according to the true story. But only the
second is true according to every consistent story—we can tell stories where ‘Dogs
bark’ is true and where it is false, but ‘2 2 = 4’ is true in every consistent story. So
the compound is false with the first in the blank, true with the second. So ‘according
to every consistent story ’ is therefore not a truth functional operator. The truth
value of the compound is not wholly determined by the truth value of the sentence in
the blank. Similarly, it is natural to think that ‘ because ’ is false whenever
one of the sentences in its blanks is false. It cannot be true that P because Q if not-P ,
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and it cannot be true that P because Q if not-Q. If you are not happy, then it cannot be
that you are happy because you understand the material; and if you do not understand
the material, it cannot be that you are happy because you understand the material. So
far, then, the table for ‘ because ’ is like the table for ‘ and ’.

(G)

because
T ? T
T F F
F F T
F F F

However, as we saw at (C) above, in contrast to ‘ and ’, compounds gener-
ated by ‘ because ’ may or may not be true when sentences in the blanks are
both true. So, although ‘ and ’ is truth functional, ‘ because ’ is
not.

Thus the question is whether we can complete a table of the above sort: If there
is a way to complete the table, the operator is truth functional. The test to show an
operator is not truth functional simply finds some case to show that such a table cannot
be completed.

E5.1. For each of the following, (i) say whether it is simple or compound. If the
sentence is compound, (ii) use underlines to exhibit its operator structure, and (iii)
say what is its main operator.

*a. Bob likes Mary.

*b. Jim believes that Bob likes Mary.

c. It is not the case that Bob likes Mary.

*d. Jane heard that it is not the case that Bob likes Mary.

e. Jane heard that Jim believes that it is not the case that Bob likes Mary.

f. Iron Man man is strong, but it is not the case that Tony Stark is strong.

g. Iron Man fights for justice and Thor fights for justice, but it is not the case that
Thanos fights for justice.

*h. Iron Man believes that Iron Man is stronger than Hulk and Iron Man is stronger
than Hulk, but Hulk believes that Hulk is stronger than Iron Man and it is not
the case that Hulk is stronger than Iron Man.

i. Thanos believes that genocide is good, but it is not the case that genocide is
good; and Thanos is an evil being.

j. Iron Man believes that justice is good and Thor believes that justice is good,
but it is not the case that Thanos believes that justice is good.
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E5.2. Which of the following operators are truth functional and which are not? If
the operator is truth functional, display the relevant table; if it is not, give cases
that flip the value of the compound, with the value in the blanks constant. Explain
your response.

*a. it is a fact that

b. Elmore believes that

*c. but

d. according to some consistent story

e. although ,

*f. it is always the case that

g. sometimes it is the case that

h. therefore

i. however

j. either or (or both)

Definitions for Translation

DC A declarative sentence is a sentence which has a truth value.

SO A sentential operator is an expression containing “blanks” such that when the blanks
are filled with declarative sentences, the result is a declarative sentence.

CS Declarative sentences generated from other sentences by means of sentential operators
are compound; all others are simple.

MO The main operator of a compound sentence is that operator not in the blank of any
other operator.

TF A sentential operator is truth functional iff any compound generated by it has its truth
value wholly determined by the truth values of the sentences in its blanks.

To show that an operator is not truth functional it is sufficient to produce some situa-
tions where truth values for sentences in the blanks are constant, but truth values for the
compounds are not.

To show that an operator is truth functional, it is sufficient to produce the table that shows
how the truth values of the compound are fixed by truth values of the sentences in the
blanks.
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5.2.2 Parse Trees

We are now ready to outline a procedure for translation into our formal sentential
language. In the end, you will often be able to see how translations should go and to
write them down without going through all the official steps. However, the procedure
should get you thinking in the right direction, and remain useful for complex cases.
To translate some ordinary sentences P1 : : :Pn the basic translation procedure is,

TP (1) Convert the ordinary P1 : : :Pn into corresponding ordinary equivalents
exposing truth functional and operator structure.

(2) Generate a “parse tree” for each of P1 : : :Pn and specify the interpretation
function II by assigning sentence letters to sentences at the bottom nodes.

(3) Using sentence letters from II and equivalent formal expressions, for
each parse tree construct a parallel tree to generate formal P 01 : : :P

0
n

corresponding to P1 : : :Pn.

For now at least, the idea behind step (1) is simple: Sometimes all you need to do
is expose operator structure by introducing underlines. In complex cases, this can be
difficult! But we know how to do it. Sometimes, however, truth functional structure
does not lie on the surface. Ordinary sentences are equivalent when they are true
and false in exactly the same consistent stories. And we want ordinary equivalents
exposing truth functional structure. Suppose P is a sentence of the sort,

(H) Bob is not happy

Is this a truth functional compound? Not officially. There is no declarative sentence in
the blank of a sentential operator; so it is not compound; so it is not a truth functional
compound. But one might think that (H) is short for,

(I) It is not the case that Bob is happy

which is a truth functional compound. At least (H) and (I) are equivalent in the sense
that they are true and false in the same consistent stories. Similarly, ‘Bob and Carol
are happy’ is not a compound of the sort we have described, with declarative sentences
in the blanks of a sentential operator. However, it is a short step from this sentence to
the equivalent, ‘Bob is happy and Carol is happy’ which is an official truth functional
compound. As we shall see, in some cases, this step can be more complex. But let us
leave it at that for now.

Moving to step (2), in a parse tree we begin with sentences constructed as in step
(1). If a sentence has a truth functional main operator, then it branches downward
for the sentence(s) in its blanks. If these have truth functional main operators, they
branch for the sentences in their blanks; and so forth, until sentences are simple or
have non-truth functional main operators. Then given trees for each of P1 : : :Pn,
construct the interpretation function II by assigning a distinct sentence letter to each
distinct sentence at a bottom node.
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Some simple examples should make this clear. Say we want to translate a collec-
tion of four sentences.

1. Bob is happy

2. Carol is not happy

3. Bob is healthy and Carol is not

4. Bob is happy and John believes that Carol is not healthy

The first is a simple sentence. Thus there is nothing to be done at step (1). And since
there is no main operator, there is no branching and the sentence itself is a completed
parse tree. The tree is just,

(J) Bob is happy

Insofar as the simple sentence is a complete branch of the tree, it counts as a bottom
node of its tree. It is not yet assigned a sentence letter, so we assign it one. B1: Bob is
happy. We select this letter to remind us of the assignment.

As it stands, the second sentence is not a truth functional compound. Thus in the
first stage, ‘Carol is not happy’ is expanded to the equivalent, ‘It is not the case that
Carol is happy’. In this case, there is a main operator; since it is truth functional, the
tree has some structure.

(K)

It is not the case that Carol is happy

Carol is happy

The bottom node is simple, so the tree ends. ‘Carol is happy’ is not assigned a letter;
so we assign it one. C1: Carol is happy.

The third sentence is equivalent to, ‘Bob is healthy and it is not the case that Carol
is healthy’. Again, the operators are truth functional, and the result is a structured
tree.

(L)

Bob is healthy and it is not the case that Carol is healthy
��������

HH
HH

Bob is healthy it is not the case that Carol is healthy

Carol is healthy

The main operator is truth functional. So there is a branch for each of the sentences in
its blanks. Observe that underlines continue to reflect the structure of these sentences
(so we “lift” the sentences from their blanks with structure intact). On the left, ‘Bob
is healthy’ has no main operator, so it does not branch. On the right, ‘it is not the
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case that Carol is healthy’ has a truth functional main operator, and so branches. At
bottom, we end up with ‘Bob is healthy’ and ‘Carol is healthy’. Neither has a letter,
so we assign them ones. B2: Bob is healthy; C2: Carol is healthy.

The final sentence is equivalent to, ‘Bob is happy and John believes it is not the
case that Carol is healthy’. It has a truth functional main operator. So there is a
structured tree.

(M)

Bob is happy and John believes it is not the case that Carol is healthy
((((((((((((

HHHH
Bob is happy John believes it is not the case that Carol is healthy

On the left, ‘Bob is happy’ is simple. On the right, ‘John believes it is not the case
that Carol is healthy’ is compound. But its main operator is not truth functional. So it
does not branch. We only branch for sentences in the blanks of truth functional main
operators. Given this, we proceed in the usual way. ‘Bob is happy’ already has a letter.
The other does not; so we give it one. J : John believes it is not the case that Carol is
healthy.

And that is all. We have now compiled an interpretation function,

II B1: Bob is happy

C1: Carol is happy

B2: Bob is healthy

C2: Carol is healthy

J : John believes it is not the case that Carol is healthy

Of course, we might have chosen different letters. All that matters is that we have
a distinct letter for each distinct sentence. For any way the world can be, our inter-
pretation function yields an interpretation on which a sentence letter is true when its
assigned sentence is true in that world, and false when its assigned sentence is false.
In the last case, there is a compulsion to think that we can somehow get down to
the simple sentence ‘Carol is healthy’. But resist temptation! A non-truth functional
operator “seals off” that upon which it operates, and forces us to treat the compound as
a unit. We do not automatically assign sentence letters to simple sentences, but rather
to parts that are not truth functional compounds. Simple sentences fit this description.
But so do compounds with non-truth functional main operators.

E5.3. Use our method to expose truth functional structure and produce parse trees
for each of the following. Use your trees to produce an interpretation function for
the sentences. Hint: Pay attention to punctuation as a guide to structure.

a. Bingo is spotted, and Spot can play bingo.
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b. Bingo is not spotted, and Spot cannot play bingo.

c. Bingo is spotted, and believes that Spot cannot play bingo.

*d. It is not the case that: Bingo is spotted and Spot can play bingo.

e. It is not the case that: Bingo is not spotted and Spot cannot play bingo.

E5.4. Use our method to expose truth functional structure and produce parse trees
for each of the following. Use your trees to produce an interpretation function for
the sentences.

*a. People have rights and dogs have rights, but rocks do not.

b. It is not the case that: rocks have rights, but people do not.

c. Aliens believe that rocks have rights, but it is not the case that people believe
it.

d. Aliens landed in Roswell NM in 1947, and live underground but not in my
backyard.

e. Rocks do not have rights and aliens do not have rights, but people and dogs
do.

5.2.3 Formal Sentences

Now we are ready for step (3) of the translation procedure TP. Corresponding to
each parse tree we construct a parallel tree using the interpretation function and
then equivalent formal expressions to capture the force of ordinary truth functional
operators. An ordinary truth functional operator has a table. Similarly, our formal
expressions have tables. An ordinary truth functional operator is equivalent to some
formal expression containing blanks just in case their tables are the same. Thus
‘� ’ is equivalent to ‘it is not the case that ’. They are equivalent insofar as
in each case, the whole has the opposite truth value of what is in the blank. Similarly,
‘ ^ ’ is equivalent to ‘ and ’. In either case, when sentences in
the blanks are both T the whole is T, and in other cases, the whole is F. Of course,
the complex ‘�. ! � /’ takes the same values as the ‘ ^ ’ that
abbreviates it. So different formal expressions may be equivalent to a given ordinary
one.

To see how this works, let us return to the sample sentences from above. Again, the
idea is to generate a parallel tree. The parallel tree has exactly one node corresponding
to each node in the parse tree. We begin by using the sentence letters from our
interpretation function for the bottom nodes. The case is particularly simple when the
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tree has no structure. ‘Bob is happy’ has a simple unstructured tree, and we assigned
it a sentence letter directly. Thus our original and parallel trees are,

(N) Bob is happy B1

So for a simple sentence, we simply read off the final translation from the interpretation
function. So much for the first sentence.

As we have seen, the second sentence is equivalent to ‘It is not the case that Carol
is happy’ with a parse tree as on the left below. We begin the parallel tree on the other
side.

(O)

It is not the case that Carol is happy

Carol is happy C1

We know how to translate the bottom node. But now we want to capture the force
of the truth functional operator with some equivalent formal expression. For this,
we need a formal expression containing blanks whose table mirrors the table for the
sentential operator in question. In this case, ‘� ’ works fine. That is, we have,

it is not the case that
F T
T F

�

F T
T F

In each case, when the expression in the blank is T, the whole is F, and when the
expression in the blank is F, the whole is T. So ‘� ’ is sufficient as a translation
of ‘it is not the case that ’. Other formal expressions might do just as well. Thus,
for example, we might go with, ‘��� ’. The table for this is the same as the
table for ‘� ’. But it is hard to see why we would do this with � so close at hand.
Now the idea is to apply the equivalent expression to the already translated expression
from the blank. But this is easy to do. Thus we complete the parallel tree as follows:

It is not the case that Carol is happy

Carol is happy

�C1

C1

The result is the completed translation, �C1.
The third sentence has a parse tree as on the left below, and resultant parallel

tree as on the right. As usual, we begin with sentence letters from the interpretation
function for the bottom nodes.
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(P)

Bob is healthy and it is not the case that Carol is healthy
��������

H
HHH

Bob is healthy it is not the case that Carol is healthy

Carol is healthy

.B2 ^�C2/

�
�
@
@

B2 �C2

C2

Given translations for the bottom nodes, we work our way up through the tree,
applying equivalent expressions to translations already obtained. As we have seen,
a natural translation of ‘it is not the case that ’ is ‘� ’. Thus, working up
from ‘Carol is healthy’, our parallel to ‘it is not the case that Carol is healthy’ is
�C2. But now we have translations for both of the blanks of ‘ and ’. As
we have seen, this has the same table as ‘. ^ /’. So that is our translation.
Again, other expressions might do. In particular, ^ is an abbreviation with the same
table as ‘�. ! � /’. In each case, the whole is true when the sentences
in both blanks are true, and otherwise false. Since this is the same as for ‘ and

’, either would do as a translation. But again, the simplest thing is to go with
‘. ^ /’. Thus the final result is .B2 ^�C2/. With the alternate translation
for the main operator, the result would have been �.B2 ! ��C2/.

Our last sentence is equivalent to ‘Bob is happy and John believes it is not the
case that Carol is healthy’. Given what we have done, the parallel tree should be easy
to construct.

(Q)

Bob is happy and John believes it is not the case that Carol is healthy
((((((((((((

HH
HH

Bob is happy John believes it is not the case that Carol is healthy

.B1 ^ J /

�
�
@
@

JB1

Given that the tree “bottoms out” on both ‘Bob is happy’ and ‘John believes it is not
the case that Carol is healthy’ the only operator to translate is the main operator ‘
and ’. And we have just seen how to deal with that. The result is the completed
translation, .B1 ^ J /.

Again, once you become familiar with this procedure the full method with trees
may become tedious—and we will often want to set it to the side. But notice: the
method breeds good habits! And the method puts us in a position to translate complex
expressions, even ones that are so complex that we can barely grasp what they are
saying. Beginning with the main operator, we break expressions down from complex
parts to ones that are simpler. Then we construct translations, one operator at a time,
where each step is manageable.

Also, we should be able to see why the method results in good translations:
Consider some situation with its corresponding intended interpretation. Truth values
for basic parts are the same just by the specification of the interpretation function.
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And with equivalent tables, parts built out of them must be the same as well, all the
way up to the truth value of the whole. We satisfy the first part of our criterion CG
insofar as the way we break down sentences in parse trees forces us to capture all the
sentential structure there is to be captured.

For a last example, consider, ‘Bob is happy and Bob is healthy and Carol is happy
and Carol is healthy’. This is true only if ‘Bob is happy’, ‘Bob is healthy’, ‘Carol
is happy’, and ‘Carol is healthy’ are all true. But the method may apply in different
ways. We might, at step one, treat the sentence as a complex expression involving
multiple uses of ‘ and ’; perhaps something like,

(R) Bob is happy and Bob is healthy and Carol is happy and Carol is healthy

In this case, there is a straightforward move from the ordinary operators to formal
ones in the final step. That is, the situation is as follows:

Bob is happy and Bob is healthy and Carol is happy and Carol is healthy
!!!!!

PPPPPPP
Bob is happy and Bob is healthy Carol is happy and Carol is healthy

�
�
@
@

�
�
@
@

Bob is happy Bob is healthy Carol is happy Carol is healthy

..B1 ^ B2/ ^ .C1 ^ C2//

�
�
�

Q
Q
Q

.B1 ^ B2/ .C1 ^ C2/

�
�
A
A

�
�
A
A

B1 B2 C1 C2

So we use multiple applications of our standard caret operator. But we might have
treated the sentence as something like,

(S) Bob is happy and Bob is healthy and Carol is happy and Carol is healthy

involving a single four-blank operator, ‘ and and and ’, which
yields true only when sentences in all its blanks are true. We have not seen anything
like this before, but nothing stops a tree with four branches all at once. In this case,
we would begin,

Bob is happy and Bob is healthy and Carol is happy and Carol is healthy

�
�
�

Q
Q
Q

���������

XXXXXXXXX
Bob is happy Bob is healthy Carol is happy Carol is healthy B1 B2 C1 C2

But now we need an equivalent formal expression with four blanks that is true when
sentences in all the blanks are true and otherwise false. Here is something that would
do: ‘.. ^ / ^ . ^ //’. On either of these approaches, then, the
result is ..B1 ^ B2/ ^ .C1 ^ C2//. Other options might result in something like
...B1 ^ B2/ ^ C1/ ^ C2/. In this way, there is room for shifting burden between
steps one and three. Such shifting explains how step (1) can be more complex than it
was initially represented to be. Choices about expanding truth functional structure in
the initial stage may matter for what are the equivalent expressions at the end. And
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the case exhibits how there are options for different, equally good, translations of the
same ordinary expressions. What matters for CG is that resultant expressions capture
available structure and be true when the originals are true and false when the originals
are false. In most cases, one translation will be more natural than others, and it is
good form to strive for natural translations. If there had been a comma so that the
original sentence was, ‘Bob is happy and Bob is healthy, and Carol is happy and Carol
is healthy’ it would have been most natural to go for an account along the lines of (R).
And it is crazy to use, say, ‘��� ’ when ‘� ’ will do as well.

*E5.5. Construct parallel trees to complete the translation of the sentences from E5.3
and E5.4. Hint: You will not need any operators other than � and ^.

E5.6. Use our method to translate each of the following. That is, for each sentence,
generate a parse tree and interpretation function, and then a parallel tree to produce
a formal equivalent.

a. Plato and Aristotle were great philosophers, but Ayn Rand was not.

b. Plato was a great philosopher and everything Plato said was true, but Ayn
Rand was not a great philosopher and not everything she said was true.

*c. It is not the case that: everything Plato, and Aristotle, and Ayn Rand said was
true.

d. Plato was a great philosopher but not everything he said was true, and Aristotle
was a great philosopher but not everything he said was true.

e. Not everyone agrees that Ayn Rand was not a great philosopher, and not
everyone thinks that not everything she said was true.

E5.7. Use our method to translate each of the following. That is, for each sentence,
generate a parse tree and interpretation function, and then a parallel tree to produce
a formal equivalent.

a. Bob and Sue and Jim will pass the class.

b. Sue will pass the class, but it is not the case that: Bob will pass and Jim will
pass.

c. It is not the case that: Bob will pass the class and Sue will not.

d. Jim will not pass the class, but it is not the case that: Bob will not pass and
Sue will not pass.

e. It is not the case that: Jim will pass and not pass; and it is not the case that:
Sue will pass and not pass.
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5.2.4 Not, And, Or

Our idea has been to recognize when truth conditions for ordinary and formal sentences
are the same. As we have seen, this turns out to require recognizing when tables
for ordinary operators are equivalent to ones for formal expressions. We have had
a lot to say about ‘it is not the case that ’ and ‘ and ’. We now turn
to a more general treatment. We will not be able to provide a complete menu of
ordinary operators. Rather, we will see that some uses of some ordinary operators
can appropriately be translated by our symbols. We should be able to discuss enough
cases for you to see how to approach others on a case-by-case basis. The discussion is
organized around our operators, �, ^, _,!, and$, taken in that order.

First, as we have seen, ‘it is not the case that ’ has the same table as �. And
various ordinary expressions may be equivalent to expressions involving this operator.
Thus, ‘Bob is not married’ and ‘Bob is unmarried’ might be understood as equivalent
to ‘It is not the case that Bob is married’. Given this, we might assign a sentence letter,
say, M to ‘Bob is married’ and translate �M . But the second case calls for comment.
By comparison, consider, ‘Bob is unlucky’. Given what we have done, it is natural to
treat ‘Bob is unlucky’ as equivalent to ‘It is not the case that Bob is lucky’; assign L
to ‘Bob is lucky’; and translate �L. But this is not obviously right. Consider three
situations: (i) Bob goes to Las Vegas with $1,000, and comes away with $1,000,000.
(ii) Bob goes to Las Vegas with $1,000, and comes away with $100, having seen
a show and had a good time. (iii) Bob goes to Las Vegas with $1,000, falls into a
manhole on his way into the casino, and has his money stolen by a light-fingered thief
on the way down. In the first case he is lucky; in the third, unlucky. But, in the second,
one might want to say that he was neither lucky nor unlucky.

(i) Bob is lucky
(ii) Bob is neither lucky nor unlucky
(iii) Bob is unlucky

�
It is not the case that Bob is lucky

If this is right, ‘Bob is unlucky’ is not equivalent to ‘It is not the case that Bob is
lucky’—for it is not the case that Bob is lucky in both situations (ii) and (iii). Thus
we might have to assign ‘Bob is lucky’ one letter, and ‘Bob is unlucky’ another.1

Decisions about this sort of thing may depend heavily on context, and assumptions
which are in the background of conversation. We will ordinarily assume contexts
where there is no “neutral” state—so that being unlucky is not being lucky, and
similarly in other cases.

Second, as we have seen, ‘ and ’ has the same table as ^. As you may
recall from E5.2, another common operator that works this way is ‘ but ’.
Consider, for example, ‘Bob likes Mary but Mary likes Jim’. Suppose Bob does like

1Or so we have to do in the context of our logic where T and F are the only truth values. Another
option is to allow three values so that the one letter might be T, F, or neither. It is possible to proceed on
this basis—though the two valued (classical) approach has the virtue of relative simplicity. With the
classical approach as background, some such alternatives are developed in Priest, Non-Classical Logics.



CHAPTER 5. TRANSLATION 152

Mary and Mary does like Jim; then the compound sentence is true. Suppose one
of the simples is false, Bob does not like Mary or Mary does not like Jim; then the
compound is false. Thus ‘ but ’ has the table,

(T)

but
T T T
T F F
F F T
F F F

and so has the same table as ^. So, in this case, we might assign B to ‘Bob likes Mary’
M to ‘Mary likes Jim’, and translate, .B ^M/. Of course, the ordinary expression
‘but’ carries a sense of opposition that ‘and’ does not. Our point is not that ‘and’ and
‘but’ somehow mean the same, but rather that compounds formed by means of them
have the same truth function. Another common operator with this table is ‘although

, ’. You should convince yourself that this is so, and be able to find other
ordinary terms that work just the same way.

Once again, however, there is room for caution in some cases. Consider, for
example, ‘Bob took a shower and got dressed’. Given what we have done, it is natural
to treat this as equivalent to ‘Bob took a shower and Bob got dressed’; assign letters
S and D; and translate .S ^D/. But this is not obviously right. Suppose Bob gets
dressed, but then realizes that he is late for a date and forgot to shower, so he jumps
in the shower fully clothed, and air-dries on the way. Then it is true that Bob took a
shower, and true that Bob got dressed. But is it true that Bob took a shower and got
dressed? If not—because the order is wrong—our translation .S ^D/ might be true
when the original sentence is not. Again, decisions about this sort of thing depend
heavily upon context and background assumptions. And there may be a distinction
between what is said and what is conversationally implied in a given context. Perhaps
what was said corresponds to the table, so that our translation is right, though there are
certain assumptions typically made in conversation that go beyond. But we need not
get into this. Our point is not that the ordinary ‘and’ always works like our operator
^; rather the point is that some (indeed, many) ordinary uses are rightly regarded as
having the same table.2

2The ability to make this point is an important byproduct of our having introduced the formal
operators “as themselves.” Where ^ and the like are introduced as being direct translations of ordinary
operators, a natural reaction to cases of this sort—a reaction had even by some professional logicians and
philosophers—is that “the table is wrong.” But this is mistaken! Our ^ operator has its own significance,
which may or may not agree with the shifting meaning of ordinary terms. The situation is no different
than for translation across ordinary languages, where terms may or may not have uniform equivalents.

But now one may feel a certain tension with our account of what it is for an operator to be truth
functional—for there seem to be contexts where the truth values of sentences in the blanks do not
determine the truth value of the whole, even for a purportedly truth functional operator like ‘ and

’. However, we want to distinguish different senses in which an operator may be used (or an
ambiguity as between a bank of a river and a bank where you deposit money)—in this case between
‘ and ’ and ‘ and (then) ’. The first of these has the usual table, but the second is not
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The operator which is most naturally associated with _ is ‘ or ’. In this
case, there is room for caution from the start. Consider first a restaurant menu which
says that you will get soup or you will get salad with your dinner. This is naturally
understood as ‘You will get soup or you will get salad’ where the sentential operator
is ‘ or ’. In this case, the table would seem to be,

(U)

or
T F T
T T F
F T T
F F F

The compound is true if you get soup, true if you get salad, but not if you get neither
or both. None of our operators has this table.

But contrast this case with one where a professor promises either to give you an
‘A’ on a paper, or to give you very good comments so that you will know what went
wrong. Suppose the professor gets excited about your paper, giving you both an ‘A’
and comments. Presumably, she did not break her promise! That is, in this case, we
seem to have, ‘I will give you an ‘A’ or I will give you comments’ with the table,

(V)

or
T T T
T T F
F T T
F F F

The professor breaks her word just in case she gives you a low grade without comments.
This table is identical to the table for _. For another case, suppose you set out to buy
a power saw, and say to your friend ‘I will go to Home Depot or I will go Lowe’s’.
You go to Home Depot, do not find what you want, so go to Lowe’s and make your
purchase. When your friend later asks where you went, and you say you went to both,
he or she will not say you lied (!) when you said where you were going—for your
statement required only that you would try at least one of those places.

The grading and shopping cases represent the so-called “inclusive” use of ‘or’—
including the case when both components are T; the menu uses the “exclusive” use
of ‘or’—excluding the case when both are T. Ordinarily, we will assume that ‘or’
is used in its inclusive sense, and so is translated directly by _.3 Another operator
that works this way is ‘ unless ’. Again, there are exclusive and inclusive
senses—which you should be able to see by considering restaurant and shopping
examples: ‘You will get soup unless you will get salad’ and ‘I will go to Home Depot

truth functional at all. Again, we will ordinarily assume a context where ‘and’, ‘but’, and the like have
tables that correspond to ^.

3Again, there may be a distinction between what is said and what is conversationally implied in a
given context. Perhaps what is said generally corresponds to the inclusive table, though many uses are
against background assumptions which automatically exclude the case when both are T. But we need
not get into this. It is enough that some uses are according to the inclusive table.
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unless I will go to Lowe’s’. And again, we will ordinarily assume that the inclusive
sense is intended. For the exclusive cases, we can generate the table by means of
complex expressions. Thus, for example �.P $ Q/ does the job. You should
convince yourself that this is so.

Observe that ‘either or ’ has the same table as ‘ or ’; and
‘both and ’ the same as ‘ and ’. So one might think that ‘either’
and ‘both’ play no real role. They do however serve a sort of “bracketing” function:
Consider ‘Neither Bob likes Sue nor Sue likes Bob’. This is naturally understood
as, ‘It is not the case that either Bob likes Sue or Sue likes Bob’ with translation
�.B _ S/. Observe that this division is required: An attempt to parse it to ‘It is not
the case that either Bob likes Sue or Sue like Bob’ results in the fragment ‘either Bob
likes Sue’ in the blank for ‘it is not the case that ’. There would be an ambiguity
about the main operator if ‘either’ were missing; but with it there, the only way to
keep complete sentences in the blanks is to make ‘it is not the case that ’ the
main operator. Similarly, ‘Not both Bob likes Sue and Sue likes Bob’ comes to ‘It is
not the case that both Bob likes Sue and Sue likes Bob’ with translation �.B ^ S/.
There would be an ambiguity about the main operator if ‘both’ were missing; but with
it there, the only way to keep complete sentences in the blanks is to make ‘it is not the
case that ’ the main operator.

And we continue to work with complex forms on trees. Thus, for example,
consider ‘Neither Bob likes Sue nor Sue likes Bob, but Sue likes Jim unless Jim likes
Mary’. This is a mouthful, but we can deal with it in the usual way. The hard part,
perhaps, is just exposing the operator structure.

(Y)

It is not the case that either Bob likes Sue or Sue likes Bob but Sue likes Jim unless Jim likes Mary

��������

``````````
It is not the case that either Bob likes Sue or Sue likes Bob Sue likes Jim unless Jim likes Mary

��
��

HH
HH

either Bob likes Sue or Sue likes Bob

����

HHHH

Sue likes Jim Jim likes Mary

Bob likes Sue Sue likes Bob

Given this, with what we have said above, generate the interpretation function and
then the parallel tree as follows:
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‘Neither nor’ and ‘Not both’
We have given accounts of ‘neither nor ’ and ‘not both and ’
which treat them as combining ordinary negation with conjunction or disjunction.
However, it is possible to see them as unstructured ordinary operators.

So, for example, we might treat ‘neither nor ’ as an unstructured senten-
tial operator with a table as in (W) below.

(W)

neither nor
F T T
F T F
F F T
T F F

(X)

P Q � .P _ Q/

T T F T T T
T F F T T F
F T F F T T
F F T F F F

Thus ‘Neither Bob likes Sue nor Sue likes Bob’ is true just when ‘Bob likes Sue’
and ‘Sue likes Bob’ are both false, and otherwise the compound is false. No
operator of our formal language has a table which is T just when the components
are both F. Still, we may form complex expressions which work this way. So from
(X), �.P _ Q/ has the same table. In this case, with the natural interpretation
function, the parse and parallel trees are,

Neither Bob likes Sue nor Sue likes Bob
��

��
HH

HH
Bob likes Sue Sue likes Bob

�.B _ S/

�
�
@
@

B S

As usual, there is one node in the parallel tree for each node in the parse tree.
Effectively, this strategy unpacks ‘neither nor ’ in the third stage of TP
rather than the first. Though the resultant tree has a different shape than a tree from
the account of the main text, the result is the same. Another expression with the
same table is �P ^ �Q. Either is a good translation of ‘neither nor ’
conceived as an unstructured operator.

Similarly we might treat ‘not both and ’ as an unstructured sentential
operator whose table is F just when the components are both T. Again, no operator
of our formal language works this way. But we may form complex expressions that
do the job. So, as from the main discussion, �.P ^Q) has the same table. Another
expression that works this way is �P _�Q.

Observe that �.P _ Q/ for ‘neither nor’ has the same table as �P ^ �Q; and
�.P ^Q/ for ‘not both’ the same as �P _�Q. It is thus a mistake to “distribute”
the tilde of �.P _Q/ to �P _�Q—this changes from ‘neither nor’ to ‘not both’.
Similarly it is a mistake to distribute the tilde of �.P ^ Q/ to �P ^ �Q—this
changes from ‘not both’ to ‘neither nor’. Rather, to preserve equivalence, when �
goes into a disjunction, _ flips to ^; and when � goes into a conjunction, ^ flips
to _.

Choices among structured and unstructured approaches to ‘not both’ and ‘neither
nor’ are a matter of taste rather than correctness.
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B: Bob likes Sue

S : Sue likes Bob

J : Sue likes Jim

M : Jim likes Mary

�.B _ S/ ^ .J _M/

�
���

H
HHH

�.B _ S/ .J _M/

�
�
@
@

B _ S

�
�
@
@

J M

B S

Given that ‘or’ and ‘unless’ are equivalent to ‘ _ ’, everything works as
before. Again, the complex problem is rendered simple if we attack it one operator at
a time.

E5.8. Using the interpretation function below, produce parse trees and then parallel
ones to complete the translation for each of the following.

B: Bob likes Sue

S : Sue likes Bob

B1: Bob is cool

S1: Sue is cool

a. Bob likes Sue.

b. Sue does not like Bob.

c. Bob likes Sue and Sue likes Bob.

d. Bob likes Sue or Sue likes Bob.

e. Bob likes Sue unless she is not cool.

*f. Either Bob does not like Sue or Sue does not like Bob.

g. Neither Bob likes Sue, nor Sue likes Bob.

*h. Not both Bob and Sue are cool.

*i. Bob and Sue are cool, and Bob likes Sue but Sue does not like Bob.

j. Although neither Bob nor Sue are cool, either Bob likes Sue or Sue likes Bob.

E5.9. Use our method to translate each of the following. That is, for each sentence,
generate a parse tree and interpretation function, and then a parallel tree to produce
a formal equivalent.
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a. Charlie is not good at baseball.

b. Either Snoopy or Patty is good at baseball.

c. Neither Charlie nor Lucy is good at baseball.

*d. Neither Charlie, nor Lucy, nor Woodstock is good at baseball.

e. Not both Charlie and Snoopy are good at baseball.

f. The team will lose unless Patty plays for them.

g. Charlie is not the best baseball player, however he wishes that he was.

*h. Although guns and knives are illegal in baseball, sliding is not.

i. Either Schroeder wears his mask or his face is not protected, and a pitch to the
face hurts.

j. The Boston Red Sox won the World Series in 2018, but not in 2019, 2020,
2021, or 2022.

5.2.5 If, Iff

The operator which is most naturally associated with ! is ‘if then ’.
Consider some fellow, perhaps of less than sterling character, of whom we assert, ‘If
he loves her, then she is rich’—that is, ‘If he loves her, then she is rich’. In this case,
the table begins,

(Z)

if then
T T T
T F F
F ? T
F T F

If ‘He loves her’ and ‘She is rich’ are both true, then what we said about him is true.
If he loves her, but she is not rich, what we said was wrong. If he does not love her,
and she is poor, then we are also fine, for all we said was that if he loves her, then she
is rich. But what about the other case? Suppose he does not love her, but she is rich.
There is a temptation to say that our conditional assertion is false. But do not give
in! Notice: we did not say that he loves all the rich girls. All we said was that if he
loves this particular girl, then she is rich. So the existence of rich girls he does not
love does not undercut our claim. For another case, say you are trying to find the car
he is driving and say ‘If he is in his own car, then it is a Corvette’—that is, ‘If he is
in his own car then he is in a Corvette’. You would be mistaken if he has traded his
Corvette for a Yugo. But say the Corvette is in the shop and he is driving a loaner
that also happens to be a Corvette. Then ‘He is in his own car’ is F and ‘He is in a
Corvette’ is T. Still, there is nothing wrong with your claim—if he is in his own car,
then he is in a Corvette. Given this, we are left with the completed table,
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(AA)

if then
T T T
T F F
F T T
F T F

which is identical to the table for!. With L for ‘He loves her’ and R for ‘She is
rich’, for ‘If he loves her then she is rich’ the natural translation is .L! R/. Another
operator which works this way is ‘ only if ’. You should be able to see this
with examples as above: ‘He loves her only if she is rich’ and ‘He is in his own car
only if he is in a Corvette’. So far, perhaps, so good.

But the conditional calls for special comment. First, notice that the table shifts
with the position of ‘if’. Suppose he loves her if she is rich. Intuitively, ‘He loves her
if she is rich’ says the same as ‘If she is rich then he loves her’. Thus, with the above
table and assignments, we end up with translation .R! L/. Notice that the order is
switched around the arrow. This time, we are mistaken if she is rich and he does not
love her. We can make this point directly from the original claim.

(AB)

He loves her if she is rich
T T T
T T F
F F T
F T F

The claim is false just in the case where she is rich but he does not love her. The result
is not the same as the table for!. What we need is an expression that is F in the case
when R is T and L is F, and otherwise T. We get just this with .R! L/. Of course,
this is just the same result as by intuitively reversing the operator into the regular ‘if

then ’ form.
In the formal language, the order of the components is crucial. In a true material

conditional, the truth of the antecedent guarantees the truth of the consequent. In
ordinary language this role is played, not by the order of the components, but by
operator placement. In general, if by itself is an antecedent indicator; and only if is a
consequent indicator. That is, we get,

(AC)

if P then Q � .P ! Q/

P if Q � .Q! P /

P only if Q � .P ! Q/

only if P , Q � .Q! P /

‘If’, taken alone, identifies what does the guaranteeing, and so the antecedent of our
material conditional; ‘only if’ identifies what is guaranteed, and so the consequent.4

4It may feel natural to convert ‘P unless Q’ to ‘P if not Q’ and translate .�Q! P /. This is fine
and, as is clear from the abbreviated form, equivalent to .Q _P /. However, with the extra negation and
concern about direction of the arrow, it is easy to get confused on this approach—so the simple wedge is
less likely to go wrong.
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Cause and Conditional
It is important that the material conditional does not directly indicate causal con-
nection. Suppose we have sentences,

S : You strike the match
L: The match will light.

And consider,

(i) If you strike the match then it will light S ! L

(ii) The match will light only if you strike it L! S

with natural translations by our method on the right. Good. But clearly the cause
of the lighting is the striking. So the first arrow runs from cause to effect, and the
second from effect to cause. Why? In (i) we represent the cause as sufficient for
the effect: striking the match guarantees that it will light. In (ii) we represent the
cause as necessary for the effect—the only way to get the match to light, is to strike
it—so if the match lights, it was struck.

There may be a certain tendency to associate the ordinary ‘if’ and ‘only if’ with
cause, so that we say, ‘if P then Q’ when we think of P as a (sufficient) cause of
Q, and say ‘P only if Q’ when we think of Q as a (necessary) cause of P . But
causal direction is not reflected by the arrow, which comes out .P ! Q/ either
way. The material conditional indicates guarantee.

This point is important insofar as certain ordinary conditionals seem inextricably
tied to causation. This is particularly the case with “subjunctive” conditionals
(conditionals about what would have been). Suppose after a game of one-on-one
basketball I brag, ‘If I had played LeBron, I would have won’ where this is,

‘If it were the case that I played LeBron then it would have been that I won the game’.

Intuitively, this is false, LeBron would wipe the floor with me. But contrast,

‘If it were the case that I played Lassie then it would have been that I won the game’.

Now, intuitively, this is true; Lassie has many talents but, presumably, basketball is
not among them—and I could take her. But I have never played LeBron or Lassie,
so both ‘I played LeBron’ and ‘I played Lassie’ are false. Thus the truth value of
the whole conditional changes from false to true though the values of sentences in
the blanks remain the same; and ‘if it were the case that then it would have
been that ’ is not even truth functional. Subjunctive conditionals do offer a sort
of guarantee, but the guarantee is for situations alternate to the way things actually
are. So actual truth values do not determine the truth of the conditional.

Conditionals other than the material conditional are a central theme of Priest, Non-
Classical Logics. As usual, we simply assume that ‘if’ and ‘only if’ are used in
their truth functional sense, and so are given a good translation by!.
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As we have just seen, the natural translation of ‘P if Q’ is Q ! P , and the
translation of ‘P only if Q’ is P ! Q. Thus it should come as no surprise that the
translation of ‘P if and only if Q’ is .P ! Q/ ^ .Q! P /, where this is precisely
what is abbreviated by .P $ Q/. We can also make this point directly. Consider,
‘He loves her if and only if she is rich’. The operator is truth functional with the table,

(AD)

He loves her if and only if she is rich
T T T
T F F
F F T
F T F

It cannot be that he loves her and she is not rich, because he loves her only if she is
rich; so the second row is F. And it cannot be that she is rich and he does not love her,
because he loves her if she is rich; so the third row is F. The biconditional is true just
when both she is rich and he loves her, or neither. Another operator that works this
way is ‘ just in case ’. You should convince yourself that this is so. Notice
that ‘if’, ‘only if’, and ‘if and only if’ play very different roles for translation—you
almost want to think of them as completely different words: if, onlyif, and ifandonlyif,
each with its own distinctive logical role. Do not get the different roles confused!

For an example that puts some of this together consider, ‘She is rich if he loves
her, if and only if he is a cad or very generous’. This comes to the following:

(AE)

She is rich if he loves her if and only if he is a cad or he is very generous
��������

XXXXXXXX
She is rich if he loves her

��
��

HH
HH

he is a cad or he is very generous
��

��

HH
HH

She is rich he loves her he is a cad he is very generous

We begin by assigning sentence letters to the simple sentences at the bottom. Then
the parallel tree is constructed as follows:

R: She is rich

L: He loves her

C : He is a cad

G: He is very generous

..L! R/$ .C _G//

�
���

H
HHH

.L! R/

�
�
@
@

(C _G/

�
�
@
@

R L C G

Observe that ‘She is rich if he loves her’ is equivalent to .L! R/, not the other way
around. Then the wedge translates ‘ or ’, and the main operator has the
same table as$.

Notice again that our procedure for translating, one operator or part at a time, lets
us translate even where the original is so complex that it is difficult to comprehend.
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The method forces us to capture all available sentential structure, and the resultant
translation is good insofar as, given its interpretation function, a formal sentence
comes out true on precisely the intended interpretations that correspond to stories
on which the original is true. It does this because the formal and informal sentences
work the same way. Eventually, you want to be able to work translations without the
trees. (And maybe you have already begun to do so.) In fact, it will be natural to
generate translations simultaneously with a (mental) parse tree. The result produces
translations from the top down, rather than from the bottom up, building the translation
operator-by-operator as you take the sentence apart from the main operator down. But,
of course, the result should be the same no matter how you do it.

From definition AR on page 5, an argument is some sentences, one of which (the
conclusion) is taken to be supported by the remaining sentences (the premises). In
some courses on logic or critical reasoning, one might spend a great deal of time
learning to identify premises and conclusions in ordinary discourse. However, we
have taken this much as given, representing arguments in standard form, with premises
listed as complete sentences above a line, and the conclusion under. Thus, for example,

(AF)

If you strike the match, then it will light
The match will not light

You did not strike the match

is a simple argument of the sort we might have encountered in Chapter 1. By the
Chapter 1 validity test VT, this argument is logically valid.

We get the same result by our formal methods: To translate the argument, we
produce a translation for the premises and conclusion, retaining the “standard-form”
structure. Thus we might end up with an interpretation function and translation as
below,

(AG)
S : You strike the match

L: The match will light

S ! L

�L

�S

The result is an object to which we can apply truth tables and derivations in a straight-
forward way. Thus by a truth table and (Chapter 3) derivation,

(AH)

L S S ! L �L / � S

T T T F F
T F T F T
F T F T F
F F T T T

1. S ! L prem
2. �L prem
3. .S ! L/! .�L! �S/ T3.13
4. �L! �S 3,1 MP
5. �S 4,2 MP

both S ! L;�L �s �S and S ! L;�L
ÀDs
�S . If you have not yet seen

derivations, do not worry about it for now.
And these results are just what we want. For the table, recall that (i) for any way

a world (consistent story) can be, an interpretation function results in an intended
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interpretation; and (ii) on a good translation, the truth value of an ordinary sentence at
an arbitrary world is the same as its formal counterpart on the corresponding intended
interpretation. For some good formal translation of premises and conclusion: Suppose
an argument is sententially valid; then by SV there is no interpretation on which the
premises are true and the conclusion is false; so no intended interpretation from (i)
makes the premises true and the conclusion is false; so with (ii) no consistent story
makes the premises true and conclusion false; so by LV the original argument is
logically valid. So if an argument is sententially valid, then it is logically valid. We
will make this point again, in some detail, in Part III.5 For now, notice that our formal
methods, derivations and truth tables, apply to arguments of arbitrary complexity. So
we are in a position to demonstrate validity for arguments that would have set us on
our heels in Chapter 1. With this in mind, consider again the butler case (B) from
page 2. Demonstration that the argument is logically valid is entirely straightforward
by a good translation and then a truth table to demonstrate semantic validity.

E5.10. Using the interpretation function below, produce parse trees and then parallel
ones to complete the translation for each of the following.

L: Lassie barks

T : Timmy is in trouble

P : Pa will help

H : Lassie is healthy

a. If Timmy is in trouble, then Lassie barks.

b. Timmy is in trouble if Lassie barks.

*c. Lassie barks only if Timmy is in trouble.

d. If Timmy is in trouble and Lassie barks, then Pa will help.

*e. If Timmy is in trouble, then if Lassie barks Pa will help.

f. If Pa will help only if Lassie barks, then Pa will help if and only if Timmy is
in trouble.

g. Pa will help if Lassie barks, just in case Lassie barks only if Timmy is in
trouble.

h. If Timmy is in trouble and Pa will not help, then Lassie is not healthy or does
not bark.

*i. If Timmy is in trouble, then either Lassie is not healthy or if Lassie barks then
Pa will help.

5And it remains for Part III to show how derivations matter for logical validity.
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j. If Lassie neither barks nor is healthy, then Timmy is in trouble if Pa will not
help.

E5.11. Use our method, with or without parse trees, to produce a translation, including
interpretation function for the following.

a. If animals feel pain, then animals have intrinsic value.

b. Animals have intrinsic value only if they feel pain.

c. Although animals feel pain, vegetarianism is not right.

d. Animals do not have intrinsic value unless vegetarianism is not right.

e. Vegetarianism is not right only if animals do not feel pain or do not have
intrinsic value.

f. If you think animals feel pain, then vegetarianism is right.

*g. If you think animals do not feel pain, then vegetarianism is not right.

h. If animals feel pain, then if animals have intrinsic value if they feel pain, then
animals have intrinsic value.

*i. Vegetarianism is right only if both animals feel pain, and animals have intrinsic
value just in case they feel pain; but it is not the case that animals have intrinsic
value just in case they feel pain.

j. If animals do not feel pain if and only if you think animals do not feel pain,
but you do think animals feel pain, then you do not think that animals feel
pain.

E5.12. For each of the following arguments: (i) Produce a good translation, including
interpretation function and translations for the premises and conclusion. Then (ii)
use truth tables to determine whether the argument is sententially valid.

*a. Our car will not run unless it has gasoline
Our car has gasoline

Our car will run

b. If Barack is president, then Michelle is first lady
Michelle is not first lady

Barack is not president

c. Snow is white and snow is not white

Dogs can fly
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d. If Mustard murdered Boddy, then it happened in the library.
The weapon was the pipe if and only if it did not happen in the library, and the
weapon was not the pipe only if Mustard murdered him.

Mustard murdered Boddy

e. There is evil
If god is good, there is no evil unless god has morally sufficient reasons for
allowing it.
If god is omnipotent, then god does not have morally sufficient reasons for
allowing evil.

God is not both good and omnipotent.

E5.13. For each of the arguments in E5.12 that is sententially valid, produce a deriva-
tion to show that it is valid in AD.

E5.14. Use a translation and truth table to show that the butler argument (B) from
page 2 is semantically valid.

E5.15. For each of the following concepts, explain in an essay of about two pages,
so that (high-school age) Hannah could understand. In your essay, you should
(i) identify the objects to which the concept applies, (ii) give and explain the
definition, and give and explicate examples of your own construction (iii) where
the concept applies, and (iv) where it does not. Your essay should exhibit an
understanding of methods from the text.

a. Good translations.

b. Truth functional operators

c. Parse trees, interpretation functions and parallel trees

5.3 Quantificational

It is not surprising that our goals for the quantificational case remain very much as in
the sentential one. We still want to produce translations—consisting of interpretation
functions and formal sentences—which capture available structure, making a formal
P 0 true at intended interpretation II! just when the corresponding ordinary P is true
at story !. We do this as before, by assuring that the various parts of the ordinary
and formal languages work the same way. Of course, now we are interested in
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capturing quantificational structure, and the interpretation and formal sentences are
for quantificational languages.

In the last section, we developed a recipe for translating from ordinary language
into sentential expressions, associating particular bits of ordinary language with
various formal symbols. We might proceed in very much the same way here, moving
from our notion of truth functional operators, to that of extensional terms, relation
symbols, and operators. Roughly, an ordinary term is extensional when the satisfaction
of a formula in which it appears depends just on the object to which it refers; an
ordinary relation symbol is extensional when the satisfaction of a formula in which
it appears depends just on the objects to which it applies; and an ordinary operator
is extensional when the satisfaction of a formula in which it appears depends just on
the satisfaction of expressions which appear in its blanks. Clearly the notion of an
extensional operator at least is closely related to that of a truth functional operator.
Extensional terms, relation symbols, and operators in ordinary language work very
much like corresponding ones in a formal quantificational language—where, again,
the idea would be to identify bits of ordinary language which contribute to truth values
in the same way as corresponding parts of the formal language.

However, in the quantificational case, there is no simple recipe for translation. It is
best to work directly with the fundamental goal of producing formal translations that
are true in the same situations as ordinary expressions. To be sure, certain patterns
and strategies will emerge but, again, we should think of what we are doing less as
applying a recipe than as directly using our understanding of what makes ordinary
and formal sentences true to produce good translations. With this in mind, let us
move directly to sample cases, beginning with those that are relatively simple, and
advancing to ones that are more complex.

5.3.1 Elementary Sentences

First, sentences without quantifiers work very much as in the sentential case. Consider
a simple example. Say we are confronted with ‘Bob is happy’. We might begin, as in
the sentential case, with the interpretation function,

B: Bob is happy

and useB for ‘Bob is happy’,�B for ‘Bob is not happy’, and so forth. But this is to ig-
nore structure we are now capable of capturing. Thus, in our standard quantificational
language Lq, we might let U be the set of all people, and set,

b: Bob

H 1: fo j o 2 U and o is happyg

Then we can use Hb for ‘Bob is happy’, �Hb for ‘Bob is not happy’, and so forth.
If II! assigns Bob to b, and the set of happy people to H , then Hb is satisfied and
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true on II! just in case Bob is happy at !—which is just what we want. Similarly
suppose we are confronted with ‘Bob’s father is happy’. In the sentential case, we
might have tried, F : Bob’s father is happy. But this is to miss structure available to
us now. So we might consider assigning a constant d to Bob’s father and going with
Hd as above. But this also misses available structure. In this case, we can expand the
interpretation function to include,

f 1: fhm; ni jm; n 2 U and n is the father of mg

Then for any variable assignment d, IdŒb� = Bob and IdŒf 1b� is Bob’s father. SoHf 1b
is satisfied and true just in case Bob’s father is happy. �Hf 1b is satisfied just in
case Bob’s father is not happy, and so forth—which is just what we want. In these
cases without quantifiers, once we have translated simple sentences, everything else
proceeds as in the sentential case. Thus, for example, for ‘Neither Bob nor his father
is happy’ we might offer, �.Hb _Hf 1b/.

The situation gets more interesting when we add quantifiers. We will begin with
cases where a quantifier’s scope includes neither binary operators nor other quantifiers,
and gradually increase complexity. Consider the following interpretation function:

II U: fo j o is a dogg

f 1: fhm; ni jm; n 2 U and n is the father of mg

W 1: fo j o 2 U and o will have its dayg

We assume that there is some definite content to a dog’s having its day, and that every
dog has a father—if a dog “Adam” has no father at all, we will not have specified a
legitimate interpretation. (Why?) Say we want to translate the following sentences:

(1) Every dog will have its day

(2) Some dog will have its day

(3) Some dog will not have its day

(4) No dog will have its day

Assume ‘some’ means ‘at least one’. The first sentence is straightforward. 8xWx is
read, ‘for any x, Wx’; it is true just in case every dog will have its day. Suppose II! is
an interpretation I where the elements of U are m, n, and so forth. Then the tree is as
follows:
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(AI)

1

IdŒ8xWx�
8x

2

Id.xjm/ŒWx�

Id.xjn/ŒWx�

one branch for each
member of U

3

..

.. xŒm�

..

.. xŒn�

The formula at (1) is satisfied just in case each of the branches at (2) is satisfied. But
this can be the case only if each member of U is in the interpretation of W—which
given our interpretation function, can only be the case if each dog will have its day. If
even one dog does not have its day, then 8xWx is not satisfied, and is not true.

The second case is also straightforward. 9xWx is read, ‘there is an x such that
Wx’; it is true just in case some dog will have its day.

(AJ)

1

IdŒ9xWx�
9x

2

Id.xjm/ŒWx�

Id.xjn/ŒWx�

one branch for each
member of U

3

..

.. xŒm�

..

.. xŒn�

The formula at (1) is satisfied just in case at least one of the branches at (2) is satisfied.
But this can be the case only if some member of U is in the interpretation ofW—which,
given the interpretation function, is to say that some dog will have its day.

The next two cases are only slightly more difficult. 9x�Wx is read, ‘there is an x
such that not Wx’; it is true just in case some dog will not have its day.

(AK)

1

IdŒ9x�Wx�
9x

2

Id.xjm/Œ�Wx�

Id.xjn/Œ�Wx�

one branch for each
member of U

�

�

3

Id.xjm/ŒWx�

Id.xjn/ŒWx�

4

..

.. xŒm�

..

.. xŒn�

The formula at (1) is satisfied just in case at least one of the branches at (2) is satisfied.
And a branch at (2) is satisfied just in case the corresponding branch at (3) is not
satisfied. So 9x�Wx is satisfied and true just in case some member of U is not in the
interpretation of W—just in case some dog does not have its day.

The last case is similar. 8x�Wx is read, ‘for any x, not Wx’; it is true just in
case every dog does not have its day.
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(AL)

1

IdŒ8x�Wx�
8x

2

Id.xjm/Œ�Wx�

Id.xjn/Œ�Wx�

one branch for each
member of U

�

�

3

Id.xjm/ŒWx�

Id.xjn/ŒWx�

4

..

.. xŒm�

..

.. xŒn�

The formula at (1) is satisfied just in case all of the branches at (2) are satisfied. And
this is so just in case none of the branches at (3) are satisfied. So 8x�Wx is satisfied
and true just in case none of the members of U are in the interpretation of W—just in
case no dog has its day.

Perhaps it has already occurred to you that there are other ways to translate
these sentences. The following lists what we have done, with “quantifier switching”
alternatives on the right:

(AM)

Every dog will have its day 8xWx �9x�Wx

Some dog will have its day 9xWx �8x�Wx

Some dog will not have its day 9x�Wx �8xWx

No dog will have its day 8x�Wx �9xWx

There are different ways to think about these alternatives. First, in ordinary language,
beginning from the bottom, no dog will have its day just in case not even one dog
does. Similarly, moving up the list, some dog will not have its day just in case not
every dog does. Some dog will have its day just in case not every dog does not. And
every dog will have its day iff not even one dog does not. These equivalences may be
difficult to absorb at first but, if you think about them, each should make sense.

Next, we might think about the alternatives purely in terms of abbreviations.
Notice that, in a tree, IdŒ��P � is always the same as IdŒP �—the tildes “cancel each
other out.” But then, in the top case, �9x�Wx abbreviates ��8x��Wx which is
satisfied just in case 8xWx is satisfied. In the second case, 9xWx directly abbreviates
�8x�Wx. In the third, 9x�Wx abbreviates �8x��Wx which is satisfied just in
case �8xWx is satisfied. And, in the last case, �9xWx abbreviates ��8x�Wx,
which is satisfied just in case 8x�Wx is satisfied. So, again, the alternatives are true
under just the same conditions.

Finally, we might think about the alternatives directly, based on their branch
conditions. Taking just the last case,
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(AN)

1

IdŒ�9xWx�
�

2

IdŒ9xWx�
9x

3

Id.xjm/ŒWx�

Id.xjn/ŒWx�

one branch for each
member of U

4

..

.. xŒm�

..

.. xŒn�

The formula at (1) is satisfied just in case the formula at (2) is not. But the formula
at (2) is not satisfied just in case none of the branches at (3) is satisfied—and this
can only happen if no dog is in the interpretation of W , where this is as it should be
for ‘No dog will have its day’. In practice, there is no reason to prefer 8x�P over
�9xP —the choice is purely a matter of taste. It would be less natural to use, say,
�9x�P in place of 8xP , or �8x�P in place of 9xP . And it is a matter of good
form to pursue translations that are natural. At any rate, all of the options satisfy CG.
(But notice that we leave further room for alternatives among good answers, thus
complicating comparisons with, for example, the Answers to Selected Exercises.)

Observe that variables are mere placeholders for these expressions so that choice
of variables also does not matter. Thus, in tree (AN) immediately above, the formula
is true just in case no dog is in the interpretation of W . But we get the exact same
result if the variable is y.

(AO)

1

IdŒ�9yWy�
�

2

IdŒ9yWy�
9y

3

Id.yjm/ŒWy�

Id.yjn/ŒWy�

one branch for each
member of U

4

..

.. yŒm�

..

.. yŒn�

In either case, what matters in the end is whether the objects are in the interpretation
of the relation symbol: whether m 2 IŒW �, and so forth. If none are, then the formulas
are satisfied. Thus the formulas are satisfied under exactly the same conditions. And
since one is satisfied iff the other is satisfied, one is a good translation iff the other is.
So the choice of variables is up to you.

Given all this, we continue to treat truth functional operators as before—and we
can continue to use underlines to expose truth functional structure. The difference
is that what we would have seen as “simple” sentences have structure we were not
able to expose before. So, for example, ‘Either every dog will have its day or no
dog will have its day’ gets translation, 8xWx _ 8x�Wx; ‘Some dog will have its
day and some dog will not have its day’, gets, 9xWx ^ 9x�Wx; and so forth. If
we want to say that some dog is such that its father will have his day, we might try
9xWf 1x—there is an x such that the father of it will have its day.

https://tonyroyphilosophy.net/symbolic-logic/
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E5.16. Given the following partial interpretation function for Lq, complete the trans-
lation for each of the following. Assume Phil 300 is a logic class with Ninfa and
Harold as members in which each student is associated with a unique homework
partner.

U: fo j o is a student in Phil 300g

a: Ninfa

h: Harold

p1: fhm; ni jm; n 2 U and n is the homework partner of mg

G1: fo j o 2 U and o gets a good gradeg

H 2: fhm; ni jm; n 2 U and m gets a higher grade than ng

*a. Ninfa and Harold both get a good grade.

b. Ninfa gets a good grade, but her homework partner does not.

c. Ninfa gets a good grade only if both her homework partner and Harold do.

d. Harold gets a higher grade than Ninfa.

*e. If Harold gets a higher grade than Ninfa, then he gets a higher grade than her
homework partner.

f. Nobody gets a good grade.

*g. If someone gets a good grade, then Ninfa’s homework partner does.

h. If Ninfa does not get a good grade, then nobody does.

*i. Nobody gets a grade higher than their own grade.

j. If no one gets a higher grade than Harold, then no one gets a good grade.

E5.17. Produce a good quantificational translation for each of the following. In this
case you should provide a single interpretation function with application to all the
sentences. Let U be the set of famous philosophers and, assuming that each has a
unique successor, implement a successor function.

a. Plato is a good philosopher.

*b. Plato is better than Aristotle.

c. Neither Plato is better than Aristotle, nor Aristotle is better than Plato.

*d. If Plato is good, then his successor and successor’s successor are good.

e. No philosopher is better than his successor.
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f. Not every philosopher is better than Plato.

g. If all philosophers are good, then Plato and Aristotle are good.

h. If neither Plato nor his successor are good, then no philosopher is good.

*i. If some philosopher is better than Plato, then Aristotle is.

j. If every philosopher is better than his successor, then no philosopher is better
than Plato.

E5.18. On page 168 we say that we may show directly, based on branch conditions,
that the alternatives of table (AM) have the same truth conditions, but show it only
for the last case. Use trees to demonstrate that the other alternatives are true under
the same conditions. Be sure to explain how your trees have the desired results.

5.3.2 Complex Quantifications

With a small change to our interpretation function, we introduce a new sort of com-
plexity into our translations. Suppose U includes not just all dogs, but all physical
objects, so that our interpretation function II has,

II U: fo j o is a physical objectg

W 1: fo j o 2 U and o will have its dayg

D1: fo j o 2 U and o is a dogg

Thus the universe includes more than dogs, andD is a relation symbol with application
to dogs. We set out to translate the same sentences as before.6

(1) Every dog will have its day

(2) Some dog will have its day

(3) Some dog will not have its day

(4) No dog will have its day

This time, 8xWx does not say that every dog will have its day. 8xWx is true just
in case everything in U, dogs along with everything else, will have its day. So it might
be that every dog will have its day even though something else, for example my left
sock, does not. So 8xWx is not a good translation of ‘Every dog will have its day’.

6Sentences of the sort, ‘all P are Q’, ‘no P are Q’, ‘some P are Q’, and ‘some P are not Q’ are,
in a tradition reaching back to Aristotle, often associated with a “square of opposition” and called A,
E, I , and O sentences (see, for example, Chapter 4 of Hurley, A Concise Introduction to Logic). In
a context with the full flexibility of quantifier languages, there is little point to the special treatment,
insofar as our methods apply to these as well as to ones that are more complex.
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We do better with 8x.Dx ! Wx/. 8x.Dx ! Wx/ is read, ‘for any x if x is a
dog, then x will have its day’; it is true just in case every dog will have its day. Again,
suppose II! is an interpretation I such that the elements of U are m; n; : : : :

(AP)

1

IdŒ8x.Dx ! Wx/�
8x

2

Id.xjm/ŒDx ! Wx�
!

Id.xjn/ŒDx ! Wx�
!

one branch for each
member of U

3 4

Id.xjm/ŒDx�
..
.. xŒm�

Id.xjm/ŒWx�
..
.. xŒm�

Id.xjn/ŒDx�
..
.. xŒn�

Id.xjn/ŒWx�
..
.. xŒn�

The formula at (1) is satisfied just in case each of the branches at (2) is satisfied. And
all the branches at (2) are satisfied just in case there is no S/N pair at (3). This is so
just in case nothing in U is a dog that does not have its day; that is, just in case every
dog has its day. It is important to see how this works: There is a branch at (2) for
each thing in U. The key is that branches for things that are not dogs are “vacuously”
satisfied just because the things are not dogs. If 8x.Dx ! Wx/ is true, however,
whenever a branch is for a thing that is a dog—so that a top branch of a pair at (3) is
satisfied—that thing must be one that will have its day. If anything is a dog that does
not have its day, there is a S/N pair at (3), and 8x.Dx ! Wx/ is not satisfied and
not true.

It is worth noting some expressions that do not result in a good translation.
8x.Dx ^Wx/ is true just in case everything is a dog that will have its day. To make
it false, all it takes is one thing that is not a dog, or one thing that will not have its
day—but this is not what we want. If this is not clear, work it out on a tree. Similarly,
8xDx ! 8xWx is true just in case if everything is a dog, then everything will have
its day. To make it true, all it takes is one thing that is not a dog—then the antecedent
is false, and the conditional is true; but again, this is not what we want. In the good
translation, 8x.Dx ! Wx/, the quantifier picks out each thing in U, the antecedent
of the conditional identifies the ones we want to talk about, and the consequent says
what we want to say about them.

Moving on to the second sentence, 9x.Dx ^Wx/ is read, ‘there is an x such that
x is a dog, and x will have its day’; it is true just in case some dog will have its day.
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(AQ)

1

IdŒ9x.Dx ^Wx/�
9x

2

Id.xjm/ŒDx ^Wx�
^

Id.xjn/ŒDx ^Wx�
^

one branch for each
member of U

3 4

Id.xjm/ŒDx�
..
.. xŒm�

Id.xjm/ŒWx�
..
.. xŒm�

Id.xjn/ŒDx�
..
.. xŒn�

Id.xjn/ŒWx�
..
.. xŒn�

The formula at (1) is satisfied just in case one of the branches at (2) is satisfied. A
branch at (2) is satisfied just in cases both branches in the corresponding pair at (3)
are satisfied. And this is so just in case something is a dog that will have its day.

Again, it is worth noting expressions that do not result in good translation. 9xDx^
9xWx is true just in case something is a dog, and something will have its day—where
these need not be the same; so 9xDx ^ 9xWx might be true even though no dog has
its day. 9x.Dx ! Wx/ is true just in case something is such that if it is a dog, then
it will have its day.

(AR)

1

IdŒ9x.Dx ! Wx/�
9x

2

Id.xjm/ŒDx ! Wx�
!

Id.xjn/ŒDx ! Wx�
!

one branch for each
member of U

3 4

Id.xjm/ŒDx�
..
.. xŒm�

Id.xjm/ŒWx�
..
.. xŒm�

Id.xjn/ŒDx�
..
.. xŒn�

Id.xjn/ŒWx�
..
.. xŒn�

The formula at (1) is satisfied just in case one of the branches at (2) is satisfied; and a
branch at (2) is satisfied just in case there is a pair at (3) in which the top is N or the
bottom is S. So all we need for 9x.Dx ! Wx/ to be true is for there to be even one
thing that is not a dog—for example, my sock—or one thing that will have its day. So
9x.Dx ! Wx/ can be true though no dog has its day.

The cases we have just seen are typical. Ordinarily, the existential quantifier
operates on expressions with main operator ^. If it operates on an expression with
main operator!, the resultant expression is satisfied just by virtue of something that
does not satisfy the antecedent. And, ordinarily, the universal quantifier operates on
expressions with main operator!. If it operates on an expression with main operator
^, the expression is satisfied only if everything in U has features from both parts of the
conjunction—and it is uncommon to say something about everything in U, as opposed
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to all the objects of a certain sort. Again, when the universal quantifier operates on
an expression with main operator!, the antecedent of the conditional identifies the
objects we want to talk about, and the consequent says what we want to say about
them.

Once we understand these two cases, the next two are relatively straightforward.
9x.Dx ^ �Wx/ is read, ‘there is an x such that x is a dog and x will not have its
day’; it is true just in case some dog will not have its day. Here is the tree without
branches for the (by now obvious) term assignments:

(AS)

1

IdŒ9x.Dx ^�Wx/�
9x

2

Id.xjm/ŒDx ^�Wx�
^

Id.xjn/ŒDx ^�Wx�
^

one branch for each
member of U

3 4

Id.xjm/ŒDx�

Id.xjm/Œ�Wx�
�

Id.xjm/ŒWx�

Id.xjn/ŒDx�

Id.xjn/Œ�Wx�
�

Id.xjn/ŒWx�

The formula at (1) is satisfied just in case some branch at (2) is satisfied. A branch at
(2) is satisfied just in case the corresponding pair of branches at (3) is satisfied. And
for a lower branch at (3) to be satisfied, the corresponding branch at (4) has to be
unsatisfied. So for 9x.Dx ^�Wx/ to be satisfied, there has to be something that is a
dog and does not have its day. In principle, this is just like ‘Some dog will have its
day’. We set out to say that some object of sort P has feature Q. For this, we say that
there is an x that is of type P , and has feature Q. In ‘Some dog will have its day’, Q

is the simple Wx. In this case, Q is the slightly more complex �Wx.
Finally, 8x.Dx ! �Wx/ is read, ‘for any x, if x is a dog, then x will not have

its day’; it is true just in case every dog will not have its day—that is, just in case no
dog will have its day.

(AT)

1

IdŒ8x.Dx ! �Wx/�
8x

2

Id.xjm/ŒDx ! �Wx�
!

Id.xjn/ŒDx ! �Wx�
!

one branch for each
member of U

3 4

Id.xjm/ŒDx�

Id.xjm/Œ�Wx�
�

Id.xjm/ŒWx�

Id.xjn/ŒDx�

Id.xjn/Œ�Wx�
�

Id.xjn/ŒWx�
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The formula at (1) is satisfied just in case every branch at (2) is satisfied. Every branch
at (2) is satisfied just in case there is no S/N pair at (3); and for this to be so there
cannot be a case where a top at (3) is satisfied, and the corresponding bottom at (4)
is satisfied as well. So 8x.Dx ! �Wx/ is satisfied and true just in case nothing is
a dog that will have its day. Again, in principle, this is like ‘Every dog will have its
day’. Using the universal quantifier, we pick out the class of things we want to talk
about in the antecedent, and say what we want to say about the members of the class
in the consequent. In this case, what we want to say is that things in the class will not
have their day.

As before, quantifier-switching alternatives are possible. In the table below,
alternatives to what we have done are listed on the right.

(AU)

Every dog will have its day 8x.Dx ! Wx/ �9x.Dx ^�Wx/

Some dog will have its day 9x.Dx ^Wx/ �8x.Dx ! �Wx/

Some dog will not have its day 9x.Dx ^�Wx/ �8x.Dx ! Wx/

No dog will have its day 8x.Dx ! �Wx/ �9x.Dx ^Wx/

Beginning from the bottom, if not even one thing is a dog that will have its day, then
no dog will have its day. Moving up, if it is not the case that everything that is a dog
will have its day, then some dog will not. Similarly, if it is not the case that everything
that is a dog will not have its day, then some dog does. And if not even one thing
is a dog that does not have its day, then every dog will have its day. Again, choices
among the alternatives are a matter of taste, though the bottom alternatives may be
more natural than ones above. If you have any questions about how the alternatives
work, work them through on trees.

Before turning to some exercises, let us generalize what we have done a bit.
Include in our interpretation function,

H 1: fo j o 2 U and o is happyg

C 1: fo j o 2 U and o is a catg

Suppose we want to say, not that every dog will have its day, but that every happy
dog will have its day. Again, in principle this is like what we have done. With
the universal quantifier, we pick out the class of things we want to talk about in
the antecedent—in this case happy dogs—and say what we want about them in the
consequent. Thus 8xŒ.Dx ^Hx/! Wx� is true just in case everything that is both
happy and a dog will have its day, which is to say, every happy dog will have its day.
Similarly, if we want to say that every dog will or will not have its day, we might try,
8xŒDx ! .Wx _ �Wx/�. Or putting these together, for ‘Every happy dog will or
will not have its day’, 8xŒ.Dx^Hx/! .Wx_�Wx/�. We consistently pick out the
things we want to talk about in the antecedent, and say what we want about them with
the consequent. Similar points apply to the existential quantifier. Thus ‘Some happy
dog will have its day’ has natural translation, 9xŒ.Dx ^Hx/^Wx�—something is a
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happy dog and will have its day. ‘Some happy dog will or will not have its day’ gets,
9xŒ.Dx ^Hx/ ^ .Wx _�Wx/�. And so forth.

It is tempting to treat ‘All dogs and cats will have their day’ similarly with
translation 8xŒ.Dx ^ Cx/! Wx�. But this would be a mistake. We do not want to
say that everything which is a dog and a cat will have its day—for nothing is both
a dog and a cat! Rather, good translations are 8x.Dx ! Wx/ ^ 8x.Cx ! Wx/—
all dogs will have their day and all cats will have their day, or the more elegant
8xŒ.Dx _ Cx/ ! Wx�—each thing that is either a dog or a cat will have its day.
In the happy dog case, we needed to restrict the class under consideration to include
just happy dogs; in this dog and cat case, we are not restricting the class, but rather
expanding it to include both dogs and cats. The disjunctionDx_Cx applies to things
in the broader class which includes both dogs and cats.

This dog and cat case brings out the point that we do not merely “cookbook” from
ordinary language to formal translations, but rather want truth conditions to match.
And we can make the conditions match for expressions where standard language does
not lie directly on the surface. Thus consider ‘Only dogs will have their day’. This
does not say that all dogs will have their day. Rather it tells us that anything that has
its day is a dog, 8x.Wx ! Dx/. Similarly, ‘Leaving out the happy ones, no dogs
will have their day’, tells us that dogs other than the happy ones do not have their
day, 8xŒ.Dx ^�Hx/! �Wx�. ‘Except’ has a similar effect as in, ‘Excepting the
happy ones, no dogs will have their day’. It is tempting to add that the happy dogs
will have their day, but it is not clear that this is part of what we have actually said;
‘except’ seems precisely to except members of the specified class from what is said.7

Further, as in the dog and cat case, sometimes surface language is positively
misleading compared to standard readings. Consider, for example, ‘If some dog is
happy, it will have its day’. It is tempting to translate, 9xŒ.Dx ^Hx/! Wx�—but
this is not right. All it takes to make this expression true is something that is not a
happy dog (for example, my sock); if something is not a happy dog, then a conditional
branch is satisfied, so that the existentially quantified expression is satisfied. But we
want rather to say something about all dogs—if some (arbitrary) dog is happy it will
have its day—so that no matter what dog you pick, if it is happy then it will have its
day; thus the correct translation is 8xŒ.Dx^Hx/! Wx�. Or again, consider ‘If any
dog is happy, then they all are’. It is tempting to translate by the universal quantifier.
But the correct translation is rather, 9x.Dx^Hx/! 8x.Dx ! Hx/—if some dog
is happy, then every dog is happy. The best way to approach these cases is to think
directly about the conditions under which the ordinary expressions are true and false,
and to produce formal translations that are true and false under the same conditions.
For these last cases however, it is worth noting that when there is “pronominal” cross
reference as, ‘if some/any P is Q then it has such-and-such features’ the statement

7It may be that we conventionally use ‘except’ in contexts where the consequent is reversed for the
excepted class, for example, ‘I like all foods except brussels sprouts’—where I say it because I do not
like brussels sprouts. But, again, it is not clear that I have actually said whether I like them or not.
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translates most naturally with the universal quantifier. But when such cross-reference
is absent as, ‘if some/any P is Q then so-and-so is such-and-such’ the statement
translates naturally as a conditional with an existential antecedent. The point is not
that there are no grammatical cues! But cues are not so simple that we can always
simply read from ‘some’ to the existential quantifier, and from ‘any’ to the universal.
Perhaps this is sufficient for us to move to the following exercises.

E5.19. Given the following partial interpretation function for Lq, complete the transla-
tion for each of the following. (Perhaps these sentences reflect residual frustration
over a Mustang the author owned in graduate school.)

U: fo j o is a carg

T 1: fo j o 2 U and o is a Toyotag

F 1: fo j o 2 U and o is a Fordg

E1: fo j o 2 U and o was built in the eightiesg

J 1: fo j o 2 U and o is a piece of junkg

R1: fo j o 2 U and o is reliableg

a. Some Ford is a piece of junk.

*b. Some Ford is an unreliable piece of junk.

c. Some Ford built in the eighties is a piece of junk.

d. Some Ford built in the eighties is an unreliable piece of junk.

e. Any Ford is a piece of junk.

f. Any Ford is an unreliable piece of junk.

*g. Any Ford built in the eighties is a piece of junk.

h. Any Ford built in the eighties is an unreliable piece of junk.

i. No reliable car is a piece of junk.

j. No Toyota is an unreliable piece of junk.

*k. If a car is unreliable, then it is a piece of junk.

l. If some Toyota is unreliable, then every Ford is.

m. Only Toyotas are reliable.

n. Not all Toyotas and Fords are reliable.
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o. Any car, except for a Ford, is reliable.

E5.20. Given the following partial interpretation function for Lq, complete the transla-
tion for each of the following. Assume that Bob is married, and that each married
person has a unique “primary” spouse in case of more than one.

U: fo j o is a person who is marriedg

b: Bob

s1: fhm; ni j n is the (primary) spouse of mg

A1: fo j o 2 U and o is having an affairg

E1: fo j o 2 U and o is employedg

H 1: fo j o 2 U and o is happyg

L2: fhm; ni jm; n 2 U and m loves ng

M 2: fhm; ni jm is married to ng

a. Bob’s spouse is happy.

*b. Someone is married to Bob.

c. Anyone who loves their spouse is happy.

d. Nobody who is happy and loves their spouse is having an affair.

e. Someone is happy just in case they are employed.

f. Someone is happy just in case someone is employed.

g. Some happy people have affairs, and some do not.

*h. Anyone who loves and is loved by their spouse is happy, though some are not
employed.

i. Only someone who loves their spouse and is employed is happy.

j. Anyone who is unemployed and whose spouse is having an affair is unhappy.

k. People who are unemployed and people whose spouse is having an affair are
unhappy.

*l. Anyone married to Bob is happy if Bob is not having an affair.

m. If anyone married to Bob is happy then Bob is employed and is not having an
affair.

n. If Bob is having an affair, then everyone married to him is unhappy, and
nobody married to him loves him.
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o. Only unemployed people and unhappy people have affairs, but if someone
loves and is loved by their spouse, then they are happy unless they are unem-
ployed.

E5.21. Produce a good quantificational translation for each of the following. You
should produce a single interpretation function with application to all of the
sentences. Let U be the set of all animals.

a. Not all animals make good pets.

b. Dogs and cats make good pets.

c. Some dogs are ferocious and make good pets, but no cat is both.

d. No ferocious animal makes a good pet, unless it is a dog.

e. No ferocious animal makes a good pet, unless Lassie is both.

f. Some, but not all good pets are dogs.

g. Only dogs and cats make good pets.

h. Not all dogs and cats make good pets, but some of them do.

i. If Lassie does not make a good pet, then the only good pet is a cat that is
ferocious, or a dog that is not.

j. A dog or cat makes a good pet if and only if it is not ferocious.

E5.22. Use trees to show that the quantifier-switching alternatives from (AU) are true
and false under the same conditions as their counterparts. Be sure to explain how
your trees have the desired results.

5.3.3 Overlapping Quantifiers

The full power of our quantificational languages emerges only when we allow one
quantifier to appear in the scope of another.8 So let us turn to some cases of this sort.
First, let U be the set of all people, and suppose the intended interpretation of L2 is
fhm; ni jm; n 2 U, and m loves ng. Say we want to translate,

(1) Everyone loves everyone.

(2) Someone loves someone.

8Aristotle’s categorical logic is capable of handling simple A, E, I , and O sentences—consider
experience you may have had with “Venn diagrams.” But you will not be able to make his logic, or such
diagrams, apply to the full range of cases that follow (see note 6 on page 171).
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(3) Everyone loves someone.

(4) Everyone is loved by someone.

(5) Someone loves everyone.

(6) Someone is loved by everyone.

First, you should be clear how each of these differs from the others. In particular, it
is enough for (3) ‘Everyone loves someone’ that each person loves some person—
perhaps their mother (or themselves); but for (6) ‘Someone is loved by everyone’ we
need some one person, say Elvis, that everyone loves. Similarly, it is enough for (4)
‘Everyone is loved by someone’ that for each person there is a lover of them—perhaps
their mother (or themselves); but for (5) ‘Someone loves everyone’ we need some
particularly loving individual, say Mother Theresa, who loves everyone.

The first two are straightforward. 8x8yLxy is read, ‘for any x and any y, x
loves y’; it is true just in case everyone loves everyone.

(AV)

1

IdŒ8x8yLxy�
8x

2

:::

Id.xjm/Œ8yLxy�
8y

Id.xjn/Œ8yLxy�
8y

3

:::

:::

Id.xjm;yjm/ŒLxy�

Id.xjm;yjn/ŒLxy�

Id.xjn;yjm/ŒLxy�

Id.xjn;yjn/ŒLxy�

The branch at (1) is satisfied just in case all of the branches at (2) are satisfied. And all
of the branches at (2) are satisfied just in case all of the branches at (3) are satisfied.
But every combination of objects appears at the branch tips. So 8x8yLxy is satisfied
and true just in case for any pair hm; ni 2 U2, hm; ni is in the interpretation of L.
Notice that the order of the quantifiers and variables makes no difference: for a given
interpretation I, 8x8yLxy, 8x8yLyx, 8y8xLxy, and 8y8xLyx are all satisfied
and true under the same condition—just when every hm; ni 2 U2 is a member of IŒL�.

The case for the second sentence is similar. 9x9yLxy is read, ‘there is an x and
there is a y such that x loves y’; it is true just in case some hm; ni 2 U2 is a member
of IŒL�—just in case someone loves someone. The tree is like (AV) above, but with 9
uniformly substituted for 8. Then the formula at (1) is satisfied iff a branch at (2) is
satisfied; iff a branch at (3) is satisfied; iff someone loves someone. Again the order
of the quantifiers does not matter.

The next cases are more interesting. 8x9yLxy is read, ‘for any x there is a y
such that x loves y’; it is true just in case everyone loves someone.
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(AW)

1

IdŒ8x9yLxy�
8x

2

:::

Id.xjm/Œ9yLxy�
9y

Id.xjn/Œ9yLxy�
9y

3

:::

:::

Id.xjm;yjm/ŒLxy�

Id.xjm;yjn/ŒLxy�

Id.xjn;yjm/ŒLxy�

Id.xjn;yjn/ŒLxy�

The branch at (1) is satisfied just in case each of the branches at (2) is satisfied. And a
branch at (2) is satisfied just in case at least one of the corresponding branches at (3)
is satisfied. So 8x9yLxy is satisfied just in case, no matter which o you pick, there is
some p such that such that o loves p—so that everyone loves someone. This time, the
order of the of the variables makes a difference: Thus 8x9yLyx translates sentence
(4), ‘Everyone is loved by someone’. The picture is like the one above, with Lyx
uniformly replacing Lxy. This expression is satisfied just in case no matter which o
you pick, there is some p such that such that p loves o—so that everyone is loved by
someone.

Finally, 9x8yLxy is read, ‘there is an x such that for any y, x loves y’; it is
satisfied and true just in case someone loves everyone.

(AX)

1

IdŒ9x8yLxy�
9x

2

:::

Id.xjm/Œ8yLxy�
8y

Id.xjn/Œ8yLxy�
8y

3

:::

:::

Id.xjm;yjm/ŒLxy�

Id.xjm;yjn/ŒLxy�

Id.xjn;yjm/ŒLxy�

Id.xjn;yjn/ŒLxy�

The branch at (1) is satisfied just in case some branch at (2) is satisfied. And a branch
at (2) is satisfied just in case each of the corresponding branches at (3) is satisfied. So
9x8yLxy is satisfied and true just in case there is some o 2 U such that, no matter
what p 2 U you pick, ho; pi 2 IŒL�—just when there is someone who loves everyone.
If we switch Lyx for Lxy, we get a tree for 9x8yLyx; this formula is true just when
someone is loved by everyone. Switching the order of the quantifiers and variables
makes no difference when quantifiers are the same. But it matters crucially when
quantifiers are different!
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Let us see what happens when, as before, we broaden the interpretation function
so that U includes all physical objects.

II U: fo j o is a physical objectg

P 1: fo j o 2 U and o is a persong

L2: fhm; ni jm; n 2 U, and m loves ng

Let us set out to translate the same sentences as before.
For ‘Everyone loves everyone’, where we are talking about people, 8x8yLxy

will not do. 8x8yLxy requires that each member of U love all the other members of
U—but then we are requiring that my left sock love my computer, and so forth. What
we need is rather, 8x8yŒ.Px ^ Py/! Lxy�. With the last branch tips omitted, the
tree is as follows:

(AY)

1

IdŒ8x8y..Px ^Py/! Lxy/�
8x

2

:
:
:

Id.xjm/
Œ8y..Px ^Py/! Lxy/�

8y

Id.xjn/
Œ8y..Px ^Py/! Lxy/�

8y

3

:
:
:

:
:
:

Id.xjm;yjm/
Œ.Px ^Py/! Lxy�

!

Id.xjm;yjn/
Œ.Px ^Py/! Lxy�

!

Id.xjn;yjm/
Œ.Px ^Py/! Lxy�

!

Id.xjn;yjn/
Œ.Px ^Py/! Lxy�

!

4
Id.xjm;yjm/
ŒPx ^Py�

Id.xjm;yjm/
ŒLxy�

Id.xjm;yjn/
ŒPx ^Py�

Id.xjm;yjn/
ŒLxy�

Id.xjn;yjm/
ŒPx ^Py�

Id.xjn;yjm/
ŒLxy�

Id.xjn;yjn/
ŒPx ^Py�

Id.xjn;yjn/
ŒLxy�

The formula at (1) is satisfied iff all the branches at (2) are satisfied; all the branches
at (2) are satisfied just in case all the branches at (3) are satisfied. And, for this to
be the case, there can be no pair at (4) where the top is satisfied and the bottom is
not. That is, there can be no o and p such that o and p are people, o; p 2 IŒP �, but o
does not love p, ho; pi … IŒL�. The idea is very much as before: With the universal
quantifiers, we select the things we want to talk about in the antecedent, we make sure
that x and y pick out people, and then say what we want to say about the things in the
consequent.

The case for ‘Someone loves someone’ also works on close analogy with what
has gone before. In this case, we do not use the conditional. If the quantifiers in
(AY) were existential, all we would need is one branch at (2) to be satisfied, and one
branch at (3) satisfied. And, for this, all we would need is one thing that is not a
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person—so that the top branch for the conditional is N, and the conditional is therefore
S. On the analogy with what we have seen before, what we want is something like,
9x9yŒ.Px ^ Py/ ^ Lxy�. There are some people x and y such that x loves y.

(AZ)

1

IdŒ9x9y..Px ^Py/^Lxy/�
9x

2

:
:
:

Id.xjm/
Œ9y..Px ^Py/^Lxy/�

9y

Id.xjn/
Œ9y..Px ^Py/^Lxy/�

9y

3

:
:
:

:
:
:

Id.xjm;yjm/
Œ.Px ^Py/^Lxy�

^

Id.xjm;yjn/
Œ.Px ^Py/^Lxy�

^

Id.xjn;yjm/
Œ.Px ^Py/^Lxy�

^

Id.xjn;yjn/
Œ.Px ^Py/^Lxy�

^

4
Id.xjm;yjm/
ŒPx ^Py�

Id.xjm;yjm/
ŒLxy�

Id.xjm;yjn/
ŒPx ^Py�

Id.xjm;yjn/
ŒLxy�

Id.xjn;yjm/
ŒPx ^Py�

Id.xjn;yjm/
ŒLxy�

Id.xjn;yjn/
ŒPx ^Py�

Id.xjn;yjn/
ŒLxy�

The formula at (1) is satisfied iff at least one branch at (2) is satisfied. At least one
branch at (2) is satisfied just in case at least one branch at (3) is satisfied. And for this
to be the case, we need some branch pair at (4) where both the top and the bottom
are satisfied—some o and p such that o and p are people, o; p 2 IŒP �, and o loves p,
ho; pi 2 IŒL�.

In these cases, the order of the quantifiers and variables does not matter. But
order matters when quantifiers are mixed. Thus for ‘Everyone loves someone’,
8xŒPx ! 9y.Py ^ Lxy/� is good—if any thing x is a person, then there is some y
such that y is a person and x loves y.

(BA)

1

IdŒ8x.Px! 9y.Py ^Lxy//�
8x

2

:
:
:

Id.xjm/
ŒPx! 9y.Py ^Lxy/�

!

Id.xjn/
ŒPx! 9y.Py ^Lxy/�

!

3

Id.xjm/ŒPx�

Id.xjm/
Œ9y.Py ^Lxy/�

9y

Id.xjn/ŒPx�

Id.xjn/
Œ9y.Py ^Lxy/�

9y

4

:
:
:

:
:
:

Id.xjm;yjm/ŒPy ^Lxy�

Id.xjm;yjn/ŒPy ^Lxy�

Id.xjn;yjm/ŒPy ^Lxy�

Id.xjn;yjn/ŒPy ^Lxy�

The formula at (1) is satisfied just in case all the branches at (2) are satisfied. All the
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branches at (2) are satisfied just in case no pair at (3) has the top satisfied and the
bottom not. If x is assigned to something that is not a person, the branch at (2) is
satisfied trivially. But where the assignment to x is some o that is a person, a bottom
branch at (3) is satisfied just in case at least one of the corresponding branches at
(4) is satisfied—just in case there is some p such that p is a person and o loves p.
Notice, again, that the universal quantifier is associated with a conditional, and the
existential with a conjunction. Similarly we translate ‘Everyone is loved by someone’,
8xŒPx ! 9y.Py ^ Lyx/�. The tree is as above, with Lxy uniformly replaced by
Lyx.

For ‘Someone loves everyone’, 9xŒPx ^ 8y.Py ! Lxy/� is good—there is an
x such that x is a person, and for any y, if y is a person, then x loves y.

(BB)

1

IdŒ9x.Px ^8y.Py! Lxy//�
9x

2

:
:
:

Id.xjm/
ŒPx ^8y.Py! Lxy/�

^

Id.xjn/
ŒPx ^8y.Py! Lxy/�

^

3

Id.xjm/ŒPx�

Id.xjm/
Œ8y.Py! Lxy/�

8y

Id.xjn/ŒPx�

Id.xjn/
Œ8y.Py! Lxy/�

8y

4

:
:
:

:
:
:

Id.xjm;yjm/ŒPy! Lxy�

Id.xjm;yjn/ŒPy! Lxy�

Id.xjn;yjm/ŒPy! Lxy�

Id.xjn;yjn/ŒPy! Lxy�

The formula at (1) is satisfied just in case some branch at (2) is satisfied. A branch at
(2) is satisfied just in case the corresponding pair at (3) is satisfied. The top of such
a pair is satisfied when the assignment to x is some o 2 IŒP �; the bottom is satisfied
just in case all of the corresponding branches at (4) are satisfied—just in case any p
is such that if it is a person, then o loves it. So there has to be a person o that loves
every person p. Similarly, you should be able to see that 9xŒPx ^ 8y.Py ! Lyx/�

is good for ‘Someone is loved by everyone’.

Again, it may have occurred to you already that there are other options for
these sentences. This time natural alternatives are not for quantifier switching, but
for quantifier placement. For ‘Someone loves everyone’ we have given, 9xŒPx ^
8y.Py ! Lxy/� with the universal quantifier on the inside. However, 9x8yŒPx ^
.Py ! Lxy/� would do as well. As a matter of strategy, it is best to keep quantifiers
as close as possible to that which they modify. However, we can show that, in this case,
pushing the quantifier across that which it does not bind leaves the truth condition
unchanged. Let us make the point generally. Say Q.v/ is a formula with variable v

free, but P is one in which v is not free. We are interested in the relation between
P ^ 8vQ.v/ and 8v.P ^Q.v//. Here are the trees:
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(BC)

1

IdŒ8v.P ^Q.v//�
8v

2

:::

Id.vjm/ŒP ^Q.v/�
^

Id.vjn/ŒP ^Q.v/�
^

3

Id.vjm/ŒP �

Id.vjm/ŒQ.v/�

Id.vjn/ŒP �

Id.vjn/ŒQ.v/�

and,

(BD)

4

IdŒP ^ 8vQ.v/�
^

5

IdŒP �

IdŒ8vQ.v/�
8v

6

:::

Id.vjm/ŒQ.v/�

Id.vjn/ŒQ.v/�

The key is this: Since P has no free instances of v , for any o 2 U, IdŒP � is satisfied
just in case Id.vjo/ŒP � is satisfied; for if v is not free in P , then d’s assignment to v

makes no difference to the evaluation of P . In (BC), the formula at (1) is satisfied
iff each of the branches at (2) is satisfied; and each of the branches at (2) is satisfied
iff each of the branches at (3) is satisfied. In (BD) the formula at (4) is satisfied iff
both branches at (5) are satisfied; and the bottom at (5) requires that all the branches
at (6) are satisfied. But the branches at (6) are just like the bottom branches from
(3) in (BC); and given the equivalence between IdŒP � and Id.vjo/ŒP �, the top at (5) is
satisfied iff each of the tops at (3) is satisfied. So all the branches at (3) are satisfied
iff the top at (5) and all the branches at (6) are satisfied; so the one formula is satisfied
iff the other is as well. Notice that this only works because v is not free in P and
IdŒP � = Id.vjo/ŒP �. You can move the quantifier past the P only if it does not bind a
variable free in P !

Parallel reasoning would work for any combination of 8 and 9, with ^, _, and!.
That is, supposing that v is not free in P , each of the following pairs is equivalent.

(BE)

8v.P ^Q.v// ” P ^ 8vQ.v/

9v.P ^Q.v// ” P ^ 9vQ.v/

8v.P _Q.v// ” P _ 8vQ.v/

9v.P _Q.v// ” P _ 9vQ.v/

8v.P ! Q.v// ” P ! 8vQ.v/

9v.P ! Q.v// ” P ! 9vQ.v/

The comparison between 8yŒPx ^ .Py ! Lxy/� and ŒP x ^ 8y.Py ! Lxy/�

is an instance of the first pair. In effect, then, we can “push” the quantifier into the
parentheses across a formula to which the quantifier does not apply, and “pull” it
out across a formula to which the quantifier does not apply—without changing the
conditions under which the formula is satisfied.
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But we need to be more careful when the order of P and Q.v/ is reversed. Some
cases work the way we expect. Consider 8v.Q.v/ ^P / and 8vQ.v/ ^P .

(BF)

1

IdŒ8v.Q.v/ ^P /�
8v

2

:::

Id.vjm/ŒQ.v/ ^P �
^

Id.vjn/ŒQ.v/ ^P �
^

3

Id.vjm/ŒQ.v/�

Id.vjm/ŒP �

Id.vjn/ŒQ.v/�

Id.vjn/ŒP �

and,

(BG)

4

IdŒ8vQ.v/ ^P �
^

5

IdŒP �

IdŒ8vQ.v/�
8v

6

:::

Id.vjm/ŒQ.v/�

Id.vjn/ŒQ.v/�

In this case, the reasoning is as before. In (BF), the formula at (1) is satisfied iff all
the branches at (2) are satisfied; and all the branches at (2) are satisfied iff all the
branches at (3) are satisfied. In (BG), the formula at (4) is satisfied iff both branches
at (5) are satisfied; and the top at (5) is satisfied iff all the branches at (6) are satisfied.
But the branches at (6) are like the tops at (3); and given the equivalence between
IdŒP � and Id.vjo/ŒP �, the bottom at (5) is satisfied iff the bottoms at (3) are satisfied.
So all the branches at (3) are satisfied iff the bottom at (5) and all the branches at (6)
are satisfied; so, again, the formulas are satisfied under the same conditions. And
similarly for different combinations of the quantifiers 8 or 9 and the operators ^ or _.
Thus our table extends as follows:

(BH)

8v.Q.v/ ^P / ” 8vQ.v/ ^P

9v.Q.v/ ^P / ” 9vQ.v/ ^P

8v.Q.v/ _P / ” 8vQ.v/ _P

9v.Q.v/ _P / ” 9vQ.v/ _P

We can push a quantifier “into” the front part of a parenthesis or pull it out as above.
But the case is different when the inner operator is !. Consider trees for

8v.Q.v/! P / and, noting the quantifier switch, for 9vQ.v/! P .
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(BI)

1

IdŒ8v.Q.v/! P /�
8v

2

:::

Id.vjm/ŒQ.v/! P �
!

Id.vjn/ŒQ.v/! P �
!

3

Id.vjm/ŒQ.v/�

Id.vjm/ŒP �

Id.vjn/ŒQ.v/�

Id.vjn/ŒP �

and

(BJ)

4

IdŒ9vQ.v/! P �
!

5

IdŒP �

IdŒ9vQ.v/�
9v

6

:::

Id.vjm/ŒQ.v/�

Id.vjn/ŒQ.v/�

Starting with (BJ), the formula at (4) is satisfied so long as at (5) the upper branch
is N or bottom is S; and the top is N iff no branch at (6) is S; thus the formula at (4)
is satisfied so long as none of the branches at (6) are S or the bottom at (5) is S; or,
put the other way around, the formula at (4) is N iff one of the branches at (6) is S
and the bottom at (5) is N. The formula at (1) is satisfied iff all the branches at (2) are
satisfied; and all the branches at (2) are satisfied iff there is no S/N pair at (3); so the
formula at (1) is N iff there is an S/N pair at (3). But, as before, the tops at (3) are the
same as the branches at (6); and given the match between IdŒP � and Id.vjo/ŒP �, the
bottoms at (3) are the same as the bottom at (5). So there is an S/N pair at (3) iff some
branch at (6) is S and the bottom at (5) is N. So 8v.Q.v/! P / and 9vQ.v/! P

are (not) satisfied under the same conditions. By similar reasoning, we are left with
the following equivalences to complete our table:

(BK) 8v.Q.v/! P / ” 9vQ.v/! P

9v.Q.v/! P / ” 8vQ.v/! P

When a universal goes into the antecedent of a conditional, it flips to an existential.
And when an existentitial quantifier goes in to the antecedent of a conditional, it flips
to a universal.

Here is an explanation for what is happening: The universal quantifier of8v.Q.v/

! P / requires that each inner conditional branch be satisfied; with tips for P the
same, this requires either that every antecedent tip be N or the consequent be S. But
once the quantifier is pushed in, the resultant conditional A ! P is satisfied only
when the antecedent is N or the consequent is S; so the original requirement that all
the antecedent tips be N or P be S is matched by the requirement that an existential
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A be N or P be S. Similarly, the existential quantifier of 9v.Q.v/! P / requires
that some inner conditional branch be satisfied; with tips for P the same, this requires
either that some antecedent tip be N or the consequent be S. But once the quantifier is
pushed in, the resultant conditional A! P is satisfied when the antecedent is N or
the consequent is S; so the original requirement that some antecedent tip be N or P

be S is matched by the requirement that a universal A be N or P be S. These cases
differ from others insofar as an inner conditional branch is S when its antecedent tip
is N. In the standard cases, a branch is S when the tip remains S—and the quantifiers
go in as one would expect. The place for caution is when a quantifier comes from or
goes into the antecedent of a conditional.9

Return to ‘Everybody loves somebody’. We gave as a translation, 8xŒPx !
9y.Py^Lxy/�. But 8x9yŒPx ! .Py^Lxy/� does as well. To see this, notice that
the immediate subformula, ŒP x ! 9y.Py ^ Lxy/� is of the form ŒP ! 9vQ.v/�

where P has no free instance of the quantified variable v . The quantifier is in
the consequent of the conditional, so ŒP x ! 9y.Py ^ Lxy/� is equivalent to
9yŒPx ! .Py ^ Lxy/�. So the larger formula 8xŒPx ! 9y.Py ^ Lxy/� is
equivalent to 8x9yŒPx ! .Py ^ Lxy/�. And similarly in other cases. Officially,
there is no reason to prefer one option over the other. Informally, however, there is less
room for confusion when we keep quantifiers relatively close to the expressions they
modify. One reason is that we continue to associate 8 with! and 9 with ^. In so
doing, we avoid unexpected results from quantifier flipping. On this basis, 8xŒPx !
9y.Py ^ Lxy/� is to be preferred. To illustrate the point, consider ‘Everyone is
such that if someone loves them then they love themselves’. The natural translation
is 8xŒPx ! .9y.Py ^ Lyx/ ! Lxx/�. By our principles, this is equivalent to
8xŒPx ! 8y..Py ^ Lyx/ ! Lxx/� and then 8x8yŒPx ! ..Py ^ Lyx/ !

Lxx/�. Again, the first is preferable relative to the others, with their unintuitive use of
the universal y-quantifier outside parentheses.10

If you have followed this discussion, you are doing well—and should be in a good
position to think about the following exercises.

E5.23. Given the following partial interpretation function for Lq, complete the trans-
lation for each of the following. (The last generates a famous paradox—can a
barber shave himself?)

9By similar reasoning, we should expect quantifier flipping when pushing into expressions 8v.P #

Q.v// or 8v.Q.v/ # P / with a neither-nor operator true only when both sides are false. And this is
just so: The universal expression is satisfied only when all the inner branches are satisfied; and all the
inner branches are satisfied just when all the tips are not. And this is like the condition from the existential
quantifier in P # 9vQ or 9vQ # P . Observe also that we get results as above by previously established
equivalences: 8v.Q.v/! P / = 8v.�Q.v/_P / = 8v�Q.v/_P = �9vQ.v/_P = 9vQ! P .
The universal goes into the disjunction as we expect, but the negation flips it to existential. And similarly
for other cases.

10And 8x9yŒPx ! ..Py^Lyx/! Lxx/� is a mistake: It goes to 8xŒPx ! 9y..Py^Lyx/!
Lxx/� and then 8xŒPx ! .8y.Py^Lyx/! Lxx/�—‘Everyone is such that if everything is a person
that loves them then they love themselves’.
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U: fo j o is a persong

b: Bob

B1: fo j o 2 U and o is a barberg

M 1: fo j o 2 U and o is a mang

S2: fhm; ni jm; n 2 U and m shaves ng

a. Bob shaves himself.

b. Everyone shaves everyone.

c. Someone shaves everyone.

d. Everyone is shaved by someone.

e. Someone is shaved by everyone.

f. Not everyone shaves themselves.

*g. Any man is shaved by someone.

h. Some man shaves everyone.

i. No man is shaved by all barbers.

*j. Any man who shaves everyone is a barber.

k. If someone shaves all men, then they are a barber.

l. If someone shaves everyone, then they shave themselves.

*m. A barber shaves anyone who does not shave themselves.

*n. A barber shaves only people who do not shave themselves.

o. A barber shaves all and only people who do not shave themselves.

E5.24. Produce a good quantificational translation for each of the following. In this
case you should provide an interpretation function for the sentences. Let U be the
set of people and, assuming that each has a unique best friend, implement a best
friend of function.

a. Bob’s best friend likes all New Yorkers.

b. Some New Yorker likes all Californians.

c. No Californian likes all New Yorkers.
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d. Any Californian likes some New Yorker.

e. Californians who like themselves, like at least some people who do not.

f. New Yorkers who do not like themselves, do not like anybody.

g. Nobody likes someone who does not like them.

h. There is someone who dislikes every New Yorker, and is liked by every
Californian.

i. Anyone who likes themselves and dislikes every New Yorker, is liked by every
Californian.

j. Everybody who likes Bob’s best friend likes some New Yorker who does not
like Bob.

E5.25. (i) Use trees to explain the fourth (9 / _) equivalence in table (BE). (ii) Use
trees to explain an equivalence in (BH) for an operator other than ^. Then (iii)
use trees to explain the second equivalence in (BK). Be sure to explain how your
trees justify the results.

E5.26. Explain why we have not listed quantifier placement equivalences matching
8v.P $ Q.v// with .P $ 8vQ.v//. Hint: Consider 8v.P $ Q.v// as
an abbreviation of 8vŒ.P ! Q.v// ^ .Q.v/ ! P /�; from trees, you can see
that this is equivalent to Œ8v.P ! Q.v// ^ 8v.Q.v/ ! P /�. Now, what is
the consequence of quantifier placement difficulties for!? Would it work if the
quantifier did not flip?

5.3.4 Equality

We complete our discussion of translation by turning to some important applications
for equality. Adopt as an interpretation function,

II U: fo j o is a persong

b: Bob

c: Bob

f 1: fhm; ni jm; n 2 U, and n is the father of mg

H 1: fo j o 2 U and o is a happy persong

(Maybe Bob’s friends call him “Cronk.”) The simplest applications forD assert the
identity of individuals. Thus, for example, on any intended interpretation I, b D c is
satisfied insofar as hIdŒb�; IdŒc�i 2 IŒD�. Similarly, 9x.b D f 1x/ is satisfied just in
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case Bob is someone’s father. And, on the standard interpretation of LNT
< , 9xŒ.xCx/ D

.x � x/� is satisfied insofar as, say, h NNd.xj2/Œx C x�; NNd.xj2/Œx � x�i 2 NNŒD�—that is,
h4; 4i 2 NNŒD�. If this last case is not clear, think about it on a tree.

We get to an interesting class of cases when we turn to quantity expressions. Thus,
for example, we can easily say ‘At least one person is happy’, 9xHx. But notice
that neither 9xHx ^ 9yHy nor 9x9y.Hx ^Hy/ work for ‘At least two people are
happy’. For the first, it should be clear that each conjunct is satisfied, so that the
conjunction is satisfied, so long as there is at least one happy person. And similarly
for the second. To see this in a simple case, suppose Bob, Sue, and Jim are the only
people in U. Then the existentials for 9x9y.Hx ^Hy/ result in nine branches of the
following sort:

(BL)

1

. . . Id.xjm;yjn/ŒHx ^Hy�
^

2

Id.xjm;yjn/ŒHx�
..
.. xŒm�

Id.xjm;yjn/ŒHy�
..
.. yŒn�

for some individuals m and n. Just one of these branches has to be satisfied in order
for the main sentence to be satisfied and true. Clearly none of the tips are satisfied
if none of Bob, Sue, or Jim is happy; then the branches are N and 9x9y.Hx ^Hy/
is N as well. But suppose just one of them, say Sue, is happy. Then on the branch
for d.xjSue;yjSue/ both Hx and Hy are satisfied. Thus the conjunction is satisfied, and
the existential is satisfied as well. So 9x9y.Hx ^Hy/ does not require that at least
two people are happy. The problem, again, is that the same person might satisfy both
conjuncts at once.

But this case points the way to a good translation for ‘At least two people are
happy’. We get the right result with, 9x9yŒ.Hx ^Hy/ ^ �.x D y/�. Now, in our
simple example, the existentials result in nine branches as follows:

(BM)

1

. . .
Id.xjm;yjn/Œ.Hx ^Hy/^�.x D y/�

^

2

Id.xjm;yjn/ŒHx ^Hy�
^

Id.xjm;yjn/Œ�.x D y/�
�

3

Id.xjm;yjn/ŒHx�

.

.

.

.
xŒm�

Id.xjm;yjn/ŒHy�

.

.

.

.
yŒn�

Id.xjm;yjn/Œx D y�

.

.

.

.
��

xŒm�

@@ yŒn�

The sentence is satisfied and true if at least one such branch is satisfied. Now in
the case where just Sue is happy, on the branch with d.xjSue;yjSue/ both Hx and Hy
are satisfied as before, so that the top at (2) is satisfied. But x D y is satisfied; so
�.x D y/ is not, and the branch as a whole fails. But suppose both Bob and Sue are
happy. Then on the branch with d.xjBob;yjSue/ both Hx and Hy are satisfied; but this
time, x D y is not satisfied; so �.x D y/ is satisfied, and the branch is satisfied, so
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that the whole sentence, 9x9yŒ.Hx ^Hy/^�.x D y/� is satisfied and true. That is,
the sentence is satisfied and true just when the happy people assigned to x and y are
distinct—just when there are at least two happy people. On this pattern, you should
be able to see how to say there are at least three happy people, and so forth.

Now suppose we want to say, ‘At most one person is happy’. We have, of course,
learned a couple of ways to say nobody is happy, 8x�Hx and �9xHx. But for
‘at most one’ we need something like, 8xŒHx ! 8y.Hy ! .x D y//�. For
this, in our simplified case, the universal quantifier yields three branches of the sort,
Id.xjm/ŒHx ! 8y.Hy ! .x D y//�. The beginning of the branch is as follows:

(BN)

1

Id.xjm/ŒHx!8y.Hy! .x D y//�
!

2

Id.xjm/ŒHx�

.

.

.

.
xŒm�

Id.xjm/Œ8y.Hy! .x D y//�
8y

3

Id.xjm;yjBob/ŒHy! .x D y/�

Id.xjm;yjSue/ŒHy! .x D y/�

Id.xjm;yjJim/ŒHy! .x D y/�

The universal 8xŒHx ! 8y.Hy ! .x D y//� is satisfied and true if and only if all
the conditional branches at (1) are satisfied. And the branches at (1) are satisfied so
long as there is no S/N pair at (2). This is, of course, true if nobody is happy so that the
top at (2) is never satisfied. But suppose m is a happy person, say Sue, and the top at
(2) is satisfied. Then the bottom comes out S so long as Sue is the only happy person.
If Sue is the only happy person, when y is assigned to objects other than Sue, Hy is
N and so the conditionals are S; and when y is assigned to Sue, the equality is S and
so the conditional is S. So there is no S/N pair. But suppose Jim, say, is also happy;
then on the very bottom branch at (3), Hy is S and x D y is N; so the conditional is
N; so the universal at (2) is N; so the conditional at (1) is N; and the entire sentence
is N. Suppose x is assigned to a happy person; in effect, 8y.Hy ! .x D y// limits
the range of happy things, telling us that anything happy is it. We get ‘At most two
people are happy’ with 8x8yŒ.Hx ^Hy/ ! 8z.Hz ! .x D z _ y D z//�—if
some things are happy, then anything that is happy is one of them. And similarly in
other cases.

To say ‘Exactly one person is happy’, it is enough to say at least one person is
happy, and at most one person is happy. Thus, using what we have already done,
9xHx^8xŒHx ! 8y.Hy ! .x D y//� does the job. But we can use the “limiting”
strategy with the universal quantifier more efficiently. Thus, for example, if we want
to say ‘Bob is the only happy person’ we might try Hb ^ 8yŒHy ! .b D y/�—Bob
is happy, and every happy person is Bob. Similarly, for ‘Exactly one person is happy’,
9xŒHx ^ 8y.Hy ! .x D y//� is good. We say that there is a happy person, and
that all the happy people are identical to it. For ‘Exactly two people are happy’,
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9x9yŒ..Hx ^ Hy/ ^ �.x D y// ^ 8z.Hz ! Œ.x D z/ _ .y D z/�/� does the
job—there are at least two happy people, and anything that is a happy person is
identical to one of them.

Phrases of the sort “the such-and-such” are definite descriptions. Perhaps it is
natural to think “the such-and-such is so-and-so” fails when there is more than one
such-and-such. Similarly, phrases of the sort “the such-and-such is so-and-so” seem
to fail when nothing is such-and-such. Thus, for example, neither ‘The desk at
CSUSB is wobbly’ nor ‘The present king of France is bald’ seem to be true—the
first because the description fails to pick out just one object, and the second because
the description does not pick out any object. Of course, if a description does pick
out just one object, then the predicate must apply. So, for example, as I write, ‘The
president of the USA is a woman’ is not true. There is exactly one object which is
the president of the USA, but it is not a woman. And ‘The president of the USA
is a man’ is true. In this case, exactly one object is picked out by the description,
and the predicate does apply. Thus, in “On Denoting,” Bertrand Russell famously
proposes that a statement of the sort ‘the P is Q’ is true just in case there is exactly
one P and it is Q. On Russell’s account, then, where P .x/ and Q.x/ have variable x

free, and P .v/ is like P .x/ but with free instances of x replaced by a new variable
v , 9xŒ.P .x/ ^ 8v.P .v/ ! x D v// ^ Q.x/� is good—there is a P , it is the
only P , and it is Q. Thus, for example, with the natural interpretation function,
9xŒ.Px ^ 8y.Py ! x D y// ^Wx� translates ‘The president is a woman’. In a
course on philosophy of language, one might spend a great deal of time discussing
definite descriptions. But in ordinary cases we will simply assume Russell’s account
for translating expressions of the sort, ‘the P is Q’.

Finally, notice that equality can play a role in exception clauses. This is particularly
important when making general comparisons. Thus, for example, if we want to say
that zero is least of the natural numbers, with the standard interpretation NN of LNT

< ,
8x.; < x/ is a mistake. This formula is satisfied only if zero is less than zero! What
we want is rather, 8xŒ�.x D ;/! .; < x/�. Similarly, if we want to say that there
is a tallest person, we would not use 9x8yT xy where T xy when x is taller than
y. This would require that the tallest person be taller than herself. What we want is
rather, 9x8yŒ�.x D y/! T xy�.

Observe that relations of this sort may play a role in definite descriptions. Thus it
seems natural to talk about the least natural number, or the tallest person. We might
therefore additionally assert uniqueness with something like, 9xŒx is taller than every
other ^8z.z is taller than every other! x D z/�.11 However, we will not usually
add the second clause, insofar as uniqueness follows automatically in these cases
from the initial claim, 9x8yŒ�.x D y/! T xy� together with the premise that taller
than (less than) is asymmetric, that 8x8y.T xy ! �Tyx/. For arbitrary relation R,
9x8yŒ�.x D y/! Rxy� does not require uniqueness—it says only that there is an

119xŒ8y.�.x D y/! T xy/ ^ 8z.8y.�.z D y/! T zy/! x D z/�.
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object that stands in relation R to every other. Given the additional premise that R is
asymmetric, however, it follows that just one thing has R to all the others: If m has R

to everything other than itself, and n has R to everything other than itself, but m = n,
then Rmn and Rnm, so that R is not asymmetric; thus, put the other way around, if
R is asymmetric, no distinct objects m; n are such that each has R to all the others.
Thus for ‘The tallest person is happy’ it is sufficient to conjoin ‘An object with T to
every other is happy’ with asymmetry,

9xŒ8y.�.x D y/! T xy/ ^Hx� ^ 8x8y.T xy ! �Tyx/

Taken together, these imply all the elements of Russell’s account. And similarly in
other cases.

E5.27. Given the following partial interpretation function for Lq, complete the trans-
lation for each of the following.

U: fo j o is a snake in my yardg

a: Aaalph

G1: fo j o 2 U and o is in the grassg

D1: fo j o 2 U and o is deadlyg

B2: fhm; ni jm; n 2 U and m is bigger than ng

a. There is at least one snake in the grass.

b. There are at least two snakes in the grass.

*c. There are at least three snakes in the grass.

d. There are no snakes in the grass.

e. There is at most one snake in the grass.

*f. There are at most two snakes in the grass.

g. There are at most three snakes in the grass.

h. There is exactly one snake in the grass.

*i. There are exactly two snakes in the grass.

j. There are exactly three snakes in the grass.

*k. The snake in the grass is deadly.

l. The deadly snake is in the grass.
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*m. Aaalph is the biggest snake.

n. The biggest snake is in the grass.

o. The biggest snake in the grass is deadly.

E5.28. Given LNT
< and the standard interpretation NN as below, complete the translation

for each of the following.12

U: N

;: zero

S : fhm; ni jm; n 2 N, and n is the successor of mg

C: fhhm; ni; oi jm; n; o 2 N, and m plus n equals og

�: fhhm; ni; oi jm; n; o 2 N, and m times n equals og

<: fhm; ni jm; n 2 N, and m is less than ng

a. Any number is equal to itself (identity is reflexive).

b. If a number a is equal to a number b, then b is equal to a (identity is symmet-
ric).

c. If a number a is equal to a number b and b is equal to c, then a is equal to c
(identity is transitive).

d. No number is less than itself (less-than is irreflexive).

*e. If a number a is less than a number b, then b is not less then a (less-than is
asymmetric).

f. If a number a is less than a number b and b is less than c, then a is less than c
(less-than is transitive).

g. There is no largest number.

*h. Four is even (a number such that two times something is equal to it).

i. Three is odd (such that two times something plus one is equal to it).

*j. Any odd number is the sum of an odd and an even.

k. Any even number other than zero is the sum of one odd with another.

12This exercise translates some truths of arithmetic. Notice that these are necessary truths. It is easy
enough to cook up stories where nobody loves anybody, where everybody loves everybody, and anything
between. However there is no consistent story where one plus one is other than two—and, as translations,
any tautology would seem to satisfy CG. Still, as a sort of addendum to our criterion of goodness, it is
natural to proceed as though ‘plus’, ‘times’ and the like might apply in arbitrary ways. In fact, this will
be the way you naturally approach these exercises.
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l. The sum of one odd with another odd is even.

m. There is no even number greater than every other even number.

*n. Three is prime (a number divided by no number other than one and itself—
though you will have to put this in terms of multipliers).

o. Every prime except two is odd.

E5.29. For each of the following arguments: (i) Produce a good translation, including
interpretation function and translations for the premises and conclusion. Then (ii)
for each argument that is not quantificationally valid, produce an interpretation
(trees optional) to show that the argument is not quantificationally valid.

a. Only citizens can vote
Hannah is a citizen

Hannah can vote
b. All citizens can vote

If someone is a citizen, then their father is a citizen
Hannah is a citizen

Hannah’s father can vote
*c. Alice is taller than everyone else

Only Alice is taller than everyone else

d. Alice is taller than everyone else
The taller than relation is asymmetric

Only Alice is taller than everyone else

e. There is a dog
At most one dog is pursuing a cat
At least one cat is being pursued (by some animal)

Some dog is pursuing a cat

E5.30. For each of the arguments in E5.29 that you have not shown is invalid, produce
a derivation to show that it is valid in AD.

E5.31. For each of the following concepts, explain in an essay of about two pages,
so that (high-school age) Hannah could understand. In your essay, you should
(i) identify the objects to which the concept applies, (ii) give and explain the
definition, and give and explicate examples of your own construction (iii) where
the concept applies, and (iv) where it does not. Your essay should exhibit an
understanding of methods from the text.
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a. Quantifier switching

b. Quantifier placement

c. Quantity expressions and definite descriptions



Chapter 6

Natural Deduction

Natural deduction systems are so-called because their rules formalize patterns of
reasoning that occur in relatively ordinary “natural” contexts. Thus, initially at least,
the rules of natural deduction systems are easier to motivate than the axioms and rules
of axiomatic systems. By itself, this is sufficient to give natural deduction a special
interest. As we shall see, natural deduction is also susceptible to proof strategies in
a way that (primitive) axiomatic systems are not. If you have had another course in
formal logic, you have probably been exposed to natural deduction. So, again, it may
seem important to bring what we have done into contact what you have encountered
in other contexts. After some general remarks about natural deduction in section 6.1,
we turn to the sentential part of our natural derivation system NDs (section 6.2), then
the full version with quantifiers and equality ND (section 6.3), and finally consider
some applications to arithmetic (section 6.4).

6.1 General

This section develops some concepts required for NDs and ND. The first part develops
a “toy” system to introduce the very idea of a derivation and a derivation rule. We
then turn to some concepts required for the particular rules of ND.1

6.1.1 Derivations as Games

Derivations can be seen as a kind of game—with the aim of getting from a starting
point to a goal by rules. In their essential nature, these rules are defined in terms of
form: the forms of expressions authorize “moves” in the game. Given this, there is
no immediate or obvious connection between derivations and semantic validity or
truth. All the same, even though the rules are not defined by a relation to validity and

1Parts of this section are reminiscent of section 3.1 and, especially if you skipped over that section,
you may want to look it over now as additional background.

198
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truth, ultimately we shall be able to establish relations between the derivation rules
and these notions.

We begin introducing natural derivations purely in their essential nature as games.
Thus, for example, consider a preliminary system NP with the following rules:

NP
R1 P ! Q, P

Q

R2 P _Q

Q

R3 P ^Q

P

R4 P

P _Q

In this system, R1: given formulas of the form P ! Q and P , you may move to Q;
R2: given a formula of the form P _Q, you may move to Q; R3: given a formula of
the form P ^Q, you may move to P ; and R4: given a formula P you may move to
P _Q for any Q. For now, at least, the game is played as follows: You begin with
some starting formulas and a goal. The starting formulas are like “cards” in your hand.
You then apply the rules to obtain more formulas, to which the rules may be applied
again and again. You win if you eventually obtain the goal formula.

Let us consider some examples. At this stage, do not worry about strategy, about
why we do what we do, as much as about how the rules work and the way the game
is played. A game always begins with starting premises at the top, and goal on the
bottom.

(A)

1. A! .B ^ C/ P(remise)
2. A P(remise)

B _D (goal)

The formulas on lines (1) and (2) are of the form P ! Q and P , where P maps to A
and Q to .B ^ C/; so we are in a position to apply rule R1 to get the Q.

1. A! .B ^ C/ P(remise)
2. A P(remise)

3. B ^ C 1,2 R1

B _D (goal)

The justification for our move—the way the rules apply—is listed on the right; in this
case, we use the formulas on lines (1) and (2) according to rule R1 to get B ^ C ; so
that is indicated by the notation. Now B ^ C is of the form P ^Q. So we can apply
R3 to it in order to obtain the P , namely B .

1. A! .B ^ C/ P(remise)
2. A P(remise)

3. B ^ C 1,2 R1
4. B 3 R3

B _D (goal)

Notice that one application of a rule is independent of another. It does not matter what
formula was P or Q in a previous move for evaluation of this one. Finally, where P

is B , B _D is of the form P _Q. So we can apply R4 to get the final result.
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1. A! .B ^ C/ P(remise)
2. A P(remise)

3. B ^ C 1,2 R1
4. B 3 R3
5. B _D 4 R4 Win!

Notice that R4 leaves the Q unrestricted: Given some P , we can move to P _Q for
any Q. Since we reached the goal from the starting sentences, we win! In this simple
derivation system, any line of a successful derivation is either given as a premise, or
justified from lines before it by the rules.

Here are a couple more examples, this time of completed derivations. First:

(B)

1. A ^ C P
2. .A _ B/! D P

3. A 1 R3
4. A _ B 3 R4
5. D 2,4 R1
6. D _ .R! S/ 5 R4 Win!

A ^ C is of the form P ^ Q. So we can apply R3 to obtain the P , in this case A.
Then where P is A, we use R4 to add on a B to get A_B . .A_B/! D and A_B
are of the form P ! Q and P ; so we apply R1 to get the Q, that isD. Finally, where
D is P , D _ .R! S/ is of the form P _Q; so we apply R4 to get the final result.
Notice again that the Q may be any formula whatsoever.

Here is another example:

(C)

1. .A ^ B/ ^D P
2. .A ^ B/! C P
3. A! .C ! .B ^D// P

4. A ^ B 1 R3
5. C 2,4 R1
6. A 4 R3
7. C ! .B ^D/ 3,6 R1
8. B ^D 7,5 R1
9. B 8 R3 Win!

You should be able to follow the steps. In this case, we use A ^ B on line (4) twice;
once as part of an application of R1 to get C , and again in an application of R3 to get
the A. Once you have a formula in your “hand” you can use it as many times and
whatever way the rules will allow. Also, the order in which we worked might have
been different. Thus, for example, we might have obtained A on line (5) and then
C after. You win if you get to the goal by the rules; how you get there is up to you.
Finally, it is tempting to think we could get B from, say, A ^ B on line (4). We will
able to do this in our official system. But the rules we have so far do not let us do so.
R3 lets us move just to the left conjunct of a formula of the form P ^Q.

When there is a way to get from the premises of some argument to its conclusion
by the rules of derivation system N, the premises prove the conclusion in system N. In
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this case, where � is the set of premises and P the conclusion, we write �
Ǹ

P . If
�

Ǹ
P the argument is valid in derivation system N. Notice the distinction between

this “single turnstile” ` and the double turnstile � associated with semantic validity.
As usual, if Q1 : : :Qn are the members of � , we sometimes write Q1 : : :Qn Ǹ

P in
place of �

Ǹ
P . If � has no members then we simply write

Ǹ
P . In this case, P is

a theorem of derivation system N.
One can imagine setting up many different rule sets, and so many different games

of this kind. In the end, we want our game to serve a specific purpose. That is, we
want to use the game in the identification of valid arguments. In order for our games
to be an indicator of validity, we would like it to be the case that �

Ǹ
P iff � � P ,

that � proves P iff � entails P . In Part III we will show that our official derivation
games have this property. For now, we can at least see how this might be: Roughly,
we impose the following condition on rules: We require of our rules that the inputs
always semantically entail the outputs. Then if some premises are true, and we make
a move to a formula, the formula we move to must be true; and if the formulas in our
“hand” are all true, and we add some formula by another move, the formula we add
must be true; and so forth for each formula we add until we get to the goal, which will
have to be true as well. So if the premises are true, the goal must be true as well.

Notice that our rules R1, R3, and R4 each meet the proposed requirement on rules,
but R2 does not.

(D)

R1 R2 R3 R4
P Q P ! Q P / Q P _ Q / Q P ^ Q / P P / P _ Q

T T T T T T T T T T T
T F F T F T F F T T T
F T T F T T T F F F T
F F T F F F F F F F F

R1, R3, and R4 have no row where the input(s) are T and the output is F. But for R2,
the second row has input T and output F. So R2 does not meet our condition. This
does not mean that one cannot construct a game with R2 as a part. Rather, the point is
that R2 will not help us accomplish what we want to accomplish with our games. So
long as rules meet the condition, a win in the game always corresponds to an argument
that is semantically valid.

Thus for example, from table (F) on the following page, derivation (C), in which
R2 does not appear, corresponds to the result that .A ^ B/ ^ D, .A ^ B/ ! C ,
A! .C ! .B ^D// �s B . The table has no row where the premises are T and the
conclusion is F. So the argument is sententially valid. As the number of rows goes up,
we may decide that the games are dramatically easier to complete than the tables. And
similarly for the quantificational case, where we have not yet been able to demonstrate
semantic validity at all.

E6.1. Show that each of the following is valid in NP. Complete (a)–(d) using just
rules R1, R3, and R4. You will need an application of R2 for (e).
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*a. .A ^ B/ ^ C
ǸP
A

b. .A ^ B/ ^ C , A! .B ^ C/
ǸP
B

c. .A ^ B/! .B ^ A/, A ^ B
ǸP
B _ A

d. R, ŒR _ .S _ T /�! S
ǸP
S _ T

e. A
ǸP
A! C

*E6.2. (i) For each of the arguments in E6.1, use a truth table to decide if the argument
is sententially valid. (ii) To what do you attribute the fact that a win in NP is not a
sure indicator of semantic validity?

6.1.2 Auxiliary Assumptions

Having introduced the idea of a derivation by our little system NP, we now turn to
some additional concepts that are background to the rules of our official derivation
system ND. So far, our derivations have had the following form:

(E)

a. A P(remise)
:::

b. B P(remise)

:::

c. G (goal)

We have some premise(s) at the top, and a conclusion at the bottom. The premises are
against a line which indicates the range or scope over which the premises apply. In

(F)

A B C D .A ^ B/ ^ D .A ^ B/ ! C A ! .C ! .B ^ D// / B

T T T T T T T T T T T T
T T T F T F T T F F F T
T T F T T T T F T T T T
T T F F T F T F T T F T

T F T T F F F T F F F F
T F T F F F F T F F F F
T F F T F F F T T T F F
T F F F F F F T T T F F

F T T T F F F T T T T T
F T T F F F F T T F F T
F T F T F F F T T T T T
F T F F F F F T T T F T

F F T T F F F T T F F F
F F T F F F F T T F F F
F F F T F F F T T T F F
F F F F F F F T T T F F
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each case, the line extends from the premises to the conclusion, indicating that the
conclusion is derived from them. It is always our aim to derive the conclusion under
the scope of the premises alone. But our official derivation system will allow appeal
to certain auxiliary assumptions in addition to premises. Any such assumption comes
with a scope line of its own—indicating the range over which it applies. Thus, for
example, derivations might be structured as follows:

(G)

a. A P(remise)

b. B P(remise)

c. C A(ssumption)

d.

e. G (goal)

(H)

a. A P(remise)

b. B P(remise)

c. C A(ssumption)

d. D A(ssumption)

e.

f.

g. G (goal)

In each, there are premises A through B at the top and goal G at the bottom. As indi-
cated by the main leftmost scope line, the premises apply throughout the derivations,
and the goal is derived under them. In case (G), there is an additional assumption at
(c). As indicated by its scope line, that assumption applies from (c)–(d). In (H), there
are a pair of additional assumptions. As indicated by the associated scope lines, the
first applies over (c)–(f), and the second over (d)–(e). We will say that an auxiliary
assumption, together with the formulas that fall under its scope, is a subderivation.
Thus (G) has a subderivation on (c)–(d). (H) has a pair of subderivations, one on
(c)–(f), and another on (d)–(e). A derivation or subderivation may include various
other subderivations. Any subderivation begins with an auxiliary assumption. In
general we cite a subderivation by listing the line number on which it begins, then a
dash, and the line number on which its scope line ends.

In contexts without auxiliary assumptions, we have been able freely to appeal to
any formula already in our “hand.” Where there are auxiliary assumptions, however,
we may appeal only to accessible subderivations and formulas. A formula is accessible
at a given stage when it is obtained under assumptions all of which continue to apply.
But scope lines indicate the range over which assumptions apply. In practice then,
for justification of a formula at line number i we can appeal only to formulas which
appear immediately against scope lines extending as far as i—these are the formulas
obtained under assumptions that continue to apply. Thus, for example, with the scope
structure as in (I) below, in the justification of line (6),
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(I)

1. P

2.
3. A

4. A

5.

6.�
7. A

8.

9.

10. A

11.

12.

(J)

1. P

2.
3. A

4. A

5.

6.
7. A

8.

9.

10. A

11.�

12.

we could appeal only to formulas at (1), (2), and (3), for these are the only ones
immediately against scope lines extending as far as (6). To see this, notice that scope
lines extending as far as (6) are ones cut by the arrow at (6). Formulas at (4) and (5)
are not against a line extending that far. Similarly, as indicated by the arrow in (J),
for the justification of (11), we could appeal only to formulas at (1), (2), and (10).
Formulas at other line numbers are not immediately against scope lines extending as
far as (11). The accessible formulas are ones derived under assumptions all of which
continue to apply.

It may be helpful to think of a completed subderivation as a sort of “box.” So long
as you are under the scope of an assumption, the box is open and you can “see” the
formulas under its scope. However, once you exit from an assumption, the box is
closed, and the formulas inside are no longer available.

(I0)

1.

2.
3.

4.

5.

6.�
7.

8.

9.

10.

11.

12.

(J0)

1.

2.
3.

4.

5.

6.
7.

8.

9.

10.

11.�

12.

Thus, again, at line (6) of (I0) the formulas at (4)–(5) are locked away so that the only
accessible lines are (1)–(3). Similarly, at line (11) of (J0) all of (3)–(9) is unavailable.
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Our aim is always to obtain the goal against the leftmost scope line—under
the scope of the premises alone—and if the only formulas accessible for the goal’s
justification are also against the leftmost scope line, it may appear mysterious why
we would ever introduce auxiliary assumptions and subderivations at all. What is
the point of auxiliary assumptions, if formulas under their scope are inaccessible for
justification of the formula we want? The answer is that though the formulas inside a
box are unavailable the box may still be useful. Some of our rules will appeal to entire
subderivations (to the boxes), rather than to the formulas in them. A subderivation
is accessible at a given stage when it is obtained under assumptions all of which
continue to apply. In practice, what this means is that for a formula at line i , we can
appeal to a box (to a subderivation) only if it (its scope line) is against a line which
extends down to i .

Thus at line (6) of (I0), we would not be able to appeal to the formulas on lines (4)
and (5)—they are inside the closed box. However, we would be able to appeal to the
box on lines (4)–(5), for it is against a scope line cut by the arrow. Similarly, at line
(11) of (J0) we are not able to appeal to formulas on any of the lines (3)–(9), for they
are inside the closed boxes. Similarly, we cannot appeal to the boxes on (4)–(5) or
(7)–(8) for they are locked inside the larger box. However, we can appeal to the larger
subderivation on (3)–(9) insofar as it is against a line cut by the arrow. Observe that
one can appeal to a box only after it is closed—so, for example, at (11) of (J0) there
is not (yet) a closed box at (10)–(11) and so no available subderivation to which one
may appeal. When a box is closed, its assumption is discharged.

So we have an answer to our question about the point of subderivations for
reaching a conclusion: In our example, the justification for the conclusion at line (12)
might appeal to the formulas on lines (1) and (2) or to the subderivations on lines
(3)–(9) and (10)–(11). Again line (12) does not have access to the formulas inside the
subderivations from lines (3)–(9) and (10)–(11). So the subderivations are accessible
even where the formulas inside them are not.

First rule of NDs. All this will become more concrete as we turn now to the rules
of our official system ND and its initial fragment NDs. Let us set aside rules of the
preliminary system NP and begin rules of NDs from scratch. We can reinforce the
point about accessibility of formulas by introducing the first, and simplest, rule of
NDs. If a formula P appears on an accessible line a of a derivation, we may repeat it
by the rule reiteration, with justification a R.

R
a. P

P a R

It should be obvious why reiteration satisfies our basic condition on rules. If P is true,
of course P is true. So this rule could never lead from a formula that is true to one
that is not. Observe, though, that the line a must be accessible. Given scope lines
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as in (I) and leaving aside assumption lines (which are always justified ‘A’), if the
assumption at line (3) were a formula P , we could conclude P with justification 3 R
at lines (5), (6), (8), or (9). We could not obtain P with the same justification at (11)
or (12) without violating the rule, because (3) is not accessible for justification of (11)
or (12). You should be clear about why this is so.

*E6.3. Consider a derivation with the following structure:
1. P

2. A

3.

4. A

5. A

6.

7.

8.

For each of the lines (3), (6), (7), and (8) which lines are accessible? which
subderivations (if any) are accessible? That is, complete the following table:

accessible lines accessible subderivations
line 3
line 6
line 7
line 8

*E6.4. Suppose in a derivation with structure as in E6.3 we have obtained a formula
A on line (3). (i) On what lines could we conclude A by 3 R? Suppose there is

Definitions for Auxiliary Assumptions

SD An auxiliary assumption, together with the formulas that fall under its scope, is a
subderivation.

FA A formula is accessible at a given stage when it is obtained under assumptions all of
which continue to apply.

SA A subderivation is accessible at a given stage when it (as a whole) is obtained under
assumptions all of which continue to apply.

In practice, what this means is that for justification of a formula at line i we can appeal to
another formula only if it is immediately against a scope line extending as far as i .

And in practice, for justification of a formula at line i , we can appeal to a subderivation
only if its whole scope line is itself immediately against a scope line extending as far as i .
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a formula B on line (4). (ii) On what lines could we conclude B by 4 R? Hint:
This is just a question about accessibility, asking where it is possible to use lines
(3) and (4).

6.2 Sentential

We introduced the idea of a derivation by the preliminary system NP. We have
introduced notions of accessibility. And, setting aside the rules of NP, we have seen
the first rule R of NDs. We now turn to the rest of the rules of NDs, including rules
for arbitrary sentential forms—for arbitrary forms involving � and! (and so ^, _,
and$). Of course expressions of a quantificational language may have sentential
forms, and if this is so the rules apply to them. For the most part, though, we simply
focus on expressions of our sentential language Ls. In a derivation, each formula
is either a premise, an auxiliary assumption, or is justified by the rules. In addition
to reiteration, NDs includes two rules for each of the five sentential operators—for
a total of eleven rules. For each of the operators, there is an ‘I’ or introduction rule,
and an ‘E’ or exploitation rule.2 As we will see, this division helps structure the way
we approach derivations. There are sections to introduce the rules (6.2.1–6.2.3), for
discussion of strategy (6.2.4), and for an extended system NDs+ (6.2.5).

6.2.1 ! and ^

Let us start with the I- and E-rules for! and ^. We have already seen the exploitation
rule for!. It is R1 of system NP. If formulas P ! Q and P and appear on accessible
lines a and b of a derivation, we may conclude Q with justification a,b!E.

!E

a. P ! Q

b. P

Q a,b!E

Intuitively, if it is true that if P then Q and it is true that P , then Q must be true as
well. And on table (D) we saw that if both P ! Q and P are true, then Q is true.
Notice that we do not somehow get the P from P ! Q. Rather, we exploit P ! Q

when, given that P also is true, we use P together with P ! Q to conclude Q. So
this rule requires two input “cards.” The P ! Q card sits idle without a P to activate
it. The order in which P ! Q and P appear does not matter so long as they are
both accessible. However, you should cite them in the standard order—line for the
conditional first, then the antecedent. As in the axiomatic system from Chapter 3, this
rule is sometimes called modus ponens.

Here is an example. We show, L, L! .A ^K/, .A ^K/! .L! P /
ǸDs

P .

2I- and E-rules are often called introduction and elimination rules. This can lead to confusion as
E-rules do not necessarily eliminate anything.
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(K)

1. L P
2. L! .A ^K/ P
3. .A ^K/! .L! P / P

4. A ^K 2,1!E
5. L! P 3,4!E
6. P 5,1!E

L! .A^K/ andL and are of the form P ! Q and P whereL is the P andA^K is
Q. So we use them to conclude A^K by!E on (4). But then .A^K/! .L! P /

and A ^ K are of the form P ! Q and P , so we use them to conclude Q, in this
case, L! P , on line (5). Finally L! P and L are of the form P ! Q and P , and
we use them to conclude P on (6).

Notice that,

(L)
1. .A! B/ ^ C P
2. A P

3. B 1,2!E !Mistake!

misapplies the rule. .A ! B/ ^ C is not of the form P ! Q—the main operator
being ^, so that the formula is of the form P ^ Q. The rule !E applies just to
formulas with main operator!. If we want to use .A! B/ ^ C with A to conclude
B , we would first have to isolate A! B on a line of its own. We introduce a rule for
this just below (and we might have done it in NP). But we do not yet have the required
rule in NDs.
!I is our first rule that requires a subderivation. Once we understand this rule,

the rest are mere variations on a theme.!I takes as its input an entire subderivation.
Given an accessible subderivation which begins with assumption P on line a and
ends with Q against the assumption’s scope line at b, one may conclude P ! Q with
justification a-b!I.

!I

a. P A (Q,!I)

b. Q

P ! Q a-b!I

or

a. P A (g,!I)

b. Q

P ! Q a-b!I

So P ! Q is justified by a subderivation that begins with assumption P and ends
with Q. Note that the auxiliary assumption comes with a parenthetical exit strategy:
In this case the exit strategy includes the formula Q with which the subderivation is
to end, and an indication of the rule (!I) by which exit is to be made. We might
write out the entire formula inside the parentheses as indicated on the left. In practice,
however, this is tedious, and it is easier just to write the formula at the bottom of the
scope line where we will need it in the end. Thus in the parentheses on the right ‘g’ is
a simple pointer to the goal formula at the end of the scope line. Note that the pointer
is empty unless there is a formula to which it points, and the exit strategy therefore
is not complete unless the goal formula is stated. In this case, the strategy includes
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the pointer to the goal formula, along with the indication of the rule (!I) by which
exit is to be made. Again, at the time we make the assumption, we write the Q down
as part of the strategy for exiting the subderivation. But this does not mean the Q is
justified! The Q is rather introduced as a new goal. Notice also that the justification
a-b!I does not refer to the formulas on lines a and b. These are inaccessible. Rather,
the justification appeals to the subderivation which begins on line a and ends on line
b—where this subderivation is accessible even though the formulas in it are not. So
there is a difference between the comma and the dash, as they appear in justifications.

For this rule, we assume the antecedent, reach the consequent, then discharge the
assumption and conclude to the conditional by!I. Intuitively, if an assumption P

leads to Q then we know that if P then Q. On truth tables, if there is a sententially
valid argument from some premises A1 : : :An and P to conclusion Q, then there
is no row where A1 : : :An are true and P is true but Q is false—but this is just to
say that there is no row where A1 : : :An are true and P ! Q is false; so A1 : : :An

entail P ! Q.
For an example, suppose we are confronted with the following:

(M)

1. A! B P
2. B ! C P

A! C

In general, we use an introduction rule to produce some formula—typically one
already given as a goal.!I generates P ! Q given a subderivation that starts with
the P and ends with the Q. Thus to reach A! C , we need a subderivation that starts
with A and ends with C . So we set up to reach A! C with the assumption A and
an exit strategy to produce A ! C by!I. For this we set the consequent C as a
subgoal.

1. A! B P
2. B ! C P

3. A A (g,!I)

C

A! C 3- !I

Again, we have not yet reached C or A ! C . Rather, we have assumed A and set
C as a subgoal, with the strategy of terminating our subderivation by an application
of!I. This much is stated in the exit strategy. We are not in a position to fill in the
entire justification for A! C , but there is no harm filling in what we can, to remind
us where we are going. As it happens, the new goal C is easy to get.
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1. A! B P
2. B ! C P

3. A A (g,!I)

4. B 1,3!E
5. C 2,4!E

A! C 3- !I

Having reached C , and so completed the subderivation, we are in a position to execute
our exit strategy and conclude A! C by!I.

1. A! B P
2. B ! C P

3. A A (g,!I)

4. B 1,3!E
5. C 2,4!E

6. A! C 3-5!I

We appeal to the subderivation that starts with the assumption of the antecedent, and
reaches the consequent. Notice that the!I setup is driven, not by the premises, but by
where we want to get. We will say something more systematic about strategy once we
have introduced all the rules. But here is the fundamental idea: think goal directedly.
We begin with A! C as a goal. Our idea for producing it leads to C as a new goal.
And the new goal is relatively easy to obtain.

Here is another example, one that should illustrate the above point about strategy
as well as the rule. Say we want to show A

ǸDs
B ! .C ! A/.

(N)
1. A P

B ! .C ! A/

Since the goal is of the form P ! Q, we set up to get it by!I.

1. A P

2. B A (g,!I)

C ! A

B ! .C ! A/ 2- !I

We need a subderivation that starts with the antecedent and ends with the consequent.
So we assume the antecedent, and set the consequent as a new goal. In this case, the
new goal C ! A has main operator!, so we set up again to reach it by!I.
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1. A P

2. B A (g,!I)

3. C A (g,!I)

A

C ! A 3- !I

B ! .C ! A/ 2- !I

The pointer g in an exit strategy points to the goal formula at the bottom of its scope
line. Thus g for assumption B at (2) points to C ! A at the bottom of its line, and g
for assumption C at (3) points to A at the bottom of its line. Again, for the conditional,
we assume the antecedent, and set the consequent as a new goal. And this last goal is
particularly easy to reach. It follows immediately by reiteration from (1). Then it is a
simple matter of executing the exit strategies with which our auxiliary assumptions
were introduced.

1. A P

2. B A (g,!I)

3. C A (g,!I)

4. A 1 R

5. C ! A 3-4!I

6. B ! .C ! A/ 2-5!I

The subderivation which begins on (3) and ends on (4) begins with the antecedent
and ends with the consequent of C ! A. So we conclude C ! A on (5) by 3-4!I.
The subderivation which begins on (2) and ends at (5) begins with the antecedent and
ends with the consequent of B ! .C ! A/. So we reach B ! .C ! A/ on (6) by
2-5!I. Notice again how our overall reasoning is driven by the goals, rather than
the premises and assumptions. It is sometimes difficult to motivate strategy when
derivations are short and relatively easy. But this sort of thinking will serve you well
as problems get more difficult!

Given what we have done, the E- and I-rules for ^ are completely straightforward.
First the exploitation rule: If P ^Q appears on some accessible line a of a derivation,
then you may move to the P or to the Q with justification a ^E.

^E
a. P ^Q

P a ^E

a. P ^Q

Q a ^E

Either qualifies as an instance of the rule. The left-hand case was R3 from NP.
Intuitively, ^E should be clear. If P and Q is true, then P is true. And if P and Q is
true, then Q is true. We saw a table for the left-hand case in (D). The other is similar.
The ^ introduction rule is equally straightforward. If P and Q appear on accessible
lines a and b of a derivation, then you may move to P ^Q with justification a,b ^I.
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^I

a. P

b. Q

P ^Q a,b ^I

The order in which P and Q appear is irrelevant, though you should cite them in the
specified order, line for the left conjunct first, and then for the right. If P is true and
Q is true, then P and Q is true. Similarly, on a table, any line with both P and Q

true has P ^Q true.
Here is a simple example, demonstrating the associativity of conjunction.

(O)

1. A ^ .B ^ C/ P

2. A 1 ^E
3. B ^ C 1 ^E
4. B 3 ^E
5. C 3 ^E
6. A ^ B 2,4 ^I
7. .A ^ B/ ^ C 6,5 ^I

Notice that we could not get the B alone or the C alone without first isolating B ^ C
on (3). As before, our rules apply just to the main operator. In effect, we take apart
the premise with the E-rule, and put the conclusion together with the I-rule. Of course,
as with!I and!E, rules for other operators do not always let us get to the parts and
put them together in this simple and symmetric way.

A final example brings together all of the rules so far (except R).

(P)

1. A! C P

2. A ^ B A (g,!I)

3. A 2 ^E
4. C 1,3!E
5. B 2 ^E
6. B ^ C 5,4 ^I

7. .A ^ B/! .B ^ C/ 2-6!I

We set up to obtain the overall goal by!I. This generates B ^ C as a subgoal. We
get B ^ C by getting the B and the C .

Here is our guiding idea for strategy (which may now seem obvious): As you
focus on a goal, to generate a formula with any main operator, consider producing
it by the corresponding introduction rule. Thus if the main operator of a goal or
subgoal is!, consider producing the formula by!I; if the main operator of a goal
is ^, consider producing it by ^I. You make use of a formula with main operator
! by!E and of a formula with main operator ^ with ^E. This much should be
sufficient for you to approach the following exercises. As you approach these and
other derivations, you may find the NDs quick reference on page 225 helpful. As you
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work the derivations, it is good simply to leave plenty of space on the page for your
derivation as you state goal formulas, and let there be blank lines if room remains.3

Words to the wise:

� A common mistake made by beginning students is to assimilate other rules
to ^E and ^I—moving, say, from P ! Q alone to P or Q, or from P

and Q to P ! Q. Do not forget what you have learned! Do not make this
mistake! The ^ rules are particularly easy. But each operator has its own
special character. Thus!E requires two “cards” to play. And!I takes a
subderivation as input.

� Another common mistake is to assume a formula P merely because it would
be nice to have access to P . Do not make this mistake! An assumption
always comes with an exit strategy, and is useful only for application of the
exit rule. At this stage, then, the only reason to assume P is to produce a
formula of the sort P ! Q by!I.

� Our little system NP introduced the idea of a derivation game. But we
are introducing ND from scratch. At this stage, then, the only rules for
derivations in NDs are R,!I,!E, ^I, and ^E.

E6.5. Complete the following derivations in NDs by filling in justifications for each
line. Hint: It may be convenient to print or xerox the problems, and fill in your
answers directly on the copy.

a. 1. .A ^ B/! C

2. B ^ A

3. B

4. A

5. A ^ B

6. C

b. 1. .R! L/ ^ Œ.S _R/! .T $ K/�

2. .R! L/! .S _R/

3. R! L

4. S _R

5. .S _R/! .T $ K/

6. T $ K

3Typing on a computer it is easy to push lines down if you need more room. It is not so easy
with pencil and paper, and worse with pen. Though it requires some startup effort and is not a “what
you see is what you get” processor, an especially flexible computer option is LATEX—for this see
https://tonyroyphilosophy.net/symbolic-logic/. (See also Chapter 13, page 675 note 12.)

https://tonyroyphilosophy.net/symbolic-logic/
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*c. 1. B

2. .A! B/! .B ! .L ^ S//

3. A

4. B

5. A! B

6. B ! .L ^ S/

7. L ^ S

8. S

9. L

10. S ^ L

d. 1. A ^ B

2. C

3. A

4. A ^ C

5. C ! .A ^ C/

6. C

7. B

8. B ^ C

9. C ! .B ^ C/

10. ŒC ! .A ^ C/� ^ ŒC ! .B ^ C/�

e. 1. .A ^ S/! C

2. A

3. S

4. A ^ S

5. C

6. S ! C

7. A! .S ! C/

E6.6. The following are not legitimate NDs derivations. In each case, explain why.

*a. 1. .A ^ B/ ^ .C ! B/ P

2. A 1 ^E

b. 1. .A ^ B/ ^ .C ! A/ P
2. C P

3. A 1,2!E

c. 1. .R ^ S/ ^ .C ! A/ P

2. C ! A 1 ^E
3. A 2!E
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d. 1. A! B P

2. A ^ C A (g,!I)

3. A 2 ^E

4. B 1,3!E

e. 1. A! B P

2. A ^ C A (g,!I)

3. A 2 ^E
4. B 1,3!E
5. C 2 ^E
6. B ^ C 4,5 ^I

Hint: This last problem (e) does not break any derivation rule. However, it still
fails to derive B ^ C from the premise. Explain why.

E6.7. Provide derivations to show each of the following.

a. A ^ B
ǸDs

B ^ A

*b. A ^ B , B ! C
ǸDs

C

c. A ^ .A! .A ^ B//
ǸDs

B

d. A ^ B , B ! .C ^D/
ǸDs

A ^D

*e. A! .A! B/
ǸDs

A! B

f. A, .A ^ B/! .C ^D/
ǸDs

B ! C

g. C ! A, C ! .A! B/
ǸDs

C ! .A ^ B/

*h. A! B , B ! C
ǸDs

.A ^K/! C

i. A! B
ǸDs

.A ^ C/! .B ^ C/

j. D ^E, .D ! F / ^ .E ! G/
ǸDs

F ^G

k. O ! B , B ! S , S ! L
ǸDs

O ! L

*l. A! B
ǸDs

.C ! A/! .C ! B/

m. A! .B ! C/
ǸDs

B ! .A! C/

n. A! .B ! C/, D ! B
ǸDs

A! .D ! C/

o. A! B
ǸDs

A! .C ! B/
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6.2.2 � and _

Now let us consider the I- and E-rules for � and _. The two rules for � are quite
similar to one another. Each appeals to a single subderivation. For �I, given an
accessible subderivation which begins with assumption P on line a, and ends with a
formula of the form Q ^�Q against its scope line on line b, one may conclude �P

by a-b �I. For �E, given an accessible subderivation which begins with assumption
�P on line a, and ends with a formula of the form Q ^ �Q against its scope line on
line b, one may conclude P by a-b �E.

�I

a. P A (c, �I)

b. Q ^�Q

�P a-b �I

�E

a. �P A (c, �E)

b. Q ^�Q

P a-b �E

�I introduces an expression with main operator tilde, adding tilde to the assumption
P . �E exploits the assumption �P , with a result that takes the tilde off. For these
rules, the formula Q may be any formula, so long as �Q is it with a tilde in front.
Because Q may be any formula, when we declare our exit strategy for the assumption,
we might have no particular goal formula in mind. So, where g always points to
a formula written at the bottom of a scope line, c is not a pointer to any particular
formula. Rather, when we declare our exit strategy, we merely indicate our intent to
obtain some contradiction, and then to exit by �I or �E.

Intuitively, if an assumption leads to a result that is false, the assumption is wrong.
So if the assumption P leads to both Q and �Q and so to Q ^ �Q, then we can
discharge the assumption and conclude �P ; and if the assumption �P leads to Q

and �Q and so Q ^ �Q, then we discharge the assumption and conclude P . On
tables, there can be no row where both Q and �Q are true; so if every row where
premises A1 : : :An and P are true would have to make both Q and �Q true, there is
no row where A1 : : :An and P are true; so on a row where A1 : : :An are true �P

is true. Similarly when the assumption is �P , a row where premises A1 : : :An are
true has P true.

Here are some examples of these rules. Notice that, again, we introduce subderiva-
tions with the overall goal in mind.

(Q)

1. A! B P
2. A! �B P

3. A A (c, �I)

4. B 1,3!E
5. �B 2,3!E
6. B ^�B 4,5 ^I

7. �A 3-6 �I

We begin with the goal of obtaining �A. The natural way to obtain this is by �I. So
we set up a subderivation with that in mind. Since the goal is �A, we begin with A
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and go for a contradiction. In this case, the contradiction is easy to obtain by a couple
applications of!E and then ^I.

Here is another case that may be more interesting:

(R)

1. �A P
2. B ! A P

3. L ^ B A (c, �I)

4. B 3 ^E
5. A 2,4!E
6. A ^�A 5,1 ^I

7. �.L ^ B/ 3-6 �I

This time, the original goal is �.L ^ B/. It is of the form �P , so we set up to
obtain it with a subderivation that begins with the P , that is, L ^ B . In this case, the
contradiction is A ^�A. Once we have the contradiction, we simply apply our exit
strategy.

A simplification. For any sentential or quantificational language L let ? (bottom)
abbreviate some sentence of the form Z^�Z—for Ls let ? just be Z ^�Z. Adopt
a rule ?I as on the left below,

?I

a. Q

b. �Q

? a,b ?I

(S)

1. Q

2. �Q

3. �? A (c, �E)

4. Q ^�Q 1,2 ^I

5. ? 3-4 �E

Given Q and�Q on accessible lines, we move directly to? by?I. This is an example
of a derived rule. For given Q and �Q, we can always derive ? as in (S) on the
right. Thus we allow ourselves to shortcut the routine by introducing ?I as a derived
rule. We will see examples of additional derived rules in section 6.2.5. For now, the
important thing is that since ? abbreviates Z ^�Z we operate with ? as we might
operate withZ^�Z. Especially, given this abbreviation, our�I and�E rules appear
in forms,

�I

a. P A (c, �I)

b. ?

�P a-b �I

�E

a. �P A (c, �E)

b. ?

P a-b �E

Since ? is (abbreviates) Z ^�Z, the subderivations for �I and �E are appropriately
concluded with ?.4 With ? as their last line, subderivations for �I and �E have a

4? is often introduced as a primitive symbol. We have chosen not to extend the primitives, and so
to treat it as an abbreviation. On the above account, then, one might derive ? from Z and �Z by ^I; or
use ^E to conclude Z or �Z from ?.
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particular goal sentence very much like !I. However, the Q and �Q required to
obtain ? by ?I are the same as would be required for Q^�Q on the original form of
the rules. For this reason, we declare our exit strategy with a c rather than g any time
the goal is?. At one level, this simplification is a mere notational convenience: having
obtained Q and �Q, we move to ?, instead of writing out the complex conjunction
Q^�Q. However, there are contexts where it will be convenient to have a particular
contradiction as goal. Thus this is the standard form in which we use these rules.

Here is an example of the rules in this form, this time for �E.

(T)

1. ��A P

2. �A A (c, �E)

3. ? 2,1 ?I

4. A 2-3 �E

It is no surprise that we can derive A from ��A. This is how to do it in NDs. Again,
we begin from the goal. In this case the goal isA, and we can get it with a subderivation
that starts with �A, by a �E exit strategy. In this case the Q and �Q for ?I are �A
and ��A—that is �A and �A with a tilde in front of it. Though very often (at least
in the beginning) an atomic and its negation will do for your contradiction, Q and
�Q need not be simple. Observe that �E is a strange and powerful rule: Though an
E-rule, effectively it can be used in pursuit of any goal whatsoever—to obtain formula
P by �E, all one has to do is obtain a contradiction from the assumption of P with a
tilde in front. As in this last example (T), �E is particularly useful when the goal is an
atomic formula, and thus without a main operator, so that there is no straightforward
way for regular introduction rules to apply. In this way, it plays the role of a sort of
“backdoor” introduction rule.

The _I and _E rules apply methods we have already seen. For _I, given an
accessible formula P on line a, one may move to either P _Q or to Q _P for any
formula Q, with justification a _I.

_I
a. P

P _Q a _I

a. P

Q _P a _I

The left-hand case was R4 from NP. Table (D) exhibits the left-hand case. And the
other side should be clear as well: Any row of a table where P is true has both P _Q

and Q _P true.
Here is a simple example:

(U)

1. P P
2. .P _Q/! R P

3. P _Q 1 _I
4. R 2,3!E

It is easy to get R once we have P _ Q. And we build P _ Q directly from
the P . Note that we could have done the derivation as well if (2) had been, say,
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(P _ ŒK ^ .L$ T /�/! R and we used _I to add ŒK ^ .L$ T /� to the P all at
once.

The inputs to _E are a formula of the form P _Q and two subderivations. Given
an accessible formula of the form P _Q on line a, with an accessible subderivation
beginning with assumption P on line b and ending with conclusion C against its
scope line at c, and an accessible subderivation beginning with assumption Q on line
d and ending with conclusion C against its scope line at e, one may conclude C with
justification a,b-c,d-e _E.

_E

a. P _Q

b. P A (g, a_E)

c. C

d. Q A (g, a_E)

e. C

C a,b-c,d-e _E

Given a disjunction P _ Q, one subderivation begins with P , and the other with
Q; both conclude with C . This time our exit strategy includes markers for the new
subgoals, along with a notation that we exit by appeal to the disjunction on line a and
_E. Intuitively, if we know it is one or the other, and both lead to some conclusion, then
the conclusion must be true. Here is an example a student gave me near graduation
time: She and her mother were shopping for a graduation dress. They narrowed it
down to dress A or dress B . Dress A was expensive, and if they bought it, her mother
would be mad. But dress B was ugly and if they bought it the student would complain
and her mother would be mad. Conclusion: her mother would be mad—and this
without knowing which dress they were going to buy! On a truth table, if rows where
P is true have C true, and rows where Q is true have C true, then any row with P _Q

true must have one of P or Q true and so C true as well.
Here are a couple of examples. The first is straightforward, and illustrates both

the _I and _E rules.

(V)

1. A _ B P
2. A! C P

3. A A (g, 1_E)

4. C 2,3!E
5. B _ C 4 _I

6. B A (g, 1_E)

7. B _ C 6 _I

8. B _ C 1,3-5,6-7 _E

We have the disjunction A_B as premise, and original goal B _C . And we set up to
obtain the goal by _E. For this, one subderivation starts with A and ends with B _ C ,
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and the other starts with B and ends with B _ C . As it happens, these subderivations
are easy to complete.

Very often, beginning students resist using _E—no doubt because it is relatively
messy. But this is a mistake—_E is your friend! In fact, with this rule, we have a
case where it pays to look at accessible formulas for general strategy. If you have an
accessible line of the form P _Q, go for your goal, whatever it is, by _E. Here is
why: As you go for the goal in the first subderivation, you have whatever sentences
were accessible before, plus P ; and as you go for the goal in the second subderivation,
you have whatever sentences were accessible before plus Q. So you can only be better
off in your quest to reach the goal. In many cases where an accessible formula has
main operator _, there is no way to complete the derivation except by _E. The above
example (V) is a case in point.

Here is a relatively messy example, which should help you be sure you understand
the _ rules. It illustrates the associativity of disjunction.

(W)

1. A _ .B _ C/ P

2. A A (g, 1_E)

3. A _ B 2 _I
4. .A _ B/ _ C 3 _I

5. B _ C A (g, 1_E)

6. B A (g, 5_E)

7. A _ B 6 _I
8. .A _ B/ _ C 7 _I

9. C A (g, 5_E)

10. .A _ B/ _ C 9 _I

11. .A _ B/ _ C 5,6-8,9-10 _E

12. .A _ B/ _ C 1,2-4,5-11 _E

The premise has main operator _. So we set up to obtain the goal by _E. This gives
us subderivations starting with A and B _ C , each with .A _ B/ _ C as goal. The
first is easy to complete by a couple instances of _I. But the assumption of the second,
B _ C has main operator _. So we set up to obtain its goal by _E. This gives us
subderivations starting with B and C , each again having .A_B/_C as goal. Again,
these are easy to complete by application of _I. The final result follows by the planned
applications of _E. If you have been able to follow this case, you are doing well!

E6.8. Complete the following derivations by filling in justifications for each line.
Hint: Begin by identifying the exit strategy for auxiliary assumptions; then the
rest will be straightforward.
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a. 1. �B
2. .�A _ C/! .B ^ C/

3. �A

4. �A _ C

5. B ^ C

6. B

7. ?

8. A

b. 1. R

2. �.S _ T /

3. R! S

4. S

5. S _ T

6. ?

7. �.R! S/

c. 1. .R ^ S/ _ .K ^ L/

2. R ^ S

3. R

4. S

5. S ^R

6. .S ^R/ _ .L ^K/

7. K ^ L

8. K

9. L

10. L ^K

11. .S ^R/ _ .L ^K/

12. .S ^R/ _ .L ^K/

d. 1. A _ B

2. A

3. A! B

4. B

5. .A! B/! B

6. B

7. A! B

8. B

9. .A! B/! B

10. .A! B/! B
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e. 1. �B
2. �A! .A _ B/

3. �A

4. A _ B

5. A

6. A

7. B

8. �A

9. ?

10. A

11. A

12. ?

13. A

E6.9. The following are not legitimate NDs derivations. In each case, explain why.

a. 1. A _ B P

2. B 1 _E

b. 1. �A P
2. B ! A P

3. B A (c, �I)

4. A 2,3!E

5. �B 3-4 �I

*c. 1. W P

2. R A (c, �I)

3. �W A (c, �E)

4. ? 1,3 ?I

5. W 3-4 �E

6. �R 2-5 �I

d. 1. A _ B P

2. A A (g, 1_E)

3. A 2 R

4. B A (g, 1_E)

5. A 3 R

6. A 1,2-3,4-5 _E



CHAPTER 6. NATURAL DEDUCTION 223

e. 1. A _ B P

2. A A (g, 1_E)

3. A 2 R

4. A A (g,!I)

5. B A (g, 1_E)

6. A 4 R

7. A 4 R

8. A 1,2-3,5-6 _E

E6.10. Produce derivations to show each of the following.

a. �A
ǸDs
�.A ^ B/

b. A
ǸDs
��A

*c. �A! B , �B
ǸDs

A

d. A! B
ǸDs
�.A ^�B/

e. �A! B , B ! A
ǸDs

A

f. A ^ B
ǸDs

.R$ S/ _ B

*g. A _ .A ^ B/
ǸDs

A

h. S , .B _ C/! �S
ǸDs
�B

i. A _ B , A! B , B ! A
ǸDs

A ^ B

j. A! B , .B _ C/! D, D ! �A
ǸDs
�A

k. A _ B
ǸDs

B _ A

*l. A! �B
ǸDs

B ! �A

m. .A ^ B/! �A
ǸDs

A! �B

n. A _��B
ǸDs

A _ B

o. A _ B , �B
ǸDs

A
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6.2.3 $

We complete our presentation of rules for NDs with the rules$E and$I. Given that
P $ Q abbreviates the same as .P ! Q/^ .Q! P /, it is not surprising that rules
for$ work like ones for arrow, but going two ways. For$E, if formulas P $ Q

and P appear on accessible lines a and b of a derivation, we may conclude Q with
justification a,b$E; and similarly but in the other direction, if formulas P $ Q

and Q appear on accessible lines a and b of a derivation, we may conclude P with
justification a,b$E.

$E

a. P $ Q

b. P

Q a,b$E

a. P $ Q

b. Q

P a,b$E

P $ Q thus works like either P ! Q or Q! P . Intuitively given P if and only
if Q, then if P is true, Q is true. And given P if and only if Q, then if Q is true P

is true. On tables, if P $ Q is true, then P and Q have the same truth value. So if
P $ Q is true and P is true, Q is true as well; and if P $ Q is true and Q is true,
P is true as well.

Given that P $ Q can be exploited like P ! Q or Q! P , it is not surprising
that introducing P $ Q is like introducing both P ! Q and Q ! P . The
input to$I is two subderivations. Given an accessible subderivation beginning with
assumption P on line a and ending with conclusion Q against its scope line on b, and
an accessible subderivation beginning with assumption Q on line c and ending with
conclusion P against its scope line on d , one may conclude P $ Q with justification,
a-b,c-d$I.

$I

a. P A (g,$I)

b. Q

c. Q A (g,$I)

d. P

P $ Q a-b,c-d$I

Intuitively, if an assumption P leads to Q and the assumption Q leads to P , then we
know that P only if Q, and P if Q—which is to say that P if and only if Q. On truth
tables, if there is a sententially valid argument from premises A1 : : :An and P to
conclusion Q, then there is no row where A1 : : :An are true and P is true and Q is
false; and if there is a sententially valid argument from A1 : : :An and Q to conclusion
P , then there is no row where A1 : : :An are true and Q is true and P is false; so on
rows where A1 : : :An are true, it is not the case that one of P or Q is true and the
other is false; so the biconditional P $ Q is true.
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NDs Quick Reference

R (reiteration)

a. P

P a R

�I (negation intro)

a. P A (c, �I)

b. Q ^�Q .?/

�P a-b �I

�E (negation exploit)

a. �P A (c, �E)

b. Q ^�Q .?/

P a-b �E

^I (conjunction intro)

a. P

b. Q

P ^Q a,b ^I

^E (conjunction exploit)

a. P ^Q

P a ^E

^E (conjunction exploit)

a. P ^Q

Q a ^E

_I (disjunction intro)

a. P

P _Q a _I

_I (disjunction intro)

a. P

Q _P a _I

!I (conditional intro)

a. P A (g,!I)

b. Q

P ! Q a-b!I

!E (conditional exploit)

a. P ! Q

b. P

Q a,b!E

_E (disjunction exploit)

a. P _Q

b. P A (g, a_E)

c. C

d. Q A (g, a_E)

e. C

C a,b-c,d-e _E

$I (biconditional intro)

a. P A (g,$I)

b. Q

c. Q A (g,$I)

d. P

P $ Q a-b,c-d$I

$E (biconditional exploit)

a. P $ Q

b. P

Q a,b$E

$E (biconditional exploit)

a. P $ Q

b. Q

P a,b$E

derived rule:

?I (bottom intro)

a. Q

b. �Q

? a,b ?I
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Here are a couple of examples. The first is straightforward, and exercises both the
$I and$E rules. We show, A$ B , B $ C

ǸDs
A$ C .

(X)

1. A$ B P
2. B $ C P

3. A A (g,$I)

4. B 1,3$E
5. C 2,4$E

6. C A (g,$I)

7. B 2,6$E
8. A 1,7$E

9. A$ C 3-5,6-8$I

Our original goal is A$ C . So it is natural to set up subderivations to get it by$I.
Once we have done this, the subderivations are easily completed by applications of
$E.

Here is an interesting case that again exercises both rules. We show, A$ .B $

C/, C
ǸDs

A$ B .

(Y)

1. A$ .B $ C/ P
2. C P

3. A A (g,$I)

4. B $ C 1,3$E
5. B 4,2$E

6. B A (g,$I)

7. B A (g,$I)

8. C 2 R

9. C A (g,$I)

10. B 6 R

11. B $ C 7-8,9-10$I
12. A 1,11$E

13. A$ B 3-5,6-12$I

We begin by setting up the subderivations to get A $ B by$I. The first is easily
completed with a couple applications of$E. To reach the goal for the second by
means of the premise (1) we need B $ C as our second “card.” So we set up to
reach that. As it happens, the extra subderivations at (7)–(8) and (9)–(10) are easy
to complete. Again, if you have followed so far, you are doing well. We will be in a
better position to create such derivations after our discussion of strategy.

So much for the rules of NDs. Before we turn in the next section to strategy, let
us note a couple of features of the rules that may so-far have gone without notice.
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First, premises are not always necessary for NDs derivations. Thus, for example,

ǸDs
A! A.

(Z)
A! A (goal)

1. A A (g,!I)

2. A 1 R

3. A! A 1-2!I

If there are no premises, do not panic! Begin in the usual way. In this case, the original
goal is A! A. So we set up to obtain it by!I. And the subderivation is particularly
simple. Notice that our derivation of A! A corresponds to the fact from truth tables
that �s A! A. And we need to be able to derive A! A from no premises if there
is to be the right sort of correspondence between derivations in NDs and semantic
validity—if we are to have � �s P iff �

ǸDs
P .

Second, observe again that every subderivation comes with an exit strategy. The
exit strategy says whether you intend to complete the subderivation with a particular
goal or by obtaining a contradiction, and then how the subderivation is to be used
once complete. There are just five rules which appeal to a subderivation:!I, �I, �E,
_E, and$I. You will complete the subderivation, and then use it by one of these
rules. So these are the only rules which may appear in an exit strategy. If you do not
understand this, then you need to go back and think about the rules until you do.

Finally, it is worth noting a strange sort of case, with application to rules that can
take more than one input of the same type. Consider a simple demonstration that
A

ǸDs
A ^ A. We might proceed as in (AA) on the left,

(AA)
1. A P

2. A 1 R
3. A ^ A 1,2 ^I

(AB)
1. A P

2. A ^ A 1,1 ^I

We begin with A, reiterate so that A appears on different lines, and apply ^I. But we
might have proceeded as in (AB) on the right. The rule requires an accessible line
on which the left conjunct appears—which we have at (1)—and an accessible line on
which the right conjunct appears which we also have on (1). So the rule takes an input
for the left conjunct and an input for the right—they just happen to be the same thing.
A similar point applies to rules _E and$I which take more than one subderivation
as input. Suppose we want to show A _ A

ǸDs
A.5

(AC)

1. A _ A P

2. A A (g, 1_E)

3. A 2 R

4. A A (g, 1_E)

5. A 4 R

6. A 1,2-3,4-5 _E

(AD)

1. A _ A P

2. A A (g, 1_E)

3. A 2 R

4. A 1,2-3,2-3 _E

5I am reminded of a character in Groundhog Day (film, 1993) who repeatedly asks, “Am I right or
am I right?” If he is right or he is right, it follows that he is right.
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In (AC), we begin in the usual way to get the main goal by _E. This leads to the
subderivations (2)–(3) and (4)–(5), the first moving from the left disjunct to the goal,
and the second from the right disjunct to the goal. But the left and right disjuncts are
the same. So we might have simplified as in (AD). _E still requires three inputs: First
an accessible disjunction, which we find on (1); second an accessible subderivation
which moves from the left disjunct to the goal, which we find on (2)–(3); third a
subderivation which moves from the right disjunct to the goal—but we have this
on (2)–(3). So the justification at (4) of (AD) appeals to the three relevant facts, by
appeal to the same subderivation twice. Similarly one could imagine a quick-and-dirty
demonstration that

ǸDs
A$ A.

E6.11. Complete the following derivations by filling in justifications for each line.

a. 1. A$ B

2. A

3. B

4. A! B

b. 1. A$ B

2. �B

3. A

4. B

5. ?

6. �A

c. 1. A$ �A

2. A

3. �A

4. ?

5. �A

6. A

7. ?

8. �.A$ �A/
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d. 1. A

2. �A

3. A

4. �A! A

5. �A! A

6. �A

7. A

8. ?

9. A

10. A$ .�A! A/

e. 1. �A
2. �B

3. A

4. �B

5. ?

6. B

7. B

8. �A

9. ?

10. A

11. A$ B

E6.12. The following are not legitimate NDs derivations. In each case, explain why.

a. 1. A P
2. B P

3. A$ B 1,2$I

b. 1. A! B P
2. B P

3. A 1,2!E

*c. 1. A$ B P

2. A 1$E
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d. 1. B P

2. A A (g,$I)

3. B 1 R

4. B A (g,$I)

5. A 2 R

6. A$ B 2-3,4-5$I

e. 1. �A P

2. B A (g,!I)

3. �A A (g,$I)

4. B 2 R

5. B 2 R

6. B ! B 2-5!I
7. B A (g,$I)

8. �A 1 R

9. �A$ B 3-4,7-8$I

E6.13. Produce derivations to show each of the following.

*a. .A ^ B/$ A
ǸDs

A! B

b. A$ .A _ B/
ǸDs

B ! A

c. A$ B , B $ C , C $ D, �A
ǸDs
�D

d. A$ B
ǸDs

.A! B/ ^ .B ! A/

*e. A$ .B ^ C/, B
ǸDs

A$ C

f. .A! B/ ^ .B ! A/
ǸDs

A$ B

g. A! .B $ C/
ǸDs

.A ^ B/$ .A ^ C/

h. A$ B , C $ D
ǸDs

.A ^ C/$ .B ^D/

i.
ǸDs

A$ A

j.
ǸDs

.A ^ B/$ .B ^ A/

*k.
ǸDs
��A$ A

l.
ǸDs

.A$ B/! .B $ A/

m. .A ^ B/$ .A ^ C/
ǸDs

A! .B $ C/

n. �A! B , A! �B
ǸDs
�A$ B

o. A, B
ǸDs
�A$ �B
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6.2.4 Strategy

It is natural to introduce derivation rules, as we have, with relatively simple cases.
And you may or may not have been able to see from the start in some cases how
derivations would go. But derivations are not always simple, and it is beyond human
power always to see how they go. Perhaps this has already been an issue! However,
as with chess or other games of strategy, it is possible to say a good deal about how to
approach problems effectively. We have said quite a bit already. In this section, we
pull together some of the themes and present the material more systematically.

In doing derivations there are two fundamentally different contexts. In the one
case, you have some accessible lines, and want a definite goal sentence. In the other,
there are some accessible lines, and you want a contradiction.

a. A

b. B

G (goal sentence)

a. A

b. B

? (contradiction)

The different contexts motivate separate strategies for a goal and strategies for a
contradiction. In the first case, strategies for a goal help reach a known goal formula.
But in the other case you want some Q and �Q, where it may not be clear what this
Q should be; thus strategies for a contradiction help find the formula you need. First,
strategies for a goal.

Strategies for a Goal

For natural derivation systems, the overriding strategy is to work goal directedly.
What you do at any stage is directed primarily, not by what you have, but by where
you want to be. Suppose you are trying to show that �

ǸDs
P . You are given P as

your goal. Perhaps it is tempting to begin by using E-rules to “see what you can get”
from the members of � . There is nothing wrong with a bit of this in order to simplify
your premises (like arranging the cards in your hand into some manageable order),
but the main work of doing a derivation does not begin until you focus on the goal.
This is not to say that your premises play no role in strategic thinking. Rather, it is to
rule out doing things with them which are not purposefully directed at the end. In the
ordinary case, applying the strategies for your goal dictates some new goal; applying
strategies for this new goal dictates another; and so forth, until you come to a goal
that is easily achieved.

The following strategies for a goal are arranged in rough priority order:

SG 1. If accessible lines contain explicit contradiction, use �E to reach goal.

2. Given an accessible formula with main operator _, use _E to reach goal.

3. If goal is “in” accessible lines (set goals and) attempt to exploit it out.
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4. To reach goal with main operator ?, use ?I (careful with _).

5. Try �E (especially for atomics and sentences with _ as main operator).

If a high priority strategy applies, use it. If one does not apply, simply “fall through”
to the next. The priority order is not necessarily a frequency order. The frequency will
likely be something like SG4, SG3, SG5, SG2, SG1. But high priority strategies are
such that you should adopt them if they are available—even though most often you
will fall through to ones that are more frequently used. I take up the strategies in the
priority order.

SG1. If accessible lines contain explicit contradiction, use �E to reach goal. For
goal B, with an explicit contradiction accessible, you can simply assume �B, use
your contradiction, and conclude B.

given

a. A

b. �A

B (goal)

use

a. A

b. �A

c. �B A (c, �E)

d. ? a,b ?I
B c-d �E

That is it! No matter what your goal is, given an accessible contradiction, you can
reach that goal by �E. Since this strategy always delivers, you should jump on it
whenever it is available. As an example, try to show, A,�A

ǸDs
.R^S/! T . Your

derivation need not involve!I. (This section will be most valuable if you do work
these examples, and so think through the steps.) Here it is in two stages:

(AE)

1. A P
2. �A P

3. �Œ.R _ S/! T � A (c, �E)

.R _ S/! T 3- �E

1. A P
2. �A P

3. �Œ.R _ S/! T � A (c, �E)

4. ? 1,2 ?I

5. .R _ S/! T 3-4 �E

As soon as we see the accessible contradiction, we assume the negation of our goal,
with a plan to exit by �E. This is accomplished on the left. Then it is a simple matter
of applying the contradiction, and going to the conclusion by �E.

For this strategy, it is not required that accessible lines “contain” a contradiction
only when you already have Q and�Q for?I. However, the intent is that there should
be some straightforward way to obtain them from accessible lines. If you can do this,
then your derivation is over: assume the opposite, extract the contradiction, and apply
�E to reach the goal. If there is no simple way to obtain a contradiction, fall through
to the next strategy.
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SG2. Given an accessible formula with main operator _, use _E to reach goal.
As suggested above, you may prefer to avoid _E. But this is a mistake—_E is your
friend! Suppose you have some accessible lines including a disjunction A _B with
goal C . If you go for that very goal by _E, the result is a pair of subderivations
with goal C—where, in the one case, all those very same accessible lines and A are
accessible, and in the other case, all those very same lines and B are accessible. So,
in each subderivation, you can only be better off in your attempt to reach C .

given
a. A _B

C (goal)
use

a. A _B

b. A A (g, a_E)

c. C (goal)

d. B A (g, a_E)

e. C (goal)

C a,b-c,d-e _E

As an example, try to show, A! B , A _ .A ^ B/
ǸDs

A ^ B . Try showing it
without _E! Here is the derivation in two stages:

(AF)

1. A! B P
2. A _ .A ^ B/ P

3. A A (g, 2_E)

A ^ B

A ^ B A (g, 2_E)

A ^ B

A ^ B 2,3- , _E

1. A! B P
2. A _ .A ^ B/ P

3. A A (g, 2_E)

4. B 1,3!E
5. A ^ B 3,4 ^I

6. A ^ B A (g, 2_E)

7. A ^ B 6 R

8. A ^ B 2,3-5,6-7 _E

When we start, there is no accessible contradiction. So we fall through to SG2. Since
a premise has main operator _, we set up to get the goal by _E. This leads to a pair of
simple subderivations. Once we do this, we treat the disjunction as effectively “used
up” so that SG2 does not apply to it again. Notice that there is almost nothing one
could do except set up this way—and that once you do, it is easy!

SG3. If goal is “in” accessible lines (set goals and) attempt to exploit it out. In most
derivations, you will work toward goals which are successively closer to what can be
obtained directly from accessible lines. And you finally come to a goal which can be
obtained directly. If it can be obtained directly, do so! In some cases, however, you
will come to a stage where your goal exists in accessible lines but can be obtained
only by means of some other result. In this case, you can set that other result as a new
goal. A typical case is as follows:
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given
a. A! B

B (goal)
use

a. A! B

b. A (goal)
B a,b!E

The B exists in the premises. You cannot get it without the A. So you set A as a
new goal and use it to get the B. This strategy applies whenever the complete goal
exists in accessible lines, and can be obtained by reiteration, by an E-rule, or by an
E-rule with some new goal. Observe that the strategy would not apply in case you
have A! B and are going for A. Then the goal exists as part of a premise all right.
But there is no obvious result such that obtaining it would give you a way to exploit
A! B to get the A.

As an example, let us try to show .A ! B/ ^ .B ! C/, A $ .L $ S/,
.L$ S/ ^H

ǸDs
C . Here is the derivation in four stages:

(AG)

1. .A! B/ ^ .B ! C/ P
2. A$ .L$ S/ P
3. .L$ S/ ^H P

4. B ! C 1 ^E

B

C 4, !E

1. .A! B/ ^ .B ! C/ P
2. A$ .L$ S/ P
3. .L$ S/ ^H P

4. B ! C 1 ^E
5. A! B 1 ^E

A

B 5, !E
C 4, !E

The original goal C exists in the premises, as the consequent of the right conjunct of
(1). It is easy to isolate the B ! C , but this leaves us with the B as a new goal to
get the C . B also exists in the premises, as the consequent of the left conjunct of (1).
Again, it is easy to isolate A! B , but this leaves us with A as a new goal.

1. .A! B/ ^ .B ! C/ P
2. A$ .L$ S/ P
3. .L$ S/ ^H P

4. B ! C 1 ^E
5. A! B 1 ^E

L$ S

A 2, $E
B 5, !E
C 4, !E

1. .A! B/ ^ .B ! C/ P
2. A$ .L$ S/ P
3. .L$ S/ ^H P

4. B ! C 1 ^E
5. A! B 1 ^E
6. L$ S 3 ^E
7. A 2,6$E
8. B 5,7!E
9. C 4,8!E

But A also exists in the premises, at the left side of (2); to get it, we set L$ S as a
goal. But L$ S exists in the premises, and is easy to get by ^E. So we complete
the derivation with the steps that motivated the subgoals in the first place. Observe
the way we move from one goal to the next, until finally there is a stage where SG3
applies in its simplest form, so that L $ S is obtained directly. Another example
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of this strategy is derivation (Y) above where we needed A to complete the second
subderivation and so set B $ C as goal.

SG4. To reach goal with main operator ?, use ?I (careful with _). This is the
most frequently used strategy, the one most likely to structure your derivation as a
whole. �E to the side, the basic structure of I-rules and E-rules in NDs gives you just
one way to generate a formula with main operator ?, whatever that may be. In the
ordinary case, then, you can expect to obtain a formula with main operator ? by the
corresponding I-rule. Thus, for a typical example,

given
A! B (goal)

use

a. A A (g,!I)

b. B (goal)

A! B a-b!I

And this is not the only context where SG4 applies. It makes sense to consider it
for formulas with any main operator. Be cautious, however, for formulas with main
operator _. There are cases where it is possible to prove a disjunction, but not to
prove it by _I—as one might have conclusive reason to believe the butler or the maid
did it, without conclusive reason to believe the butler did it, or conclusive reason to
believe the maid did it (perhaps the butler and maid were the only ones with means
and motive). You should consider the strategy for _. But it does not always work.

As an example, let us show D
ǸDs

A ! .B ! .C ! D//. Here is the
derivation in four stages:

(AH)

1. D P

2. A A (g,!I)

B ! .C ! D/

A! .B ! .C ! D// 2- !I

1. D P

2. A A (g,!I)

3. B A (g,!I)

C ! D

B ! .C ! D/ 3- !I

A! .B ! .C ! D// 2- !I

Initially, there is no contradiction or disjunction in the premises, and neither do we
see the goal. So we fall through to strategy SG4 and, since the main operator of the
goal is!, set up to get it by!I. This gives us B ! .C ! D/ as a new goal. Since
this has main operator!, and it remains that other strategies do not apply, we fall
through to SG4, and set up to get it by!I. This gives us C ! D as a new goal.
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1. D P

2. A A (g,!I)

3. B A (g,!I)

4. C A (g,!I)

D

C ! D 4- !I

B ! .C ! D/ 3- !I

A! .B ! .C ! D// 2- !I

1. D P

2. A A (g,!I)

3. B A (g,!I)

4. C A g,!I)

5. D 1 R

6. C ! D 4-5!I

7. B ! .C ! D/ 3-6!I

8. A! .B ! .C ! D// 2-7!I

As before, with C ! D as the goal, there is no contradiction on accessible lines,
no accessible formula has main operator _, and the goal does not itself appear on
accessible lines. Since the main operator is!, we set up again to get it by!I. This
gives us D as a new subgoal. But D does exist on an accessible line. Thus we are
faced with a particularly simple instance of strategy SG3. To complete the derivation,
we simply reiterate D from (1), and follow our exit strategies as planned.

SG5. Try �E (especially for atomics and sentences with _ as main operator). The
previous strategy has no application to atomics, because they have no main operator,
and we have suggested that it is problematic for disjunctions. This last strategy applies
particularly in those cases. So it is applicable in cases where other strategies seem not
to apply.

given
A (goal)

use

a. �A A (c, �E)

b. ?

A a-b �E

It is possible to obtain any formula by �E, by assuming its negation and going for
a contradiction. So this strategy is generally applicable. It cannot hurt: If you could
have reached goal A anyway, you can still obtain A under the assumed �A and use
the resultant contradiction to reach A outside of the subderivation. And it may help:
As for _E, all the lines from before plus the new assumption are accessible; in many
cases, the assumption puts you in a position to make progress you would not have
been able to make before.

As a simple example of the strategy, try showing �A! B , �B
ǸDs

A. Here is
the derivation in two stages:

(AI)

1. �A! B P
2. �B P

3. �A A (c, �E)

?

A 3- �E

1. �A! B P
2. �B P

3. �A A (c, �E)

4. B 1,3!E
5. ? 4,2 ?I

6. A 3-5 �E



CHAPTER 6. NATURAL DEDUCTION 237

There is no contradiction in the premises, no formula has main operator _ and, though
�A is the antecedent of (1), there is no obvious way to exploit the premise to isolate
the A. The goal A has no operators, so it has no main operator and strategy SG4 does
not apply. So we fall through to strategy SG5, and set up to get the goal by �E. In this
case, the subderivation is particularly easy to complete.

Sometimes the occasion between this strategy and SG1 can seem obscure (and,
in the end, it may not be all that important to separate them). However, for the
first strategy, accessible lines by themselves are sufficient for a contradiction and so
motivate the assumption. In this example, from the premises we have �B , but cannot
get the B and so do not have a contradiction from the premises alone. So SG1 does
not apply. For SG5, in contrast to SG1, the contradiction becomes available only after
you make the assumption.

Here is an extended example which combines a number of the strategies considered
so far. We show thatB_A

ǸDs
�A! B . You want especially to absorb the strategy-

based mode of thinking as a way to approach exercises.

(AJ)
1. B _ A P

�A! B

There is no contradiction in the premise; so strategy SG1 is inapplicable. Strategy SG2
tells us to go for the goal by _E. Another option is to fall through to SG4 and go for
�A! B by!I and then apply _E to get the B , but!I has lower priority and let us
follow the official procedure.

1. B _ A P

2. B A (g, 1_E)

�A! B

A A (g, 1_E)

�A! B

�A! B 1,2- , _E

Given an accessible line with main operator _,

use _E to reach goal.

Having set up for _E on line (1), we treat B _ A as effectively “used up” and so out
of the picture. Concentrating, for the moment, on the first subderivation, there is no
contradiction on accessible lines; neither is there another accessible disjunction; and
the goal is not in accessible lines. So we fall through to SG4.
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1. B _ A P

2. B A (g, 1_E)

3. �A A (g,!I)

B

�A! B 3- !I

A A (g, 1_E)

�A! B

�A! B 1,2- , _E

To reach goal with main operator!, use!I.

In this case, the subderivation is easy to complete. The new goal, B exists as such on
an accessible line. So we are faced with a simple instance of SG3, and so can complete
the subderivation.

1. B _ A P

2. B A (g, 1_E)

3. �A A (g,!I)

4. B 2 R

5. �A! B 3-4!I

6. A A (g, 1_E)

�A! B

�A! B 1,2-5,6- _E

The first subderivation is completed by reiter-

ating B from line (2), and following the exit

strategy.

For the second main subderivation lines (2)–(5) are inaccessible. Tick off in your
head: there is no accessible contradiction; neither is there another accessible formula
with main operator _; and the goal is not in accessible lines. So we fall through to
strategy SG4.

1. B _ A P

2. B A (g, 1_E)

3. �A A (g,!I)

4. B 2 R

5. �A! B 3-4!I

6. A A (g, 1_E)

7. �A A (g,!I)

B

�A! B 7- !I

�A! B 1,2-5,6- _E

To reach goal with main operator!, use!I.
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But this time there is an accessible contradiction at (6) and (7). So SG1 applies, and
we are in a position to complete the derivation as follows:

1. B _ A P

2. B A (g, 1_E)

3. �A A (g,!I)

4. B 2 R

5. �A! B 3-4!I

6. A A (g, 1_E)

7. �A A (g,!I)

8. �B A (c, �E)

9. ? 6,7 ?I

10. B 8-9 �E

11. �A! B 7-10!I

12. �A! B 1,2-5,6-11 _E

If accessible lines contain explicit contradiction,

use �E to reach goal.

This derivation is fairly complicated! But we did not need to see how the whole thing
would go from the start. Indeed, it is hard to see how one could do so. Rather it was
enough to see, at each stage, what to do next. That is the beauty of our goal-oriented
approach.

A brief remark before we turn to exercises: In going for a contradiction, as from
SG4 or SG5, the new goal is not a definite formula—any contradiction is sufficient for
the rule and for a derivation of ?. But each of our strategies for a goal presupposes a
known goal sentence. In going for a contradiction there is no definite goal formula—so
this presupposition is not met, and strategies for a goal do not apply. This motivates
the “strategies for a contradiction” of the next section. For now, I will say just this: If
there is a contradiction to be had, and you can reduce formulas on accessible lines to
atomics and negated atomics, the contradiction will appear at that level. So one way
to go for a contradiction is simply by applying E-rules to accessible lines, to generate
what atomics and negated atomics you can.

Proofs for the following theorems are left as exercises. You should not start them
now, but wait for the assignment in E6.16. The first three may remind you of axioms
from Chapter 3 and the fourth has an application in Part IV. The others foreshadow
rules from the system NDs+, which we will see shortly.

T6.1.
ǸDs

P ! .Q! P /

T6.2.
ǸDs

.O ! .P ! Q//! ..O ! P /! .O ! Q//

*T6.3.
ǸDs

.�Q! �P /! ..�Q! P /! Q/
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T6.4. A! .B ! C/;D ! .C ! E/;D ! B
ǸDs

A! .D ! E/

T6.5. A! B, �B
ǸDs
�A

T6.6. A! B, B ! C
ǸDs

A! C

T6.7. A _B, �A
ǸDs

B

T6.8. A _B, �B
ǸDs

A

T6.9. A$ B, �A
ǸDs
�B

T6.10. A$ B, �B
ǸDs
�A

T6.11.
ǸDs

.A ^B/$ .B ^A/

T6.12.
ǸDs

.A$ B/$ .B $ A/

*T6.13.
ǸDs

.A _B/$ .B _A/

T6.14.
ǸDs

.A! B/$ .�B ! �A/

T6.15.
ǸDs

ŒA! .B ! C/�$ Œ.A ^B/! C �

T6.16.
ǸDs

ŒA ^ .B ^ C/�$ Œ.A ^B/ ^ C �

T6.17.
ǸDs

A$ ��A

T6.18.
ǸDs

A$ .A ^A/

T6.19.
ǸDs

A$ .A _A/

T6.20.
ǸDs

ŒA _ .B _ C/�$ Œ.A _B/ _ C �
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E6.14. For each of the following, (i) which goal strategy applies? and (ii) what is the
next step? If the strategy calls for a new subgoal, show the subgoal; if it calls for a
subderivation, set up the subderivation. In each case, explain your response. Hint:
Each goal strategy applies once.

*a. 1. �A _ B P
2. A P

B

b. 1. J ^ S P
2. S ! K P

K

*c. 1. �A$ B P

B $ �A

d. 1. A$ �B P
2. �A P

B

e. 1. A ^ B P
2. �A P

K _ J

E6.15. Produce derivations to show each of the following. If you get stuck, you will
find strategy hints in the Answers to Selected Exercises.

*a. A$ .A! B/
ǸDs

A! B

*b. .A _ B/! .B $ D/, B
ǸDs

B ^D

*c. �.A ^ C/, �.A ^ C/$ B
ǸDs

A _ B

*d. A ^ .C ^�B/, .A _D/! �E
ǸDs
�E

*e. A! B , B ! C
ǸDs

A! C

*f. .A ^ B/! .C ^D/
ǸDs

Œ.A ^ B/! C � ^ Œ.A ^ B/! D�

*g. A! .B ! C/, .A ^D/! E, C ! D
ǸDs

.A ^ B/! E

https://tonyroyphilosophy.net/symbolic-logic/
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*h. .A! B/ ^ .B ! C/, Œ.D _E/ _H�! A, �.D _E/ ^H
ǸDs

C

*i. A! .B ^ C/, �C
ǸDs
�.A ^D/

*j. A! .B ! C/, D ! B
ǸDs

A! .D ! C/

*k. A! .B ! C/
ǸDs
�C ! �.A ^ B/

*l. .A ^�B/! �A
ǸDs

A! B

*m. �A
ǸDs

A! B

*n. �B $ A, C ! B , A ^ C
ǸDs
�K

*o. �A$ �B
ǸDs

A$ B

*p. .A _ B/ _ C , B $ C
ǸDs

C _ A

*q.
ǸDs

A! .A _ B/

*r.
ǸDs

A! .B ! A/

*s.
ǸDs

.A$ B/! .A! B/

*t.
ǸDs

.A ^�A/! .B ^�B/

*u.
ǸDs

.A! B/! Œ.C ! A/! .C ! B/�

*v.
ǸDs

Œ.A! B/ ^�B�! �A

*w.
ǸDs

A! ŒB ! .A! B/�

*x.
ǸDs
�A! Œ.B ^ A/! C �

*y.
ǸDs

.A! B/! Œ�B ! �.A ^D/�

*E6.16. Produce derivations to demonstrate each of T6.1–T6.20. These are a mix—
some repetitious, some challenging. But when we need the results later, we will
be glad to have done them now. Hint: Do not worry if one or two get a bit longer
than you are used to—they should!
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Strategies for a Contradiction

We come now to our second set of strategies. Each of our strategies for a goal
presupposes a known goal sentence—the strategies for a goal say how to go about
reaching this goal or that. In going for a contradiction, however, the Q and �Q may
not be known. Where the goal is unknown, our strategies for a goal do not apply. This
motivates strategies for a contradiction. Again, the strategies are in rough priority
order.

SC 1. Break accessible formulas down into atomics and negated atomics.

2. Given an available disjunction, go for ? by _E.

3. Set as goal the opposite of some negation (something that cannot itself be
broken down); then apply strategies for a goal to reach it.

4. For some P such that both P and �P lead to contradiction: Assume P

(�P ), obtain the first contradiction, and conclude �P (P ); then obtain
the second contradiction—this is the one you want.

Again, the priority order is not the frequency order. The frequency is likely to be
something like SC1, SC3, SC4, SC2. Also sometimes, but not always, SC3 and SC4
coincide: in deriving the opposite of some negation, you end up assuming a P such
that P and �P lead to contradiction.

SC1. Break accessible formulas down into atomics and negated atomics. As we
have already said, if there is a contradiction to be had, and you can break accessible
formulas into atomics and negated atomics, the contradiction will appear at that level.
Thus, for example,

(AK)

1. A ^ B P
2. C ! �B P

3. C A (c, �I)

?

�C 3- �I

1. A ^ B P
2. C ! �B P

3. C A (c, �I)

4. �B 2,3!E
5. A 1 ^E
6. B 1 ^E
7. ? 6,4 ?I

8. �C 3-7 �I

Our strategy for the main goal is SG4 with an application of �I. Then the aim is
to obtain a contradiction. And our first thought is to break accessible lines down
to atomics and negated atomics. Perhaps this example is too simple. And you may
wonder about the point of getting A at (5)—there is no need for A at (5). But this
merely illustrates the point: If you can get to atomics and negated atomics (“randomly”
as it were) the contradiction will appear in the end.
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As another example, try showingA^.B^�C/,�F ! D, .A^D/! C
ǸDs

F .
Here is the derivation completed in two stages:

(AL)

1. A ^ .B ^�C/ P
2. �F ! D P
3. .A ^D/! C P

4. �F A (c, �E)

?

F 4- �E

1. A ^ .B ^�C/ P
2. �F ! D P
3. .A ^D/! C P

4. �F A (c, �E)

5. D 2,4!E
6. A 1 ^E
7. A ^D 6,5 ^I
8. C 3,7!E
9. B ^�C 1 ^E

10. �C 9 ^E
11. ? 8,10 ?I

12. F 4-11 �E

This time, our strategy for the goal falls through to SG5. After that, again, our goal is
to obtain a contradiction—and our first thought is to break accessible formulas down
to atomics and negated atomics. The assumption �F gets us D with (2). We can get
A from (1), and then C with the A and D together. Then �C follows from (1) by a
couple applications of ^E. You might proceed to get the atomics in a different order,
but the basic idea of any such derivation is likely to be the same.

SC2. Given an available disjunction, go for ? by _E. In many cases, you will have
applied _E by SG2 prior to setting up for �E or �I. Then the disjunction is “used
up” and unavailable for this strategy. Sometimes, however, a disjunction remains or
becomes available inside a subderivation for a tilde rule. In any such case, SC2 has
high priority for the same reasons as SG2: You can only be better off in your attempt
to reach a contradiction inside the subderivations for _E than before. So the strategy
says to take the ? you need for �E or �I, and go for it by _E.

given

a. P A (c, �I)

b. A _B

?

�P a- �I

use

a. P A (c, �I)

b. A _B

c. A A (c, b_E)

d. ? (goal)

e. B A (c, b_E)

f. ? (goal)

g. ? b,c-d,e-f _E

�P a-g �I

We go for ? in each of the subderivations for _E. Since the subderivations for _E
have goal ?, they have exit strategy c rather than g.
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Here is an example. We show �A ^ �B
ǸDs
�.A _ B/. The derivation is in

four stages.

(AM)

1. �A ^�B P

2. A _ B A (c, �I)

?

�.A _ B/ 2- �I

1. �A ^�B P

2. A _ B A (c, �I)

3. A A (c, 2_E)

?

B A (c, 2_E)

?

? 2,3- , _E

�.A _ B/ 2- �I

In this case, our strategy for the goal is SG4. We might obtain �A and �B from (1),
but after that there are no more atomics or negated atomics to be had. However the
assumption line is itself a disjunction available for _E. So SC2 applies, and we set up
with ? as the goal for _E.

1. �A ^�B P

2. A _ B A (c, �I)

3. A A (c, 2_E)

4. �A 1 ^E
5. ? 3,4 ?I

6. B A (c, 2_E)

?

? 2,3-5,6- _E

�.A _ B/ 2- �I

1. �A ^�B P

2. A _ B A (c, �I)

3. A A (c, 2_E)

4. �A 1 ^E
5. ? 3,4 ?I

6. B A (c, 2_E)

7. �B 1 ^E
8. ? 6,7 ?I

9. ? 2,3-5,6-8 _E

10. �.A _ B/ 2-9 �I

With? as goal, strategies for a contradiction continue to apply. The first subderivation
is easily completed from atomics and negated atomics. And the second is completed
the same way. Observe that it is only because of our assumptions for _E that we
are able to get the contradictions at all. And we expose another advantage of our
standard use of ?: While ? is a particular sentence, we obtained it by A and �A in
one subderivation and B and �B in the other. _E would not apply to subderivations
concluding with different contradictions A ^ �A and B ^ �B . But once we have
obtained ? in each, we are in a position to exit by _E in the usual way and so to apply
�I.

SC3. Set as goal the opposite of some negation (something that cannot itself be
broken down); then apply strategies for a goal to reach it. You will find yourself using
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this strategy often. In the ordinary case, if accessible formulas cannot be broken into
atomics and negated atomics, it is because complex forms are “sealed off” by main
operator �. The tilde blocks SC1 or SC2. But you can turn this lemon to lemonade:
Taking the complex �Q as one half of a contradiction, set Q as goal. For some
complex Q,

given

a. �Q

b. A A (c, �I)

?

�A b- �I

use

a. �Q

b. A A (c, �I)

c. Q (goal)
d. ? c,a ?I

�A b-d �I

We are after a contradiction. Supposing that we cannot break �Q into its parts, our
efforts to apply other strategies for a contradiction are frustrated. But SC3 offers an
alternative: Set Q itself as a new goal and use this with�Q to reach?. Then strategies
for the new goal take over. If we reach the new goal, we have the contradiction we
need.

As an example, try showing B , �.A ! B/
ǸDs
�A. Here is the derivation in

four stages:

(AN)

1. B P
2. �.A! B/ P

3. A A (c, �I)

?

�A 3- �I

1. B P
2. �.A! B/ P

3. A A (c, �I)

A! B

? ,2 ?I

�A 3- �I

Our strategy for the goal is SG4; for main operator � we set up to get the goal by
�I. So we need a contradiction. In this case, there is nothing to be done by way of
obtaining atomics and negated atomics, and there is no disjunction. So we fall through
to strategy SC3. �.A! B/ on (2) has main operator �, so we set A! B as a new
subgoal with the idea to use it for contradiction.

1. B P
2. �.A! B/ P

3. A A (c, �I)

4. A A (g,!I)

B

A! B 4- !I
? ,2 ?I

�A 3- �I

1. B P
2. �.A! B/ P

3. A A (c, �I)

4. A A (g,!I)

5. B 1 R

6. A! B 4-5!I
7. ? 6,2 ?I

8. �A 3-7 �I
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Since A ! B is a definite subgoal, we proceed with strategies for the goal in the
usual way. The main operator is! so we set up to get it by!I. The subderivation
is particularly easy to complete. And we finish by executing the exit strategies as
planned.

SC4. For some P such that both P and �P lead to contradiction: Assume P

(�P ), obtain the first contradiction, and conclude �P (P ); then obtain the second
contradiction—this is the one you want.

given

a. A A (c, �I)

?

�A a- �I

use

a. A A (c, �I)

b. P A (c, �I)

c. ?

�P b-c �I

d. ?

�A a-d �I

The essential point is that both P and �P somehow lead to contradiction. Given this,
you can assume one of them and use the first contradiction to obtain the other; and
once you have obtained this other formula, the desired contradiction results from it.
The intuition behind this strategy is like that for the _E rule: P has to be one way
or the other; if both ways lead to contradiction, contradiction follows. The strategy
shows how to extract that contradiction—and is often a powerful way of making
progress when none seems possible by other means.

Let us try to show A$ B , B $ C , C $ �A
ǸDs

K. Here is the derivation in
four stages:

(AO)

1. A$ B P
2. B $ C P
3. C $ �A P

4. �K A (c, �E)

?

K 4- �E

1. A$ B P
2. B $ C P
3. C $ �A P

4. �K A (c, �E)

5. A A (c, �I)

?

�A 5- �I

?

K 4- �E

Our strategy for the goal falls through to SG5 (or we might see it as an obscure instance
of SG1). We assume the negation of the goal, and go for a contradiction. In this case,
there are no atomics or negated atomics to be had, there is no disjunction, and no
formula is itself a negation such that we could build up to the opposite. So we fall
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through to SC4. This requires a formula such that both it and its negation lead to
contradiction. Finding such a formula can be difficult! However, in this case, A does
the job: Given A we can use$E to reach �A and so contradiction; and given �A
we can use$E to reach A and so contradiction. So, following SC4, we assume one
of them to get the other.

1. A$ B P
2. B $ C P
3. C $ �A P

4. �K A (c, �E)

5. A A (c, �I)

6. B 1,5$E
7. C 2,6$E
8. �A 3,7$E
9. ? 5,8 ?I

10. �A 5-9 �I

?

K 4- �E

1. A$ B P
2. B $ C P
3. C $ �A P

4. �K A (c, �E)

5. A A (c, �I)

6. B 1,5$E
7. C 2,6$E
8. �A 3,7$E
9. ? 5,8 ?I

10. �A 5-9 �I
11. C 3,10$E
12. B 2,11$E
13. A 1,12$E
14. ? 13,10 ?I

15. K 4-14 �E

The first contradiction appears easily at the level of atomics and negated atomics. This
gives us �A. And with �A, the second contradiction also comes easily, at the level
of atomics and negated atomics.

Though it can be useful, as we have said, this strategy is often difficult to see. And
there is no obvious way to give a strategy for using the strategy! The best thing to say
is that you should look for it when the other strategies seem to fail.

Let us consider an extended example which combines some of the strategies. We
show that �A! B

ǸDs
B _ A.

(AP)
1. �A! B P

B _ A

To start, there is a definite goal. We do not see a contradiction in the premises; there is
no formula with main operator _ in the premises; and the goal does not appear in the
premises. So we might try going for the goal by _I in application of SG4. This would
require getting a B or an A. It is reasonable to go this way, but it turns out to be a
dead end. (You should convince yourself that this is so.) Thus we fall through to SG5.
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1. �A! B P

2. �.B _ A/ A (c, �E)

?

B _ A 2- �E

Especially considering our goal has main opera-

tor _, set up to get the goal by �E.

Now we need a contradiction. For this, our first thought is to go for atomics and
negated atomics. But there is nothing to be done. Similarly, there is no formula with
main operator _. So we fall through to SC3 and continue as follows:

1. �A! B P

2. �.B _ A/ A (c, �E)

B _ A

? ,2 ?I

B _ A 2- �E

Given a negation that cannot be broken down,

set up to get the contradiction by building up to

the opposite.

It might seem that we have made no progress, since our new goal is no different
than the original! But there is progress insofar as we have an accessible formula not
available before (more on this in a moment). At this stage, we can get the goal by _I.
Either side will work, but it is easier to start with the A. So we set up for that.

1. �A! B P

2. �.B _ A/ A (c, �E)

A

B _ A _I
? ,2 ?I

B _ A 2- �E

For a goal with main operator _, go for the goal

by _I

Now the goal is atomic. Again, there is no contradiction or formula with main operator
_ on accessible lines. The goal is not on accessible lines in any form we can hope to
exploit. And the goal has no main operator. So, again, we fall through to SG5.

1. �A! B P

2. �.B _ A/ A (c, �E)

3. �A A (c, �E)

?

A 3- �E
B _ A _I
? ,2 ?I

B _ A 2- �E

Especially for atomics, go for the goal by �E

Again, to obtain the contradiction, our first thought is to get atomics and negated
atomics. We can get B from lines (1) and (3) by!E. But that is all. So we will not
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get a contradiction from atomics and negated atomics alone. There is no formula with
main operator _. However, the possibility of getting a B suggests that we can build
up to the opposite of line (2). That is, we complete the subderivation as follows, and
follow our exit strategies to complete the whole.

1. �A! B P

2. �.B _ A/ A (c, �E)

3. �A A (c, �E)

4. B 1,3!E
5. B _ A 4 _I
6. ? 5,2 ?I

7. A 3-6 �E
8. B _ A 7 _I
9. ? 8,2 ?I

10. B _ A 2-9 �E

Get the contradiction by building up to the oppo-

site of an existing negation.

A couple of comments: First, observe that we build up to the opposite of �.B _ A/
twice, coming at it from different directions. First we obtain the left side B and use _I
to obtain the whole, then the right side A and use _I to obtain the whole. This “double
use” is typical with negated disjunctions. Second, note that this derivation might be
reconceived as an instance of SC4. �A gets us B , and so B _ A, which contradicts
�.B _ A/. But A gets us B _ A which again contradicts �.B _ A/. So both A and
�A lead to contradiction; so we assume one (�A), and get the first contradiction; this
gets us A, from which the second contradiction follows.

The general pattern of this derivation is typical for goal formulas with main
operator _. For P _Q we may not be able to prove either P or Q from scratch—so
that the formula is not directly provable by _I. However, it may be indirectly provable.
If it is provable at all, it must be that the negation of one side forces the other. So it
must be possible to get the P or the Q under the additional assumption that the other
is false. This makes possible an argument of the following form:

(AQ)

a. �.P _Q/ A (c, �E)

b. �P A (c, �E)

:::

c. Q

d. P _Q c _I
e. ? d,a ?I

f. P b-e �E
g. P _Q f _I
h. ? g,a ?I

i. P _Q a-h �E

The “work” in this routine is getting from the negation of one side of the disjunction
to the other. Thus if from the assumption �P it is possible to derive Q, all the rest
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is automatic. We have just seen an extended example (AP) of this pattern. It may be
seen as an application of SC3 or SC4 (or both). Where a disjunction may be provable
but not provable by _I, it will work by this method. Observe that _I still plays an
essential role—only not as the main strategy. In difficult cases when the goal is a
disjunction, it is wise to think about whether you can get one side from the negation
of the other. If you can, set up as above. (And reconsider this method when we get to
a simplified version in the extended system NDs+.)

This example was fairly difficult! You may see some longer, but you will not see
many harder. The strategies are not a cookbook for performing all derivations—doing
derivations remains an art. But the strategies will give you a good start, and take you
a long way through the exercises that follow. The theorems immediately below again
foreshadow rules of NDs+.

*T6.21.
ǸDs
�.A ^B/$ .�A _�B/

T6.22.
ǸDs
�.A _B/$ .�A ^�B/

T6.23.
ǸDs

.�A! B/$ .A _B/

T6.24.
ǸDs

.A! B/$ .�A _B/

T6.25.
ǸDs

ŒA ^ .B _ C/�$ Œ.A ^B/ _ .A ^ C/�

T6.26.
ǸDs

ŒA _ .B ^ C/�$ Œ.A _B/ ^ .A _ C/�

T6.27.
ǸDs

.A$ B/$ Œ.A! B/ ^ .B ! A/�

T6.28.
ǸDs

.A$ B/$ Œ.A ^B/ _ .�A ^�B/�

T6.29.
ǸDs

ŒA$ .B $ C/�$ Œ.A$ B/$ C �

E6.17. Each of the following begins with a simple application of�I or�E. Complete
the derivations, and explain your use of strategies for a contradiction. Hint: Each
of the strategies for a contradiction is used at least once.
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*a. 1. A ^ B P
2. �.A ^ C/ P

3. C A (c, �I)

?

�C 3- �I

b. 1. .�B _�A/! D P
2. C ^�D P

3. �B A (c, �E)

?

B 3- �E

c. 1. A ^ B P

2. �A _�B A (c, �I)

?

�.�A _�B/ 2- �I

d. 1. A$ �A P

2. B A (c, �I)

?

�B 2- �I

e. 1. �.A! B/ P

2. �A A (c, �E)

?

A 2- �E

E6.18. Produce derivations to show each of the following.

*a. A! �.B ^ C/, B ! C
ǸDs

A! �B

*b.
ǸDs
�.A! A/! A

*c. A _ B
ǸDs
�.�A ^�B/

*d. �.A ^ B/, �.A ^�B/
ǸDs
�A

*e.
ǸDs

A _�A
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*f.
ǸDs

A _ .A! B/

*g. A _�B , �A _�B
ǸDs
�B

*h. A$ .�B _ C/, B ! C
ǸDs

A

*i. A$ B
ǸDs

.C $ A/$ .C $ B/

*j. A$ �.B $ �C/, �.A _ B/
ǸDs

C

*k. ŒC _ .A _ B/� ^ .C ! E/, A! D, D ! �A
ǸDs

C _ B

*l. �.A! B/, �.B ! C/
ǸDs
�D

*m. C ! �A, �.B ^ C/
ǸDs

.A _ B/! �C

*n. �.A$ B/
ǸDs
�A$ B

*o. A$ B , B $ �C
ǸDs
�.A$ C/

*p. A _ B , �B _ C , �C
ǸDs

A

*q. .�A _ C/ _D, D ! �B
ǸDs

.A ^ B/! C

*r. A _D, �D $ .E _ C/, .C ^ B/ _ ŒC ^ .F ! C/�
ǸDs

A

*s. .A _ B/ _ .C ^D/; .A$ E/ ^ .B ! F /;G $ �.E _ F /; C ! B
ǸDs
�G

*t. .A _ B/ ^�C , �C ! .D ^�A/, B ! .A _E/
ǸDs

E _ F

*E6.19. Produce derivations to demonstrate each of T6.21–T6.28. Note that demon-
stration of T6.29 (from left to right) is left for E6.20e.

E6.20. Produce derivations to show each of the following. These are particularly
challenging. If you can get them, you are doing very well!

a. .A _ B/! .A _ C/
ǸDs

A _ .B ! C/

b. A! .B _ C/
ǸDs

.A! B/ _ .A! C/

c. .A$ B/$ .C $ D/
ǸDs

.A$ C/! .B ! D/

d. �.A$ B/, �.B $ C/, �.C $ A/
ǸDs
�K

e. A$ .B $ C/
ǸDs

.A$ B/$ C
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6.2.5 The System NDs+

We turn now to some derived rules that will be useful for streamlining derivations.
NDs+ includes all the rules of NDs, with some additional inference rules and new
replacement rules. It is not possible to derive anything in NDs+ that cannot already be
derived in NDs. Thus the new rules do not add extra derivation power. They are rather
“shortcuts” for things that can already be done in NDs. This is particularly obvious in
the case of the inference rules.

We have already seen ?I as a first example of a derived rule. As described on
page 217 it is possible to derive? from any Q and�Q. It is possible also to introduce
a companion ?E as below and justified by the derivation on the right.

?E
a. ?

P a ?E
(AR)

1. ? P

2. �P A (c, �E)

3. ? 1 R

4. P 2-3 �E

From a contradiction, one can derive anything.6 Again, the justification for this rule is
that it does not let you do anything that you could not already do in NDs. In contexts
where SG1 applies, this rule shortcuts a step, and cleans out a distracting subderivation.

For other new rules, suppose in an NDs derivation we have P ! Q and �Q and
want to reach �P . No doubt, we would proceed as follows:

(AS)

1. P ! Q P
2. �Q P

3. P A (c, �I)

4. Q 1,3!E
5. ? 4,2 ?I

6. �P 3-5 �I

We assume P , get the contradiction, and conclude by �I. Perhaps you have done
this so many times that you can do it in your sleep. In NDs+ you are given a way
to shortcut the routine, and go directly from an accessible P ! Q on a, and an
accessible �Q on b to �P with justification a,b MT (modus tollens).

MT

a P ! Q

b �Q

�P a,b MT

Again, the justification for this is that the rule does not let you do anything that you
could not already do in NDs. So if the rules of NDs preserve truth, this rule preserves
truth. And, as a matter of fact, we already demonstrated that P ! Q, �Q

ǸDs
�P

in T6.5.

6This rule is sometimes known as ex falso quodlibet, which translates, “from falsehood anything
(follows).”
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NB

a P $ Q

b �P

�Q a,b NB

a P $ Q

b �Q

�P a,b NB

NB (negated biconditional) lets you move from a biconditional and the negation of
one side, to the negation of the other. It is like MT, but with the arrow going both
ways. The parts are justified in T6.9 and T6.10.

DS

a P _Q

b �P

Q a,b DS

a P _Q

b �Q

P a,b DS

DS (disjunctive syllogism) lets you move from a disjunction and the negation of one
side, to the other side of the disjunction. The two parts are justified by T6.7 and T6.8.

HS

a O ! P

b P ! Q

O ! Q a,b HS

HS (hypothetical syllogism) is a principle of transitivity by which you may string a
pair of conditionals together into one. It is justified by T6.6.

Each of these rules should be clear and easy to use. Here is an example that puts
most of the new rules together into one derivation:

(AT)

1. A$ B P
2. �B P
3. A _ .C ! D/ P
4. D ! B P

5. �A 1,2 NB
6. C ! D 3,5 DS
7. C ! B 6,4 HS
8. �C 7,2 MT

1. A$ B P
2. �B P
3. A _ .C ! D/ P
4. D ! B P

5. A A (g, 3_E)

6. C A (c, �I)

7. B 1,5$E
8. ? 7,2 ?I

9. �C 6-8 �I

10. C ! D A (g, 3_E)

11. C A (c, �I)

12. D 10,11!E
13. B 4,12!E
14. ? 13,2 ?I

15. �C 11-14 �I

16. �C 3,5-9,10-15 _E

We can do it by our normal methods purely with the rules of NDs as on the right.
But it is easier with the shortcuts from NDs+ as on the left. It may take you some
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time to “see” applications of the new rules when you are doing derivations, but the
simplification makes it worth getting used to them.

The replacement rules of NDs+ are different from ones we have seen before in
two respects. First, replacement rules go in two directions. Consider the following
simple rule:

DN P GF ��P

According to DN (double negation), given P on an accessible line a, you may move
to ��P with justification a DN; and given ��P on an accessible line a, you may
move to P with justification a DN. This two-way rule is justified by T6.17, in which
we showed

ǸDs
P $ ��P . Given P we could use the routine from one half of the

derivation to reach ��P , and given ��P we could use the routine from the other
half of the derivation to reach P .

But further, we can use replacement rules to replace a subformula that is just a
proper part of another formula. Thus, for example, in the following list, we could
move in one step by DN from the formula on the left to any of the ones on the right,
and from any of the ones on the right to the one on the left.

(AU) A ^ .B ! C/

��ŒA ^ .B ! C/�

��A ^ .B ! C/

A ^��.B ! C/

A ^ .��B ! C/

A ^ .B ! ��C/

The first application is of the sort we have seen before, in which the whole formula is
replaced. In the second, the replacement is between the subformulas A and ��A. In
the third, between the subformulas .B ! C/ and ��.B ! C/. The fourth switches
B and ��B , and the last C and ��C . Thus the DN rule allows the substitution of
any subformula P with one of the form ��P , and vice versa.

The application of replacement rules to subformulas is not so easily justified as
their application to whole formulas. A complete justification that NDs+ does not let
you go beyond what can be derived in NDs will have to wait for Part III. Roughly,
though, the idea is this: Given a complex formula, we can take it apart, do the
replacement, and then put it back together. Here is a very simple example from above:

(AV)
1. A ^ .B ! C/ P

2. A ^��.B ! C/ 1 DN

1. A ^ .B ! C/ P

2. A 1 ^E
3. B ! C 1 ^E
4. �.B ! C/ A (c, �I)

5. ? 3,4 ?I

6. ��.B ! C/ 4-5 �I
7. A ^��.B ! C/ 2,6 ^I

On the left, we make the move from A ^ .B ! C/ to A ^ ��.B ! C/ in one
step by DN. On the right, using ordinary inference rules, we begin by taking off the
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A. Then we convert B ! C to ��.B ! C/, and put it back together with the A.
Though we will not be able to show that this sort of thing is generally possible until
Part III, for now I will continue to say that replacement rules are “justified” by the
corresponding biconditionals. As it happens, for replacement rules, the biconditionals
play a crucial role in the demonstration that �

ǸDs
P iff �

ǸDs
P .

The rest of the replacement rules work the same way.

Com
P ^Q GF Q ^P

P _Q GF Q _P

P $ Q GF Q$ P

Com (commutation) lets you reverse the order of formulas in a conjunction, disjunc-
tion, or biconditional. By Com you could go from, say, A^ .B _C/ to .B _C/^A,
switching the order around ^, or from A ^ .B _ C/ to A ^ .C _ B/, switching the
order around _. You should be clear about why this is so. The different forms are
justified by T6.11, T6.13, and T6.12.

Assoc
O ^ .P ^Q/ GF .O ^P / ^Q

O _ .P _Q/ GF .O _P / _Q

O $ .P $ Q/ GF .O $ P /$ Q

Assoc (association) lets you shift parentheses for conjunctions, disjunctions, and
biconditionals. The different forms are justified by T6.16, T6.20, and T6.29.

Idem P GF P ^P

P GF P _P

Idem (idempotence) exposes the equivalence between P and P ^P , and between P

and P _P . The two forms are justified by T6.18 and T6.19.

Impl P ! Q GF �P _Q

�P ! Q GF P _Q

Impl (implication) lets you move between a conditional and a corresponding disjunc-
tion. Thus, for example, by the first form of Impl you could move fromA! .�B_C/

to �A _ .�B _ C/, using the rule from left to right, or to A! .B ! C/, using the
rule from right to left. As we will see, this rule can be particularly useful. The two
forms are justified by T6.23 and T6.24.

Trans P ! Q GF �Q! �P

Trans (transposition) lets you reverse the antecedent and consequent around a condi-
tional—subject to the addition or removal of negations. From left to right, this rule
should remind you of MT, as Trans plus!E has the same effect as one application of
MT. Trans is justified by T6.14.

DeM �.P ^Q/ GF �P _�Q

�.P _Q/ GF �P ^�Q

DeM (DeMorgan) should remind you of equivalences we learned in Chapter 5, for
not both (the first form) and neither nor (the second form). This rule also can be very
useful. The two forms are justified by T6.21 and T6.22.
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Exp O ! .P ! Q/ GF .O ^P /! Q

Exp (exportation) is another equivalence that may have arisen in translation. It is
justified by T6.15.

Equiv P $ Q GF .P ! Q/ ^ .Q! P /

P $ Q GF .P ^Q/ _ .�P ^�Q/

Equiv (equivalence) converts between a biconditional and the corresponding pair
of conditionals, or converts between a biconditional and a corresponding pair of
conjunctions. The two forms are justified by T6.27 and T6.28.

Dist O ^ .P _Q/ GF .O ^P / _ .O ^Q/

O _ .P ^Q/ GF .O _P / ^ .O _Q/

Dist (distribution) works something like the mathematical principle for multiplying
across a sum. In each case, moving from left to right, the operator from outside
attaches to each of the parts inside the parenthesis, and the operator from inside
becomes the main operator. The two forms are justified by T6.25 and T6.26.

Thus end the rules of NDs+. They are a lot to absorb at once. But you do not need
to absorb all the rules at once. Again, the rules do not let you do anything you could
not already do in NDs. For the most part, you should proceed as if you were in NDs. If
an NDs+ shortcut occurs to you, use it. You will gradually become familiar with more
and more of the special NDs+ rules. Perhaps, though, we can make a few observations
about strategy that will get you started. First, again, do not get too distracted by
the extra rules! You should continue with the overall goal-directed approach from
NDs. There are, however, a few contexts where special rules from NDs+ can make a
substantive difference. I comment on three.

First, as we have seen, in NDs formulas with_ can be problematic. _E is awkward
to apply, and _I does not always work. In simple cases, DS can get you out of _E. But
this is not always so, and you will want to keep _E among your standard strategies.
More importantly, Impl can convert between awkward goal formulas with main
operator _ and more manageable ones with main operator!. Although a disjunction
may be derivable, but not by _I, if a conditional is derivable, it is derivable by!I.
Thus to reach a goal with main operator _, consider going for the corresponding!,
and converting with Impl.

given

A _B (goal)

use

a. �A A (g,!I)

b. B (goal)

c. �A! B a-b!I
A _B c Impl

And the other form of Impl may be helpful for a goal of the sort �A _B. Here is a
quick example:
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NDs+ Quick Reference

NDs+ includes all the rules of NDs and,

Inference Rules:

?I (bottom intro)

a. Q

b. �Q

? a,b ?I

?E (bottom exploit)

a. ?

P a ?E

MT (Modus Tollens)

a P ! Q

b �Q

�P a,b MT

NB (Negated Biconditional)

a P $ Q

b �P

�Q a,b NB

NB (Negated Biconditional)

a P $ Q

b �Q

�P a,b NB

DS (Disjunctive Syllogism)

a P _Q

b �P

Q a,b DS

DS (Disjunctive Syllogism)

a P _Q

b �Q

P a,b DS

HS (Hypothetical Syllogism)

a O! P

b P ! Q

O! Q a,b HS

Replacement Rules:

DN P GF ��P Idem
P GF P ^P

P GF P _P

Assoc
O ^ .P ^Q/ GF .O ^P / ^Q

O _ .P _Q/ GF .O _P / _Q

O $ .P $ Q/ GF .O $ P /$ Q

Com
P ^Q GF Q ^P

P _Q GF Q _P

P $ Q GF Q$ P

Exp O ! .P ! Q/ GF .O ^P /! Q Trans P ! Q GF �Q! �P

DeM
�.P ^Q/ GF �P _�Q

�.P _Q/ GF �P ^�Q
Impl

P ! Q GF �P _Q

�P ! Q GF P _Q

Dist
O ^ .P _Q/ GF .O ^P / _ .O ^Q/

O _ .P ^Q/ GF .O _P / ^ .O _Q/

Equiv
P $ Q GF .P ! Q/ ^ .Q! P /

P $ Q GF .P ^Q/ _ .�P ^�Q/
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(AW)

1. �A A (g,!I)

2. �A 1 R

3. �A! �A 1-2!I
4. A _�A 3 Impl

1. �.A _�A/ A (c, �E)

2. A A (c, �I)

3. A _�A 2 _I
4. ? 3,1 ?I

5. �A 2-4 �I
6. A _�A 5 _I
7. ? 6,1 ?I

8. A _�A 1-7 �E

The derivation on the left using Impl is completely trivial, requiring just a derivation
of �A! �A. But the derivation on the right is not. It falls through to SG5, and then
requires a challenging application of SC3 or SC4. This proposed strategy replaces or
simplifies the pattern (AQ) for disjunctions described on page 250. Observe that the
work—getting from the negation of one side of a disjunction to the other—is exactly
the same. It is only that we use the derived rule to simplify away the distracting and
messy setup.

Second, among the most useless formulas for exploitation in NDs are ones with
main operator �. But the combination of DeM, Impl, Equiv, and DN let you “push”
negations into arbitrary formulas. Thus you can convert formulas with main operator
� into a more useful form. To see how these rules can be manipulated, consider the
following sequence:

(AX)

1. �.A! B/ P

2. �.�A _ B/ 1 Impl
3. ��A ^�B 2 DeM
4. A ^�B 3 DN

We begin with the negation as main operator, and end with a negation only against
an atomic. This sort of thing is often very useful. For example, in going for a
contradiction, you have the option of “breaking down” a formula with main operator
� rather than automatically building up to its opposite, according to SC3.

Finally, observe that derivations which can be conducted entirely be replacement
rules are “reversible.” Thus, for a simple case,

(AY)

1. �.A ^�B/ A (g,$I)

2. �A _��B 1 DeM
3. �A _ B 2 DN
4. A! B 3 Impl

5. A! B A (g,$I)

6. �A _ B 5 Impl
7. �A _��B 6 DN
8. �.A ^�B/ 7 DeM

9. �.A ^�B/$ .A! B/ 1-4,5-8$I
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We set up for$I in the usual way. Then the subderivations work by precisely the
same steps, DeM, DN, Impl, but in the reverse order. This is not surprising since
replacement rules work in both directions. Notice that reversal does not generally
work where regular inference rules are involved.

The rules of NDs+ are not a “magic bullet” to make all difficult derivations go
away! Rather, with the derived rules, we set aside a certain sort of difficulty that
should no longer worry us, so that we are in a position to take on new challenges
without becoming overwhelmed by details.

E6.21. Produce derivations to show each of the following.

*a. .H ^G/! .L _K/, G ^H
ǸDs

K _ L

*b.
ǸDs

Œ.A ^ B/! .B ^ A/� ^ Œ�.A ^ B/! �.B ^ A/�

*c. Œ.K ^ J / _ I � _�Y , Y ^ Œ.I _K/! F �
ǸDs

F _N

*d. �L _ .�Z _�U/, .U ^G/ _H , Z
ǸDs

L! H

*e. F ! .�G _H/, F ! G, �.H _ I /
ǸDs

F ! J

*f. F ! .G ! H/, �I ! .F _H/, F ! G
ǸDs

I _H

g. G ! .H ^�K/, H $ .L ^ I /, �I _K
ǸDs
�G

h. �.Z _�X/ _ .�X ! �Y /, X ! Z, Z ! Y
ǸDs

X $ Y

i.
ǸDs

ŒA _ .B _ C/�$ ŒC _ .B _ A/�

j.
ǸDs

ŒA! .B $ C/�$ .A! Œ.�B _ C/ ^ .�C _ B/�/

k.
ǸDs

.A _ ŒB ! .A! B/�/$ .A _ Œ.�A _�B/ _ B�/

l.
ǸDs

Œ�A! .�B ! C/�! Œ.A _ B/ _ .��B _ C/�

m.
ǸDs

.�A$ �A/$ Œ�.�A! A/$ .A! �A/�

n.
ǸDs

.A! B/ _ .B ! C/

o.
ǸDs

Œ.A! B/! A�! A

E6.22. For each of the following, produce a good translation including interpretation
function. Then use a derivation to show that the argument is valid in NDs+. The
first two are suggested from the history of philosophy; the last is our familiar case
from page 2.
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a. We have knowledge about numbers.
If Platonism is true, then numbers are not in spacetime.
Either numbers are in spacetime, or we do not interact with them.
We have knowledge about numbers only if we interact with them.

Platonism is not true.
b. There is evil.

If god is good, then there is no evil unless god has morally sufficient reasons
for allowing it.
If god is both omnipotent and omniscient, then god does not have morally
sufficient reasons for allowing evil.

God is not good, omnipotent, and omniscient.

c. If Bob goes to the fair, then so do Daniel and Edward. Albert goes to the fair
only if Bob or Carol go. If Daniel goes, then Edward goes only if Fred goes.
But not both Fred and Albert go. So Albert goes to the fair only if Carol goes
too.

d. If I think dogs fly, then I am insane or they have really big ears. But if dogs do
not have really big ears, then I am not insane. So either I do not think dogs fly,
or they have really big ears.

e. If the maid did it, then it was done with a revolver only if it was done in the
parlor. But if the butler is innocent, then the maid did it unless it was done in
the parlor. The maid did it only if it was done with a revolver, while the butler
is guilty if it did happen in the parlor. So the butler is guilty.

E6.23. For each of the following concepts, explain in an essay of about two pages,
so that (high-school age) Hannah could understand. In your essay, you should
(i) identify the objects to which the concept applies, (ii) give and explain the
definition, and give and explicate examples of your own construction (iii) where
the concept applies, and (iv) where it does not. Your essay should exhibit an
understanding of methods from the text.

a. Derivations as games, and the condition on rules.

b. Accessibility, and auxiliary assumptions.

c. The rules _I and _E.

d. The strategies for a goal.

e. The strategies for a contradiction.
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6.3 Quantificational

Our full system ND includes all the rules for NDs, along with new I- and E-rules for
quantifiers and equality—so it includes reiteration, with I- and E-rules for �,!,$,
^, _, and then I- and E-rules for 8, 9, andD. Thus ND completes the basic structure
of I- and E-rules. We leave aside derived rules from NDs+ (except ?I) until they are
included again with ND+. After some quick introductory remarks, there are sections
for the quantifier rules (6.3.1, 6.3.2), for discussion of strategy (6.3.3), then for the
equality rules (6.3.4), and for the extended system ND+ (6.3.5).

First, we do not sacrifice any of the NDs rules we have so far. All these rules
apply to formulas of quantificational languages as well as to formulas of sentential
ones. Thus, for example, Fx ! 8xFx and Fx are of the form P ! Q and P . So
we might move from them to 8xFx by!E as before. And similarly for other rules.
Here is a short example:

(AZ)

1. 8xFx ^ 9x8y.Hx _Zy/ P

2. Kx A (g,!I)

3. 8xFx 1 ^E

4. Kx ! 8xFx 2-3!I

The goal is of the form P ! Q; so we set up to get it in the usual way. And the
subderivation is particularly simple. Notice that formulas of the sort 8x.Kx ! Fx/

and Kx are not of the form P ! Q and P . The main operator of 8x.Kx ! Fx/

is 8x, not !. So !E does not apply. That is why we need new rules for the
quantificational operators.

For our quantificational rules, we need a couple of notions already introduced in
Chapter 3. Again, for any formula A, variable x, and term t, say Ax

t is A with all the
free instances of x replaced by t. And t is free for x in A iff all the variables in the
replacing instances of t remain free after substitution in Ax

t . Thus, for example,

(BA) .8xRxy _ Px/xy is 8xRxy _ Py

There are three instances of x in 8xRxy _ Px, but only the last is free; so y is
substituted only for that instance. Since the substituted y is free in the resultant
expression, y is free for x in 8xRxy _ Px. Similarly,

(BB) Œ8x.x D y/ _Ryx�
y

f 1x
is 8x.x D f 1x/ _Rf 1xx

Both instances of y in 8x.x D y/ _Ryx are free; so our substitution replaces both.
But the x in the first instance of f 1x is bound upon substitution; so f 1x is not free
for y in 8x.x D y/_Ryx. In contrast, f 1z goes into the same places but is free for
y in 8x.x D y/ _Ryx.

Some quick applications: If x is not free in A, then replacing every free instance
of x in A with some term results in no change; so if x is not free in A, then Ax

t is
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A. Similarly, Ax
x is just A itself. Further, any variable x is sure to be free for itself

in a formula A—if every free instance of variable x is “replaced” with x, then the
replacing instances are sure to be free. Similarly variable-free terms (like constants)
are sure to be free for a variable x in a formula A; if a term has no variables, no
variable in the replacing term is bound upon substitution. And if A is quantifier-free
then any t is free for variable x in A; if A has no quantifiers, then no variable in t

can be bound upon substitution.
With these concepts, we are ready to turn to our rules. We begin with the easier

ones, and work from there.

6.3.1 8E and 9I

8E and 9I are straightforward. For the former, for any variable x, given an accessible
formula 8xP on line a, if term t is free for x in P , one may move to P x

t with
justification, a 8E.

8E
a. 8xP

P x
t a 8E

provided t is free for x in P

8E removes a quantifier and substitutes a term t for resulting free instances of x,
so long as t is free in the resulting formula. We sometimes say that variable x is
instantiated by term t. Thus, for example, 8x9yLxy is of the form 8xP , where P is
9yLxy. So by 8E we can move from 8x9yLxy to 9yLay, removing the quantifier
and substituting a for x. And similarly, since the complex terms f 1a and g2zb
are free for x in 9yLxy, 8E legitimates moving from 8x9yLxy to 9yLf 1ay or
9yLg2zby. What we cannot do is move from 8x9yLxy to 9yLyy or 9yLf 1yy.
These violate the constraint insofar as a variable of the substituted term is bound by a
quantifier in the resulting formula.

Intuitively, the motivation for this rule is clear: If P is satisfied for every assign-
ment to variable x, then it is sure to be satisfied for the thing assigned to t, whatever
that thing may be. Thus, for example, if everyone loves someone, 8x9yLxy, it is sure
to be the case that Al, and Al’s father love someone—that 9yLay and 9yLf 1ay. But
from everyone loves someone, it does not follow that anyone loves themselves, that
9yLyy, or that anyone is loved by their father 9yLf 1yy. Though we know Al and
Al’s father loves someone, we do not know who that someone might be. We therefore
require that the replacing term be independent of quantifiers in the rest of the formula.

Here are some examples. Notice that we continue to apply bottom-up goal-oriented
thinking.
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(BC)

1. 8x8yHxy P
2. Hcf 2ab ! 8zKz P

3. 8yHcy 1 8E
4. Hcf 2ab 3 8E
5. 8zKz 2,4!E
6. Kb 5 8E

Our original goal is Kb. We could get this by 8E if we had 8zKz. So we set that
as a subgoal. This leads to Hcf 2ab as another subgoal. And we get this from (1)
by two applications of 8E. The constant c is free for x in 8yHxy so we move from
8x8yHxy to 8yHcy by 8E. And the complex term f 2ab is free for y in Hcy, so
we move from 8yHcy to Hcf 2ab by 8E. And similarly, we get Kb from 8zKz by
8E.

Here is another example, also illustrating strategic thinking:

(BD)

1. 8xBx P
2. 8x.Cx ! �Bx/ P

3. Ca A (c, �I)

4. Ca! �Ba 2 8E
5. �Ba 4,3!E
6. Ba 1 8E
7. ? 6,5 ?I

8. �Ca 3-7 �I

Our original goal is�Ca; so we set up to get it by�I. And our contradiction appears at
the level of atomics and negated atomics. The constant a is free for x in Cx ! �Bx.
So we move from 8x.Cx ! �Bx/ to Ca! �Ba by 8E. And similarly, we move
from 8xBx to Ba by 8E. Notice that we could use 8E to instantiate the universal
quantifiers to any terms. We pick the constant a because it does us some good in the
context of our assumption Ca—itself driven by the goal �Ca. And it is typical to
“swoop” in with universal quantifiers to put variables on terms that matter in a given
context.

9I is also straightforward. For variable x, given an accessible formula P x
t on line

a, where term t is free for x in formula P , one may move to 9xP , with justification,
a 9I.

9I
a. P x

t

9xP a 9I
provided t is free for x in P

So for example one might move from Fa to 9xFx. Note that the statement of this
rule is somewhat in reverse from the way one expects it to be: Supposing that t is free
for x in P , when one removes the quantifier from the result and replaces every free
instance of x with t one ends up with the start. A consequence is that one starting
formula might legitimately lead to different results by 9I. Thus if P is any of Fxx,
Fxa, or Fax, then P x

a is Faa. So 9I allows a move from Faa to any of 9xFxx,
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9xFax, or 9xFxa. In doing a derivation, there is a sense in which we replace one
or more instances of a in Faa with x, and add the quantifier to get the result. But
then notice that not every instance of the term need be replaced. Officially the rule
is stated the other way: Removing the quantifier from the result and replacing free
instances of the variable yields the initial formula. Be clear about this in your mind.
The requirement that t be free for x in P prevents moving from 8yLyy or 8yLf 1yy
to 9x8yLxy. The term from which we generalize must be free in the sense that it
has no bound variable!

Again, the motivation for this rule is clear. If P is satisfied for the individual
assigned to t, it is sure to be satisfied for some individual. Thus, for example, if Al or
Al’s father love everyone, 8yLay or 8yLf 1ay, it is sure to be the case that someone
loves everyone 9x8yLxy. But from the premise that everyone loves themselves
8yLyy, or that everyone is loved by their father 8yLf 1yy it does not follow that
someone loves everyone. Again, the constraint on the rule requires that the term on
which we generalize be independent of quantifiers in the rest of the formula.

Here are a couple of examples. The first is relatively simple. The second illustrates
the “duality” between 8E and 9I.

(BE)

1. Ha P
2. 9yHy ! 8xJx P

3. 9yHy 1 9I
4. 8xJx 2,3!E
5. Ja 4 8E
6. Ha ^ Ja 1,5 ^I
7. 9x.Hx ^ Jx/ 6 9I

Ha ^ Ja is .Hx ^ Jx/xa so we can get 9x.Hx ^ Jx/ from Ha ^ Ja by 9I. Ha is
already a premise, so we set Ja as a subgoal. Ja comes by 8E from 8xJx, and to
get this we set 9yHy as another subgoal. And 9yHy follows directly by 9I from Ha.
Observe that, for now, the natural way to produce a formula with main operator 9 is
by 9I. You should fold this into your strategic thinking.

For the second example, recall from translations that �8x�P is equivalent to
9xP , and �9x�P is equivalent to 8xP . Given this, it turns out that we can use the
universal rule with an effect something like 9I, and the existential rule with an effect
like 8E. The following pair of derivations illustrate this point:

(BF)

1. Pa P

2. 8x�Px A (c, �I)

3. �Pa 2 8E
4. ? 1,3 ?I

5. �8x�Px 2-4 �I

(BG)

1. �9x�Px P

2. �Pa A (c, �E)

3. 9x�Px 2 9I
4. ? 3,1 ?I

5. Pa 2-4 �E

By 9I we could move from Pa to 9xPx in one step. In (BF) we use the universal
rule to move from the same premise to the equivalent �8x�Px. Indeed, 9xPx
abbreviates this very expression. Similarly, by 8E we could move from 8xPx to Pa
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in one step. In (BG), we move to the same result from the equivalent�9x�Px by the
existential rule. Thus there is a sense in which, in the presence of rules for negation,
the work done by one of these quantifier rules is very similar to, or can substitute for,
the work done by the other.

E6.24. Complete the following derivations by filling in justifications for each line.
Then for each application of 8E or 9I, explain how the “free for” constraint is
met.

a. 1. 8x.Ax ! Bxf 1x/

2. 8xAx

3. Af 1c

4. Af 1c ! Bf 1cf 1f 1c

5. Bf 1cf 1f 1c

*b. 1. Gaa

2. 9yGay
3. 9x9yGxy

c. 1. 8x.Rx ^ Jx/

2. Rk ^ Jk

3. Rk

4. Jk

5. Jk ^Rk

6. 9y.Jy ^Ry/

d. 1. 9x.Rx ^Gx/! 8yFy
2. 8zGz
3. Ra

4. Ga

5. Ra ^Ga

6. 9x.Rx ^Gx/
7. 8yFy
8. Fg2ax

e. 1. �9zFg1z

2. 8xFx

3. Fg1k

4. 9zFg1z

5. ?

6. �8xFx
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E6.25. The following are not legitimate ND derivations. In each case, explain why.

a. 1. 8xFx $ Gx P

2. Fj $ Gj 1 8E

*b. 1. 8x9yGxy P

2. 9yGyy 1 8E

c. 1. 8y.Fay ! Gy/ P

2. Fay ! Gf 1b 1 8E

d. 1. 8yGf 2xyy P

2. 9x8yGxy 1 9I

e. 1. Gj P

2. 9xGf 1x 1 9I

E6.26. Provide derivations to show each of the following.

*a. 8xFx
ǸD

Fa ^ Fb

*b. 8x8yFxy
ǸD

Fab ^ Fba

c. 8x.Gf 1x ! 8yAyx/, Gf 1b
ǸD

Af 1cb

d. 8x8y.Hxy ! Dyx/, �Dab
ǸD
�Hba

e.
ǸD

Œ8x8yFxy ^ 8x.F xx ! A/�! A

f. Fa, Ga
ǸD
9x.F x ^Gx/

*g. Gaf 1z
ǸD
9x9yGxy

h.
ǸD

.Fa _ Fb/! 9xFx

i. Gaa
ǸD
9x9y.Kxx ! Gxy/

j. 8xFx, Ga
ǸD
9y.Fy ^Gy/

*k. 8x.F x ! Gx/, 9yGy ! Ka
ǸD

Fa! 9xKx

l. 8x8yHxy
ǸD
9y9xHyx

m. 8x.�Bx ! Kx/, �Kf 1x
ǸD

Bf 1x

n. 8x8y.F xy ! �Fyx/
ǸD
9z�F zz

o. 8x.F x ! Gx/, Fa
ǸD
9x.�Gx ! Hx/
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6.3.2 8I and 9E

In parallel with 8E and 9I, rules for 8I and 9E are a linked pair. 8I is as follows: For
variables v and x, given an accessible formula P x

v at line a—where v is free for x

in P , v is not free in any undischarged assumption, and v is not free in 8xP —one
may move to 8xP with justification a 8I.

8I
a. P x

v

8xP a 8I

provided (i) v is free for x in P , (ii) v is not free in any undis-

charged auxiliary assumption, and (iii) v is not free in 8xP

The form of this rule is like 9I with t a variable: Instead of going from P x
t to the

existential quantification 9xP , we move from P x
v to the universally quantified 8xP .

The underlying difference is in the special constraints.
First, constraints (i) and (iii) are automatically met when v is x. For x is sure to

be free for x in P ; and x is not free in 8xP . And when v is other than x, constraints
(i) and (iii) together require that x and v appear free in just the same places of P and
P x

v . If v is free for x in P , then v is free in P x
v everywhere x is free in P . If v is

not free in 8xP , then v is free in P x
v only where x is free in P —put the other way

around, if P x
v has free instances of v in addition to ones that replace instances of

x, then P itself has some free instances of v , so that those instances remain free in
8xP and the third condition fails. This two-way requirement is not present for 9I.
Thus, for an example, Avyv and Axyx have x and v free in just the same places; by
9I one could move from Avyv to 9xAxyv, 9xAvyx, or 9xAxyx; but only a move
to 8xAxyx satisfies constraints (i) and (iii) of the universal rule.

In addition, v cannot be free in an auxiliary assumption still in effect when 8I is
applied. Recall that a formula is true when it is satisfied on every variable assignment.
As it turns out (and we shall see in detail in Part II), the truth of a formula with a free
variable is therefore equivalent to the truth of its universal quantification. But this
is not so under the scope of an assumption in which the variable is free. Under the
scope of an assumption with a free variable, we effectively constrain the range of
assignments under consideration to ones where the assumption is satisfied. Thus under
any such assumption, the move to a universal quantification is not justified. However
outside the scope of an assumption in which v is free, assignments are unconstrained
and the move from P x

v to 8xP is justified. Again, observe that no such constraint is
required for 9I, which depends on satisfaction for just a single individual, so that any
assignment and term will do.

Once you get your mind around them, these constraints are not difficult. Somehow,
though, managing them is a common source of frustration for beginning students.
However, there is a simple way to be sure that the constraints are met. Suppose you
have been following the strategies, along the lines from before, and come to a goal of
the sort 8xP . It is natural to expect to get this by 8I from P x

v . You will be sure to
satisfy the constraints if you set P x

v as a subgoal, where v does not appear elsewhere
in the derivation. If v does not otherwise appear in the derivation, (i) there cannot
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be any v-quantifier in P , so v is sure to be free for x in P . If v does not otherwise
appear in the derivation, (ii) v cannot appear in any assumption, and so be free in
an undischarged assumption. And if v does not otherwise appear in the derivation,
(iii) it cannot appear at all in 8xP , and so cannot be free in 8xP . It is not always
necessary to use a new variable in order to satisfy the constraints, and sometimes it is
possible to simplify derivations by clever variable selection. However, we shall make
it our standard procedure to do so.

Here are some examples. The first is very simple, but illustrates the basic idea
underlying the rule.

(BH)

1. 8x.Hx ^Mx/ P

Hj

8yHy 8I

1. 8x.Hx ^Mx/ P

2. Hj ^Mj 1 8E
3. Hj 2 ^E
4. 8yHy 3 8I

The goal is 8yHy. So, picking a variable new to the derivation, we set up to get this
by 8I from Hj . This goal is easy to obtain from the premise by 8E and ^E. If every
x is such that both Hx and Mx, it is not surprising that every y is such that Hy.
The general content from the quantifier is converted to the form with free variables,
manipulated by ordinary rules, and converted back to quantified form. This is typical.

Another example has free variables in an auxiliary assumption.

(BI)

1. 8x.Ex ! Sx/ P
2. 8z.Sz ! Kz/ P

Ej ! Kj

8x.Ex ! Kx/ 8I

1. 8x.Ex ! Sx/ P
2. 8z.Sz ! Kz/ P

3. Ej A (g,!I)

4. Ej ! Sj 1 8E
5. Sj 4,3!E
6. Sj ! Kj 2 8E
7. Kj 6,5!E

8. Ej ! Kj 3-7!I
9. 8x.Ex ! Kx/ 8 8I

Given the goal8x.Ex ! Kx/, we immediately set up to get it by8I fromEj ! Kj .
At this stage, j does not appear elsewhere in the derivation and we can therefore be
sure that the constraints will be met when it comes time to apply 8I. The derivation is
completed by the usual strategies. Observe that j appears in an auxiliary assumption
at (3). This is no problem insofar as the assumption is discharged by the time 8I is
applied. Inside the subderivation, however, we would not be able to conclude, say,
8xSx from (5) or 8xKx from (7), since at that stage the variable j is free in the
undischarged assumption. But, of course, given the strategies there should be no
temptation whatsoever to do so. For when we set up for 8I, we set up to do it in a way
that is sure to satisfy the constraints.

A last example introduces multiple quantifiers and, again, emphasizes the impor-
tance of following the strategies. Insofar as the conclusion merely exchanges variables
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with the premise, it is no surprise that there is a way for it to be done.

(BJ)

1. 8x.Gx ! 8yFyx/ P

Gj ! 8xFxj

8y.Gy ! 8xFxy/ 8I

1. 8x.Gx ! 8yFyx/ P

2. Gj A (g,!I)

Fkj

8xFxj 8I

Gj ! 8xFxj 2- !I
8y.Gy ! 8xFxy/ 8I

First, we set up to get 8y.Gy ! 8xFxy/ from Gj ! 8xFxj . The variable j does
not appear in the derivation, so we expect that the constraints on 8I will be satisfied.
But our new goal is a conditional, so we set up to go for it by!I in the usual way.
This leads to 8xFxj as a goal, and we set up to get it from Fkj , where k does not
otherwise appear in the derivation. Observe that we have at this stage an undischarged
assumption in which j appears free. However, our plan is to generalize on k. Since
k is new at this stage, we are fine. Of course, this assumes that we are following the
strategies so that our new variable automatically avoids variables free in assumptions
under which this instance of 8I falls. This goal is easily obtained and the derivation
completed as follows:

1. 8x.Gx ! 8yFyx/ P

2. Gj A (g,!I)

3. Gj ! 8yFyj 1 8E
4. 8yFyj 3,2!E
5. Fkj 4 8E
6. 8xFxj 5 8I

7. Gj ! 8xFxj 2-6!I
8. 8y.Gy ! 8xFxy/ 7 8I

When we apply 8I the first time, we replace k with x and add the x-quantifier. When
we apply 8I the second time, we replace each instance of j with y and add the
y-quantifier. This is just how we planned for the rules to work.

9E appeals to both a formula and a subderivation. For variables v and x, given an
accessible formula 9xP at a, and an accessible subderivation beginning with P x

v at b
and ending with Q against its scope line at c—where v is free for x in P , v is free in
no undischarged assumption, and v is not free in 9xP or in Q—one may move to Q,
with justification a,b-c 9E.

9E

a. 9xP

b. P x
v A (g, a9E)

c. Q

Q a,b-c 9E

provided (i) v is free for x in P , (ii) v is not free in

any undischarged auxiliary assumption, and (iii) v is not

free in 9xP or in Q
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Notice that the assumption comes with an exit strategy as usual. We can think of this
rule on analogy with _E. A universally quantified expression is something like a big
conjunction: if 8xP , then this element of U is P and that element of U is P and. . . .
And an existentially quantified expression is something like a big disjunction: if 9xP ,
then this element of U is P or that element of U is P or. . . . As though it were a
massive _E, then, we have that something is P , and need to show that Q follows
no matter which thing it happens to be. The constraints guarantee that our reasoning
works for any individual to which the assumption applies. Given this, we are in a
position to conclude that Q.

Again, if you are following the strategies, a simple way to guarantee that the
constraints are met is to use a variable new to the derivation for the assumption.
Suppose you are going for goal Q. In parallel with _, when presented with an
accessible formula with main operator 9, it is wise to go for the entire goal by 9E.

(BK)

a. 9xP

Q (goal)

a. 9xP

b. P x
v A (g, a9E)

c. Q (goal)
Q a,b-c 9E

Observe that v is free in assumption (b); this is no problem for the requirement (ii)
that v is not free in an undischarged auxiliary assumption, insofar as 9E is applied
only after the assumption is discharged. And if v does not otherwise appear in the
derivation, then (i) there is no v-quantifier in P and v is sure to be free for x in
P . If v does not otherwise appear in the derivation (ii) v does not appear in any
other assumption and so is not free in any undischarged auxiliary assumption. And
if v does not otherwise appear in the derivation (iii) v does not appear in either
9xP or in Q and so is not free in 9xP or in Q. Thus we adopt the same simple
expedient to guarantee that the constraints are met. Of course, this presupposes we
are following the strategies enough so that other assumptions are in place when we
make the assumption for 9E, and that we are clear about the exit strategy, so that we
know what Q will be. The variable is new relative to this much setup.

Here are some examples. The first is particularly simple, and should seem intu-
itively right. Notice again that given an accessible formula with main operator 9, we
go directly for the goal by 9E.

(BL)

1. 9x.F x ^Gx/ P

2. Fj ^Gj A (g, 19E)

9xFx

9xFx 1,2- 9E

1. 9x.F x ^Gx/ P

2. Fj ^Gj A (g, 19E)

3. Fj 2 ^E
4. 9xFx 3 9I

5. 9xFx 1,2-4 9E

Given an accessible formula with main operator 9, we go for the goal by 9E. This
gives us a subderivation with the same goal, and our assumption with the new variable.



CHAPTER 6. NATURAL DEDUCTION 273

As it turns out, this goal is easy to obtain, with instances of ^E and 9I. We could not
do 8I to introduce 8xFx under the scope of the assumption with j free. But 9I is not
so constrained. So we complete the derivation as above. If some x is such that both
Fx and Gx then of course some x is such that Fx. Again, we are able to take the
quantifier off, manipulate the expressions with free variables, and put the quantifier
back on.

Observe that the following is a mistake. It violates the third constraint that the
variable v to which we instantiate the existential is not free in the formula Q that
results from 9E.

(BM)

1. 9x.F x ^Gx/ P

2. Fj ^Gj A (g, 19E)

3. Fj 2 ^E

4. Fj 1,2-3 9E !Mistake!
5. 9xFx 4 9I

If you are following the strategies, there should be no temptation to do this. In the
above example (BL), we go for the goal 9xFx by 9E. At that stage, the variable of
the assumption j is new to the derivation and so does not appear in the goal. So all is
well. This case (BM) does not introduce a variable that is new relative to the goal of
the subderivation, and so runs into trouble.

Very often, a goal from 9E is existentially quantified—for introducing an exis-
tential quantifier may be a way to bind the variable from the assumption, so that it is
not free in the goal. In fact, we do not have to think much about this, insofar as we
explicitly introduce the assumption by a variable not in the goal. However, it is not
always the case that the goal for 9E is existentially quantified. Here is a simple case
of that sort:

(BN)

1. 9xFx P
2. 8z.9yFy ! Gz/ P

3. Fj A (g, 19E)

8xGx

8xGx 1,3- 9E

1. 9xFx P
2. 8z.9yFy ! Gz/ P

3. Fj A (g, 19E)

4. 9yFy ! Gk 2 8E
5. 9yFy 3 9I
6. Gk 4,5!E
7. 8xGx 6 8I

8. 8xGx 1,3-7 9E

Again, given an existential premise, we set up to reach the goal by 9E, where the
variable in the assumption is new. In this case, the goal is universally quantified, and
illustrates the point that any formula may be the goal for 9E. In this case, we reach the
goal in the usual way. To reach 8xGx set Gk as goal; at this stage, k is new to the
derivation, and so not free in any undischarged assumption. So there is no problem
about 8I. Then it is a simple matter of exploiting accessible lines for the result.

Here is an example with multiple quantifiers. It is another case which makes sense
insofar as the premise and conclusion merely exchange variables.
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(BO)

1. 9x.F x ^ 9yGxy/ P

2. Fj ^ 9yGjy A (g, 19E)

9y.Fy ^ 9xGyx/

9y.Fy ^ 9xGyx/ 1,2- 9E

1. 9x.F x ^ 9yGxy/ P

2. Fj ^ 9yGjy A (g, 19E)

3. 9yGjy 2 ^E
4. Gjk A (g, 39E)

9y.Fy ^ 9xGyx/

9y.Fy ^ 9xGyx/ 3,4- 9E

9y.Fy ^ 9xGyx/ 1,2- 9E

The premise is an existential, so we go for the goal by 9E. This gives us the first
subderivation, with the same goal and new variable j substituted for x. But just a bit
of simplification gives us another existential on line (3). Thus, following the standard
strategies, we set up to go for the goal again by 9E. At this stage, j is no longer new,
so we set up another subderivation with new variable k substituted for y. Now the
derivation is reasonably straightforward.

1. 9x.F x ^ 9yGxy/ P

2. Fj ^ 9yGjy A (g, 19E)

3. 9yGjy 2 ^E
4. Gjk A (g, 39E)

5. 9xGjx 4 9I
6. Fj 2 ^E
7. Fj ^ 9xGjx 6,5 ^I
8. 9y.Fy ^ 9xGyx/ 7 9I

9. 9y.Fy ^ 9xGyx/ 3,4-8 9E

10. 9y.Fy ^ 9xGyx/ 1,2-9 9E

9I applies in the scope of the subderivations. And we put Fj and 9xGjx together so
that the outer quantifier goes on properly, with y in the right slots.

Finally, observe that 8I and 9I also constitute a dual to one another. The deriva-
tions to show this are relatively difficult to create. But to not worry about that. It is
enough to understand the steps. For the parallel to 8I, suppose the constraints are met
for a derivation of 8xPx from Pj . And for the parallel to 9E, suppose it is possible
to derive Q by 9E from 9xPx; so from application of that rule, in a subderivation,
we can get Q from Pj .
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(BP)

1. Pj P

2. 9x�Px A (c, �I)

3. �Pj A (c, 29E)

4. ? 1,3 ?I

5. ? 2,3-4 9E

6. �9x�Px 2-5 �I

(BQ)

1. �8x�Px P

2. �Q A (c, �E)

3. Pj A (c, �I)

:::

4. Q (somehow)
5. ? 4,2 ?I

6. �Pj 3-5 �I
7. 8x�Px 6 8I
8. ? 7,1 ?I

9. Q 2-8 �E

Where Pj is a premise, it would be possible to derive 8xPx in one step by 8I. But
in (BP) from the same start we derive the equivalent �9x�Px by the existential rule.
Because conditions for the universal rule apply, j is not free in any undischarged
assumption, j is free for x in �Px, and j is not free in 9x�Px; in addition, it
matters that ? abbreviates a sentence and so includes no free instance of j . So the
constraints on 9E are satisfied. (The variable j of the assumption at (3) is not new—
still, constraints are met insofar as j appears only in the premise.) Similarly, if it is
possible to derive Q by 9E from 9xPx, we would set up a subderivation starting with
Pj , derive Q and use 9E to exit with the Q. In (BQ) we begin with the equivalent
�8x�Px and, supposing it is possible in a subderivation to derive Q from Pj , use
the universal rule to derive Q. Again, because conditions for the existential rule apply,
j is free for x in �Px, j is not free in 8x�Px, and j is not free in �Q or other
undischarged assumptions. So the constraints on 8I are satisfied. Thus, again, there is
a sense in which in the presence of rules for negation, the work done by one of these
quantifier rules is very similar to, or can substitute for, the work done by the other.

E6.27. Complete the following derivations by filling in justifications for each line.
Then for each application of 8I or 9E show that the constraints are met by running
through each of the three requirements.

a. 1. 8x.Hx ! Rx/

2. 8yHy

3. Hj ! Rj

4. Hj

5. Rj

6. 8zRz
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*b. 1. 8y.Fy ! Gy/

2. 9zF z

3. Fj

4. Fj ! Gj

5. Gj

6. 9xGx

7. 9xGx

c. 1. 9x8y8zHxyz

2. 8y8zHjyz

3. 8zHjf 1kz

4. Hjf 1kf 1k

5. 9xHxf 1kf 1k

6. 8y9xHxf 1yf 1y

7. 8y9xHxf 1yf 1y

d. 1. 8y8x.F x ! By/

2. 9xFx

3. Fj

4. 8x.F x ! Bk/

5. Fj ! Bk

6. Bk

7. Bk

8. 9xFx ! Bk

9. 8y.9xFx ! By/

e. 1. 9x.F x ! 8yGy/

2. Fj ! 8yGy

3. Fj

4. 8yGy

5. Gk

6. Fj ! Gk

7. 8y.Fj ! Gy/

8. 9x8y.F x ! Gy/

9. 9x8y.F x ! Gy/

E6.28. The following are not legitimate ND derivations. In each case, explain why.

*a. 1. Gjy ! Fjy P

2. 8z.Gzy ! Fjy/ 1 8I
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b. 1. 9x8yByx P

2. 8yByy A (g, 19E)

3. Baa 2 8E

4. Baa 1,2-3 9E

c. 1. 9xByx P

2. Byy A (g, 19E)

3. 9yByy 2 9I

4. 9yByy 1,2-3 9E

d. 1. 8x9yLxy P

2. 9yLjy 1 8E
3. Ljk A (g, 29E)

4. 8xLxk 3 8I
5. 9y8xLxy 4 9I

6. 9y8xLxy 2,3-5 9E

e. 1. 8x.Hx ! Gx/ P
2. 9xHx P

3. Hj A (g, 29E)

4. Hj ! Gj 1 8E
5. Gj 4,3!E

6. Gj 2,3-5 9E
7. 8xGx 6 8I

E6.29. Provide derivations to show each of the following.

*a. 8xKxx
ǸD
8zKzz

b. 9xKxx
ǸD
9zKzz

*c. 8x�Kx, 8x.�Kx ! �Sx/
ǸD
8x.Hx _�Sx/

d.
ǸD
8xHf 1x ! 8xHf 1g1x

e. 8x8y.Gy ! Fx/
ǸD
8x.8yGy ! Fx/

*f. 9yByyy
ǸD
9x9y9zBxyz

g. 8xŒ.Hx ^�Kx/! Ix�, 9y.Hy ^Gy/, 8x.Gx ^�Kx/
ǸD
9y.Iy ^Gy/

h. 8x.Ax ! Bx/
ǸD
9zAz ! 9zBz

i. 9x�.Cx _�Rx/
ǸD
9x�Cx

j. 9x.Nx _ Lxx/, 8x�Nx
ǸD
9yLyy
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*k. 8x8y.F x ! Gy/
ǸD
8x.F x ! 8yGy/

l. 8x.F x ! 8yGy/
ǸD
8x8y.F x ! Gy/

m. 9x.Mx ^�Kx/, 9y.�Oy ^Wy/
ǸD
9x9y.�Kx ^�Oy/

n. 8x.F x ! 9yGxy/
ǸD
8xŒF x ! 9y.Gxy _�Hxy/�

o. 9x.Jxa ^ Cb/, 9x.Sx ^Hxx/, 8xŒ.Cb ^ Sx/! �Ax�
ǸD
9z.�Az ^Hzz/

6.3.3 Strategy

Our strategies remain very much as before. They are modified only to accommodate
the parallels between ^ and 8, and between _ and 9. I restate the strategies in their
modified form, and give some examples of each. As before, we begin with strategies
for reaching a determinate goal.

SG 1. If accessible lines contain explicit contradiction, use �E to reach goal.

2. Given an accessible formula with main operator 9 or _, use 9E or _E to
reach goal (watch “screened” variables).

3. If goal is “in” accessible lines (set goals and) attempt to exploit it out.

4. To reach goal with main operator ?, use ?I (careful with _ and 9).

5. Try�E (especially for atomics and formulas with _ or 9 as main operator).

And we have strategies for reaching a contradiction.

SC 1. Break accessible formulas down into atomics and negated atomics.

2. Given an available existential or disjunction, go for ? by 9E or _E (watch
“screened” variables).

3. Set as goal the opposite of some negation (something that cannot itself be
broken down); then apply strategies for a goal to reach it.

4. For some P such that both P and �P lead to contradiction: Assume P

(�P ), obtain the first contradiction, and conclude �P (P ); then obtain
the second contradiction—this is the one you want.

As before, these are listed in priority order, though the frequency order may be
different. If a high priority strategy does not apply, simply fall through to one that
does. In each case, you may want to refer back to the corresponding section in the
sentential case for further discussion and examples.
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SG1. If accessible lines contain explicit contradiction, use �E to reach goal. The
statement is unchanged from before. If accessible lines contain an explicit contra-
diction, we can assume the negation of our goal, bring the contradiction under the
assumption, and conclude to the original goal. Since this always works, we want to
jump on it whenever it is available. The only thing to add for the quantificational case
is that accessible lines might “contain” a contradiction that is just a short step away
buried in quantified expressions. Thus, for example,

(BR)

1. 8xFx P
2. 8y�Fy P

Gz

1. 8xFx P
2. 8y�Fy P

3. �Gz A (c, �E)

4. Fx 1 8E
5. �Fx 2 8E
6. ? 4,5 ?I

7. Gz 3-6 �E

Though 8xFx and 8y�Fy are not themselves an explicit contradiction, they lead
by 8E directly to expressions that are. Given the analogy between ^ and 8, it is as if
we had both Fa ^ : : : ^ Fb and �Fa ^ : : : ^�Fb in the premises. In this case, we
would not hesitate to go for the goal by �E. And similarly here.

SG2. Given an accessible formula with main operator 9 or _, use 9E or _E to reach
goal (watch “screened” variables). What is new for this strategy is the existential
quantifier. Motivation is the same as before: With goal Q, and an accessible line
with main operator 9, go for the goal by 9E. Then you have all the same accessible
formulas as before, with the addition of the assumption. So you will (typically) be
better off in your attempt to reach Q. We have already emphasized this strategy in
introducing the rules. Here is an example:

(BS)

1. 9xFx P
2. 9yGy P
3. 9zF z ! 8yFy P

4. Fj A (g, 19E)

5. Gk A (g, 29E)

9x.F x ^Gx/

9x.F x ^Gx/ 2,5- 9E

9x.F x ^Gx/ 1,4- 9E

1. 9xFx P
2. 9yGy P
3. 9zF z ! 8yFy P

4. Fj A (g, 19E)

5. Gk A (g, 29E)

6. 9zF z 4 9I
7. 8yFy 3,6!E
8. Fk 7 8E
9. Fk ^Gk 8,5 ^I

10. 9x.F x ^Gx/ 9 9I

11. 9x.F x ^Gx/ 2,5-10 9E

12. 9x.F x ^Gx/ 1,4-11 9E

The premise at (3) has main operator! and so is not existentially quantified. But
the first two premises have main operator 9. So we set up to reach the goal with two
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applications of 9E. It does not matter which we do first as, either way, we end up with
the same accessible formulas to reach the goal at the innermost subderivation. Once
we have the subderivations set up, the rest is straightforward.

Given what we have said, it might appear mysterious how one could be anything
but better off going directly for a goal by 9E or _E. But consider the derivations
below:

(BT)

1. 8x9yFxy P
2. 8x8y.F xy ! Gxy/ P

3. 9yFjy 1 8E
4. Fjk A (g, 39E)

5. 8y.Fjy ! Gjy/ 2 8E
6. Fjk ! Gjk 5 8E
7. Gjk 6,4!E
8. 9yGjy 7 9I
9. 8x9yGxy !Mistake!

10. 8x9yGxy 3,4-9 9E

(BU)

1. 8x9yFxy P
2. 8x8y.F xy ! Gxy/ P

3. 9yFjy 1 8E
4. Fjk A (g, 39E)

5. 8y.Fjy ! Gjy/ 2 8E
6. Fjk ! Gjk 5 8E
7. Gjk 6,4!E
8. 9yGjy 7 9I

9. 9yGjy 3,4-8 9E
10. 8x9yGxy 9 8I

In derivation (BT), we isolate the existential on line (3) and go for the goal, 8x9yGxy
by 9E. But something is in fact lost when we set up for the subderivation—the variable
j , that was not in any undischarged assumption and therefore available for 8I, gets
“screened off” by the assumption and so lost for universal generalization. So at step
(9), we are blocked from using (8) and 8I to reach the goal. The problem is solved
in (BU) by letting variable j pass into the subderivation and back out, where it is
available again for 8I. We pass over our second strategy for a goal until we have a
new goal in which j is free. This way there is no call to generalize on j under the
scope of the assumption. The restriction on 9E blocks a goal in which k is free, but
there is no problem about j .

SG3. If goal is “in” accessible lines (set goals and) attempt to exploit it out. The
statement of this strategy is the same as before. The only thing to add is that we
should consider the instances of a universally quantified expression as already “in”
the expression (as if it were a big conjunction). Thus, for example,

(BV)

1. Ga! 8xFx P
2. 8xGx P

8xFx

Fa 8E

1. Ga! 8xFx P
2. 8xGx P

3. Ga 2 8E
4. 8xFx 1,3!E
5. Fa 4 8E

The original goal Fa is “in” the consequent of (1), 8xFx. So we set 8xFx as a
subgoal. This leads to Ga as another subgoal, and we find this “in” the premise at (2).

Here is a more complicated case. When extracting a goal that involves multiple
quantifiers and terms it can sometimes help to pencil a “map” for how quantifiers are
to be applied.
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(BW)

1. 8x8yW
a

x b
b

y P

2. 8x8y8z.W
a

x
b

y
b

z! R
b

z
a

x/ P

Rba

1. 8x8yWxby P
2. 8x8y8z.Wxyz ! Rzx/ P

3. 8yWaby 1 8E
4. Wabb 3 8E
5. 8y8z.Wayz ! Rza/ 2 8E
6. 8z.Wabz ! Rza/ 5 8E
7. Wabb ! Rba 6 8E
8. Rba 7,4!E

Working back from the goal, we want Rba from the consequent of (2); this tells us
how to instantiate z and x in (2); then in order to connect with (1) we instantiate y to
b. From this x and y in (1) go to a and b. Then the plan is easily executed.

SG4. To reach goal with main operator ?, use ?I (careful with _ and 9). As before,
this is your “bread-and-butter” strategy. You will come to it over and over. Of new
applications, the most automatic is for 8. For a simple case,

(BX)

1. 8xGx P
2. 8yFy P

Fj ^Gj

8z.F z ^Gz/ 8I

1. 8xGx P
2. 8yFy P

3. Gj 1 8E
4. Fj 2 8E
5. Fj ^Gj 4,3 ^I
6. 8z.F z ^Gz/ 5 8I

Given a goal with main operator 8, we immediately set up to get it by 8I. This leads
to Fj ^Gj with the new variable j as a subgoal. After that, completing the derivation
is easy. Observe that this strategy does not always work for formulas with main
operators _ and 9.

SG5. Try �E (especially for atomics and formulas with _ or 9 as main operator).
Recall that atomics now include more than just sentence letters. Thus this strategy
applies to goals of the sort Fab or Gz. And, just as one might have good reason
to accept that P or Q without having good reason to accept that P , or that Q, so
one might have reason to accept that 9xP without having reason to accept that
any particular individual is P —as one might be quite confident that someone did
it, without evidence sufficient to convict any particular individual. Thus there are
contexts where it is possible to derive 9xP but not possible to reach it directly by 9I.
SG5 has special application in those contexts. Thus consider the following example:
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(BY)

1. �8xAx P

2. �9x�Ax A (c, �E)

?

9x�Ax 2- �E

1. �8xAx P

2. �9x�Ax A (c, �E)

3. �Aj A (c, �E)

4. 9x�Ax 3 9I
5. ? 4,2 ?I

6. Aj 3-5 �E
7. 8xAx 6 8I
8. ? 7,1 ?I

9. 9x�Ax 2-8 �E

Our initial goal is 9x�Ax. There is no contradiction; there is no disjunction or
existential; we do not see the goal in the premise; and attempts to reach the goal by 9I
are doomed to fail. So we fall through to SG5, and set up to reach the goal by �E.
As it happens, the contradiction is not easy to get! We can think of the derivation as
involving applications of either SC3 or SC4. We take up this sort of case below. For
now, the important point is just the setup on the left.

Where strategies for a goal apply in the context of some determinate goal, strate-
gies for a contradiction apply when the goal is just some contradiction—and any
contradiction will do. Again, there is nothing fundamentally changed from the senten-
tial case, though we can illustrate some special quantificational applications.

SC1. Break accessible formulas down into atomics and negated atomics. This works
just as before. The only point to emphasize for the quantificational case is one we made
for SG1 above, that relevant atomics may be “contained” in quantified expressions. So
going for atomics and negated atomics may include “shaking” quantified expressions
to see what falls out. Here is a simple example:

(BZ)

1. �Fa P

2. 8x.F x ^Gx/ A (c, �I)

?

�8x.F x ^Gx/ 2- �I

1. �Fa P

2. 8x.F x ^Gx/ A (c, �I)

3. Fa ^Ga 2 8E
4. Fa 3 ^E
5. ? 4,1 ?I

6. �8x.F x ^Gx/ 2-5 �I

Our strategy for the goal is SG4. For an expression with main operator �, we go for
the goal by �I. We already have �Fa toward a contradiction at the level of atomics
and negated atomics. And Fa comes from the universally quantified expression by
8E.

SC2. Given an available existential or disjunction, go for ? by 9E or _E (watch
“screened” variables). As before, in many cases you will have applied 9E or _E by
SG2 prior to setting up for �E or �I. Then the existential or disjunction is “used up”
and unavailable for this strategy. However it may be that an existential or disjunction
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becomes or remains available inside a subderivation for a tilde rule. In any such case,
this strategy has high priority for the same reasons as before: In your attempt to reach
a contradiction, you have all the same accessible formulas as before, with the addition
of the assumption. So you will (typically) be better off in your attempt to reach a
contradiction. Here is an example:

(CA)

1. 8x�Ax P

2. 9xAx A (c, �I)

?

�9xAx 2- �I

1. 8x�Ax P

2. 9xAx A (c, �I)

3. Aj A (c, 29E)

?

? 2,3- 9E

�9xAx 2- �I

We set up to reach the main goal by �I. This gives us an existentially quantified
expression at (2), where the goal is a contradiction. SC2 tells us to go for ? by
9E. Observe that, because the goal is ?, the exit strategy is c rather than g. But by
application of SC1, this subderivation is easy.

1. 8x�Ax P

2. 9xAx A (c, �I)

3. Aj A (c, 29E)

4. �Aj 1 8E
5. ? 3,4 ?I

6. ? 2,3-5 9E

7. �9xAx 2-6 �I

The contradiction results with Aj on line (3) and �Aj “contained” on line (1). But
as occurs with the parallel goal-directed strategy, the contradiction would not even
have been possible without the assumption Aj for 9E.

As can occur with applications of SG2, it is wise to be careful about applications
of this strategy when assumptions for 9E or _E “screen off” variables that would
otherwise be available for 8I. Here is an example to illustrate the point:



CHAPTER 6. NATURAL DEDUCTION 284

(CB)

1. �8x9yGxy P
2. 8x8y.F xy ! Gxy/ P

3. 8x9yFxy A (c, �I)

4. 9yFjy 3 8E
5. Fjk A (c, 49E)

6. 8y.Fjy ! Gjy/ 2 8E
7. Fjk ! Gjk 6 8E
8. Gjk 7,5!E
9. 9yGjy 8 9I

10. 8x9yGxy !Mistake!
11. ? 10,1 ?I

12. ? 4,5-11 9E

13. �8x9yFxy 3-12 �I

(CC)

1. �8x9yGxy P
2. 8x8y.F xy ! Gxy/ P

3. 8x9yFxy A (c, �I)

4. 9yFjy 3 8E
5. Fjk A (g, 49E)

6. 8y.Fjy ! Gjy/ 2 8E
7. Fjk ! Gjk 6 8E
8. Gjk 7,5!E
9. 9yGjy 8 9I

10. 9yGjy 4,5-9 9E
11. 8x9yGxy 10 8I
12. ? 11,1 ?I

13. �8x9yFxy 3-12 �I

In derivation (CB), we isolate the existential on line (4) and set up to go for contradic-
tion by 9E. But something is in fact lost when we set up for the subderivation—the
variable j , that was not in any undischarged assumption and therefore available for
8I, gets “screened off” by the assumption and so lost for universal generalization.
So at step (10), we are blocked from using (9) and 8I to reach the goal. Again, the
problem is solved in (CC) by letting variable j pass into the subderivation and back
out, where it is available for 8I. As before, we pass over the second strategy for a
contradiction until we have a new goal in which j is free. And we apply 9E for it.

SC3. Set as goal the opposite of some negation (something that cannot itself be
broken down); then apply strategies for a goal to reach it. In principle, this strategy is
unchanged from before, though of course there are new applications for quantified
expressions. Here is a quick example:

(CD)

1. �9xAx P

2. Aj A (c, �I)

?

�Aj 2- �I
8x�Ax 8I

1. �9xAx P

2. Aj A (c, �I)

3. 9xAx 2 9I
4. ? 3,1 ?I

5. �Aj 2-4 �I
6. 8x�Ax 5 8I

Our strategy for the goal is SG4. We plan on reaching 8x�Ax by 8I. So we set �Aj
as a subgoal. Again the strategy for the goal is SG4, and we set up to get �Aj by
�I. Other than the assumption itself, there are no atomics and negated atomics to be
had. There is no available existential or disjunction. But the premise is a negated
expression. So we set 9xAx as a goal. And this is easy, as it comes in one step by 9I.
(CC) above is another example of this. Needing a contradiction, we build up to the
opposite of the formula on line (1).
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SC4. For some P such that both P and �P lead to contradiction: Assume P

(�P ), obtain the first contradiction, and conclude �P (P ); then obtain the second
contradiction—this is the one you want. As in the sentential case, this strategy often
coincides with SC3—in building up to the opposite of something that cannot be
broken down, one assumes a P such that both P and �P result in contradiction. Cor-
responding to the pattern with _, this often happens when some accessible expression
is a negated existential. Here is a challenging example:

(CE)

1. 8x.�Ax ! Kx/ P
2. �8yKy P

3. �9wAw A (c, �E)

?

9wAw 3- �E

1. 8x.�Ax ! Kx/ P
2. �8yKy P

3. �9wAw A (c, �E)

4. Aj A (c, �I)

5. 9wAw 4 9I
6. ? 5,3 ?I

7. �Aj 4-6 �I
8. �Aj ! Kj 1 8E
9. Kj 8,7!E

10. 8yKy 9 8I
11. ? 10,2 ?I

12. 9wAw 3-11 �E

Once we decide that we cannot get the goal directly by 9I, the strategy for a goal
falls through to SG5. And, as it turns out, both Aj and �Aj lead to contradiction.
So we assume one and get the contradiction; this gives us the other which leads
to contradiction as well. The decision to assume Aj may seem obscure! But it
is a common pattern: Given �9xP , assume an instance P x

v for some variable v ,
or at least something that will yield P x

v . Then 9I gives you 9xP , and so the first
contradiction. So you conclude �P x

v —and this outside the scope of the assumption,
where 8I and the like might apply for v . In effect, you come with an instance of the
existential “underneath” its negation, this leads to contradiction and so to a negation
of the instance—which has some chance to give you what you want. For another
example of this pattern, see (BY) above.

Notice that such cases can also be understood as driven by applications of SC3.
In (CE), we set the opposite of the formula on (2) as goal. This leads to Kj and
then �Aj as subgoals. To reach �Aj , we assume Aj , and get this by building to the
opposite of �9wAw. And similarly in (BY).

Again, these strategies are not a cookbook for performing all derivations—doing
derivations remains an art. But the strategies will give you a good start, and take you
a long way through the exercises that follow, including derivation of the theorems
immediately below.

*T6.30.
ǸD
8xP ! P x

t where term t is free for variable x in formula P
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*T6.31.
ǸD
8x8yP $ 8y8xP

T6.32.
ǸD
9x9yP $ 9y9xP

T6.33. Where x is not free in P ,

*(a)
ǸD
8x.P ^Q/$ .P ^ 8xQ/

(b)
ǸD
9x.P ^Q/$ .P ^ 9xQ/

(c)
ǸD
8x.Q ^P /$ .8xQ ^P /

(d)
ǸD
9x.Q ^P /$ .9xQ ^P /

*(e)
ǸD
8x.P _Q/$ .P _ 8xQ/

(f)
ǸD
9x.P _Q/$ .P _ 9xQ/

(g)
ǸD
8x.Q _P /$ .8xQ _P /

(h)
ǸD
9x.Q _P /$ .9xQ _P /

(i)
ǸD
8x.P ! Q/$ .P ! 8xQ/

*(j)
ǸD
9x.P ! Q/$ .P ! 9xQ/

(k)
ǸD
8x.Q! P /$ .9xQ! P /

(l)
ǸD
9x.Q! P /$ .8xQ! P /

T6.34.
ǸD
9x.P _Q/$ .9xP _ 9xQ/

T6.35.
ǸD
8x.P ^Q/$ .8xP ^ 8xQ/

T6.36.
ǸD
�8xP $ 9x�P

T6.37.
ǸD
�9xP $ 8x�P

E6.30. For each of the following, (i) which strategies for a goal apply? and (ii) what
are the next two steps? If the strategies call for a new subgoal, show the subgoal;
if they call for a subderivation, set up the subderivation. In each case explain your
response. Hint: Each of the strategies for a goal is used at least once.
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*a. 1. 9x9y.F xy ^Gyx/ P

9x9yFyx

b. 1. 8yŒ.Hy ^ Fy/! Gy� P
2. 8zF z ^�8xKxb P

8x.Hx ! Gx/

c. 1. 8x8y.Gy ! Rxy/ P
2. 8x.Hx ! Gx/ P
3. Hb P

Rab

d. 1. 8x8y.Rxy ! �Ryx/ P
2. Raa P

9z9ySyz

e. 1. �8x.F x _ A/ P

9x�Fx

E6.31. Each of the following sets up an application of �I or �E for SG4 or SG5.
Complete the derivations, and explain your use of strategies for a contradiction.
Hint: Each of the strategies for a contradiction is used at least once.

*a. 1. �9x.F x ^Gx/ P

2. Fj A (g,!I)

3. Gj A (c, �I)

?

�Gj 3- �I

Fj ! �Gj 2- !I
8x.F x ! �Gx/ 8I

b. 1. 8x.F x ! 8y�Fy/ P

2. 9xFx A (c, �I)

?

�9xFx 2- �I
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c. 1. 8x.F x ! 8yRxy/ P
2. �Rab P

3. Fa A (c, �I)

?

�Fa 3- �I

d. 1. �8xFx P

2. �9x.�Fx _ A/ A (c, �E)

?

9x.�Fx _ A/ 2- �E

e. 1. 9x.Ax $ �Ax/ A (c, �I)

?

�9x.Ax $ �Ax/ 1- �I

E6.32. Produce derivations to show each of the following. Though no full answers
are provided, strategy hints are available for the first problems. If you get the last
few on your own, you are doing very well!

*a. 8x.�Bx ! �Wx/, 9xWx
ǸD
9xBx

*b. 8x8y8zGxyz
ǸD
8x8y8z.Hxyz ! Gzyx/

*c. 8xŒAx ! 8y.�Dxy $ Bf 1f 1y/�, 8x.Ax ^�Bx/
ǸD
8xDf 1xf 1x

*d. 8x.Hx ! 8yRxyb/, 8x8z.Razx ! Sxzz/
ǸD

Ha! 9xSxcc

*e. �8x.F x ^ Abx/$ �8xKx, 8yŒ9x�.F x ^ Abx/ ^Ryy�
ǸD
�8xKx

*f. 8x8y.Dxy ! Cxy/, 8x9yDxy, 8x8y.Cyx ! Dxy/
ǸD
9x9y.Cxy ^ Cyx/

*g. 8x8yŒ.Ry _Dx/! �Ky�, 8x9y.Ax ! �Ky/, 9x.Ax _Rx/
ǸD
9x�Kx

*h. 8y.My ! Ay/, 9x9yŒ.Bx ^Mx/ ^ .Ry ^ Syx/�, 9xAx ! 8y8z.Syz ! Ay/

ǸD
9x.Rx ^ Ax/

*i. 8x8yŒ.Hby ^Hxb/! Hxy�, 8z.Bz ! Hbz/, 9x.Bx ^Hxb/

ǸD
9zŒBz ^ 8y.By ! Hzy/�

*j. 8x9yRxy, 8x8y.Rxy ! Ryx/
ǸD
8x9y.Rxy ^Ryx/

*k. 8x..F x ^�Kx/! 9yŒ.Fy ^Hyx/ ^�Ky�/,
8xŒ.F x ^ 8yŒ.Fy ^Hyx/! Ky�/! Kx�!Ma

ǸD
Ma

*l. 8x8yŒ.Gx ^Gy/! .Hxy ! Hyx/�, 8x8y8z.Œ.Gx ^Gy/ ^Gz�!
Œ.Hxy ^Hyz/! Hxz�/

ǸD
8w.ŒGw ^ 9z.Gz ^Hwz/�! Hww/
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*m. 8x8yŒ.Ax ^ By/ ! Cxy�, 9yŒEy ^ 8w.Hw ! Cyw/�, 8x8y8zŒ.Cxy ^
Cyz/! Cxz�, 8w.Ew ! Bw/

ǸD
8z8wŒ.Az ^Hw/! Czw�

*n. 8x9y8z.Axyz _ Bzyx/, �9x9y9zBzyx
ǸD
8x9y8zAxyz

*o. A! 9xFx
ǸD
9x.A! Fx/

*p. 8xFx ! A
ǸD
9x.F x ! A/

q. 8x.F x ! Gx/, 8x8y.Rxy ! Syx/, 8x8y.Sxy ! Syx/

ǸD
8xŒ9y.F x ^Rxy/! 9y.Gx ^ Sxy/�

r. 9y8xRxy, 8x.F x ! 9ySyx/, 8x8y.Rxy ! �Sxy/
ǸD
9x�Fx

s. 9x8yŒ.F x_Gy/! 8z.Hxy ! Hyz/�, 9z8x�Hxz
ǸD
9y8x.Fy ! �Hyx/

t. 8x8yŒ9zHyz ! Hxy�
ǸD
9x9yHxy ! 8x8yHxy

u. 9x.F x ^ 8yŒ.Gy ^ Hy/ ! �Sxy�/, 8x8y.Œ.F x ^ Gy/ ^ Jy� ! �Sxy/,
8x8y.Œ.F x ^Gy/ ^Rxy�! Sxy/, 9x.Gx ^ .J x _Hx//

ǸD
9x9y..F x ^Gy/ ^�Rxy/

v. 9x8yŒ9z.F zy ! 9wFyw/! Fxy�
ǸD
9xFxx

w.
ǸD
9x8y.F x ! Fy/

x.
ǸD
9x.9yFy ! Fx/

y.
ǸD
8x9y8zŒ9wT xyw ! 9wT xzw�

*E6.33. Produce derivations to demonstrate each of the results from T6.30–T6.32,
T6.33a,b,e, and T6.34–T6.37. For the first five, for each application of a quantifier
rule explain how its restrictions are met. You may apply extra rules from NDs+ as
appropriate. Challenge: finish the results of T6.33. Hint: Apply quantifier rules
without changing variables—then constraints are straightforward.

6.3.4 DI andDE

We complete the system ND with I- and E-rules for equality. Strictly, D is not an
operator; it is a two-place relation symbol. However, because its interpretation is
standardized across all interpretations, it is possible to introduce rules for its behavior.

The DI rule is particularly simple. At any stage in a derivation, for any term t,
one may write down t D t with justificationDI.

DI
t D t DI

Strictly, without any inputs, this is an axiom schema of the sort we encountered in
Chapter 3—a form whose instances may be asserted at any stage in a derivation.
Motivation should be clear. Since for any m in the universe U, hm;mi is in the
interpretation ofD, t D t is sure to be satisfied, no matter what the assignment to t
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might be. Thus, in Lq, a D a, x D x, and f 2az D f 2az are formulas that might be
justified byDI.
DE is more interesting and, in practice, more useful. Say an arbitrary term is

free in a formula iff every variable in it is free. And say P t=s is P where some, but
not necessarily all, free instances of term t are replaced by term s. Then, given an
accessible formula P on line a and the atomic formula t D s or s D t on accessible
line b, one may move to P t=s where s is free for all the replaced instances of t in P ,
with justification a,bDE.

DE

a. P

b. t D s

P t=s a,bDE

a. P

b. s D t

P t=s a,bDE

provided that term s is free

for all the replaced instances of

term t in formula P

If the assignment to some terms is the same, this rule lets us replace free instances of
the one term by the other in any formula. Again, the motivation should be clear. On
trees, the only thing that matters about a term is the thing to which it refers. So if P

with term t is satisfied, and the assignment to t is the same as the assignment to s,
then P with s in place of t should be satisfied as well. When a term is not free, it is
not the assignment to the term that is doing the work, but rather the way it is bound.
So we restrict ourselves to contexts where it is just the assignment that matters!

ND Quick Reference

ND includes all the rules of NDs and,

8E (universal exploit)

a. 8xP

P x
t a 8E

9I (existential intro)

a. P x
t

9xP a 9I

provided t is free for x in P

8I (universal intro)

a. P x
v

8xP a 8I

9E (existential exploit)

a. 9xP

b. P x
v A (g, a9E)

c. Q

Q a,b-c 9E

provided (i) v is free for x in
P , (ii) v is not free in any
undischarged auxiliary assump-
tion, and (iii) v is not free in
8xP /9xP or in Q

DI (equality intro)

t D t DI

DE (equality exploit)

a P P

b t D s s D t

P t=s P t=s a,bDE

provided that term s is free
for all the replaced instances of
term t in formula P
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Because we need not replace all free instances of one term with the other, this rule
has some special applications that are worth noticing. Consider the formulas Raba
and a D b. The following lists all the formulas that could be derived from them in
one step byDE.

(CF)

1. Raba P
2. a D b P

3. Rbba 1,2DE
4. Rabb 1,2DE
5. Rbbb 1,2DE
6. Raaa 1,2DE
7. a D a 2,2DE
8. b D b 2,2DE

(3) and (4) replace one instance of a with b. (5) replaces both instances of a with
b. (6) replaces the instance of b with a. We could reach, say, Raab, but this would
require another step—which we could take from any of (4), (5), or (6). You should be
clear about why this is so. (7) and (8) are different. We have a formula a D b, and an
equality a D b. In (7) we use the equality to replace one instance of b in the formula
with a. In (8) we use the equality to replace one instance of a in the formula with b.
Of course (7) and (8) might equally have been derived byDI. Notice also thatDE is
not restricted to atomic formulas, or to simple terms. Thus, for example,

(CG)

1. 8y.Rag1x ^Kf 2f 2azy/ P
2. g1x D f 2az P

3. 8y.Raf 2az ^Kf 2f 2azy/ 1,2DE
4. 8y.Rag1x ^Kf 2g1xy/ 1,2DE

lists steps that are legitimate applications ofDE to (1) and (2). If the second premise
were g1x D f 2ay, however, we could not use it with (1) to reach say, 8y.Raf 2ay^
Kf 2f 2azy/, since f 2ay is not free for g1x in 8y.Rag1x ^ Kf 2f 2azy/. And
of course, we could not replace either y or f 2f 2azy in 8y.Rag1x ^Kf 2f 2azy/
since they are not free.

There is not much new to say about strategy, except that you should includeDE
among the stock of rules you use to identify what is “contained” in accessible lines.
It may be that a goal is contained in accessible lines, when terms only need to be
switched by some equality. Thus, for goal Fa, with Fb explicitly available, it might
be worth setting a D b as a subgoal, with the intent of using the equality to switch the
terms.

Rather than dwell on strategy as such, let us proceed directly to a few substantive
applications. First, you should find derivation of the following theorems straightfor-
ward. Thus, for example, T6.38 and T6.41 take just one step (and none require more
than five lines). The first three may remind you of axioms from Chapter 3. The others
represent important features of equality.
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T6.38.
ǸD

x D x

*T6.39.
ǸD

.xi D y/! .hnx1 : : :xi : : :xn D hnx1 : : :y : : :xn/

T6.40.
ǸD

.xi D y/! .Rnx1 : : :xi : : :xn ! Rnx1 : : :y : : :xn/

T6.41.
ǸD

t D t reflexivity of equality

T6.42.
ǸD

.t D s/! .s D t/ symmetry of equality

T6.43.
ǸD

.r D s/! Œ.s D t/! .r D t/� transitivity of equality

Here is reasoning of a frequently-encountered type. Suppose we want to show
that the following is valid in ND:

(CH)
9xŒ.Dx ^ 8y.Dy ! x D y// ^ Bx�

9x.Dx ^ Cx/

9xŒDx ^ .Bx ^ Cx/�

The dog is barking
Some dog is chasing a cat

Some dog is barking and chasing a cat

Using the methods of Chapter 5, this might translate something like the argument on
the right. We set out to do the derivation in the usual way.

1. 9xŒ.Dx ^ 8y.Dy ! x D y// ^ Bx� P
2. 9x.Dx ^ Cx/ P

3. .Dj ^ 8y.Dy ! j D y// ^ Bj A (g, 19E)

4. Dk ^ Ck A (g, 29E)

Dj ^ .Bj ^ Cj /

9xŒDx ^ .Bx ^ Cx/� 9I

9xŒDx ^ .Bx ^ Cx/� 2,4- 9E

9xŒDx ^ .Bx ^ Cx/� 1,3- 9E

Given two existentials in the premises, we set up to get the goal by two applications
of 9E. And if we had Dj ^ .Bj ^ Cj / we could reach the goal by 9I. Dj and Bj
are easy to get from (3). But we do not have Cj . What we have is rather Ck. The
existentials in the assumptions are instantiated to different (new) variables—and they
must be so instantiated if we are to meet the constraints on 9E. From 9xP and 9xQ

it does not follow that any one thing is both P and Q. In this case, however, we are
given that there is just one dog. And we can use this to force an equivalence between
j and k. Then we get the result byDE.
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1. 9xŒ.Dx ^ 8y.Dy ! x D y// ^ Bx� P
2. 9x.Dx ^ Cx/ P

3. .Dj ^ 8y.Dy ! j D y// ^ Bj A (g, 19E)

4. Dk ^ Ck A (g, 29E)

5. Bj 3 ^E
6. Dj ^ 8y.Dy ! j D y/ 3 ^E
7. Dj 6 ^E
8. 8y.Dy ! j D y/ 6 ^E
9. Dk ! j D k 8 8E

10. Dk 4 ^E
11. j D k 9,10!E
12. Ck 4 ^E
13. Cj 12,11DE
14. Bj ^ Cj 5,13 ^I
15. Dj ^ .Bj ^ Cj / 7,14 ^I
16. 9xŒDx ^ .Bx ^ Cx/� 15 9I

17. 9xŒDx ^ .Bx ^ Cx/� 2,4-16 9E

18. 9xŒDx ^ .Bx ^ Cx/� 1,3-17 9E

Though there are a few steps, the work to get it done is simple. This is a very common
pattern: Arbitrary individuals are introduced as if they were distinct. But uniqueness
clauses let us establish an identity between them. Given this, facts about the one
transfer to the other byDE.

*E6.34. Produce derivations to show T6.38–T6.43. Hint: It may help to begin with
concrete versions of the theorems and then move to the general case. Thus, for
example, for T6.39, show that

ǸD
.y D j / ! .g3xyz D g3xjz/. Then you

will be able to show the general case.

E6.35. Produce derivations to show each of the following.

*a.
ǸD
8x9y.x D y/

b.
ǸD
8x9y.f 1x D y/

c.
ǸD
8x8yŒ.F x ^�Fy/! �.x D y/�

d. 8x.Rxa! x D c/, 8x.Rxb ! x D d/, 9x.Rxa ^Rxb/
ǸD

c D d

e.
ǸD
8xŒ�.f 1x D x/! 8y..f 1x D y/! �.x D y//�

f.
ǸD
8x8yŒ.f 1x D y ^ f 1y D x/! f 1f 1x D x�

*g. 9x9yHxy, 8y8z.Dyz $ Hzy/, 8x8y.�Hxy _ x D y/

ǸD
9x.Hxx ^Dxx/
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h. 8x8yŒ.Rxy ^Ryx/! x D y�, 8x8y.Rxy ! Ryx/

ǸD
8xŒ9y.Rxy _Ryx/! Rxx�

i. 9x8y.x D y $ Fy/, 8x.Gx ! Fx/
ǸD
8x8yŒ.Gx ^Gy/! x D y�

j. 8xŒF x ! 9y.Gyx ^�Gxy/�, 8x8yŒ.F x ^ Fy/! x D y�

ǸD
8x.F x ! 9y�Fy/

6.3.5 The System ND+

We conclude this section with some final derived rules. Again, it is not possible to
derive anything with the extra rules that cannot already be derived in ND. Thus the
new rules do not add extra derivation power. They are rather “shortcuts” for things
that can already be done in ND. The full system ND+ includes all the rules of ND, all
the derived rules of NDs+, and some additional derived rules.

First, QS (quantifier switch) switches the order of a pair of universal quantifiers,
or of a pair of existential quantifiers.

QS 8x8yP GF 8y8xP 9x9yP GF 9y9xP

These forms are justified by T6.31 and T6.32. Notice that switching applies only
where quantifiers are the same.

Then QD (quantifier distribution) distributes the universal quantifier over ^, and
the existential over _.

QD 8x.P ^Q/ GF 8xP ^ 8xQ 9x.P _Q/ GF 9xP _ 9xQ

These forms are justified by T6.34 and T6.35. Observe that distribution does not work
for 8x over _, or 9x over ^.

Next, QP (quantifier placement) collectes a series of principles like ones we saw
in Chapter 5. Where x is not free in P ,

QP

8x.P ^Q/ GF P ^ 8xQ

8x.Q ^P / GF 8xQ ^P

8x.P _Q/ GF P _ 8xQ

8x.Q _P / GF 8xQ _P

8x.P ! Q/ GF P ! 8xQ

8x.Q! P / GF 9xQ! P

9x.P ^Q/ GF P ^ 9xQ

9x.Q ^P / GF 9xQ ^P

9x.P _Q/ GF P _ 9xQ

9x.Q _P / GF 9xQ _P

9x.P ! Q/ GF P ! 9xQ

9x.Q! P / GF 8xQ! P

Notice the quantifier flip in the bottom line. These principles are justified by the
results of T6.33.

In practice, QS, QD, and QP do not apply all that frequently—still it is good
to recognize when expressions are equivalent but for the order and placement of
quantifiers. Much more common is a very useful replacement rule:

QN �8xP GF 9x�P

�9xP GF 8x�P
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QN (quantifier negation) is another principle we encountered in Chapter 5. It lets
you push or pull a negation across a quantifier, with a corresponding flip from one
quantifier to the other. The forms are justified by T6.36 and T6.37.

Again, with DeM, Impl, and Equiv, QN lets you “push” a main operator � to the
inside of a formula. This can be especially useful. So, for example, given a negated
universal on some accessible line, you can go directly to the (high priority) strategies
SG2 or SC2: Push the negation through, get the existential, and go for the goal by 9E
as usual. Here is an example:

(CI)

1. �8x.F x ! Gx/ P

2. 9x�.F x ! Gx/ 1 QN
3. �.Fj ! Gj / A (g, 29E)

4. �.�Fj _Gj / 3 Impl
5. ��Fj ^�Gj 4 DeM
6. �Gj 5 ^E
7. 9x�Gx 6 9I

8. 9x�Gx 2,3-7 9E

1. �8x.F x ! Gx/ P

2. �9x�Gx A (c, �E)

3. Fj A (g,!I)

4. �Gj A (c, �E)

5. 9x�Gx 4 9I
6. ? 5,2 ?I

7. Gj 4-6 �E

8. Fj ! Gj 3-7!I
9. 8x.F x ! Gx/ 8 8I

10. ? 9,1 ?I

11. 9x�Gx 2-10 �E

The derivation on the left is much to be preferred over the one on the right, where we
are caught up in a difficult case of SG5 and then SC3. But, after QN, the derivation on
the left is straightforward—and would be relatively straightforward even if we missed
the uses of Impl and DeM.

The rest of the rules for ND+ apply to a species of restricted quantifier. In
Chapter 5 we emphasized that the universal quantifier typically applies to expressions
with main operator! and the existential to ones with ^. We can streamline operations
on these expressions as follows. Take,

RQ .8x W B/P abbreviates 8x.B ! P /

.9x W B/P abbreviates 9x.B ^P /

Read: ‘for all x such that B, P ’ and ‘for some x such that B, P ’. In these expressions
B restricts the range of things to which the quantifier applies. Important instances,
encountered in the next section and especially in Part IV, are the bounded quantifiers
as, .8x W x < t/P and .9x W x < t/P where x does not appear in t. These are
usually compressed to .8x < t/P and .9x < t/P . In these cases, B is x < t. For
such expressions, we have natural I- and E-rules along with a replacement rule.

First the I- and E-rules for bounded quantifiers (8I), (8E), (9I), (9E), streamline
what you can do with the unabbreviated forms.
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(8E)

a. .8x W B/P

b. Bx
t

P x
t

provided t is free for x in B and P

(9I)

a. P x
t

b. Bx
t

.9x W B/P

(8I)

a. Bx
v

P x
v

.8x W B/P

provided (i) v is free for x in B and P , (ii) v is not free in
any undischarged assumption, and (iii) v is not free in the

quantified expression or Q

(9E)

a. .9x W B/P

b. P x
v

c. Bx
v

Q

Q

For convenience, the assumption for (9E) occupies two lines. Formal demonstration
that these are derived rules in ND is left to Chapter 9. However, each is intuitive:
In (8E), the unabbreviated premises are 8x.B ! P / and Bx

t ; then 8E and!E
give P x

t . In (9I), the premises with ^I and 9I yield the unabbreviated conclusion
9x.B ^ P /. For (8I), given the subderivation,!I and 8I yield the unabbreviated
form. And for (9E) the unabbreviated premise with the subderivation and 9E yield Q

(treating P x
v and Bx

v as .B ^P /xv ).
Here is the replacement rule:

RQN �.8x W B/P GF .9x W B/�P

�.9x W B/P GF .8x W B/�P

RQN (restricted quantifier negation) works by analogy with QN. Its demonstration
requires a new theorem.

T6.44. The following are theorems of ND.

*(a)
ǸD
�.8x W B/P $ .9x W B/�P

(b)
ǸD
�.9x W B/P $ .8x W B/�P

Demonstration of this result is left to E6.37.

E6.36. Produce derivations to show each of the following.

a. �9x.�Rx ^ Sxx/, Saa
ǸD

Ra

b. 8x.�Axf 1x _ 9yBg1y/
ǸD
9xAf 1xf 1f 1x ! 9yBg1y

c. 8xŒ.�Cxb _Hx/! Lxx�, 9y�Lyy
ǸD
9xCxb

d. 8xFx, 8zHz
ǸD
�9y.�Fy _�Hy/

e. �9x8y.Pxy ^�Qxy/
ǸD
8x9y.Pxy ! Qxy/

*f. 9yŒ.8xFx ! Ay/ _ .Ay ! 9xFx/�
ǸD
9x9yŒ.F x ! Ay/ _ .Ay ! Fx/�

g. �9x.F x ^Gx/ _ 9x�Gx, 8yGy
ǸD
8z.F z ! �Gz/



CHAPTER 6. NATURAL DEDUCTION 297

ND+ Quick Reference

ND+ includes all the rules of ND, all the derived rules of NDs+, and,

Inference Rules:

(8E) restricted univ exploit

a. .8x W B/P

b. Bx
t

P x
t a,b (8E)

(9I) restricted exist intro

a. P x
t

b. Bx
t

.9x W B/P a,b (9I)

provided t is free
for x in B and P

(8I) restricted univ intro

a. Bx
v A (g, (8I))

b. P x
v

.8x W B/P a-b (8I)

(9E) restricted exist exploit

a. .9x W B/P

b. P x
v A (g, a(9E))

c. Bx
v

d. Q

Q a,b-d (9E)

provided (i) v is
free for x in B and
P , (ii) v is not
free in any undis-
charged auxiliary
assumption, and
(iii) v is not free
in .8x W B/P or in
.9x W B/P or in Q

Replacement Rules:

QS 8x8yP GF 8y8xP 9x9yP GF 9y9xP

QD 8x.P ^Q/ GF 8xP ^ 8xQ 9x.P _Q/ GF 9xP _ 9xQ

QP�

8x.P ^Q/ GF P ^ 8xQ 9x.P ^Q/ GF P ^ 9xQ

8x.Q ^P / GF 8xQ ^P 9x.Q ^P / GF 9xQ ^P

8x.P _Q/ GF P _ 8xQ 9x.P _Q/ GF P _ 9xQ

8x.Q _P / GF 8xQ _P 9x.Q _P / GF 9xQ _P

8x.P ! Q/ GF P ! 8xQ 9x.P ! Q/ GF P ! 9xQ

8x.Q! P / GF 9xQ! P 9x.Q! P / GF 8xQ! P

QN
�8xP GF 9x�P

�9xP GF 8x�P

RQN
�.8x W B/P GF .9x W B/�P

�.9x W B/P GF .8x W B/�P

�The replacement rule QP requires x not free in P .
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*h. 8x8y9zAf 1xyz, 8x8y8zŒAxyz ! �.Cxyz _ Bzyx/�

ǸD
8x8y�8zBzg1yf 1g1x

i. �9y.Ty _ 9x�Hxy/
ǸD
8x8yHxy ^ 8x�T x

j. 9x.F x ! 9y�Fy/
ǸD
�8xFx

k.
ǸD
8x.Ax ! Bx/ _ 9xAx

l. 8x8y.F x $ Gy/
ǸD

.9xFx ! 8yGy/ ^ .9yGy ! 8xFx/

m. 9x.F x $ Gx/, 8xŒGx ! .Hx ! Jx/�

ǸD
9xJx _ Œ8xFx ! 9x.Gx ^�Hx/�

n. 9xŒ�Bxa ^ 8y.Cy ! �Gxy/�, 8zŒ�8y.Wy ! Gzy/! Bza�

ǸD
8x.Cx ! �Wx/

*o. 9xFx ! �8yGy, 8x.Kx ! 9yJy/, 9y�Gy ! 9xKx

ǸD
�9xFx _ 9yJy

p. 9zQz ! 8w.Lww ! �Hw/, 9xBx ! 8y.Ay ! Hy/

ǸD
9w.Qw ^ Bw/! 8y.Lyy ! �Ay/

q. �8x.�Px_�Hx/! 8xŒCx^8y.Ly ! Axy/�, 9xŒHx^8y.Ly ! Axy/�!

8x.Rx ^ 8yBxy/
ǸD
�8x8yBxy ! 8x.�Px _�Hx/

r.
ǸD

.9xAx ! 9xBx/! 9x.Ax ! Bx/

s. 8x9y.Ax _ By/
ǸD
9y8x.Ax _ By/

t. 8xFx $ �9x9yRxy
ǸD
9x8y8z.F x ! �Ryz/

*E6.37. (i) Using rules of ND, prove unabbreviated versions for both parts of T6.44.
(ii) Using I- and E-rules for the restricted quantifiers show the same, but with-
out unabbreviation. Hint: as for E6.33, you can apply quantifier rules without
changing variables.

E6.38. For each of the following, produce a translation into Lq, including interpre-
tation function and formal sentences, and show that the resulting arguments are
valid in ND+.

a. If a first person is taller than a second, then the second is not taller than the first.
So nobody is taller than themselves. (An asymmetric relation is irreflexive.)

b. A barber shaves all and only people who do not shave themselves. So there
are no barbers.

c. Alice is taller than every other woman. If a first person is taller than a second,
then the second is not taller than the first. So only Alice is taller than every
other woman.
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d. There is at most one dog, and at least one flea. Each flea has a dog for a host,
and any dog hosts at most one flea. So there is exactly one flea.

e. Something is divine just in case nothing is conceived to be greater than it.
Some (conceivable) object is divine. If something is divine but not real,
then something is divine but conceived to be real. If one thing is divine
and conceived to be real, and another is divine but not real, then the first is
conceived to be greater than the second. So something is both divine and real.
Hint: Let quantifiers range over objects of conception and so set U = fo j o is
conceivableg. This, of course, is a version of Anselm’s Ontological Argument
according to which god is ‘a being than which none greater can be conceived’.
This version is simplified from Robinson, “A New Formalization of Anselm’s
Ontological Argument.” For a good introductory discussion and alternate
account, see Plantinga, God, Freedom, and Evil.

6.4 Applications: Q and PA

A very important application, one with which we will be extensively concerned later
in the text, is to arithmetic. We encountered Peano Arithmetic in Chapter 3. We now
consider a pair of theories, Robinson Arithmetic (Q) and then Peano Arithmetic (PA)
once again.

For this, LNT is like LNT
< from section 2.3.5 but without <. As described in the

language of arithmetic reference on page 301, there is the constant symbol ;, the
one-place function symbol S , two-place function symbolsC, and �, and the relation
symbol D. We will find it convenient to let the variables be any of a : : : z with or
without positive integer subscripts. Let s � t abbreviate 9u.uC s D t/, and s < t

abbreviate 9u.Su C s D t/ where u is some variable that does not appear in s

or t. We also encounter restricted (bounded) quantifiers in the forms .8x � t/P ,
.9x � t/P , .8x < t/P , and .9x < t/P where x does not occur in t (so t is
independent of that which it bounds).

In derivations, we allow movement between an abbreviation and its unabbreviated
form with justification ‘abv’. For the bounded quantifiers derived introduction and
exploitation rules appear in the forms,

(8E)

a. .8x < t/P

b. s < t

P x
s

provided s is free for x in P

(9I)

a. P x
s

b. s < t

.9x < t/P

(8I)

a. v < t

P x
v

.8x < t/P

provided v is free for x in P , not free in any undischarged
assumption, and not free in the quantified expression or Q

(9E)

a. .9x < t/P

b. P x
v

c. v < t

Q

Q
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And similarly with ‘�’ uniformly substituted for ‘<’. Insofar as any term is free for x

in the inequalities x � t and x < t, constraints are simplified somewhat relative to
the formulation of section 6.3.5.7

LNT has a standard interpretation N just like NN for LNT
< , but without the assignment

to <. So the universe is the set N of natural numbers, ; is assigned zero, S the
successor function, C the addition function, � the multiplication function, and D the
equality relation. Officially, derivations are perfectly well defined apart from this or
any other interpretation. All the same, the standard interpretation motivates axioms
and results of Robinson and Peano arithmetic to follow.

6.4.1 Robinson Arithmetic, Q

Robinson arithmetic is a minimal theory of arithmetic just strong enough to support
Gödel’s incompleteness theorem from Part IV. We will say that a formula P is an
ND+ theorem of Robinson Arithmetic just in case P follows in ND+ given as premises
the following axioms for Robinson Arithmetic:8

Q 1. �.Sx D ;/

2. .Sx D Sy/! .x D y/

3. .x C ;/ D x

4. .x C Sy/ D S.x C y/

5. .x � ;/ D ;

6. .x � Sy/ D Œ.x � y/C x�

7. �.x D ;/! 9y.x D Sy/

In the ordinary case we suppress mention of Q1–Q7 as premises, and simply write
Q

ǸD
P to indicate that P is an ND+ theorem of Robinson arithmetic—that there is

an ND+ derivation of P which may include appeal to any of Q1–Q7.
The axioms set up a basic version of arithmetic on the natural numbers. On the

standard interpretation N, ; is not the successor of any natural number (Q1); if the
successor of x is the same as the successor of y, then x is y (Q2); x plus ; is equal to
x (Q3); x plus one more than y is equal to one more than x plus y (Q4); x times ; is
equal to ; (Q5); x times one more than y is equal to x times y plus x (Q6); and any
number other than ; is a successor (Q7).

If P is derived directly from some of Q1–Q7 then it is an ND+ theorem of
Robinson Arithmetic. But if the members of a set � are ND+ theorems of Robinson
Arithmetic, and �

ǸD
P , then P is an ND+ theorem of Robinson Arithmetic as

7Actually, not every term s is free for x in 9u.uC x D t/ and 9u.SuC x D t/; however for any
s, by exchange of the bound variable, these expressions are equivalent to ones that have s free for x. In a
given context, it is simplest to suppose u is some one variable (maybe z75) not appearing in other terms.

8After R. Robinson, “An Essentially Undecidable Axiom System.”
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well—for any derivation of P from some theorems might be extended into one which
derives the theorems, and then goes on from there to obtain P . In the ordinary case,
then, we build to increasingly complex results: Having once demonstrated a theorem
by a derivation, we feel free simply to cite it as a premise in the next derivation. So the
collection of formulas we count as premises increases from one derivation to the next.

Though the application to arithmetic is interesting, there is in principle nothing
different about derivations for Q from ones we have done before: We are moving from
premises to a goal by rules. As we make progress, however, there will be an increasing
number of premises available, and it may be relatively challenging to recognize which

LNT Quick Reference
Vocabulary:

variables: a : : : z with or without positive integer subscripts

constant: ;

one-place function symbol: S

two-place function symbols: C, �

relation symbol: D

Abbreviations:

where u does not appear in s or t,

s � t abbreviates 9u.uC s D t/

s < t abbreviates 9u.SuC s D t/

and where x does not appear in t,

.8x � t/P abbreviates .8x W x � t/P which is 8x.x � t ! P /

.8x < t/P abbreviates .8x W x < t/P which is 8x.x < t ! P /

.9x � t/P abbreviates .9x W x � t/P which is 9x.x � t ^P /

.9x < t/P abbreviates .9x W x < t/P which is 9x.x < t ^P /

From section 6.3.5 (and page 299), the restricted quantifiers have derived introduction
and exploitation rules (8E), (8I), (9E), (9I), and a restricted quantifier negation RQN. In
derivations, abv moves between abbreviated and unabbreviated forms.

LNT has a standard interpretation N with U the set N of natural numbers and,

NŒ;� = 0

NŒS� = fhm; ni jm; n 2 N , and n is the successor of mg

NŒC� = fhhm; ni; oi jm; n; o 2 N , and m plus n equals og

NŒ�� = fhhm; ni; oi jm; n; o 2 N , and m times n equals og

On this interpretation we may obtain derived semantic conditions for the inequalities and
bounded quantifiers (see T12.3 and T12.4).
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premises are relevant to a given goal. As you work through problems, you may find
the Robinson and Peano reference on page 312 helpful.

Let us start with some simple generalizations of Q1–Q7. As they are stated,
Q1–Q7 are particular formulas involving variables. But they permit derivation of
corresponding principles for arbitrary terms s and t.

T6.45. Q
ǸD
�.St D ;/

1. �.Sx D ;/ Q1

2. 8u�.Su D ;/ 1 8I
3. �.St D ;/ 2 8E

Observe that there are no undischarged assumptions, so x is not free in an undischarged
assumption; and since �.Su D ;/ has no quantifiers, term t must be free for u in
�.Su D ;/. So there is no problem about the restrictions on 8I and 8E. And since t

is any term, substituting ;, .S; C y/, and the like for t, we have that �.S; D ;/,
�.S.S; C y/ D ;/, and the like are all instances of T6.45. The next theorems are
similar.

T6.46. Q
ǸD

.St D Ss/! .t D s/

1. .Sx D Sy/! .x D y/ Q2

2. 8uŒ.Su D Sy/! .u D y/� 1 8I
3. 8v8uŒ.Su D Sv/! .u D v/� 2 8I
4. 8uŒ.Su D Ss/! .u D s/� 3 8E
5. .St D Ss/! .t D s/ 4 8E

Observe that for (4) it is important that term s not include variable u. Thus for this
derivation we simply choose u so that it is not a variable in s.

*T6.47. Q
ǸD

.t C ;/ D t

T6.48. Q
ǸD

.t C Ss/ D S.t C s/

T6.49. Q
ǸD

.t � ;/ D ;

T6.50. Q
ǸD

.t � Ss/ D ..t � s/C t/

T6.51. Q
ǸD
�.t D ;/! 9:.t D S:/ where variable : does not appear in t

: may be any variable that does not appear in t and so need not be the y of Q7;
the potential for variable exchange extends this derivation (minimally) beyond the
simple 8I/8E pattern of the others.
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Given these results, we are ready for some that are more interesting. Let us show
that 1 1 = 2. That is, that Q

ǸD
S; C S; D SS;.

(CJ)
1. .S; C ;/ D S; T6.47
2. .S; C S;/ D S.S; C ;/ T6.48

3. .S; C S;/ D SS; 2,1DE

The first premise is an instance of T6.47 with S; for t. (2) is an instance of T6.48
that has S; for t and ; for s. Given the premises, this derivation is simple. With
.S; C ;/ D S; from (1), we can substitute S; for S; C ; in the right side of (2) by
DE. This is just what we do. Be sure you understand each step. In the same way, and
more generally,

T6.52. Q
ǸD

t C S; D St

Hint: You can do this by the same basic steps as above.

Observe the way Q3 and Q4 work together: Q3 (T6.47) gives the sum of any term
t with ;; and given the sum of t with any s, Q4 (T6.48) gives the sum of t and one
more than s. So we can calculate the sum of t and zero from T6.47, and then with
T6.48 get the sum of it and one, then it and two, and so forth. In this way, we calculate
arbitrary sums. So, for example, Q

ǸD
SS; C SSS; D SSSSS;. We start with

T6.47 and T6.48.

(CK)
1. .SS; C ;/ D SS; T6.47
2. .SS; C S;/ D S.SS; C ;/ T6.48
3. .SS; C S;/ D SSS; 2,1DE

We use (1) to put the known value of SS; C ; into the right side of (2). Or we might
simply have asserted (3) by T6.52. But now the value of SS; C S; is known, and
we can use T6.48 again.

(CL)

1. .SS; C ;/ D SS; T6.47
2. .SS; C S;/ D S.SS; C ;/ T6.48
3. .SS; C S;/ D SSS; 2,1DE
4. .SS; C SS;/ D S.SS; C S;/ T6.48
5. .SS; C SS;/ D SSSS; 4,3DE

This time, we use (3) to put the known value of SS; C S; into the right side of (4).
And we can use T6.48 again to get the final result. Since we are in ND+, we sort the
premises to the top to get,

(CM)

1. .SS; C ;/ D SS; T6.47
2. .SS; C S;/ D S.SS; C ;/ T6.48
3. .SS; C SS;/ D S.SS; C S;/ T6.48
4. .SS; C SSS;/ D S.SS; C SS;/ T6.48

5. .SS; C S;/ D SSS; 2,1DE
6. .SS; C SS;/ D SSSS; 3,5DE
7. .SS; C SSS;/ D SSSSS; 4,6DE
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Again, SS;C; is given from T6.47; we use multiple applications of T6.48 to increase
the second term to SSS; for the final result.

And similarly for multiplication: Q5 (T6.49) gives the product of any term t

with ;; and given the product of t with any s, Q6 (T6.50) gives the product of t and
one more than s. So we can calculate the product t and zero from T6.49, and then
with T6.50 get the product of it and one, it and two, and so forth. Thus, for example,
Q

ǸD
S; � SS; D SS;.

(CN)

1. S; � ; D ; T6.49
2. S; � S; D .S; � ;/C S; T6.50
3. ; C S; D S; T6.52
4. S; � SS; D .S; � S;/C S; T6.50
5. S; C S; D SS; T6.52

6. S; � S; D ; C S; 2,1DE
7. S; � S; D S; 6,3DE
8. S; � SS; D S; C S; 4,7DE
9. S; � SS; D SS; 8,5DE

The basic pattern of working from one case to the next is as for addition. A difference
is that the multiplications depend on additions—which require derivation of their own
(in this case, T6.52).

So far, we have focused on variable-free terms built up from ;. But nothing stops
application to expressions in a more general form.

(CO)

1. .j C Sk/ D S.j C k/ T6.48

2. 9y.j C y D S;/ A (g,!I)

3. j C k D S; A (g, 29E)

4. j C Sk D SS; 1,3DE
5. 9y.j C y D SS;/ 4 9I

6. 9y.j C y D SS;/ 2,3-5 9E

7. 9y.j C y D S;/! 9y.j C y D SS;/ 2-6!I
8. 8xŒ9y.x C y D S;/! 9y.x C y D SS;/� 7 8I

The basic setup for 8I,!I, and 9E is by now routine. The real work is where we use
(1) and (3) to obtain j C Sk D SS;. Here are a couple of theorems that will be of
interest later:

T6.53. Q
ǸD

t � ; ! t D ;

Hints: Be sure you are clear about what is being asked for; at some stage, you will
need abv to unpack the abbreviation. Do not forget that you can appeal to T6.45
and T6.51.
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T6.54. Q
ǸD
�.t < ;/

Hint: This comes to an application of SC4. Under assumptions for �I and then
(after abv) 9E, assume �.t D ;/ to obtain a first contradiction; you will be able
to obtain contradiction from t D ; as well.

Robinson Arithmetic is interesting. Its axioms are sufficient to prove arbitrary
facts about particular numbers. Its language and derivation system are just strong
enough to support Gödel’s incompleteness result, on which it is not possible for a
“nicely specified” consistent theory including a sufficient amount of arithmetic to have
as consequences P or �P for every P (Part IV). But we do not need Gödel’s result
to see that Robinson Arithmetic is (negation) incomplete: It turns out that many true
generalizations are not provable in Robinson Arithmetic. So, for example, neither
8x8yŒ.x � y/ D .y � x/�, nor its negation is provable.9 So Robinson Arithmetic is
a particularly weak theory.

*E6.39. Produce derivations to show T6.47–T6.52. For any problem, you may appeal
to results before.

*E6.40. Produce derivations to show each of the following. Along with theorems
from the text, for any exercise you may appeal to ones before.

*a. Q
ǸD

.t C SS;/ D SSt

Hint: Do not forget that you can appeal to T6.52.

*b. Q
ǸD

.SS; � SS;/ D SSSS;

c. Q
ǸD

.t C SSS;/ D SSSt

d. Q
ǸD

.SSS; � SS;/ D SSSSSS;

e. Q
ǸD

.SSS; � SS;/ D .SS; � SSS;/

*f. Q
ǸD
�9x.x C SS; D S;/

Hint: Do not forget that you can appeal to T6.45 and T6.46.

*g. Q
ǸD
8xŒ.x D ; _ x D S;/! x � S;�

Hint: You will need to unpack the abbreviation using abv.

h. Q
ǸD
8xŒ.x D ; _ x D S;/! x < SS;�

i. Q
ǸD

.8x � S;/.x D ; _ x D S;/

Hint: You can use (8I) and T6.51, T6.48, T6.46 and T6.53.

9A semantic demonstration of this negative result is left as an exercise for Chapter 7. But we
already understand the basic idea from Chapter 4: To show that a conclusion does not follow, produce an
interpretation on which the axioms are true but the conclusion is not.
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j. Q
ǸD

.8x � S;/.x � SS;/

E6.41. Produce derivations to show T6.53 and T6.54.

6.4.2 Peano Arithmetic

Though Robinson Arithmetic leaves even standard results like commutation for multi-
plication unproven, it is possible to strengthen the axioms to obtain such results. Thus
such standard generalizations are provable in Peano Arithmetic.10 This is the system
we encountered in Chapter 3, but now with ND+. So when P is derived from the
axioms it is an ND+ theorem of Peano Arithmetic. For this, let PA1–PA6 be the same
as Q1–Q6. Replace Q7 as follows: For any formula P ,

PA7 ŒP x
;
^ 8x.P ! P x

Sx/�! 8xP

is an axiom. If a formula P applies to ;, and for any x if P applies to x then it
also applies to Sx, then P applies to every x. This form represents the principle of
mathematical induction. While all the axioms of Q (and so PA1–PA6) are particular
formulas, PA7 is an axiom schema insofar as indefinitely many formulas might be
of that form. We will have much more to say about the principle of mathematical
induction in Part II. For now, it is enough merely to recognize its instances. Thus, for
example, if P is �.x D Sx/, then P x

;
is �.; D S;/, and P x

Sx is �.Sx D SSx/.
So,

Œ�.; D S;/ ^ 8x.�.x D Sx/! �.Sx D SSx//�! 8x�.x D Sx/

is an instance of the schema. You should see why this is so.
It will be convenient to have the principle of mathematical induction in a rule

form. Given P x
;

and 8x.P ! P x
Sx/ on accessible lines a and b, one may move to

8xP with justification a,b IN.

IN

a. P x
;

b. 8x.P ! P x
Sx/

8xP a,b IN

1. P x
;

P
2. 8x.P ! P x

Sx/ P
3. ŒP x

;
^ 8x.P ! P x

Sx/�! 8xP PA7

4. P x
;
^ 8x.P ! P x

Sx/ 1,2 ^I
5. 8xP 3,4!E

The rule is justified from PA7 by reasoning as on the right. That is, given P x
;

and 8x.P ! P x
Sx/ on accessible lines, one can always conjoin them, then with an

instance of PA7 as a premise reach 8xP by!E. The use of IN merely saves a couple

10After the work of R. Dedekind and G. Peano. For historical discussion, see Wang, “The Axiomati-
zation of Arithmetic.”
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steps, and avoids some relatively long formulas we would have to deal with using PA7
alone. Thus, from our previous example, where P is �.x D Sx/, we would need
�.; D S;/ and 8xŒ�.x D Sx/! �.Sx D SSx/� to move to 8x�.x D Sx/ by
IN. You should see that this is no different from before.

Since PA1–PA6 are the same as Q1–Q6, theorems of Q derived from just Q1–Q6
remain theorems of PA. Further, PA has a theorem like Q7. That is, with the aid of
PA7, we shall be able to show,

T6.55. PA
ǸD
�.t D ;/! 9:.t D S:/ where : is not a variable in t

Since it is to follow from PA1–PA7, the proof must, of course, not depend on Q7
and so on any of T6.51, T6.53, or T6.54.

But this is the same as T6.51, and has Q7 as an instance. Given this, any ND+ theorem
of Q is automatically an ND+ theorem of PA—for we can derive T6.55, and use it as
it would have been used in a derivation for Q. We thus freely use any theorem from Q
in the derivations that follow.

With these axioms in hand, including the principle of mathematical induction,
we set out to show some general principles of commutativity, associativity, and
distribution for addition and multiplication. But we build gradually to them. For a
first application of IN, let P be .; C x/ D x; then P x

;
is .; C ;/ D ; and P x

Sx is
.; C Sx/ D Sx.

T6.56. PA
ǸD

.; C t/ D t

1. .; C ;/ D ; T6.47
2. .; C Sj / D S.; C j / T6.48

3. .; C j / D j A (g,!I)

4. .; C Sj / D Sj 2,3DE

5. Œ.; C j / D j �! Œ.; C Sj / D Sj � 3-4!I
6. 8x.Œ.; C x/ D x�! Œ.; C Sx/ D Sx�/ 5 8I
7. 8xŒ.; C x/ D x� 1,6 IN
8. .; C t/ D t 7 8E

The key to this derivation, and others like it, is bringing IN into play. That we want to
do this is sufficient to drive us to the following as setup:

a. .; C ;/ D ; (goal)

b. .; C j / D j A (g,!I)

c. .; C Sj / D Sj (goal)

d. Œ.; C j / D j �! Œ.; C Sj / D Sj � b-c!I
e. 8x.Œ.; C x/ D x�! Œ.; C Sx/ D Sx�/ d 8I
f. 8xŒ.; C x/ D x� a,e IN
.; C t/ D t f 8E
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Our aim is to get the goal by 8E from 8xŒ.; C x/ D x�. And we will get this by
IN. So we need the inputs to IN: P x

;
, that is, .; C ;/ D ;, and 8x.P ! P x

Sx/,
that is, 8x.Œ.; C x/ D x� ! Œ.; C Sx/ D Sx�/. As is often the case, P x

;
,

here .; C ;/ D ;, is easy to get. It is natural to obtain the latter by 8I from
Œ.; C j / D j � ! Œ.; C Sj / D Sj �, and to go for this by!I. Thus the work of
the derivation is reaching goals (a) and (c). But that is not hard: (a) is an immediate
instance of T6.47; and (c) follows from the equality on (b) with an instance of T6.48.
We are in a better position to think about which (axioms or) theorems we need as
premises once we have gone through this standard setup for IN. We will see this
pattern many times.

T6.57. PA
ǸD

.St C ;/ D S.t C ;/

1. .St C ;/ D St T6.47
2. .t C ;/ D t T6.47

3. .St C ;/ D S.t C ;/ 1,2DE

This simple derivation results by using the equality on (2) to justify a substitution for
t in (1). This result forms the “zero case” for the one that follows.

T6.58. PA
ǸD

.St C s/ D S.t C s/

1. .St C ;/ D S.t C ;/ T6.57
2. .t C Sj / D S.t C j / T6.48
3. .St C Sj / D S.St C j / T6.48

4. .St C j / D S.t C j / A (g,!I)

5. .St C Sj / D SS.t C j / 3,4DE
6. .St C Sj / D S.t C Sj / 5,2DE

7. Œ.St C j / D S.t C j /�! Œ.St C Sj / D S.t C Sj /� 4-6!I
8. 8x.Œ.St C x/ D S.t C x/�! Œ.St C Sx/ D S.t C Sx/�/ 7 8I
9. 8xŒ.St C x/ D S.t C x/� 1,8 IN

10. .St C s/ D S.t C s/ 9 8E

Again, the idea is to bring IN into play. Here P is .St C x/ D S.t C x/. Given
that we have the zero-case on line (1), with standard setup the derivation reduces to
obtaining the formula on (6) given the assumption on (4). Line (6) is like (3) except
for the right-hand side. So it is a matter of applying the equalities on (4) and (2)
to reach the goal. You should study this derivation, to be sure that you follow the
applications ofDE—for we encounter such uses over and over.
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T6.59. PA
ǸD

t C s D sC t commutativity of addition

1. t C ; D t T6.47
2. ; C t D t T6.56
3. t C Sj D S.t C j / T6.48
4. Sj C t D S.j C t/ T6.58

5. t C ; D ;C t 1,2DE
6. t C j D j C t A (g,!I)

7. t C Sj D S.j C t/ 3,6DE
8. t C Sj D Sj C t 7,4DE

9. Œt C j D j C t�! Œt C Sj D Sj C t� 6-8!I
10. 8x.Œt C x D x C t�! Œt C Sx D Sx C t�/ 9 8I
11. 8xŒt C x D x C t� 5,10 IN
12. t C s D sC t 11 8E

Again the derivation is by IN where P is tC x D xC t. We achieve the zero case on
(5) from (1) and (2). So the derivation reduces to getting (8) given the assumption on
(6). The left-hand side of (8) is like (3). So it is a matter of applying the equalities on
(6) and then (4) to reach the goal. Once you have the basic setup, you are positioned
to organize in your mind which equalities you have, and which are required to reach
the goal.

T6.59 is an interesting result! No doubt, you have heard from your mother’s knee
that t C s D s C t. But it is a sweeping claim with application to all numbers.
Surely you have not been able to test every case. But here we have a derivation of
the result from the Peano axioms. And similarly for results that follow. Now that
you have this result, recognize that you can use instances of it to switch around terms
in additions—just as you would have done automatically for addition in elementary
school.

*T6.60. PA
ǸD

.rC s/C ; D rC .sC ;/

Hint: Begin with .rC s/C; D rC s as an instance of T6.47. The derivation is
then a simple matter of using T6.47 again to replace s in the right-hand side with
sC ;.

*T6.61. PA
ǸD

.rC s/C t D rC .sC t/ associativity of addition

Hint: For an application of IN let P be .r C s/ C x D r C .s C x/. You
already have the zero case from T6.60. Inside the subderivation for!I, use the
assumption together with some instances of T6.48 to reach the goal.

Again, once you have this result, be aware that you can use its instances for association
as you would have done long ago. It is good to think about what the different theorems
give you, so that you can make sense of what to use where!
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T6.62. PA
ǸD

t � S; D t

Hint: This does not require IN. It is a rather a simple result which you can do in
just a few lines.

T6.63. PA
ǸD
; � t D ;

Hint: For an application of IN, let P be ;� x D ;. The derivation is easy enough
with an application of T6.49 for the zero case, and instances of T6.50 and T6.47
for the main result.

T6.64. PA
ǸD

St � ; D .t � ;/C ;

Hint: This does not require IN. It follows rather by some simple applications of
T6.47 and T6.49.

T6.65. PA
ǸD

St � s D .t � s/C s

Hint: For this longish derivation, plan to reach the goal through IN where P is
St � x D .t � x/C x. You will be able to use your assumption for!I with an
instance of T6.50 to show St � Sj D ..t � j /C j /C St. Then you should be
able to manipulate the right-hand side into the result you want. You will need
several theorems as premises.

T6.66. PA
ǸD

t � s D s � t commutativity for multiplication

Hint: Plan on reaching the goal by IN where P is t � x D x � t. Apart from
theorems for the zero case, you will need an instance of T6.50 and an instance of
T6.65.

T6.67. PA
ǸD

r � .sC ;/ D .r � s/C .r � ;/

Hint: You will not need IN for this.

T6.68. PA
ǸD

r � .sC t/ D .r � s/C .r � t/ distributivity

Hint: Plan on reaching the goal by IN where P is r�.sCx/ D .r�s/C.r�x/.
Under the assumption r � .sC j / D .r � s/C .r � j /, perhaps the simplest
thing is to start with r � .sC Sj / D r � .sC Sj / byDI. Then the left side is
what you want, and you can work on the right. Working on the right-hand side,
.sCSj / D S.sCj / by T6.48. And r�S.sCj / D .r�.sCj //Cr by T6.50.
With this, you will be able to apply the assumption. Then further simplification
should get you to your goal.
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T6.69. PA
ǸD

.sC t/ � r D .s � r/C .t � r/ distributivity

Hint: You will not need IN for this. Rather, it is enough to use T6.68 with a few
applications of T6.66.

T6.70. PA
ǸD

.rC s/ � .t C u/ D ..r � t/C .r � u//C ..s � t/C .s � u//

Hint: This is another application of distributivity. You may have encountered this
result under the acronym ‘FOIL’ (first/outer/inner/last) in elementary algebra.

T6.71. PA
ǸD

.s � t/ � ; D s � .t � ;/

Hint: This is easy without an application of IN.

T6.72. PA
ǸD

.s � t/ � r D s � .t � r/ associativity of multiplication

Hint: Go after the goal by IN where P is .s � t/ � x D s � .t � x/. You should
be able to use the assumption .s � t/ � j D s � .t � j / with T6.50 to show that
.s � t/ � Sj D .s � .t � j //C .s � t/; then you can reduce the right hand side
to what you want.

T6.73. PA
ǸD

rC t D sC t ! r D s cancellation law for addition

Hint: Go for the goal by IN where P is rC x D sC x ! r D s.

T6.74. PA
ǸD

t ¤ ; ! .r � t D s � t ! r D s/ cancellation law for
multiplication

Hint: For this challenging derivation go for the goal by IN on x where P is
8yŒt ¤ ; ! .y � t D x � t ! y D x/�. Observe that we adopt the “slash”
notation to indicate negated equality.

After you have completed the exercises, if you are looking for more to do, you might
take a look at the additional results from T13.11 on page 648 of Chapter 13—which
you now have the background to work.

Peano Arithmetic is sufficient for many “ordinary” results we could not obtain
in Q alone. However, insofar as PA includes the language and results of Q, it too is
sufficient for Gödel’s incompleteness theorem. So PA is not (negation) complete, and
it is not possible for a nicely specified consistent theory including PA to be such that
it proves either P or �P for every P . But such results must wait for later.



CHAPTER 6. NATURAL DEDUCTION 312

Robinson and Peano Arithmetic (ND+)
Q/PA 1. �.Sx D ;/

2. .Sx D Sy/! .x D y/

3. .x C ;/ D x

4. .x C Sy/ D S.x C y/

5. .x � ;/ D ;

6. .x � Sy/ D Œ.x � y/C x�

Q7 �.x D ;/! 9y.x D Sy/

PA7 ŒP x
;
^ 8x.P ! P x

Sx/�! 8xP

IN

a. P x
;

b. 8x.P ! P x
Sx/

8xP a,b IN

Derived from PA7

T6.45 Q ǸD �.St D ;/

T6.46 Q ǸD .St D Ss/! .t D s/

T6.47 Q ǸD .t C ;/ D t

T6.48 Q ǸD .t C Ss/ D S.t C s/

T6.49 Q ǸD .t � ;/ D ;

T6.50 Q ǸD .t � Ss/ D ..t � s/C t/

T6.51 Q ǸD �.t D ;/! 9:.t D S:/ where variable : does not appear in t

T6.52 Q ǸD t C S; D St

T6.53 Q ǸD t � ; ! t D ;

T6.54 Q ǸD �.t < ;/

T6.55 PA ǸD �.t D ;/! 9:.t D S:/ (: not in t) and so Q7

T6.56 PA ǸD .; C t/ D t

T6.57 PA ǸD .St C ;/ D S.t C ;/

T6.58 PA ǸD .St C s/ D S.t C s/

T6.59 PA ǸD t C s D sC t commutativity of addition

T6.60 PA ǸD .rC s/C ; D rC .sC ;/

T6.61 PA ǸD .rC s/C t D rC .sC t/ associativity of addition

T6.62 PA ǸD t � S; D t

T6.63 PA ǸD ; � t D ;

T6.64 PA ǸD St � ; D .t � ;/C ;

T6.65 PA ǸD St � s D .t � s/C s

T6.66 PA ǸD t � s D s � t commutativity for multiplication

T6.67 PA ǸD r � .sC ;/ D .r � s/C .r � ;/

T6.68 PA ǸD r � .sC t/ D .r � s/C .r � t/ distributivity

T6.69 PA ǸD .sC t/ � r D .s � r/C .t � r/ distributivity

T6.70 PA ǸD .rC s/ � .t C u/ D ..r � t/C .r � u//C ..s � t/C .s � u//

T6.71 PA ǸD .s � t/ � ; D s � .t � ;/

T6.72 PA ǸD .s � t/ � r D s � .t � r/ associativity of multiplication

T6.73 PA ǸD rC t D sC t ! r D s cancellation law for addition

T6.74 PA ǸD t ¤ ; ! .r � t D s � t ! r D s/ cancellation law for multiplication
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*E6.42. Produce derivations to show T6.60–T6.74.

E6.43. Produce a derivation to show T6.55 and so that any ND+ theorem of Q is an
ND+ theorem of PA. Hint: For an application of IN let P be x ¤ ; ! 9:.x D
S:/.

E6.44. For each of the following concepts, explain in an essay of about two pages,
so that (high-school age) Hannah could understand. In your essay, you should
(i) identify the objects to which the concept applies, (ii) give and explain the
definition, and give and explicate examples of your own construction (iii) where
the concept applies, and (iv) where it does not. Your essay should exhibit an
understanding of methods from the text.

a. The rules 8I and 9E, including especially restrictions on the rules.

b. The axioms of Q and PA and the way theorems derive from them.

c. The relation between the rules of ND and the rules of ND+.



Part II

Transition: Reasoning About Logic
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Introductory

We have expended a great deal of energy learning to do logic. What we have learned
constitutes the complete classical predicate calculus with equality. This is a system of
tremendous power including for reasoning in foundations of arithmetic.

But our work itself raises questions. In Chapter 4 we used truth trees and tables for
an account of the conditions under which sentential formulas are true and arguments
are valid. In the quantificational case, though, we were not able to use our graphical
methods for a general account of truth and validity—there were simply too many
branches, and too many interpretations, for a general account by means of trees. Thus
there is an open question about whether and how quantificational validity can be
shown.

And once we have introduced our notions of validity, many interesting questions
can be asked about how they work: Are the arguments that are valid in AD the same as
the ones that are valid in ND? Are the arguments that are valid in ND the same as the
ones that are quantificationally valid? Are the theorems of Q the same as the theorems
of PA? Are theorems of PA the same as the truths on N the standard interpretation for
number theory? Is it possible for a computing device to identify the theorems of the
different logical systems?

It is one thing to ask such questions, and perhaps amazing that there are demon-
strable answers. We will come to that. However, in this short section we do not
attempt answers. Rather, we put ourselves in a position to think about answers by
introducing methods for thinking about logic. Thus this part looks both backward
and forward: By our methods we plug the hole left from Chapter 4—in Chapter 7 we
accomplish what could not be done with the tables and trees of Chapter 4, and are
able to demonstrate quantificational validity. At the same time, we lay a foundation to
ask and answer core questions about logic.

Chapter 7 begins with our basic method of reasoning from definitions. Chapter 8
introduces mathematical induction. These methods are important not only for results,
but for their own sakes, as part of the broader “toolkit” that comes with mathematical
logic.

315



Chapter 7

Direct Semantic Reasoning

It is the task of this chapter to think about reasoning directly from definitions. Fre-
quently students who already reason quite skillfully with definitions flounder when
asked to do so explicitly, in the style of this chapter.1 Thus I propose to begin in
a restricted context—one with which we are already familiar, using a fairly rigid
framework as a guide. Perhaps you first learned to ride a bicycle with training wheels,
but eventually learned to ride without them, and so to go faster, and to places other
than the wheels would let you go. Similarly, in the end, we will want to apply our
methods beyond the restricted context in which we begin, working outside the initial
framework. But the framework should give us a good start. In this chapter, then, I
introduce the framework in the context of reasoning for specifically semantic notions,
and against the background of semantic reasoning we have already done.

In Chapter 4 we used truth trees and tables for an account of the conditions under
which sentential formulas are true and arguments are valid. In the quantificational case
though, we were not able to use our graphical methods for a general account of truth
and validity—there were simply too many branches, and too many interpretations, for
a general account by means of trees. For a complete account, we will need to reason
more directly from the definitions. But the tables and trees do exhibit the semantic
definitions. So we can build on what we have already done with them. Our goal will
be to move past the tables and trees, and learn to function without them. After some
introductory remarks in section 7.1, we start with the sentential case (section 7.2), and
move to the quantificational (section 7.3).

1The ability to reason clearly and directly with definitions is important not only here, but also
beyond. From Dennett’s (often humorous) Philosopher’s Lexicon, compare the verb to chisholm—after
Roderick Chisholm, who was a master of the technique—where one proposes a definition; considers a
counterexample; modifies to account for the example; considers another counterexample; modifies again;
and so forth. As, “He started with definition (d.8) and kept chisholming away at it until he ended up with
(d.800000000).” Such reasoning is impossible to understand apart from explicit attention to consequences of
definitions of the sort we have in mind.
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7.1 Introductory

I begin with some considerations about what we are trying to accomplish, and how it
is related to what we have done. At this stage, do not worry so much about details as
about the overall nature of the project. With this in mind, consider the following row
of a truth table, meant to show that B ! C ²s �B:

(A)
B C B ! C / �B

T T T T T F T

Since there is an interpretation on which the premise is true and the conclusion is not,
the argument is not sententially valid. Now, what justifies setting B ! C to T and
�B to F? One might respond, “the truth tables.” But the truth tables T(!) and T(�)
themselves derive from definition ST. And similarly the conclusion that the argument
is not sententially valid derives from SV.

ST(�) I[�P ] = T iff I[P ] = F; otherwise I[�P ] = F.

ST(!) I[.P ! Q/] = T iff I[P ] = F or I[Q] = T (or both); otherwise I[.P ! Q/] = F.

SV � �s P iff there is no sentential interpretation I such that IŒ�� = T but IŒP � = F.

In this case, IŒC � = T; from this, reasoning as by _I, IŒB� = F or IŒC � = T; so by
ST(!), IŒB ! C � = T. Similarly, IŒB� = T; so by ST(�), IŒ�B� = F. And since we
have produced an I such that IŒB ! C � = T but IŒ�B� = F, by SV, B ! C ²s �B .
Up to now, we have used tables to express these conditions. But we might have
reasoned directly:

(B)

Consider any interpretation I such that IŒB� = T and IŒC � = T. Since IŒC � = T, IŒB� = F

or IŒC � = T; so by ST(!), IŒB ! C � = T. But since IŒB� = T, by ST(�), IŒ�B� = F.
So there is a sentential interpretation I such that IŒB ! C � = T but IŒ�B� = F; so by
SV, B ! C ²s �B .

Presumably, all this is “contained” in the one line of the truth table, when we use it to
conclude that the argument is not sententially valid. Our aim is to “expose” reasoning
in this way.

Similarly, consider the following table, meant to show that ��A �s �A! A.

(C)
A ��A / �A ! A

T T F T F T T T
F F T F T F F F

Since there is no row where the premise is true and the conclusion is false, the
argument is sententially valid. Again, ST(�) and ST(!) justify the way you build the
table. And SV lets you conclude that the argument is sententially valid. Thus the table
represents reasoning as follows:
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(D)

For any sentential interpretation either (i) IŒA� = T or (ii) IŒA� = F. Suppose (i);
then IŒA� = T; so IŒ�A� = F or IŒA� = T; so by ST(!), IŒ�A ! A� = T; from this
either IŒ��A� = F or IŒ�A ! A� = T; so it is not the case that IŒ��A� = T and
IŒ�A ! A� = F. Suppose (ii); then IŒA� = F; so by ST(�), IŒ�A� = T; so by ST(�)
again, IŒ��A� = F; so either IŒ��A� = F or IŒ�A! A� = T; so it is not the case that
IŒ��A� = T and IŒ�A! A� = F. From these together, no interpretation makes it the
case that IŒ��A� = T and IŒ�A! A� = F. So by SV, ��A �s �A! A.

Thus we might recapitulate reasoning in the table. Perhaps we typically “whip through”
tables without explicitly considering all the definitions involved. But the definitions
are involved when we complete the table.

In fact, (D) does not recapitulate the entire table (C). Thus at (i), for the conditional
we do not establish IŒ�A� = F—it is enough that IŒA� = T so that IŒ�A� = F or IŒA� = T
and by ST(!), IŒ�A ! A� = T. Similarly at (i) there is no need to make the point
that IŒ��A� = T. What matters is that IŒ�A ! A� = T, so that IŒ��A� = F or
IŒ�A! A� = T, and it is therefore not the case that IŒ��A� = T and IŒ�A! A� = F.
Such “shortcuts” may reflect what you have already done when you realize that, say,
a true conclusion eliminates the need to think about the premises on some row of a
table. Even so, the idea of reasoning in this way corresponding to a 4, 8, or more (!)
row table remains painful.

But there is a way out. Recall what happens when you apply the Chapter 4
“shortcut” table method to valid arguments. You start with the assumption that the
premises are true and the conclusion is not. If the argument is valid, you reach some
conflict so that it is not, in fact, possible to complete the row. Then, as we said on
page 105, you know “in your heart” that the argument is valid. Let us turn this into an
official argument form.

(E)

Suppose ��A ²s �A ! A; then by SV, there is an I such that IŒ��A� = T and
IŒ�A! A� = F. From the former, by ST(�), IŒ�A� = F. But from the latter, by ST(!),
IŒ�A� = T and IŒA� = F. So IŒ�A� = T and IŒ�A� = F. This is impossible; reject the
assumption: ��A �s �A! A.

This is better. The assumption that the argument is invalid leads to the conclusion
that for some I, IŒ�A� = T and IŒ�A� = F; but this is impossible and we reject the
assumption. The pattern is like �E in ND. This approach is particularly important
insofar as we do not reason individually about each of the possible interpretations. This
is nice in the sentential case, when there are too many to reason about conveniently.
And in the quantificational case, we will not be able to argue individually about each
of the possible interpretations. So we need to avoid talking about interpretations one
by one.

Thus we arrive at two strategies: To show that an argument is invalid, we produce
an interpretation, and show by the definitions that it makes the premises true and the
conclusion not. That is what we did in (B) above. To show that an argument is valid,
we assume the opposite, and show by the definitions that the assumption leads to
contradiction. Again, that is what we did just above, at (E).
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Before we get to the details, let us consider an important point about what we are
trying to do: Our reasoning takes place in the metalanguage, based on the definitions
stated in the metalanguage—where object-level expressions are uninterpreted apart
from their definitions. To see this, ask yourself whether a sentence P conflicts with
P "P . “Well,” you might respond, “I have never encountered this symbol ‘"’ before,
so I am not in a position to say.” But that is the point: whether P conflicts with
P "P depends entirely on a definition for up arrow ‘"’. As it happens, this symbol
is typically read “not both” as given by what might be a further clause of ST.2

ST(") For any sentences P and Q, IŒ.P "Q/� = T iff IŒP � = F or IŒQ� = F (or both);
otherwise IŒ.P "Q/� = F.

The resultant table is,

T(")

P Q P " Q

T T F
T F T
F T T
F F T

P "Q is false when P and Q are both T, and otherwise true. Given this, P does
conflict with P "P . Suppose IŒP � = T and IŒP "P � = T; from the latter, by ST("),
IŒP � = F or IŒP � = F; either way, IŒP � = F; but this is impossible given our assumption
that IŒP � = T. In fact, P "P has the same table as �P , and P " .Q "Q/ the same
as P ! Q.

(F)
P P " P

T F
F T

P Q P " .Q " Q/

T T T F
T F F T
F T T F
F F T T

From this, we might have treated � and!, and so ^, _, and$, all as abbreviations
for expressions whose only operator is ". At best, however, this leaves official
expressions incredibly difficult to read. Here is the point that matters: Operators have
their significance entirely from the definitions. In this chapter, we make metalinguistic
claims about object expressions, where these can only be based on the definitions. P

and P "P do not themselves conflict, apart from the definition which makes P with
P " P have the consequence that IŒP � = T and IŒP � = F. And similarly operators
with which we are more familiar gain their significance from the definition. At every
stage, it is the definitions which justify conclusions.

7.2 Sentential

With this much said, it remains possible to become confused about details while
working with the definitions. It is one thing to be able to follow such reasoning—as I

2An alternative symbol is a simple vertical line, ‘j’. Then it is (the Sheffer) stroke.
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hope you have been able to do—and another to produce it. The idea now is to make
use of something at which we are already good, doing derivations, to further structure
and guide the way we proceed. The result will be a sort of derivation system for
reasoning with metalinguistic expressions. We build up this system in stages.

7.2.1 Truth

Let us begin with some notation. Where the script characters A;B;C ;D ; : : : repre-
sent object expressions in the usual way, let the Fraktur characters A;B;C;D; : : :

represent metalinguistic expressions (‘A’ is the Fraktur ‘A’). Thus A might represent
an expression of the sort IŒB� = T. Then) and, are the metalinguistic conditional
and biconditional respectively; :, M, O, and are metalinguistic negation, conjunc-
tion, disjunction, and contradiction. In practice, negation is indicated by the slash (²)
as well.

Now consider the following restatement of definition ST. Each clause is given in
both a positive and a negative form. For any sentences P and Q and interpretation I,

ST (�) IŒ�P � = T, IŒP � = T IŒ�P � = T, IŒP � = T

(!) IŒP ! Q� = T, IŒP � = T O IŒQ� = T IŒP ! Q� = T, IŒP � = T M IŒQ� = T

Given the new symbols, and that the definitions make a sentence F exactly when it is
not true, this is a simple restatement of ST. As we develop our metalinguistic derivation
system, we will treat the metalinguistic biconditionals both as (replacement) rules and
as axioms. Thus, for example, by the first form of ST(�) it will be legitimate to move
directly from IŒ�P � = T to IŒP � = T, moving from left to right across the arrow; and
similarly but in the other direction from IŒP � = T to IŒ�P � = T. Alternatively, it will
be appropriate to assert by ST(�) the entire biconditional, that IŒ�P � = T, IŒP � = T.
For now, we will mostly use the biconditionals, in the first form, as rules.

To manipulate the definitions, we require some rules. These are like ones you
have seen before, only pitched at the metalinguistic level.

com .A OB/, .B OA/ .A MB/, .B MA/

idm A, .A OA/ A, .A MA/

dem :.A MB/, .:A O :B/ :.A OB/, .:A M :B/

cnj A;B

A MB

A MB

A

A MB

B

dsj A

A OB

B

A OB

A OB;:A

B

A OB;:B

A

neg A, ::A A

:A

:A

A

bot A;:A
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Each of these should remind you of rules from ND or ND+. In practice, we will
allow generalized versions of cnj that let us move directly from A1;A2; : : : ;An to
A1 MA2 M : : : MAn. Similarly, we will allow applications of dsj and dem that skip
officially required applications of neg. Thus, for example, instead of going by dem
from :.A M :B/, to :A O ::B and then by neg to :A O B, we might move by
dem directly from :.A M:B/, to :A OB. We will also allow a version of dsj with a
pair of subderivations (as for _E in ND). All this should become more clear as we
proceed.

With definition ST and these rules, we can begin to reason about consequences of
the definition. Suppose we want to show that an interpretation with IŒA� = IŒB� = T is
such that IŒ�.A! �B/� = T.

(G)

1. IŒA� = T prem
2. IŒB� = T prem
3. IŒ�B� = T 2 ST(�)
4. IŒA� = T M IŒ�B� = T 1,3 cnj
5. IŒA! �B� = T 4 ST(!)
6. IŒ�.A! �B/� = T 5 ST(�)

We are given that IŒA� = T and IŒB� = T. From
the latter, by ST(�), IŒ�B� = T; so IŒA� = T

and IŒ�B� = T; so by ST(!), IŒA ! �B� =
T; so by ST(�), IŒ�.A! �B/� = T.

The reasoning on the left is a metalinguistic derivation in the sense that every step is
either a premise or results by a definition or rule. You should be able to follow each
step. And these derivations can be worked “bottom-up” in the usual way: From the
main operator, we expect to obtain IŒ�.A! �B/� = T by ST(�); for this we need
IŒA! �B� = T; again by the main operator, we expect to get this by ST(!) and so
set IŒA� = T M IŒ�B� = T as goal; this requires both conjuncts; but the first is given,
and the second results from IŒB� = T by ST(�).

On the right, we simply “tell the story” of the derivation—mirroring it step for
step. This latter style is the one we want to develop. As we shall see, it gives us power
to go beyond where the derivations will take us. But the derivations serve a purpose.
If we can do them, we can use them to construct reasoning of the sort we want. Each
stage on one side corresponds to one on the other. So the derivations can guide us as
we construct our reasoning, and constrain the moves we make. Note: First, on the
right, we replace line references with language (“from the latter”) meant to serve the
same purpose. Second, the metalinguistic symbols,),,, :, M, O, , are replaced
with ordinary language on the right side. Finally, on the right, though we cite every
definition when we use it, we do not cite the additional rules (in this case cnj). To
the extent that you can, it is good to have one line depend on the one before or in
the immediate neighborhood, so as to minimize the need for extended references in
the written version. And in general, as much as possible, you should strive to put the
reader (and yourself at a later time) in a position to follow your reasoning—supposing
just a basic familiarity with the definitions.

Consider now another example. Suppose we want to show that an interpretation
with IŒB� = T is such that IŒ�.A! �B/� = T.
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(H)

1. IŒB� = T prem
2. IŒ�B� = T 1 ST(�)
3. IŒA� = T O IŒ�B� = T 2 dsj
4. IŒA! �B� = T 3 ST(!)
5. IŒ�.A! �B/� = T 4 ST(�)

We are given that IŒB� = T; so by ST(�),
IŒ�B� = T; so IŒA� = T or IŒ�B� = T; so
by ST(!), IŒA ! �B� = T; so by ST(�),
IŒ�.A! �B/� = T.

Observe how ST(!) requires IŒA� = T O IŒ�B� = T to obtain IŒA! �B� = T. Thus
we obtain the disjunctive (3) in order to get (4). In contrast, on (5) of (G), ST(!) takes
the conjunctive IŒA� = T M IŒ�B� = T for IŒA! �B� = T. Keep these cases separate
in your mind: from the left-hand side of ST(!), a disjunction for a true conditional;
and from the right-hand side, a conjunction for a conditional that is not true.

Here is another derivation of the same result, this time beginning with assumption
of the opposite (with justification, ‘assp’) and breaking down to the parts, for an
application of neg.

(I)

1. IŒ�.A! �B/� = T assp
2. IŒA! �B� = T 1 ST(�)
3. IŒA� = T M IŒ�B� = T 2 ST(!)
4. IŒ�B� = T 3 cnj
5. IŒB� = T 4 ST(�)
6. IŒB� = T prem
7. 5,6 bot

8. IŒ�.A! �B/� = T 1-7 neg

Suppose IŒ�.A ! �B/� = T; then from
ST(�), IŒA ! �B� = T; so by ST(!),
IŒA� = T and IŒ�B� = T; so IŒ�B� = T; so
by ST(�), IŒB� = T. But we are given that
IŒB� = T. This is impossible; reject the as-
sumption: IŒ�.A! �B/� = T.

Notice again that the conditional which is not true yields a conjunction. This version
takes a couple more lines. But it works as well and provides a useful illustration of
the (neg) rule. As usual, reasoning on the one side mirrors that on the other. So we
can use the metalinguistic derivation as a guide for the reasoning on the right. Again,
we leave out the special metalinguistic symbols. And again we cite all instances of
definitions, but not the additional rules.

These derivations are structurally much simpler than ones you have seen before
from AD and ND. The challenge is accommodating new notation with the different
mix of rules. As you work these and other problems, you may find the sentential
metalinguistic reference on page 332 helpful.

Some perspective: Our reasoning takes place in the metalanguage. Special symbols,
M, O, and such just are the metalinguistic ‘and’, ‘or’, and the like. Thus our work
is in the usual language we use to state definitions. This language comes with
its own interpretation. Taken this way, the metalinguistic derivations themselves
constitute metalinguistic reasonings. It is true that metalinguistic rules are given in
terms of form. We thus impose formal constraints on our reasoning. But we have
not introduced a new language whose symbols require interpretation (as for Lq),
and do not justify inferences by form (as for ND). So we have not formalized the
metalanguage. Rather we have adopted the formal constraints in order to guide and
structure our reasoning.
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E7.1. Suppose IŒA� = T, IŒB� = T, and IŒC � = T. For each of the following, produce
a metalinguistic derivation, and then informal reasoning to demonstrate either that
it is or is not true on I. Hint: You may find a quick row of the truth table helpful to
let you see which you want to show. Also, (e) is much easier than it looks.

*a. �B ! C

*b. �B ! �C

c. �Œ.A! �B/! �C �

d. �ŒA! .B ! �C/�

e. �A! Œ..A! B/! C/! �.�C ! B/�

7.2.2 Validity

So far we have been able to reason about ST and truth. Let us now extend results to
validity. For this, we need to augment our metalinguistic derivation system. Let ‘S’
be a metalinguistic existential quantifier—it asserts the existence of some object. For
now, ‘S ’ will appear only in contexts asserting the existence of interpretations. Thus,
for example, S I.IŒP � = T/ says there is an interpretation I such that IŒP � = T, and
:S I.IŒP � = T/ says it is not the case that there is an interpretation I such that IŒP � = T.
Given this, we can state SV as follows, again in positive and negative forms:

SV :S I.IŒP1� = T M : : : M IŒPn� = T M IŒQ� = T/, P1 : : :Pn �s Q

S I.IŒP1� = T M : : : M IŒPn� = T M IŒQ� = T/, P1 : : :Pn ²s Q

These should look familiar. An argument is valid when it is not the case that there is
some interpretation that makes the premises true and the conclusion not. An argument
is invalid if there is some interpretation that makes the premises true and the conclusion
not.

Again, we need rules to manipulate the new operator. In general, whenever a
metalinguistic term t first appears outside the scope of a metalinguistic quantifier, it is
labeled arbitrary or particular. For the sentential case, terms will be of the sort I, J,
. . . for interpretations, and mostly labeled ‘particular’ when they first appear apart
from the quantifier S . Say AŒt� is some metalinguistic expression in which term t

appears, and AŒu� is like AŒt� but with free instances of t replaced by u. Perhaps AŒt�

is IŒA� = T and AŒu� is JŒA� = T. Then,

exs AŒu� u arbitrary or particular

StAŒt�

StAŒt�

AŒu� u particular and new

As an instance of the left-hand “introduction” rule, we might move from JŒA� = T, for
a J labeled either arbitrary or particular, to S I.IŒA� = T/. If interpretation J is such
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that JŒA� = T, then there is some interpretation I such that IŒA� = T. For the other
“exploitation” rule, we may move from S I.IŒA� = T/ to the result that JŒA� = T so
long as J is identified as particular and is new to the derivation, in the sense required
for 9E in Chapter 6. In particular, it must be that the term does not so-far appear
outside the scope of a metalinguistic quantifier, and does not appear free in current
goal expressions. Given that some I is such that IŒA� = T, we set up J as a particular
interpretation for which it is so.3

In addition, it will be helpful to allow a rule which lets us make assertions by
inspection about already given interpretations—and we will limit justifications by
(ins) just to assertions about interpretations (and, later, variable assignments). Thus,
for example, in the context of an interpretation I on which IŒA� = T, we might allow,

n. IŒA� = T ins (I particular)

as a line of one of our derivations. In this case, I is a name of the interpretation, and
listed as particular on first use.

Now suppose we want to show that .B ! �D/, �B ²s D. Recall that our
strategy for showing that an argument is invalid is to produce an interpretation,
and show that it makes the premises true and the conclusion not. So consider an
interpretation J such that JŒB� = T and JŒD� = T. (A quick row of the truth table might
help to identify this as the interpretation we want to consider.)

(J)

1. JŒB� = T ins (J particular)
2. JŒB� = T O JŒ�D� = T 1 dsj
3. JŒB ! �D� = T 2 ST(!)
4. JŒ�B� = T 1 ST(�)
5. JŒD� = T ins
6. JŒB ! �D� = T M JŒ�B� = T M JŒD� = T 3,4,5 cnj
7. S I.IŒB ! �D� = T M IŒ�B� = T M IŒD� = T/ 6 exs
8. B ! �D;�B ²s D 7 SV

(1) and (5) are by inspection of the interpretation J, where an individual name is
always labeled “particular” when it first appears. At (6) we have a conclusion about
interpretation J, and at (7) we generalize to the existential, for an application of SV at
(8). Here is the corresponding informal reasoning:

JŒB� = T; so either JŒB� = T or JŒ�D� = T; so by ST(!), JŒB ! �D� = T. But since
JŒB� = T, by ST(�), JŒ�B� = T. And JŒD� = T. So JŒB ! �D� = T and JŒ�B� = T but
JŒD� = T. So there is an interpretation I such that IŒB ! �D� = T and IŒ�B� = T but
IŒD� = T. So by SV, B ! �D, �B ²s D.

3Insofar as I is bound in S I.IŒA� = T/, term I may itself be new in the sense that it does not so-far
appear outside the scope of a quantifier. Thus we may be justified in moving from S I.IŒA� = T/ to
IŒA� = T, with I particular. However, as a matter of style, we will typically switch terms upon application
of the exs rule.
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It should be clear that this reasoning reflects that of the derivation. We show the
argument is invalid by showing that there exists an interpretation on which the premises
are true and the conclusion is not.

Say we want to show that�.A! B/ �s A. To show that an argument is valid, our
idea has been to assume otherwise and show that the assumption leads to contradiction.
So we might reason as follows:

(K)

1. �.A! B/ ²s A assp
2. S I.IŒ�.A! B/� = T M IŒA� = T/ 1 SV

3. JŒ�.A! B/� = T M JŒA� = T 2 exs (J particular)
4. JŒ�.A! B/� = T 3 cnj
5. JŒA! B� = T 4 ST(�)
6. JŒA� = T M JŒB� = T 5 ST(!)
7. JŒA� = T 6 cnj
8. JŒA� = T 3 cnj
9. 7,8 bot

10. �.A! B/ �s A 1-9 neg

Suppose �.A ! B/ ²s A; then by SV there is some I such that IŒ�.A ! B/� = T

and IŒA� = T; let J be a particular interpretation of this sort; then JŒ�.A ! B/� = T

and JŒA� = T. From the former, by ST(�), JŒA ! B� = T; so by ST(!), JŒA� = T and
JŒB� = T. So both JŒA� = T and JŒA� = T. This is impossible; reject the assumption:
�.A! B/ �s A.

At (2) we have the result that there is some interpretation on which the premise is
true and the conclusion is not. At (3), we set up to reason about a particular J for
which this is so. J does not so-far appear in the derivation, and does not appear in the
goal at (9). So we instantiate to it. This puts us in a position to reason by ST. The
pattern is typical. Given that the assumption leads to contradiction, we are justified in
rejecting the assumption, and thus conclude that the argument is valid. It is important
that we are able to show an argument is valid without reasoning individually about
every possible interpretation of the basic sentences!

Notice that we can also reason generally about forms. Here is a case of that sort:

T7.4s. �s .�Q! �P /! ..�Q! P /! Q/
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1. ²s .�Q! �P /! ..�Q! P /! Q/ assp
2. S I.IŒ.�Q! �P /! ..�Q! P /! Q/� = T/ 1 SV

3. JŒ.�Q! �P /! ..�Q! P /! Q/� = T 2 exs (J particular)
4. JŒ�Q! �P � = T M JŒ.�Q! P /! Q� = T 3 ST(!)
5. JŒ.�Q! P /! Q� = T 4 cnj
6. JŒ�Q! P � = T M JŒQ� = T 5 ST(!)
7. JŒQ� = T 6 cnj
8. JŒ�Q� = T 7 ST(�)
9. JŒ�Q! P � = T 6 cnj

10. JŒ�Q� = T O JŒP � = T 9 ST(!)
11. JŒP � = T 10,8 dsj
12. JŒ�Q! �P � = T 4 cnj
13. JŒ�Q� = T O JŒ�P � = T 12 ST(!)
14. JŒ�P � = T 13,8 dsj
15. JŒP � = T 14 ST(�)
16. 11,15 bot

17. �s .�Q! �P /! ..�Q! P /! Q/ 1-16 neg

Suppose ²s .�Q! �P /! ..�Q! P /! Q/; then by SV there is some I such that
IŒ.�Q! �P /! ..�Q! P /! Q/� = T. Let J be a particular interpretation of this
sort; then JŒ.�Q! �P /! ..�Q! P /! Q/� = T; so by ST(!), JŒ�Q! �P � = T

and JŒ.�Q! P /! Q� = T; from the latter, by ST(!), JŒ�Q! P � = T and JŒQ� = T;
from the second of these, by ST(�), JŒ�Q� = T. Since JŒ�Q ! P � = T, by ST(!),
JŒ�Q� = T or JŒP � = T; but JŒ�Q� = T, so JŒP � = T. Since JŒ�Q ! �P � = T, by
ST(!), JŒ�Q� = T or JŒ�P � = T; but JŒ�Q� = T, so JŒ�P � = T; so by ST(�), JŒP � = T.
This is impossible; reject the assumption: �s .�Q! �P /! ..�Q! P /! Q/.

Observe that the steps represented by (11) and (14) are not by cnj but by the dsj
rule with A O B and :A for the result that B.4 Observe also that contradictions
are obtained at the metalinguistic level. Thus JŒP � = T at (11) does not contradict
JŒ�P � = T at (14). Of course, it is a short step to the result that JŒP � = T and JŒP � = T
which do contradict. As a general point of strategy, it is much easier to manage a
conditional that is not true than a conditional that is true—for a conditional that is
not true yields a conjunctive result, and one that is true a disjunctive result. Thus we
begin above at (5) and (6) with the conditional that is not true, and use the results to
set up applications of dsj. This is typical. Similarly we can show,

T7.1s. P , P ! Q �s Q

T7.2s. �s P ! .Q! P /

T7.3s. �s .O ! .P ! Q//! ..O ! P /! .O ! Q//

4Or, rather, we have :A OB and A—and thus skip application of neg to obtain the proper ::A

for this application of dsj.
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T7.1s–T7.4s should remind you of the axioms and rule of the sentential system ADs
from Chapter 3. These results (or, rather, analogues for the quantificational case) play
an important role for things to come.

Again to show that an argument is invalid, produce an interpretation; then use
it for a demonstration that there exists an interpretation that makes premises true
and the conclusion not. To show that an argument is valid, suppose otherwise; then
demonstrate that your assumption leads to contradiction. The derivations then provide
the pattern for your informal reasoning.

E7.2. Produce a metalinguistic derivation, and then informal reasoning to demon-
strate each of the following. To show invalidity, you will have to produce an
interpretation to which your argument refers.

*a. A! B , �A ²s �B

*b. A! B , �B �s �A

c. A! B , B ! C , C ! D �s A! D

d. A! B , B ! �A �s �A

e. A! B , �A! �B ²s �.A! �B/

f. .�A! B/! A �s �A! �B

g. �A! �B , B �s �.B ! �A/

h. A! B , �B ! A ²s A! �B

i. ²s Œ.A! B/! .A! C/�! Œ.A! B/! C �

j. �s .A! B/! Œ.B ! �C/! .C ! �A/�

E7.3. Provide demonstrations for T7.1s–T7.3s in the informal style. Hint: You may
or may not find metalinguistic derivations helpful as a guide.

7.2.3 Derived Clauses

Finally, for this section on sentential forms, we expand the range of our results by
introducing derived clauses to definition ST. For this, we require some rules for)
and,.

cnd A) B, A

B

A

B

A) B

A) B, B) C

A) C

bcnd A, B, A

B

A, B, B

A

A) B;B) A

A, B

A, B, B, C

A, C
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We will also allow versions of cnd and bcnd which move from, say, A) B and :B

to :A, and from A, B and :A, to :B (like MT and NB from ND+). And we will
allow generalized versions of these rules moving directly from, say, A) B, B) C,
and C ) D to A ) D; and similarly, from A , B, B , C, and C , D to
A,D. In this last case, the natural informal description is, A iff B; B iff C; C iff
D; so A iff D. In real cases, however, repetition of terms can be awkward and get in
the way of reading. In practice, then, the pattern collapses to, A iff B; iff C; iff D; so
A iff D—where this is understood as in the official version.

Also, when demonstrating that A) B, in many cases, it is helpful to get B by
neg; officially, the pattern is as on the left,

A

:B

B

A) B

But the result is automatic
once we derive a contradic-
tion from A and :B; so,
in practice, this pattern col-
lapses into:

A M :B

A) B

So to demonstrate a conditional, it is enough to derive a contradiction from the an-
tecedent and negation of the consequent. Let us also include among our metalinguistic
definitions, abb as a metalinguistic counterpart to abv (as for example on page 299).
This is to be understood as justifying biconditionals AŒP 0�, AŒP � where P 0 abbre-
viates P . So, for example, by abb IŒP 0� = T, IŒP � = T. Such a biconditional can be
used as either an axiom or a rule.

We are now in a position to produce derived clauses for ST. We have already seen
derived tables from Chapter 4. Now we demonstrate the conditions.

ST0 (^) IŒP ^Q� = T, IŒP � = T M IŒQ� = T

IŒP ^Q� = T, IŒP � = T O IŒQ� = T

(_) IŒP _Q� = T, IŒP � = T O IŒQ� = T

IŒP _Q� = T, IŒP � = T M IŒQ� = T

($) IŒP $ Q� = T, .IŒP � = T M IŒQ� = T/ O .IŒP � = T M IŒQ� = T/

IŒP $ Q� = T, .IŒP � = T M IŒQ� = T/ O .IŒP � = T M IŒQ� = T/

Again, you should recognize the derived clauses based on what you already know
from truth tables.

First, consider the positive form for ST0(^). We reason about the arbitrary inter-
pretation. The demonstration begins by abb, and strings together biconditionals to
reach the final result.

(L)

1. IŒP ^Q� = T, IŒ�.P ! �Q/� = T abb (I arbitrary)
2. IŒ�.P ! �Q/� = T, IŒP ! �Q� = T ST(�)
3. IŒP ! �Q� = T, IŒP � = T M IŒ�Q� = T ST(!)
4. IŒP � = T M IŒ�Q� = T, IŒP � = T M IŒQ� = T ST(�)
5. IŒP ^Q� = T, IŒP � = T M IŒQ� = T 1,2,3,4 bcnd
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This time the interpretation is arbitrary insofar as the reasoning applies to any in-
terpretation whatsoever. This derivation puts together a string of biconditionals
of the form A , B, B , C, C , D, D , E; the conclusion follows by
bcnd. Notice that we use the abbreviation and first two definitions as axioms, to
state the biconditionals. Technically, (4) results from an implicit A , A—that is,
IŒP � = T M IŒ�Q� = T, IŒP � = T M IŒ�Q� = T—followed by ST(�) as a replacement
rule, substituting IŒQ� = T for IŒ�Q� = T on the right-hand side. In the “collapsed”
biconditional form, the result is as follows:

By abb, IŒP ^Q� = T iff IŒ�.P ! �Q/� = T; by ST(�), iff IŒP ! �Q� = T; by ST(!),
iff IŒP � = T and IŒ�Q� = T; by ST(�), iff IŒP � = T and IŒQ� = T. So IŒP ^ Q� = T iff
IŒP � = T and IŒQ� = T.

In this abbreviated form, each stage implies the next from start to finish. But similarly,
each stage implies the one before from finish to start. So one might think of it as
demonstrating conditionals in both directions all at once for eventual application
of bcnd. Because we have just shown a biconditional, it follows immediately that
IŒP ^ Q� = T just in case the right hand side fails—just in case one of IŒP � = T or
IŒQ� = T. However, we can also make the point directly.

By abb, IŒP ^Q� = T iff IŒ�.P ! �Q/� = T; by ST(�), iff IŒP ! �Q� = T; by ST(!),
iff IŒP � = T or IŒ�Q� = T; by ST(�), iff IŒP � = T or IŒQ� = T. So IŒP ^Q� = T iff IŒP � = T

or IŒQ� = T.

Reasoning for ST0(_) is similar. For ST0($) it will be helpful to introduce, as a
derived rule, a sort of distribution principle.

dst Œ.:A OB/ M .:B OA/�, Œ.A MB/ O .:A M :B/�

To show this, our basic idea is to obtain the conditional going in both directions, and
then apply bcnd. The argument from left to right is given in box (N) on the following
page. The conditional is demonstrated in the “collapsed” form, where we assume the
antecedent with the negation of the consequent and go for a contradiction. Note the
little subderivation at (11)–(14); we have accumulated disjunctions at (3), (4), (8), and
(10), but do not have any of the “sides”; to make headway, we assume the negation of
one side; this feeds into dsj and neg (the idea is related to SC4). Demonstration of
the conditional in the other direction is left as an exercise. Given dst, you should be
able to demonstrate ST($), also in the collapsed biconditional style. You will begin
by observing by abb that IŒP $ Q� = T iff IŒ�..P ! Q/! �.Q! P //� = T; by
ST(�) iff. . . . The negative side is relatively straightforward, and does not require dst.

Having established the derived clauses for ST0, we can use them directly in our
reasoning. Thus, for example, let us show that B _ .A ^ �C/, .C ! A/ $ B ²s
�.A ^ C/. For this, consider an interpretation J such that JŒA� = JŒB� = JŒC � = T.



CHAPTER 7. DIRECT SEMANTIC REASONING 330

(M)

1. JŒB� = T ins (J particular)
2. JŒB� = T O JŒA ^�C � = T 1 dsj
3. JŒB _ .A ^�C/� = T 2 ST0(_)
4. JŒA� = T ins
5. JŒC � = T O JŒA� = T 4 dsj
6. JŒC ! A� = T 5 ST(!)
7. JŒC ! A� = T M JŒB� = T 10,1 cnj
8. .JŒC ! A� = T M JŒB� = T/ O .JŒC ! A� = T M JŒB� = T/ 7 dsj
9. JŒ.C ! A/$ B� = T 8 ST0($)

10. JŒC � = T ins
11. JŒA� = T M JŒC � = T 4,10 cnj
12. JŒA ^ C � = T 11 ST0(^)
13. JŒ�.A ^ C/� = T 12 ST(�)
14. JŒB _ .A ^�C/� = T M JŒ.C ! A/$ B� = T M JŒ�.A ^ C/� = T 3,9,13 cnj
15. S IŒIŒB _ .A ^�C/� = T M IŒ.C ! A/$ B� = T M IŒ�.A ^ C/� = T� 14 exs
16. B _ .A ^�C/; .C ! A/$ B ²s �.A ^ C/ 15 SV

Since JŒB� = T, either JŒB� = T or JŒA ^�C � = T; so by ST0(_), JŒB _ .A ^�C/� = T.
Since JŒA� = T, either JŒC � = T or JŒA� = T; so by ST(!), JŒC ! A� = T; so both
JŒC ! A� = T and JŒB� = T; so either both JŒC ! A� = T and JŒB� = T or both
JŒC ! A� = T and JŒB� = T; so by ST0($), JŒ.C ! A/$ B� = T. Since JŒA� = T and
JŒC � = T, by ST0(^), JŒA^C � = T; so by ST(�), JŒ�.A^C/� = T. So JŒB_.A^�C/� = T

and JŒ.C ! A/$ B� = T but JŒ�.A ^ C/� = T; so there exists an interpretation I such
that IŒB _ .A ^ �C/� = T and IŒ.C ! A/ $ B� = T but IŒ�.A ^ C/� = T; so by SV,
B _ .A ^�C/, .C ! A/$ B ²s �.A ^ C/.

(N)

1. Œ.:A OB/ M .:B OA/� M :Œ.A MB/ O .:A M :B/� assp
2. .:A OB/ M .:B OA/ 1 cnj
3. :A OB 2 cnj
4. :B OA 2 cnj
5. :Œ.A MB/ O .:A M :B/� 1 cnj
6. :.A MB/ M :.:A M :B/ 5 dem
7. :.A MB/ 6 cnj
8. :A O :B 7 dem
9. :.:A M :B/ 6 cnj

10. A OB 9 dem
11. A assp
12. B 3,11 dsj
13. :B 8,11 dsj
14. 12,13 bot
15. :A 11-14 neg
16. :B 4,15 dsj
17. B 10,15 dsj
18. 17,16 bot
19. Œ.:A OB/ M .:B OA/�) Œ.A MB/ O .:A M :B/� 1-18 cnd
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Observe the use of dsj at (8) to feed into ST0($) at (9). This is no different than we
have done before, only with the relatively complex expressions.

Similarly we can show that A! .B _ C/, C $ B , �C �s �A. As usual, our
strategy is to assume otherwise, and go for contradiction.

(O)

1. A! .B _ C/; C $ B;�C ²s �A assp
2. S I.IŒA! .B _ C/� = T M IŒC $ B� = T M IŒ�C � = T M IŒ�A� = T/ 1 SV

3. JŒA! .B _ C/� = T M JŒC $ B� = T M JŒ�C � = T M JŒ�A� = T 2 exs (J particular)
4. JŒ�C � = T 3 cnj
5. JŒC � = T 4 ST(�)
6. JŒC � = T O JŒB� = T 5 dsj
7. :.JŒC � = T M JŒB� = T/ 6 dem
8. JŒC $ B� = T 3 cnj
9. .JŒC � = T M JŒB� = T/ O .JŒC � = T M JŒB� = T/ 8 ST0($)

10. JŒC � = T M JŒB� = T 9,7 dsj
11. JŒ�A� = T 3 cnj
12. JŒA� = T 11 ST(�)
13. JŒA! .B _ C/� = T 3 cnj
14. JŒA� = T O JŒB _ C � = T 13 ST(!)
15. JŒB _ C � = T 14,12 dsj
16. JŒB� = T O JŒC � = T 15 ST0(_)
17. JŒB� = T 10 cnj
18. JŒC � = T 16,17 dsj
19. 18,5 bot

20. A! .B _ C/; C $ B;�C �s �A 1-20 neg

Suppose A ! .B _ C/, C $ B , �C ²s �A; then by SV there is some I such that
IŒA ! .B _ C/� = T and IŒC $ B� = T and IŒ�C � = T but IŒ�A� = T. Let J be a
particular interpretation of this sort; then JŒA! .B _ C/� = T and JŒC $ B� = T and
JŒ�C � = T but JŒ�A� = T. Since JŒ�C � = T, by ST(�), JŒC � = T; so either JŒC � = T or
JŒB� = T; so it is not the case that both JŒC � = T and JŒB� = T. But JŒC $ B� = T; so by
ST0($), both JŒC � = T and JŒB� = T, or both JŒC � = T and JŒB� = T; but not the former,
so JŒC � = T and JŒB� = T. JŒ�A� = T; so by ST(�), JŒA� = T. But JŒA! .B _ C/� = T;
so by ST(!), JŒA� = T or JŒB _ C � = T; but JŒA� = T; so JŒB _ C � = T; so by ST0(_),
JŒB� = T or JŒC � = T; but JŒB� = T; so JŒC � = T; but JŒC � = T. This is impossible; reject
the assumption: A! .B _ C/, C $ B , �C �s �A.

Note the move on lines (5)–(7) where we use dsj with dem to convert JŒC � = T into a
negation useful at (10).

Though the metalinguistic derivations are useful to discipline the way we reason,
in the end, you may find the written versions to be both quicker and easier to follow.
As you work the exercises, try to free yourself from the derivations to work the
informal versions independently—though you should continue to use derivations as a
check for your work.
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Metalinguistic Quick Reference (sentential)
DEFINITIONS:

ST (�) IŒ�P � = T, IŒP � = T IŒ�P � = T, IŒP � = T

(!) IŒP ! Q� = T, IŒP � = T O IŒQ� = T IŒP ! Q� = T, IŒP � = T M IŒQ� = T

ST0 (^) IŒP ^Q� = T, IŒP � = T M IŒQ� = T

IŒP ^Q� = T, IŒP � = T O IŒQ� = T

(_) IŒP _Q� = T, IŒP � = T O IŒQ� = T

IŒP _Q� = T, IŒP � = T M IŒQ� = T

($) IŒP $ Q� = T, .IŒP � = T M IŒQ� = T/ O .IŒP � = T M IŒQ� = T/

IŒP $ Q� = T, .IŒP � = T M IŒQ� = T/ O .IŒP � = T M IŒQ� = T/

SV :S I.IŒP1� = T M : : : M IŒPn� = T M IŒQ� = T/, P1 : : :Pn �s Q

S I.IŒP1� = T M : : : M IŒPn� = T M IŒQ� = T/, P1 : : :Pn ²s Q

abb Abbreviation allows AŒP 0�, AŒP � where P 0 abbreviates P .

RULES:

com .A OB/, .B OA/ .A MB/, .B MA/

idm A, .A OA/ A, .A MA/

dem :.A MB/, .:A O :B/ :.A OB/, .:A M :B/

cnj A;B

A MB

A MB

A

A MB

B

dsj A

A OB

B

A OB

A OB;:A

B

A OB;:B

A

neg A, ::A A

:A

:A

A

bot A;:A

exs AŒu� u arbitrary or particular

StAŒt�

StAŒt�

AŒu� u particular and new

cnd A) B, A

B

A

B

A) B

A) B, B) C

A) C

A M :B

A) B

bcnd A, B, A

B

A, B, B

A

A) B;B) A

A, B

A, B, B, C

A, C

dst Œ.:A OB/ M .:B OA/�, Œ.A MB/ O .:A M :B/�

ins Inspection allows assertions about interpretations and variable assignments.
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E7.4. Produce informal reasoning to demonstrate each of the following.

a. A! .B ^ C/, �C �s �A

*b. �.A$ B/, �A, �B �s C ^�C

*c. �.�A ^�B/ ²s A ^ B

d. �A$ �B �s B ! A

e. A ^ .B ! C/ ²s .A ^ C/ _ .A ^ B/

f. Œ.C _D/ ^ B�! A, D �s B ! A

g. ²s A _ ..C ! �B/ ^�A/

h. D ! .A! B/, �A! �D, C ^D �s B

i. .�A _ B/! .C ^D/, �.�A _ B/ ²s �.C ^D/

j. A ^ .B _ C/, .�C _D/ ^ .D ! �D/ �s A ^ B

*E7.5. Complete the demonstration of derived clauses of ST0 by completing the
demonstration for dst from right to left, and providing informal reasoning for both
the positive and negative parts of ST0(_) and ST0($).

E7.6. Extend definition ST as follows:

(") IŒP "Q� = T, IŒP � = T O IŒQ� = T IŒP "Q� = T, IŒP � = T M IŒQ� = T

(compare page 319). Produce informal reasoning to show each of the following.
Again, you may or may not find metalinguistic derivations helpful—but your
reasoning should be no less clean than that guided by the rules.

*a. IŒP "Q� = T iff IŒ�.P ^Q/� = T

b. IŒP "P � = T iff IŒ�P � = T

*c. IŒP " .Q "Q/� = T iff IŒP ! Q� = T

d. IŒ.P "P / " .Q "Q/� = T iff IŒP _Q� = T

e. IŒ.P "Q/ " .P "Q/� = T iff IŒP ^Q� = T
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7.3 Quantificational

So far, we might have obtained sentential results for validity and invalidity by truth
tables. But our method positions us to make progress for the quantificational case
compared to what we were able to do before. Again we will depend on and gradually
expand our metalinguistic derivation system as a guide.

7.3.1 Satisfaction

Given what we have done, it is easy to state definition SF for satisfaction at least as
it applies to sentence letters, �, and!. In this quantificational case, as described in
Chapter 4, we are reasoning about satisfaction, and satisfaction depends not just on
interpretations, but on interpretations with variable assignments. For S an arbitrary
sentence letter and P and Q any formulas, where Id is an interpretation I with variable
assignment d,

SF (s) IdŒS � = S, IŒS � = T IdŒS � = S, IŒS � = T

(�) IdŒ�P � = S, IdŒP � = S IdŒ�P � = S, IdŒP � = S

(!) IdŒP ! Q� = S, IdŒP � = S O IdŒQ� = S IdŒP ! Q� = S, IdŒP � = S M IdŒQ� = S

Again, you should recognize this as a simple restatement from SF on page 118. Rules
for manipulating the definitions remain as before. Already, then, we can produce
derived clauses for _, ^, and$.

SF0 (_) IdŒ.P _Q/� = S, IdŒP � = S O IdŒQ� = S

IdŒ.P _Q/� = S, IdŒP � = S M IdŒQ� = S

(^) IdŒ.P ^Q/� = S, IdŒP � = S M IdŒQ� = S

IdŒ.P ^Q/� = S, IdŒP � = S O IdŒQ� = S

($) IdŒ.P $ Q/� = S, .IdŒP � = S M IdŒQ� = S/ O .IdŒP � = S M IdŒQ� = S/

IdŒ.P $ Q/� = S, .IdŒP � = S M IdŒQ� = S/ O .IdŒP � = S M IdŒQ� = S/

All these are like ones from before. For the first,

(P)

1. IdŒP _Q� = S, IdŒ�P ! Q� = S abb (I; d arbitrary)
2. IdŒ�P ! Q� = S, IdŒ�P � = S O IdŒQ� = S SF(!)
3. IdŒ�P � = S O IdŒQ� = S, IdŒP � = S O IdŒQ� = S SF(�)
4. IdŒP _Q� = S, IdŒP � = S O IdŒQ� = S 1,2,3 bcnd

By abb, IdŒP _Q� = S iff IdŒ�P ! Q� = S; by SF(!), iff IdŒ�P � = S or IdŒQ� = S; by
SF(�), iff IdŒP � = S or IdŒQ� = S. So IdŒP _Q� = S iff IdŒP � = S or IdŒQ� = S.

The reasoning is as before except that our condition for satisfaction depends on an
interpretation with variable assignment rather than an interpretation alone.

Of course, given these definitions, we can use them in our reasoning. As a simple
example, let us demonstrate that if IdŒP _Q� = S and IdŒ�Q� = S, then IdŒP � = S.
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(Q)

1. IdŒP _Q� = S M IdŒ�Q� = S assp (I; d arbitrary)
2. IdŒP _Q� = S 1 cnj
3. IdŒP � = S O IdŒQ� = S 2 SF0(_)
4. IdŒ�Q� = S 1 cnj
5. IdŒQ� = S 4 SF(�)
6. IdŒP � = S 3,5 dsj

7. .IdŒP _Q� = S M IdŒ�Q� = S/) IdŒP � = S 1-6 cnd

Suppose IdŒP _ Q� = S and IdŒ�Q� = S; from the former, by SF0(_), IdŒP � = S or
IdŒQ� = S; but IdŒ�Q� = S; so by SF(�), IdŒQ� = S; so IdŒP � = S. So if IdŒP _Q� = S

and IdŒ�Q� = S, then IdŒP � = S.

Again, basic reasoning is as in the sentential case, except that definitions are for
satisfaction, and we carry along reference to variable assignments.

Observe that given IŒA� = T for a sentence letter A, to show that IdŒA _ B� = S,
we reason,

(R)

1. IŒA� = T ins (I particular)
2. IdŒA� = S 1 SF(s) (d arbitrary)
3. IdŒA� = S O IdŒB� = S 2 dsj
4. IdŒA _ B� = S 3 SF0(_)

moving by SF(s) from the premise that the letter is true, to the result that it is satisfied,
so that we are in a position to apply other clauses of the definition for satisfaction.
SF(�) and (!), and so SF0(_), (^), ($), apply to satisfaction not truth! So we have
to bridge from truth to satisfaction before those clauses can apply.

This much should be straightforward, but let us pause to demonstrate derived
clauses for satisfaction, and reinforce familiarity with the quantificational defini-
tion SF. As you work these and other problems, you may find the quantificational
metalinguistic reference on page 351 helpful.

E7.7. Produce metalinguistic derivations and then informal reasoning to complete
demonstrations for the positive parts of SF0(^) and SF0($). Hint: You have been
through the reasoning before!

*E7.8. Consider an I such that IŒA� = T, IŒB� = T, and IŒC � = T and arbitrary d. For
each of the expressions in E7.1, produce the metalinguistic derivation and then
informal reasoning to demonstrate either that it is or is not satisfied on Id.

7.3.2 Truth and Validity

In the quantificational case, there is a distinction between satisfaction and truth. We
have been working with the definition for satisfaction. But validity is defined in terms
of truth. So to reason about validity, we need a bridge from satisfaction to truth
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that applies beyond the case of sentence letters. For this, let ‘A’ be a metalinguistic
universal quantifier. So, for example, Ad.IdŒP � = S/ says that any variable assignment
d is such that IdŒP � = S. Then we have,

TI IŒP � = T, Ad.IdŒP � = S/ IŒP � = T, Sd.IdŒP � = S/

This restates the definition from section 4.2.4. P is true on I iff it is satisfied for
any variable assignment d. P is not true on I iff it is not satisfied for some variable
assignment d. Then definition QV is like SV.

QV :S I.IŒP1� = T M : : : M IŒPn� = T M IŒQ� = T/, P1 : : :Pn � Q

S I.IŒP1� = T M : : : M IŒPn� = T M IŒQ� = T/, P1 : : :Pn ² Q

An argument is quantificationally valid just in case there is no interpretation on which
the premises are true and the conclusion is not. Of course, we are now talking about
quantificational interpretations as from section 4.2.

To manipulate the metalinguistic universal quantifier A, we will need some new
rules. In Chapter 6, we used 8E to instantiate to any term—variable, constant, or
otherwise. But 8I was restricted—the idea being to generalize only on variables for
truly arbitrary individuals. Corresponding restrictions are enforced here by the way
terms are introduced. We generalize from variables for arbitrary individuals, but may
instantiate to variables or terms of any kind. The universal rules are,

unv AtAŒt�

AŒu� u of any type

AŒu� u arbitrary and new

AtAŒt�

If some A is true for any t, then it is true for individual u. Thus we might move from
the generalization, Ad.IdŒA� = S/ to the particular claim IhŒA� = S for assignment h.
For the right-hand “introduction” rule, we require that u be arbitrary and new in the
sense required for 8I in Chapter 6. In particular, if u is new to a derivation for goal
AtAŒt�, u will not appear free in any undischarged assumption when the universal rule
is applied (typically, our derivations will be so simple that this will not be an issue).
If we can show, say, IhŒA� = S for arbitrary assignment h, then it is appropriate to
move to the conclusion Ad.IdŒA� = S/. We will also accept a metalinguistic quantifier
negation, as in ND+.

qn :AtA, St:A :StA, At:A

With these definitions and rules, we are ready to reason about validity—at least
for sentential forms. Suppose we want to show,
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T7.1. P , P ! Q � Q

1. P ;P ! Q ² Q assp
2. S I.IŒP � = T M IŒP ! Q� = T M IŒQ� = T/ 1 QV
3. JŒP � = T M JŒP ! Q� = T M JŒQ� = T 2 exs (J particular)
4. JŒQ� = T 3 cnj
5. Sd.JdŒQ� = S/ 4 TI
6. JhŒQ� = S 5 exs (h particular)
7. JŒP ! Q� = T 3 cnj
8. Ad.JdŒP ! Q� = S/ 7 TI
9. JhŒP ! Q� = S 8 unv

10. JhŒP � = S O JhŒQ� = S 9 SF(!)
11. JhŒP � = S 10,6 dsj
12. JŒP � = T 3 cnj
13. Ad.JdŒP � = S/ 12 TI
14. JhŒP � = S 13 unv
15. 14,11 bot

16. P ;P ! Q � Q 1-15 neg

As usual, we begin with the assumption that the theorem is not valid, and apply the
definition of validity for the result that the premises are true and the conclusion not.
The goal is a contradiction. What is interesting are the applications of TI to bridge
between truth and satisfaction. Again, SF applies to satisfaction, not truth. We begin
by working on the conclusion. Since the conclusion is not true, by TI with exs we
introduce a new and particular variable assignment h on which the conclusion is
not satisfied. Then, because the premises are true, by TI with unv the premises are
satisfied on that very same assignment h. Then we use SF in the usual way. All this is
like the strategy from ND by which we jump on existentials: If we had started with
the premises, the requirement from exs that we instantiate Sd.JdŒQ� = S/ to a new
term would have forced a different variable assignment. But by beginning with the
conclusion and coming with the universals from the premises after, we bring results
into contact for contradiction.

Suppose P , P ! Q ² Q. Then by QV, there is some I such that IŒP � = T and
IŒP ! Q� = T but IŒQ� = T; let J be a particular interpretation of this sort; then JŒP � = T

and JŒP ! Q� = T but JŒQ� = T. From the latter, by TI, there is some d such that
JdŒQ� = S; let h be a particular assignment of this sort; then JhŒQ� = S. But since
JŒP ! Q� = T, by TI, for any d, JdŒP ! Q� = S; so JhŒP ! Q� = S; so by SF(!),
JhŒP � = S or JhŒQ� = S; but JhŒQ� = S, so JhŒP � = S. But since JŒP � = T, by TI, for any
d, JdŒP � = S; so JhŒP � = S. This is impossible; reject the assumption: P , P ! Q � Q.

Similarly we can show,

T7.2. � P ! .Q! P /
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T7.3. � .O ! .P ! Q//! ..O ! P /! .O ! Q//

T7.4. � .�Q! �P /! Œ.�Q! P /! Q�

T7.5. There is no interpretation I and formula P such that IŒP � = T and IŒ�P � = T.

Hint: Your goal is to show :S I.IŒP � = T M IŒ�P � = T/. You can get this by neg.

In each case, the pattern is the same: Bridge assumptions about truth to definition SF
by TI with exs and unv. Reasoning with SF is as before. Given the requirement that
the metalinguistic existential quantifier always be instantiated to a new term it makes
sense first to instantiate that which is not true, and so comes out as a metalinguistic
existential, and then come with universals on “top” of terms already introduced. This
is what we did above, and is like your derivation strategy in ND.

*E7.9. Produce metalinguistic derivations and informal reasoning to show that a,b,d,f,h
from E7.4 are quantificationally valid.

E7.10. Provide demonstrations for T7.2, T7.3, T7.4, and T7.5 in the informal style.
Hint: You may or may not decide that metalinguistic derivations would be helpful.

7.3.3 Terms and Atomics

So far, we have addressed only validity for sentential forms, and have not even seen the
(r) and (8) clauses for SF. We will get the quantifier clause in the next section. Here
we come to the atomic clause for definition SF, but must first address the connection
with interpretations via definition TA. As from page 115, we say IŒhn�ha1 : : : ani is
the thing the function I[hn] associates with input ha1 : : : ani. Then for for constant c,
variable x, and complex term hnt1 : : : tn,

TA (c) IdŒc� = IŒc�

(v) IdŒx� = dŒx�

(f) IdŒhnt1 : : : tn� = IŒhn�hIdŒt1� : : : IdŒtn�i

This is a direct restatement of the definition. To manipulate it we need rules for
equality.

eq t = t t = u, u = t t = u, u = v

t = v

t = u, AŒt�

AŒu�

These should remind you of results from ND. We will allow generalized versions so
that from t = u, u = v, and v = w, we might move directly to t = w. And we will
not worry much about order around the equals sign so that, for example, we could
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move directly from u = t and AŒt� to AŒu� without first converting u = t to t = u as
required by the rule as stated.

As in other cases, we treat clauses from TA as both axioms and rules. Observe
that, effectively, an axiom A , B of the sort we have seen up to now works as a
“rule” by combination of (an implicit) statement of the axiom with bcnd. Similarly, an
axiom t = u works as a rule by combination of the axiom with eq. So, for example,
we might move directly from IŒc� = m, by (an implicit) IdŒc� = IŒc� from TA(c) and
then eq, to IdŒc� = m. And similarly we might move directly from IdŒc� = m, by (an
implicit) IdŒh1c� = IŒh1�hIdŒc�i from TA(f) and then eq, to IdŒh1c� = IŒh1�hmi. This
use of definition TA is further illustrated below.

Let us consider how this enables us to determine term assignments. Here is a
relatively complex case. Suppose I has U = f1; 2g and,

(S)

IŒa� = 1

IŒg1� = fh1; 2i; h2; 1ig

IŒf 2� = fhh1; 1i; 1i; hh1; 2i; 1i; hh2; 1i; 2i; hh2; 2i; 2ig

Let dŒx� = 2. Recall that one-tuples are equated with their members so that IŒg1� is
officially fhh1i; 2i; hh2i; 1ig. Consider IdŒg1f 2xg1a�. We might do this on a tree as
in Chapter 4,

(T)

x[2]

L
L
L
L
L
LL

a[1] By TA(v) and TA(c)

g1a[2]

�
�
�

By TA(f)

f 2xg1a[2] By TA(f)

g1f 2xg1a[1] By TA(f)

Perhaps we whip through this on the tree. But the derivation follows the very same
path, with explicit appeal to the definitions at every stage. In the derivation that
follows, lines (1)–(4) cover the top row by application of TA(v) and TA(c). Lines
(5)–(7) are like the second row, using the assignment to a with the interpretation of
g1 to determine the assignment to g1a. Lines (8) - (10) cover the third row. And
(11)–(13) use this to reach the final result.
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1. dŒx� = 2 ins (d particular)
2. IdŒx� = 2 1 TA(v) (I particular)
3. IŒa� = 1 ins
4. IdŒa� = 1 3 TA(c)
5. IdŒg1a� = IŒg1�h1i 4 TA(f)
6. IŒg1�h1i = 2 ins
7. IdŒg1a� = 2 5,6 eq
8. IdŒf 2xg1a� = IŒf 2�h2; 2i 2,7 TA(f)
9. IŒf 2�h2; 2i = 2 ins

10. IdŒf 2xg1a� = 2 8,9 eq
11. IdŒg1f 2xg1a� = IŒg1�h2i 10 TA(f)
12. IŒg1�h2i = 1 ins
13. IdŒg1f 2xg1a� = 1 11,12 eq

As with trees, to discover that to which a complex term is assigned, we find the
assignment to the parts. Beginning with assignments to the parts, we work up to
the assignment to the whole. Notice that assertions about the interpretation and the
variable assignment are justified by ins. And notice the way we use TA as a rule at (2)
and (4), and then again at (5), (8), and (11).

dŒx� = 2; so by TA(v), IdŒx� = 2. And IŒa� = 1; so by TA(c), IdŒa� = 1. Since IdŒa� = 1, by
TA(f), IdŒg1a� = IŒg1�h1i; but IŒg1�h1i = 2; so IdŒg1a� = 2. Since IdŒx� = 2 and IdŒg1a� = 2,
by TA(f), IdŒf 2xg1a� = IŒf 2�h2; 2i; but IŒf 2�h2; 2i = 2; so IdŒf 2xg1a� = 2. And from
this, by TA(f), IdŒg1f 2xg1a� = IŒg1�h2i; but IŒg1�h2i = 1; so IdŒg1f 2xg1a� = 1.

With the ability to manipulate terms by TA, we can think about satisfaction and
truth for arbitrary formulas without quantifiers. This brings us to SF(r). Say Rn is an
n-place relation symbol, and t1 : : : tn are terms.

SF(r) IdŒRnt1 : : : tn� = S, hIdŒt1� : : : IdŒtn�i 2 IŒRn�

IdŒRnt1 : : : tn� = S, hIdŒt1� : : : IdŒtn�i … IŒRn�

This restates the definition from page 118. Typically we shall apply the definition just
in its positive form, and generate the negative case from it (as in NB from ND+). Note
that SF(r) works as a rule in combination with either bcnd or eq. Thus we might move
directly from IdŒRt� = S, by (an implicit) IdŒRt� = S, hIdŒt�i 2 IŒR� from SF(r) and
then bcnd, to hId.t/i 2 IŒR�. And similarly, we might move directly from IdŒt� = m,
by (the implicit statement of) SF(r) and then eq, to IdŒRt� = S, hmi 2 IŒR�.

Let us expand the above interpretation and variable assignment (S) so that IŒA1� =
f2g (or fh2ig) and IŒB2� = fh1; 2i; h2; 1ig. Then IdŒAf 2xa� = S.
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(U)

1. dŒx� = 2 ins (d particular)
2. IdŒx� = 2 1 TA(v) (I particular)
3. IŒa� = 1 ins
4. IdŒa� = 1 3 TA(c)
5. IdŒf 2xa� = IŒf 2�h2; 1i 2,4 TA(f)
6. IŒf 2�h2; 1i = 2 ins
7. IdŒf 2xa� = 2 5,6 eq
8. IdŒAf 2xa� = S, h2i 2 IŒA� 7 SF(r)
9. h2i 2 IŒA� ins

10. IdŒAf 2xa� = S 8,9 bcnd

Again, this mirrors what we did with trees—moving through term assignments to the
value of the atomic. Observe that satisfaction is not the same as truth! Insofar as d is
particular, unv does not apply for the result that Af 2xa is satisfied on every variable
assignment and so by TI that the formula is true. In this case, it is a simple matter to
identify a variable assignment other than d on which the formula is not satisfied, and
so to show that it is not true on I. Set hŒx� = 1.

(V)

1. hŒx� = 1 ins (h particular)
2. IhŒx� = 1 1 TA(v) (I particular)
3. IŒa� = 1 ins
4. IhŒa� = 1 3 TA(c)
5. IhŒf 2xa� = IŒf 2�h1; 1i 2,4 TA(f)
6. IŒf 2�h1; 1i = 1 ins
7. IhŒf 2xa� = 1 5,6 eq
8. IhŒAf 2xa� = S, h1i 2 IŒA� 7 SF(r)
9. h1i … IŒA� ins

10. IhŒAf 2xa� = S 8,9 bcnd
11. Sd.IdŒAf 2xa� = S/ 10 exs
12. IŒAf 2xa� = T 11 TI

Given that it is not satisfied on the particular variable assignment h, exs and TI give
the result that Af 2xa is not true. In this case, we simply pick the variable assignment
we want: Since the formula is not satisfied on this assignment, there is an assignment
on which it is not satisfied; so it is not true. To show that an open formula is not
true, this is the way to go. Just as we produce particular interpretations to show that
arguments are invalid, so we produce particular variable assignments to show that
open formulas are not true.

hŒx� = 1; so by TA(v), IhŒx� = 1. And IŒa� = 1; so by TA(c), IhŒa� = 1. So by TA(f),
IhŒf 2xa� = IŒf 2�h1; 1i; but IŒf 2�h1; 1i = 1; so IhŒf 2xa� = 1. So by SF(r), IhŒAf 2xa� = S

iff h1i 2 IŒA�; but h1i … IŒA�; so IhŒAf 2xa� = S. So there is a variable assignment d such
that IdŒAf 2xa� = S; so by TI, IŒAf 2xa� = T.

In contrast, even though it has free variables, Bxg1x is true on this I. Say o
is a metalinguistic variable that ranges over members of U. In this case, it will be
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necessary to make an assertion by ins that Ao.o = 1 O o = 2/. This is clear enough,
since U = f1; 2g.

(W)

1. Ao.o = 1 O o = 2/ ins
2. IhŒx� = 1 O IhŒx� = 2 1 unv (I particular, h arbitrary)
3. IhŒx� = 1 assp
4. IhŒg1x� = IŒg1�h1i 3 TA(f)
5. IŒg1�h1i = 2 ins
6. IhŒg1x� = 2 4,5 eq
7. IhŒBxg1x� = S, h1; 2i 2 IŒB� 3,6 SF(r)
8. h1; 2i 2 IŒB� ins
9. IhŒBxg1x� = S 7,8 bcnd

10. IhŒx� = 2 assp
11. IhŒg1x� = IŒg1�h2i 10 TA(f)
12. IŒg1�h2i = 1 ins
13. IhŒg1x� = 1 11,12 eq
14. IhŒBxg1x� = S, h2; 1i 2 IŒB� 10,13 SF(r)
15. h2; 1i 2 IŒB� ins
16. IhŒBxg1x� = S 14,15 bcnd

17. IhŒBxg1x� = S 2,3-9,10-16 dsj
18. Ad.IdŒBxg1x� = S/ 17 unv
19. IŒBxg1x� = T 18 TI

Up to this point, by ins we have made only particular claims about an assignment or
interpretation, for example that h2; 1i 2 IŒB� or that IŒg1�h2i = 1. This is the typical
use of ins. In this case, however, at (1), we make a universal claim about U: any
o 2 U is equal to 1 or 2. For arbitrary h, IhŒx� is a metalinguistic term picking out
some member of U; we instantiate the universal to it with the result that IhŒx� = 1 or
IhŒx� = 2. When U is small, this is often helpful: By ins we identify all the members
of U; then we are in a position to argue about them individually. Thus we convert the
universal claim to a result about the arbitrary assignment, for application of unv and
then TI.

Since U = f1; 2g, for arbitrary assignment h, IhŒx� = 1 or IhŒx� = 2. Suppose IhŒx� = 1; then
by TA(f), IhŒg1x� = IŒg1�h1i; but IŒg1�h1i = 2; so IhŒg1x� = 2; so by SF(r), IhŒBxg1x� = S

iff h1; 2i 2 IŒB�; but h1; 2i 2 IŒB�; so IhŒBxg1x� = S. Suppose IhŒx� = 2; then by TA(f),
IhŒg1x� = IŒg1�h2i; but IŒg1�h2i = 1; so IhŒg1x� = 1; so by SF(r), IhŒBxg1x� = S iff
h2; 1i 2 IŒB�; but h2; 1i 2 IŒB�; so IhŒBxg1x� = S. In either case then IhŒBxg1x� = S;
and since h is arbitrary, for any assignment d, IdŒBxg1x� = S; so by TI, IŒBxg1x� = T.

To show that a formula is not true, we need only find an assignment on which it is not
satisfied. To show that a formula is true, we show that it is satisfied on every variable
assignment. For this, in the above case with free variables, we have been forced to
reason individually about each of the possible assignments to x. This is doable when
U is small. We will have to consider other options when it is larger!



CHAPTER 7. DIRECT SEMANTIC REASONING 343

E7.11. Consider an I and d such that U = f1; 2g,

IŒa� = 1

IŒg1� = fh1; 1i; h2; 1ig

IŒf 2� = fhh1; 1i; 2i; hh1; 2i; 1i; hh2; 1i; 1i; hh2; 2i; 2ig

where dŒx� = 1 and dŒy� = 2. Produce metalinguistic derivations and informal
reasoning to determine the assignment Id for each of the following.

*a. a

b. g1y

*c. g1g1x

d. f 2g1ax

e. f 2g1af 2yx

E7.12. Augment the interpretation and variable assignment for E7.11 so that IŒA1� =
f1g and IŒB2� = fh1; 2i; h2; 2ig. Produce (variable assignments as necessary with)
metalinguistic derivations and informal reasoning to demonstrate each of the
following.

a. IdŒAx� = S

*b. IŒByx� = T

c. IŒBg1ay� = T

d. IŒAa� = T

e. IŒ�Bxg1x� = T

7.3.4 Quantifiers

We are finally ready to think more generally about validity and truth for quantifier
forms. For this, we will complete our metalinguistic system by adding the quantifier
clause to definition SF.

SF(8) IdŒ8xP � = S, Ao.Id.xjo/ŒP � = S/ IdŒ8xP � = S, So.Id.xjo/ŒP � = S/

This is a simple statement of the definition from page 118. We treat the metalinguistic
variable ‘o’ as implicitly restricted to the members of U (for any o 2 U : : :). You
should think about this in relation to trees: From IdŒ8xP � there are branches with
Id.xjo/ŒP � for each object o 2 U. The universal is satisfied when each branch is
satisfied; not satisfied when some branch is unsatisfied. That is what is happening
above. We have the derived clause too.
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SF0.9/ IdŒ9xP � = S, So.Id.xjo/ŒP � = S/ IdŒ9xP � = S, Ao.Id.xjo/ŒP � = S/

The existential is satisfied when some branch is satisfied; not satisfied when every
branch is not satisfied. For the positive form,

(X)

1. IdŒ9xP � = S, IdŒ�8x�P � = S abb (I, d arbitrary)
2. IdŒ�8x�P � = S, IdŒ8x�P � = S SF(�)
3. IdŒ8x�P � = S, So.Id.xjo/Œ�P � = S/ SF(8)
4. So.Id.xjo/Œ�P � = S/, So.Id.xjo/ŒP � = S/ SF(�)
5. IdŒ9xP � = S, So.Id.xjo/ŒP � = S/ 1,2,3,4 bcnd

By abb, IdŒ9xP � = S iff IdŒ�8x�P � = S; by SF(�) iff IdŒ8x�P � = S; by SF(8), iff
for some o 2 U, Id.xjo/Œ�P � = S; by SF(�), iff for some o 2 U, Id.xjo/ŒP � = S. So
IdŒ9xP � = S iff there is some o 2 U such that Id.xjo/ŒP � = S.

Recall that we were not able to use trees to demonstrate validity in the quan-
tificational case because there were too many interpretations to have trees for all of
them, and because universes may be too large to have branches for all their members.
But this is not a special difficulty for us now. For a simple case, let us show that
� 8x.Ax ! Ax/.

(Y)

1. ² 8x.Ax ! Ax/ assp
2. S I.IŒ8x.Ax ! Ax/� = T/ 1 QV
3. JŒ8x.Ax ! Ax/� = T 2 exs (J particular)
4. Sd.JdŒ8x.Ax ! Ax/� = S/ 3 TI
5. JhŒ8x.Ax ! Ax/� = S 4 exs (h particular)
6. So.Jh.xjo/ŒAx ! Ax� = S/ 5 SF(8)
7. Jh.xjm/ŒAx ! Ax� = S 6 exs (m particular)
8. Jh.xjm/ŒAx� = S M Jh.xjm/ŒAx� = S 7 SF(!)
9. Jh.xjm/ŒAx� = S 8 cnj

10. Jh.xjm/ŒAx� = S 8 cnj
11. 9,10 bot

12. � 8x.Ax ! Ax/ 1-11 neg

If 8x.Ax ! Ax/ is not valid, there has to be some I on which it is not true. If
8x.Ax ! Ax/ is not true on some I, there has to be some d on which it is not
satisfied. And if the universal is not satisfied, there has to be some o 2 U for which
the corresponding “branch” is not satisfied. But this is impossible—for we cannot
have a branch where this is so.

Suppose ² 8x.Ax ! Ax/; then by QV, there is some I such that IŒ8x.Ax ! Ax/� = T.
Let J be a particular interpretation of this sort; then JŒ8x.Ax ! Ax/� = T; so by TI,
for some d, JdŒ8x.Ax ! Ax/� = S. Let h be a particular assignment of this sort; then
JhŒ8x.Ax ! Ax/� = S; so by SF(8), there is some o 2 U such that Jh.xjo/ŒAx !

Ax� = S. Let m be a particular individual of this sort; then Jh.xjm/ŒAx ! Ax� = S;
so by SF(!), Jh.xjm/ŒAx� = S and Jh.xjm/ŒAx� = S. But this is impossible; reject the
assumption: � 8x.Ax ! Ax/.
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Notice, again, that the general strategy is to instantiate metalinguistic existential
quantifiers as quickly as possible. Contradictions tend to arise at the level of atomic
expressions and individuals.

Here is a case that is similar, but somewhat more involved. We show 8x.Ax !
Bx/, 9xAx � 9zBz. Here is a start:

(Z)

1. 8x.Ax ! Bx/; 9xAx ² 9zBz assp
2. S I.IŒ8x.Ax ! Bx/� = T M IŒ9xAx� = T M IŒ9zBz� = T/ 1 QV
3. JŒ8x.Ax ! Bx/� = T M JŒ9xAx� = T M JŒ9zBz� = T 2 exs (J particular)
4. JŒ9zBz� = T 3 cnj
5. Sd.JdŒ9zBz� = S/ 4 TI
6. JhŒ9zBz� = S 5 exs (h particular)
7. JŒ9xAx� = T 3 cnj
8. Ad.JdŒ9xAx� = S/ 7 TI
9. JhŒ9xAx� = S 8 unv

10. So.Jh.xjo/ŒAx� = S/ 9 SF0.9/
11. Jh.xjm/ŒAx� = S 10 exs (m particular)
12. JŒ8x.Ax ! Bx/� = T 3 cnj
13. Ad.JdŒ8x.Ax ! Bx/� = S/ 12 TI
14. JhŒ8x.Ax ! Bx/� = S 13 unv
15. Ao.Jh.xjo/ŒAx ! Bx� = S/ 14 SF(8)
16. Jh.xjm/ŒAx ! Bx� = S 15 unv
17. Jh.xjm/ŒAx� = S O Jh.xjm/ŒBx� = S 16 SF(!)
18. Jh.xjm/ŒBx� = S 17,11 dsj
19. Ao.Jh.zjo/ŒBz� = S/ 6 SF0.9/
20. Jh.zjm/ŒBz� = S 19 unv

Note again the way we work with the metalinguistic quantifiers: We begin with
the conclusion, because it is the one that requires a particular variable assignment;
the premises can then be instantiated to that same assignment. Similarly, with that
particular variable assignment on the table, we focus on the second premise, because
it is the one that requires an instantiation to a particular individual. The other premise
and the conclusion then come in later with universal quantifications that go onto the
same thing. Also, Jh.xjm/ŒAx� = S contradicts Jh.xjm/ŒAx� = S; this justifies dsj at
(18). However Jh.xjm/ŒBx� = S at (18) does not contradict Jh.zjm/ŒBz� = S at (20).
There would have been a contradiction if the variable had been the same. But it is not.
However, with the distinct variables, we can bring out the contradiction by “forcing
the result into the interpretation” as follows:
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21. h.xjm/Œx� = m ins
22. Jh.xjm/Œx� = m 21 TA(v)
23. Jh.xjm/ŒBx� = S, hmi 2 JŒB� 22 SF(r)
24. hmi 2 JŒB� 23,18 bcnd
25. h.zjm/Œz� = m ins
26. Jh.zjm/Œz� = m 25 TA(v)
27. Jh.zjm/ŒBz� = S, hmi 2 JŒB� 26 SF(r)
28. hmi … JŒB� 27,20 bcnd
29. 24,28 bot

30. 8x.Ax ! Bx/; 9xAx � 9zBz 1-29 neg

The assumption that the argument is not valid leads to the result that there is some
interpretation J and m 2 U such that m 2 JŒB� and m … JŒB�; so there can be no such
interpretation, and the argument is quantificationally valid. Observe that, although
we do not know anything else about h, simple inspection reveals that h.xjm/ assigns
object m to x. So we allow ourselves to assert it at (21) by ins; and similarly at (25).
This pattern of moving from facts about satisfaction to facts about the interpretation is
typical.

With the order of a few lines slightly rearranged toward the end, here is the
informal reasoning:

Suppose 8x.Ax ! Bx/, 9xAx ² 9zBz; then by QV, there is some I such that
IŒ8x.Ax ! Bx/� = T and IŒ9xAx� = T but IŒ9zBz� = T. Let J be a particular in-
terpretation of this sort; then JŒ8x.Ax ! Bx/� = T and JŒ9xAx� = T but JŒ9zBz� = T.
From the latter, by TI, there is some d such that JdŒ9zBz� = S; let h be a particular assign-
ment of this sort; then JhŒ9zBz� = S. Since JŒ9xAx� = T, by TI, for any d, JdŒ9xAx� = S;
so JhŒ9xAx� = S; so by SF0.9/ there is some o 2 U such that Jh.xjo/ŒAx� = S; let m be
a particular individual of this sort; then Jh.xjm/ŒAx� = S. Since JŒ8x.Ax ! Bx/� = T,
by TI, for any d, JdŒ8x.Ax ! Bx/� = S; so JhŒ8x.Ax ! Bx/� = S; so by SF(8),
for any o 2 U, Jh.xjo/ŒAx ! Bx� = S; so Jh.xjm/ŒAx ! Bx� = S; so by SF(!),
either Jh.xjm/ŒAx� = S or Jh.xjm/ŒBx� = S; but Jh.xjm/ŒAx� = S, so Jh.xjm/ŒBx� = S;
h.xjm/Œx� = m; so by TA(v), Jh.xjm/Œx� = m; so by SF(r), Jh.xjm/ŒBx� = S iff hmi 2 JŒB�;
so hmi 2 JŒB�. But since JhŒ9zBz� = S, by SF0.9/, for any o 2 U, Jh.zjo/ŒBz� = S; so
Jh.zjm/ŒBz� = S; h.zjm/Œz� = m; so by TA(v), Jh.zjm/Œz� = m; so by SF(r), Jh.zjm/ŒBz� = S

iff hmi 2 JŒB�; so hmi … JŒB�. This is impossible; reject the assumption: 8x.Ax ! Bx/,
9xAx � 9zBz.

Observe again the repeated use of the pattern that moves from truth through TI to
satisfaction, so that SF gets a grip, and the pattern that moves through satisfaction to
the interpretation. These should be nearly automatic.

Here is an example that is particularly challenging in the way metalinguistic quan-
tifier rules apply. We show 9x8yAxy � 8y9xAxy. For this, you should carefully
work through the derivation (AA) in the upper box on page 348. When multiple
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quantifiers come off, variable assignments once modified are simply modified again—
just as with trees. Observe again that we instantiate the metalinguistic existential
quantifiers before universals. Also, the different existential quantifiers go to different
individuals, to respect the requirement that individuals from exs be new. The key
to this derivation is getting out both metalinguistic existentials for m and n before
applying the corresponding universals—and what makes the derivation difficult is
seeing that this needs to be done. Strictly, the variable assignment at (15) is the same
as the one at (17), only the names are variants of one another. Thus we observe by ins
that the assignments are the same, and apply eq for the contradiction.

Another approach would have been to push for contradiction at the level of
the interpretation. Something along these lines would have been required if the
conclusion had been, say, 8w9zAzw and so (17) Jh.wjm;zjn/ŒAzw� = S; then insofar
as they involve different atomic formulas and different assignments (15) and (17)
would not themselves contradict. Even so, we might have continued as at (AB) in the
lower box on the following page.

In the case we have been given, though, this is not necessary. With the original
conclusion 8y9xAxy, here is the informal version:

Suppose 9x8yAxy ² 8y9xAxy; then by QV there is some I such that IŒ9x8yAxy� = T

and IŒ8y9xAxy� = T; let J be a particular interpretation of this sort; then JŒ9x8yAxy� = T

and JŒ8y9xAxy� = T. From the latter, by TI, there is some d such that JdŒ8y9xAxy� = S;
let h be a particular assignment of this sort; then JhŒ8y9xAxy� = S; so by SF(8), there
is some o 2 U such that Jh.yjo/Œ9xAxy� = S; let m be a particular individual of this sort;
then Jh.yjm/Œ9xAxy� = S. Since JŒ9x8yAxy� = T, by TI for any d, JdŒ9x8yAxy� = S;
so JhŒ9x8yAxy� = S; so by SF0.9/, there is some o 2 U such that Jh.xjo/Œ8yAxy� = S;
let n be a particular individual of this sort; then Jh.xjn/Œ8yAxy� = S; so by SF(8), for
any o 2 U, Jh.xjn;yjo/ŒAxy� = S; so Jh.xjn;yjm/ŒAxy� = S. Since Jh.yjm/Œ9xAxy� = S, by
SF0.9/, for any o 2 U, Jh.yjm;xjo/ŒAxy� = S; so Jh.yjm;xjn/ŒAxy� = S; but h.yjm; xjn/ is
the same assignment as h.xjn; yjm/; so Jh.xjn;yjm/ŒAxy� = S. This is impossible; reject
the assumption: 9x8yAxy � 8y9xAxy.

Try reading that to your roommate or parents! If you have followed to this stage, you
have accomplished something significant. These are important results, given that we
wondered in Chapter 4 how this sort of thing could be done at all.

Here is a last trick that can sometimes be useful. Suppose we are trying to
show 8xPx � Pa. We will come to a stage where we want to use the premise to
instantiate a variable o to the thing that is JhŒa�. So we might move directly from
Ao.Jh.xjo/ŒP x� = S/ to Jh.xjJhŒa�/ŒP x� = S by unv. But this is ugly, and hard to
follow. An alternative is allow a rule (def) that defines m as a metalinguistic term
for the same object as JhŒa�. This new term is not separately declared arbitrary or
particular, but rather inherits its status from the original. The result is as follows:
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(AA)

1. 9x8yAxy ² 8y9xAxy assp
2. S I.IŒ9x8yAxy� = T M IŒ8y9xAxy� = T/ 1 QV
3. JŒ9x8yAxy� = T M JŒ8y9xAxy� = T 2 exs (J particular)
4. JŒ8y9xAxy� = T 3 cnj
5. Sd.JdŒ8y9xAxy� = S/ 4 TI
6. JhŒ8y9xAxy� = S 5 exs (h particular)
7. So.Jh.yjo/Œ9xAxy� = S/ 6 SF(8)
8. Jh.yjm/Œ9xAxy� = S 7 exs (m particular)
9. JŒ9x8yAxy� = T 3 cnj

10. Ad.JdŒ9x8yAxy� = S/ 9 TI
11. JhŒ9x8yAxy� = S 10 unv
12. So.Jh.xjo/Œ8yAxy� = S/ 11 SF0.9/
13. Jh.xjn/Œ8yAxy� = S 12 exs (n particular)
14. Ao.Jh.xjn;yjo/ŒAxy� = S/ 13 SF(8)
15. Jh.xjn;yjm/ŒAxy� = S 14 unv
16. Ao.Jh.yjm;xjo/ŒAxy� = S/ 8 SF0.9/
17. Jh.yjm;xjn/ŒAxy� = S 16 unv
18. h.yjm; xjn/ = h.xjn; yjm/ ins
19. Jh.xjn;yjm/ŒAxy� = S 17,18 eq
20. 15,19 bot
21. 9x8yAxy � 8y9xAxy 1-20 neg

(AB)

�17. Jh.wjm;zjn/ŒAzw� = S
18. h.xjn; yjm/Œx� = n ins
19. h.xjn; yjm/Œy� = m ins
20. Jh.xjn;yjm/Œx� = n 18 TA(v)
21. Jh.xjn;yjm/Œy� = m 19 TA(v)
22. Jh.xjn;yjm/ŒAxy� = S, hn;mi 2 IŒA� 20,21 SF(r)
23. hn;mi 2 IŒA� 22,15 bcnd
24. h.wjm; zjn/Œz� = n ins
25. h.wjm; zjn/Œw� = m ins
26. Jh.wjm;zjn/Œz� = n 24 TA(v)
27. Jh.wjm;zjn/Œw� = m 25 TA(v)
28. Jh.wjm;zjn/ŒAzw� = S, hn;mi 2 IŒA� 26,27 SF(r)
29. hn;mi … IŒA� 28, �17 bcnd
30. 23,29 bot
31. 9x8yAxy � 8w9zAzw 1-30 neg
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(AC)

1. 8xPx ² Pa assp
2. S I.IŒ8xPx� = T M IŒPa� = T/ 1 QV
3. JŒ8xPx� = T M JŒPa� = T 2 exs (J particular)
4. JŒPa� = T 3 cnj
5. Sd.JdŒPa� = S/ 4 TI
6. JhŒPa� = S 5 exs (h particular)
7. JhŒa� = m def
8. JhŒPa� = S, hmi 2 JŒP � 7 SF(r)
9. hmi … JŒP � 8,6 bcnd

10. JŒ8xPx� = T 3 cnj
11. Ad.JdŒ8xPx� = S/ 10 TI
12. JhŒ8xPx� = S 11 unv
13. Ao.Jh.xjo/ŒP x� = S/ 12 SF(8)
14. Jh.xjm/ŒP x� = S 13 unv
15. h.xjm/Œx� = m ins
16. Jh.xjm/Œx� = m 15 TA(v)
17. Jh.xjm/ŒP x� = S, hmi 2 JŒP � 16 SF(r)
18. hmi 2 JŒP � 17,14 bcnd
19. 9,18 bot

20. 8xPx � Pa 1-19 neg

The result adds a couple lines, but is perhaps easier to follow. Though an interpretation
is not specified, we can be sure that JhŒa� is some particular member of U; we simply let
m designate that individual, and instantiate the universal to it. Again the contradiction
appears as we force results into the interpretation.

Suppose 8xPx ² Pa; then by QV, there is some I such that IŒ8xPx� = T and IŒPa� = T;
let J be a particular interpretation of this sort; then JŒ8xPx� = T and JŒPa� = T. From
the latter, by TI, there is some d such that JdŒPa� = S; let h be a particular assignment
of this sort; then JhŒPa� = S; let m = JhŒa�; then by SF(r), JhŒPa� = S iff hmi 2 JŒP �;
so hmi … JŒP �. Since JŒ8xPx� = T, by TI, for any d, JdŒ8xPx� = S; so JhŒ8xPx� = S;
so by SF(8), for any o 2 U, Jh.xjo/ŒP x� = S; so Jh.xjm/ŒP x� = S; h.xjm/Œx� = m; so by
TA(v), Jh.xjm/Œx� = m; so by SF(r), Jh.xjm/ŒP x� = S iff hmi 2 JŒP �; so hmi 2 JŒP �. This
is impossible; reject the assumption: 8xPx � Pa.

Since we can instantiate Ao.Jh.xjo/ŒP x� = S/ to any object, we can instantiate it to
the one that happens to be JhŒa�. The extra name streamlines the process. One can
always do without the name. But there is no harm introducing it when it will help.

At this stage, we have the tools for proof of the following theorems that will be
useful for later chapters.

*T7.6. For any I and P , IŒP � = T iff IŒ8xP � = T.

Hint: For one direction, if P is satisfied on the arbitrary assignment, you may
conclude that it is satisfied on one like h.xjm/. For the other direction, if you can
instantiate o to any object, you can instantiate it to the thing that is hŒx�. But by
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ins, h with this assigned to x, just is h. So after substitution, you can end up with
the very same assignment as the one with which you started.

T7.7. Each of the following conditions obtains.

(a) IdŒ.8x W B/P � = S iff for any o 2 U, Id.xjo/ŒB� = S or Id.xjo/ŒP � = S.

(b) IdŒ.9x W B/P � = S iff for some o 2 U, Id.xjo/ŒB� = S and Id.xjo/ŒP � = S.

Demonstration of these results is straightforward with definition RQ from page
295.

T7.6 is interesting insofar as it underlies principles like Gen in AD and 8I in ND. We
further explore this link in following chapters. T7.7 applies to the restricted quantifiers
introduced in Chapter 6. Reasoning with restricted quantifiers is streamlined by their
derived semantic conditions.

E7.13. Produce metalinguistic derivations and informal reasoning to demonstrate
each of the following.

*a. � 8x.Ax ! ��Ax/

b. � �9x.Ax ^�Ax/

*c. Pa � 9xPx

d. 8x.Ax ^ Bx/ � 8yBy

e. 8yPy � 8xPf 1x

f. 9yAy � 9x.Ax _ Bx/

g. �8x.Ax ! Dx/ � 9x.Ax ^�Dx/

h. 8x.Ax ! Bx/, 8x.Bx ! Cx/ � 8x.Ax ! Cx/

i. 8x8yAxy � 8y8xAxy

j. 8x9y.Ay ! Bx/ � 8x.8yAy ! Bx/

*E7.14. Provide demonstrations for T7.6–T7.7 in the informal style. Hint: You may
or may not decide that a metalinguistic derivation will be helpful.
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Metalinguistic Quick Reference (quantificational)
DEFINITIONS:

TA (c) IdŒc� = IŒc�

(v) IdŒx� = dŒx�

(f) IdŒhnt1 : : : tn� = IŒhn�hIdŒt1� : : : IdŒtn�i

SF (s) IdŒS � = S, IŒS � = T

(r) IdŒRnt1 : : : tn� = S, hIdŒt1� : : : IdŒtn�i 2 IŒRn�

(�) IdŒ�P � = S, IdŒP � = S

IdŒ�P � = S, IdŒP � = S

(!) IdŒP ! Q� = S, IdŒP � = S O IdŒQ� = S

IdŒP ! Q� = S, IdŒP � = S M IdŒQ� = S

(8) IdŒ8xP � = S, Ao.Id.xjo/ŒP � = S/

IdŒ8xP � = S, So.Id.xjo/ŒP � = S/

SF0 (_) IdŒ.P _Q/� = S, IdŒP � = S O IdŒQ� = S

IdŒ.P _Q/� = S, IdŒP � = S M IdŒQ� = S

(^) IdŒ.P ^Q/� = S, IdŒP � = S M IdŒQ� = S

IdŒ.P ^Q/� = S, IdŒP � = S O IdŒQ� = S

($) IdŒ.P $ Q/� = S, .IdŒP � = S M IdŒQ� = S/ O .IdŒP � = S M IdŒQ� = S/

IdŒ.P $ Q/� = S, .IdŒP � = S M IdŒQ� = S/ O .IdŒP � = S M IdŒQ� = S/

(9) IdŒ9xP � = S, So.Id.xjo/ŒP � = S/

IdŒ9xP � = S, Ao.Id.xjo/ŒP � = S/

TI IŒP � = T, Ad.IdŒP � = S/

IŒP � = T, Sd.IdŒP � = S/

QV :S I.IŒP1� = T M : : : M IŒPn� = T M IŒQ� = T/, P1 : : :Pn � Q

S I.IŒP1� = T M : : : M IŒPn� = T M IŒQ� = T/, P1 : : :Pn ² Q

abb As before, abbreviation allows AŒP 0�, AŒP � where P 0 abbreviates P .

RULES:

All the rules from the sentential metalinguistic reference (page 332) plus:

unv AtAŒt�

AŒu� u of any type

AŒu� u arbitrary and new

AtAŒt�

qn :AtA, St:A :StA, At:A

eq t = t t = u, u = t t = u, u = v

t = v

t = u, AŒt�

AŒu�

def Defines one metalinguistic term t by another u so that t = u.
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On the Semantics of Variables

Ours is the standard quantifier semantics, essentially due to Tarski’s 1933, “The
Concept of Truth in Formalized Languages.” At the start of section 2.3 we suggested
that variables are like pronouns. Correspondingly, as emphasized in section 5.3.1,
bound variables function as placeholders—there is no semantic difference between,

9x.x < ;/ and 9y.y < ;/

Similarly one might think ; < x and ; < y say the same thing. But with dŒx� = 1
and dŒy� = 0, NNdŒ; < x� = S and NNdŒ; < y� = S. So the formulas get different
evaluations. In response, K. Fine and others suggest alternative accounts to preserve
the status of variables as mere placeholders (Fine, “The Role of Variables,” see also
Button and Walsh, Philosophy and Model Theory, Chapter 1).

It is not clear that we have intuitions about satisfaction that do not come from the
semantics itself. So one might respond, “Well, that is the way satisfaction works.”
But allow that the placeholder intuition applies generally. Button and Walsh prefer
an account that substitutes constants for free variables. A quantified sentence 8xP

is evaluated in terms of sentences P x
c . This does not work if there are objects to

which no constant is assigned. One option is to extend L by the addition of some
constant co for each o 2 U. Another option adds only as many constants as there
are variables in P , considering P x

c for each of the possible interpretations of c.

As applied to sentences, all the options give the same results for truth and validity.
Insofar as it applies exclusively to sentences, the approach with constants bypasses
formulas where variables have anything but a placeholder role. (And derivations
might be developed to bypass free variables too—compare note 3 on page 470 of
Chapter 10.) But it is not clear that we need abandon the traditional approach in
order to preserve the role of variables as placeholders. As a start,

Consider a sequence x1;x2; : : : of metavariables and a function k that assigns to
each an object from U. For some P with variables :a : : : :b (in the order of their
first appearance in P ), let m be a map that takes :a : : : :b in that order to x1 : : :xn.
So mŒ:a� = x1 and so forth. Note that m is syntactically defined. Given some P

with its m, proceed very much as usual: If c is a constant, IkŒc� = IŒc�; if : is a vari-
able, then IkŒ:� = kŒm.:/�; if t is hnt1 : : : tn then IkŒt� = IŒhn�hIkŒt1� : : : IkŒtn�i.
IkŒRnt1 : : : tn� = S iff hIkŒt1� : : : IkŒtn�i 2 IŒRn�; IkŒ�A� = S iff IkŒA� = S;
IkŒA ! B� = S iff IkŒA� = S or IkŒB� = S; and IkŒ8:A� = S iff for every o 2 U,
Ik.m.:/jo/ŒA� = S. An assignment to X is relative to some P that gives the context of
which it is a part and might perspicuously be indicated IkŒX=P �.

Treat variables as marking “slots” in a formula. Taken separately, x < ; and y < ;
get the same evaluation—both x and y map to x1 and so are assigned the same
individual. But they mark different slots in x < ; ! y < ; and so may be assigned
different individuals. In effect, we group together variable assignments that supply
all the same objects to the slots. Given this, variables reappear as placeholders.
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7.3.5 Invalidity

We already have in hand concepts required for showing invalidity. Difficulties are
mainly strategic and practical. As usual, for invalidity, the idea is to produce an
interpretation and show that it makes the premises true and the conclusion not.

Here is a case parallel to one you worked with trees in homework from E4.15.
We show 8xPf 1x ² 8xPx. For the interpretation J set, U = f1; 2g, JŒP � = f1g,
JŒf 1� = fh1; 1i; h2; 1ig. We want to take advantage of the particular features of this
interpretation to show that it makes the premise true and the conclusion not. Begin as
follows:

(AD)

1. h.xj2/Œx� = 2 ins (h arbitrary)
2. Jh.xj2/Œx� = 2 1 TA(v) (J particular)
3. Jh.xj2/ŒP x� = S, h2i 2 JŒP � 2 SF(r)
4. h2i … JŒP � ins
5. Jh.xj2/ŒP x� = S 3,4 bcnd
6. So.Jh.xjo/ŒP x� = S/ 5 exs
7. JhŒ8xPx� = S 6 SF(8)
8. Sd.JdŒ8xPx� = S/ 7 exs
9. JŒ8xPx� = T 8 TI

Another option would have been to assume JŒ8xPx� = T and work to a contradiction.

1. JŒ8xPx� = T assp (J particular)
2. Ad.JdŒ8xPx� = S/ 1 TI
3. JhŒ8xPx� = S 2 unv (h arbitrary)
4. Ao.Jh.xjo/ŒP x� = S/ 3 SF(8)
5. Jh.xj2/ŒP x� = S 4 unv
6. h.xj2/Œx� = 2 ins
7. Jh.xj2/Œx� = 2 6 TA(v)
8. Jh.xj2/ŒP x� = S, h2i 2 JŒP � 7 SF(r)
9. h2i 2 JŒP � 5,8 bcnd

10. h2i … JŒP � ins
11. 9,10 bot

12. JŒ8xPx� = T 1-11 neg

This takes extra lines, but may feel more natural insofar as it works down from the
whole to the parts, as we have done for validity. The first version goes up from the
parts to the whole, as we did showing invalidity for sentential forms. A choice between
the two is a matter of style, not correctness.

Now to show that the premise is true, one option is to reason individually about
each member of U. When the universe is small, this is always possible and sometimes
necessary. Thus the argument is straightforward but tedious by methods we have seen
before. Continuing from (AD),
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10. Ao.o = 1 O o = 2/ ins
11. Jh.xjm/Œx� = 1 O Jh.xjm/Œx� = 2 10 unv (J particular; h, m arbitrary)
12. Jh.xjm/Œx� = 1 assp
13. Jh.xjm/Œf

1x� = JŒf 1�h1i 12 TA(f)
14. JŒf 1�h1i = 1 ins
15. Jh.xjm/Œf

1x� = 1 13,14 eq
16. Jh.xjm/ŒPf

1x� = S, h1i 2 JŒP � 15 SF(r)
17. h1i 2 JŒP � ins
18. Jh.xjm/ŒPf

1x� = S 16,17 bcnd

19. Jh.xjm/Œx� = 2 assp
20. Jh.xjm/Œf

1x� = JŒf 1�h2i 19 TA(f)
21. JŒf 1�h2i = 1 ins
22. Jh.xjm/Œf

1x� = 1 20,21 eq
23. Jh.xjm/ŒPf

1x� = S, h1i 2 JŒP � 22 SF(r)
24. h1i 2 JŒP � ins
25. Jh.xjm/ŒPf

1x� = S 23,24 bcnd

26. Jh.xjm/ŒPf
1x� = S 11,12-18,19-25 dsj

27. Ao.Jh.xjo/ŒPf
1x� = S/ 26 unv

28. JhŒ8xPf
1x� = S 27 SF(8)

29. Ad.JdŒ8xPf
1x� = S/ 28 unv

30. JŒ8xPf 1x� = T 29 TI
31. JŒ8xPf 1x� = T M JŒ8xPx� = T 30,9 cnj
32. S I.IŒ8xPf 1x� = T M IŒ8xPx� = T/ 31 exs
33. 8xPf 1x ² 8xPx 32 QV

Jh.xjm/ has to be some member of U, so we instantiate the universal at (10) to it, and
reason about the cases individually. This reflects what we have done before.

But on this interpretation, no matter what o may be, IŒf 1�hoi = 1. And, rather
than the simple generalization about the universe, we might have generalized by ins
about the interpretation of the function symbol itself. Thus we might have substituted
for lines (10)–(26) as follows:

10. h.xjm/Œx� = m ins (h, m arbitrary)
11. Jh.xjm/Œx� = m 10 TA(v) (J particular)
12. Jh.xjm/Œf

1x� = JŒf 1�hmi 11 TA(f)
13. Ao.JŒf 1�hoi/ = 1 ins
14. JŒf 1�hmi = 1 13 unv
15. Jh.xjm/Œf

1x� = 1 12,14 eq
16. Jh.xjm/ŒPf

1x� = S, h1i 2 JŒP � 15 SF(r)
17. h1i 2 JŒP � ins
18. Jh.xjm/ŒPf

1x� = S 16,17 bcnd

and pick up with (27) after. This is better! Before, we obtained the result when Jh.xjm/

was 1 and again when it was 2. But, in either case, the reason for the result is that the
function has output 1. So this version avoids the cases by reasoning directly about the
result from the function. Here is the informal version on this latter strategy:
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For an arbitrary assignment h, h.xj2/Œx� = 2; so by TA(v), Jh.xj2/Œx� = 2; so by SF(r),
Jh.xj2/ŒP x� = S iff h2i 2 JŒP �; but h2i … JŒP �; so Jh.xj2/ŒP x� = S; so there is some o 2 U
such that Jh.xjo/ŒP x� = S; so by SF(8), JhŒ8xPx� = S; so there is an assignment d such
that JdŒ8xPx� = S; so by TI, JŒ8xPx� = T.

For arbitrary h and m, h.xjm/Œx� = m; so by TA(v), Jh.xjm/Œx� = m; so by TA(f),
Jh.xjm/Œf

1x� = JŒf 1�hmi; but for any o 2 U, JŒf 1�hoi = 1; so JŒf 1�hmi = 1; so
Jh.xjm/Œf

1x� = 1; so by SF(r), Jh.xjm/ŒPf
1x� = S iff h1i 2 JŒP �; but h1i 2 JŒP �; so

Jh.xjm/ŒPf
1x� = S; so since m is arbitrary, for any o 2 U, Jh.xjo/ŒPf

1x� = S; so by
SF(8), JhŒ8xPf

1x� = S; and since h is arbitrary, for any assignment d, JdŒ8xPf
1x� = S;

so by TI, JŒ8xPf 1x� = T.

So there is an interpretation I such that IŒ8xPf 1x� = T and IŒ8xPx� = T; so by QV,
8xPf 1x ² 8xPx.

Reasoning about cases is possible, and sometimes necessary, when the universe is
small. But it is often convenient to organize your reasoning by generalizations about
the interpretation as above. Such generalizations are required when the universe is
large.

Here is a case that requires such generalizations insofar as the universe U has
infinitely many members. Reasoning with LNT, we show 8x8y.x ¤ y ! Sx ¤
Sy/ ² 9x.Sx D ;/. First note that no interpretation with finite U makes the premise
true and conclusion false. To see this, let IŒ;� be some object o0, and suppose successor
connects it to just finitely many objects—so for some n there is a sequence,

o0 � o1 � o2 � o3 � o4 � o5 � �� �� on

So IŒS� includes ho0; o1i, ho1; o2i, ho2; o3i, and so forth. But the interpretation of a
function symbol is a total function; so IŒS� pairs some object with on. This object
cannot be any of o1 through on, or the premise is violated insofar as some one thing
is the successor of both on and the object before it. And if the conclusion is false no
successor is equal to zero—so the object cannot be o0. So successor connects on to an
object other than any of o0 : : : on—and so connects o0 to more than n objects. Reject
the assumption: there is no finite n such that successor connects o0 to just n objects.
But, as should be obvious by consideration of a standard interpretation of the symbols,
the argument is not valid. To show this, let the interpretation be N, where,

U = f0; 1; 2; : : :g

NŒ;� = 0

NŒS� = fh0; 1i; h1; 2i; h2; 3i; : : :g

NŒD� = fh0; 0i; h1; 1i; h2; 2i; : : :g

First we show that NŒ9x.Sx D ;/� = T. Note that we might have specified the
interpretation for equality by saying something like, AoAp.ho; pi 2 NŒD�, o = p/.
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Similarly, the interpretation of S is such that no o has a successor equal to zero—
Ao.NŒS�hoi = 0/. We will simply appeal to these facts by ins in the following:

(AE)

1. NŒ;� = 0 ins (N particular)
2. Nh.xjm/Œ;� = 0 1 TA(c) (h;m arbitrary)
3. h.xjm/Œx� = m ins
4. Nh.xjm/Œx� = m 3 TA(v)
5. Nh.xjm/ŒSx� = NŒS�hmi 4 TA(f)
6. NŒS�hmi = q def
7. Nh.xjm/ŒSx� = q 5,6 eq
8. Nh.xjm/ŒSx D ;� = S, hq; 0i 2 NŒD� 7,2 SF(r)
9. Ao.NŒS�hoi = 0/ ins

10. NŒS�hmi = 0 9 unv
11. q = 0 10,6 eq
12. AoAp.ho; pi 2 NŒD�, o = p/ ins
13. hq; 0i 2 NŒD�, q = 0 12 unv
14. hq; 0i … NŒD� 13,11 bcnd
15. Nh.xjm/ŒSx D ;� = S 8,14 bcnd
16. Ao.Nh.xjo/ŒSx D ;� = S/ 15 unv
17. NhŒ9x.Sx D ;/� = S 16 SF0.9/
18. Sd.NdŒ9x.Sx D ;/� = S/ 17 exs
19. NŒ9x.Sx D ;/� = T 18 TI

Most of this is as usual. What is interesting is that at (9) we assert that no o is such
that ho; 0i 2 NŒS�. This should be obvious from the specification of NŒS�. And at (12)
we assert by ins that for any o and p in U, ho; pi 2 NŒD� iff o = p. Again, this should
be clear from the initial (automatic) specification of NŒD�. In this case, there is no
way to reason individually about each member of U, on the pattern of what we have
been able to do with two-member universes. But we do not have to, as the general
facts are sufficient for the result.

Consider arbitrary h and m. NŒ;� = 0; so by TA(c), Nh.xjm/Œ;� = 0. But h.xjm/Œx� = m;
so by TA(v), Nh.xjm/Œx� = m; so by TA(f), Nh.xjm/ŒSx� = NŒS�hmi; let NŒS�hmi = q; then
Nh.xjm/ŒSx� = q. From these, by SF(r), (�) Nh.xjm/ŒSx D ;� = S iff hq; 0i 2 NŒD�. For
any o 2 U, NŒS�hoi = 0; so NŒS�hmi = 0; so q = 0; but for any o; p 2 U, ho; pi 2 NŒD�

iff o = p; so hq; 0i 2 NŒD� iff q = 0; so hq; 0i … NŒD�; so with (�), Nh.xjm/ŒSx D

;� = S; and since m is arbitrary, for any o 2 U, Nh.xjo/ŒSx D ;� = S; so by SF0.9/,
NhŒ9x.Sx D ;/� = S; so there is an assignment d such that NdŒ9x.Sx D ;/� = S; so by
TI, NŒ9x.Sx D ;/� = T.

Given what we have already seen, this should be straightforward. Demonstration that
NŒ8x8y.x ¤ y ! Sx ¤ Sy/� = T, and so that the argument is not valid, is left as
an exercise. Hint: In addition to facts about equality, you may find it helpful to assert
AoAp.o = p ) NŒS�hoi = NŒS�hpi/. Be sure that you understand this before you
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assert it! Of course, we have here something that could never have been accomplished
with trees insofar as the universe is infinite.

Recall that the interpretation of equality is the same across all interpretations.
Thus our general assertion is possible in case of the arbitrary interpretation, and we
are positioned to prove some last theorems.

T7.8. � .t D t/

Hint: By ins for any I and any o 2 U, ho; oi 2 NŒD�. Given this, the argument is
easy.

*T7.9. � .xi D y/! .hnx1 : : :xi : : :xn D hnx1 : : :y : : :xn/

Hint: If you have trouble with this, try showing a simplified version: � .x D
y/! .h1x D h1y/.

T7.10. � .xi D y/! .Rnx1 : : :xi : : :xn ! Rnx1 : : :y : : :xn/

Hint: If you have trouble with this, try showing a simplified version: � .x D
y/! .Rx ! Ry/.

At this stage, we have introduced a method for reasoning about semantic defini-
tions. As you continue to work with the definitions, it should become increasingly
clear how they fit together into a coherent (and pleasing) whole. In following chapters,
we will leave the metalinguistic derivation system behind as we encounter further
definitions in diverse contexts. But from this chapter you should have gained a solid
grounding in the sort of thing we will want to do.

E7.15. Produce interpretations (with, if necessary, variable assignments) and then
metalinguistic derivations and informal reasoning to show each of the following.

a. 9xPx ² Pa

*b. ² f 1g1x D g1f 1x

c. 8xAx ! C ² 8x.Ax ! C/

d. 9xFx, 9yGy ² 9z.F z ^Gz/

e. 8x9yAxy ² 9y8xAxy

*E7.16. Provide demonstrations for T7.8 and simplified versions of T7.9, T7.10 in the
informal style. Hint: You may or may not decide that a metalinguistic derivation
would be helpful. Challenge: can you show the theorems in their general form?
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Theorems of Chapter 7

T7.1s P , P ! Q �s Q

T7.2s �s P ! .Q! P /

T7.3s �s .O ! .P ! Q//! ..O ! P /! .O ! Q//

T7.4s �s .�Q! �P /! Œ.�Q! P /! Q�

T7.1 P , P ! Q � Q

T7.2 � P ! .Q! P /

T7.3 � .O ! .P ! Q//! ..O ! P /! .O ! Q//

T7.4 �.�Q! �P /! Œ.�Q! P /! Q�

T7.5 There is no interpretation I and formula P such that IŒP � = T and IŒ�P � = T.

T7.6 For any I and P , IŒP � = T iff IŒ8xP � = T.

T7.7 Each of the following conditions obtains.

(a) IdŒ.8x W B/P � = S iff for any o 2 U, Id.xjo/ŒB� = S or Id.xjo/ŒP � = S.

(b) IdŒ.9x W B/P � = S iff for some o 2 U, Id.xjo/ŒB� = S and Id.xjo/ŒP � = S.

T7.8 � .t D t/

T7.9 � .xi D y/! .hnx1 : : :xi : : :xn D hnx1 : : :y : : :xn/

T7.10 � .xi D y/! .Rnx1 : : :xi : : :xn ! Rnx1 : : :y : : :xn/

E7.17. Show that NŒ8x8y.x ¤ y ! Sx ¤ Sy/� = T, and so complete the demon-
stration that 8x8y.x ¤ y ! Sx ¤ Sy/ ² 9x.Sx D ;/. You may simply
assert that NŒ9x.Sx D ;/� ¤ T with justification, “from the text.”

*E7.18. Here is an interpretation to show ² 9x8yŒ.Axy ^ �Ayx/ ! .Axx $

Ayy/�.

U = f1; 2; 3; : : :g

IŒA� = fhm; ni jm n and m is odd, or m n and m is eveng

So IŒA� has members,

h1; 1i; h1; 2i; h1; 3i; : : : h2; 3i; h2; 4i; h2; 5i; : : :

h3; 3i; h3; 4i; h3; 5i; : : : h4; 5i; h4; 6i; h4; 7i; : : :
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and so forth. Try to understand why this works, and why or will not work by
themselves. Then find an interpretation where U has four members and use it
to demonstrate that ² 9x8yŒ.Axy ^ �Ayx/! .Axx $ Ayy/�. Hint: This is
challenging.

*E7.19. Consider LNT and the axioms of Robinson Arithmetic as in Chapter 6 (page
300). (a) Use the standard interpretation N to show Q ² �8x8yŒ.x � y/ D
.y � x/�. And (b) using N� from below, show Q ² 8x8yŒ.x � y/ D .y � x/�.
You need only complete parts not worked in the answer to this exercise. For N�,
let U� = N [ fag for some object a that is not a number; assign 0 to ; in the usual
way; then,

S
i i 1
a a

C j a

i i j a

a a a

� 0 j = 0 a

0 0 0 a

i = 0 0 i j a

a 0 a a

So, for example, from the top row of the ‘C’ table, hhi; j i; i C j i, hhi; ai; ai 2
N�ŒC�. Hint: This is no different than you have done before, only with premises
the axioms of Q. Also notice that N� is the same as N for m; n 2 N so that
reasoning about N� partially coincides with reasoning about N. This lets you
collapse some of the work: So, for example, when variables are assigned to some
m; n 2 U�, there are cases for (i) m; n 2 N, (ii) m 2 N; n = a, (iii) m = a; n 2 N,
(iv) m = a; n = a. By itself (i) is sufficient for a result about N.

This result (together with T10.5) is sufficient to show that Robinson Arithmetic is
not negation complete—there are sentences P of LNT such that Q proves neither
P nor �P .

E7.20. For each of the following concepts, explain in an essay of about two pages,
so that (high-school age) Hannah could understand. In your essay, you should
(i) identify the objects to which the concept applies, (ii) give and explain the
definition, and give and explicate examples of your own construction (iii) where
the concept applies, and (iv) where it does not. Your essay should exhibit an
understanding of methods from the text.

a. The difference between satisfaction and truth.

b. The definitions SF(r) and SF(8).

c. The way your reasoning works. For this you can provide an example of some
reasonably complex but clean bits of reasoning, (a) for validity, and (b) for
invalidity. Then explain to Hannah how your reasoning works. That is, provide
her a commentary on what you have done, so that she could understand.



Chapter 8

Mathematical Induction

In Chapter 1 (page 12), we distinguished deductive from inductive arguments. As
described there, in a deductive argument, conclusions are supposed to be guaranteed
by premises. In an inductive argument, conclusions are merely made probable or
plausible. Typical cases of inductive arguments involve generalization from cases.
Thus, for example, one might reason from the premise that every crow we have
ever seen is black, to the conclusion that all crows are black. The premise does
not guarantee the conclusion, but it does give it some probability or plausibility.
Similarly, mathematical induction involves a sort of generalization. But mathematical
induction is a deductive argument form. The conclusion of a valid argument by
mathematical induction is guaranteed by its premises. So mathematical induction is
to be distinguished from the sort of induction described in Chapter 1.

In this chapter, I begin with a general characterization of mathematical induction,
and turn to a series of examples. Some of the examples will matter for things to come.
But the primary aim is to gain facility with this crucial argument form. After a general
characterization in section 8.1, there are some introductory examples (section 8.2)
then cases of special interest for Part III (section 8.3) and for Part IV (section 8.4).

8.1 General Characterization

Arguments by mathematical induction apply to objects that are arranged in series. The
conclusion of an argument by mathematical induction is that all the elements of the
series are of a certain sort. For cases with which we will be concerned, the elements
of a series are ordered by natural numbers: there is an initial member, one after that,
and so forth (we may thus think of a series as a function from the numbers to the
members). Consider, for example, a series of dominoes:

d0 d1 d2 d3 d4 d5 d6 d7 d8

. . .

360
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This series is ordered spatially. So d0 is the initial domino, d1 the next, and so forth.
Alternatively, we might think of the series as defined by a function D from the natural
numbers to the dominoes, with D.0/ = d0, D.1/ = d1, and so forth—where this
ordering is merely exhibited by the spatial arrangement.

Suppose we are interested in showing that all the dominoes fall, and consider the
following two claims:

(i) The first domino falls.

(ii) For any domino, if all the ones prior to it fall, then it falls.

By itself, (i) does not tell us that all the dominoes fall. For all we know, there might
be some flaw in the series so that for some k dominoes prior to dk fall, but dk does
not. Perhaps the space between dk 1 and dk is too large. In this case, under ordinary
circumstances, neither dk nor any of the dominoes after it fall. Claim (ii) tells us that
there is no such flaw in the series—if all the dominoes up to dk fall, then dk falls. But
(ii) is not, by itself, sufficient for the conclusion that all the dominoes fall. From the
fact that the dominoes are so arranged, it does not follow that any of the dominoes
fall. Perhaps you do the arrangement, and are so impressed with your work, that you
leave the setup forever as a memorial!

However, given both (i) and (ii), it is safe to conclude that all the dominoes fall.
There are a couple of ways to see this. First, we can reason from one domino to the
next. By (i), the first domino falls. This means that all the dominoes prior to the
second domino fall. So by (ii), the second falls. But this means all the dominoes prior
to the third fall. So by (ii), the third falls. So all the dominoes prior to the fourth fall.
And so forth. Thus we reach the conclusion that each domino falls. Here is another
way to make the point: Suppose not every member of the series falls. Then there must
be some least member da of the series which does not fall. This da cannot be the first
member of the series, since by (i) the first member of the series falls. And since da
is the least member of the series which does not fall, all the members of the series
prior to it do fall. So by (ii), da falls. This is impossible; reject the assumption: every
member of the series falls.

Suppose we have some reason for accepting (i) that the first domino falls—perhaps
you push it with your finger. Suppose further, that we have some “special reason” for
moving from the premise that all the dominoes prior to an arbitrary dk fall, to the
conclusion that dk falls—perhaps the setup satisfies some rule that adaquetly relates
each dominoe dk to the ones before. Then we might attempt to show that all the
dominoes fall as follows:
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(A)

a. d0falls prem (d0 particular)
b. all the dominoes prior to dk fall assp (dk arbitrary)

:::

c. dk falls “special reason”

d. if all the dominoes prior to dk fall, then dk falls b-c cnd
e. for any domino, if all the dominoes prior to it fall, then it falls d unv
f. every domino falls a,e induction

(a) is (i) and (e) is (ii); the conclusion that every domino falls follows from (a) and
(e) by mathematical induction. In this case, (a) is given; d0 falls because you push
it. In order to obtain (e), for arbitrary dk we reason from the assumption at (b) to the
conclusion that dk falls, and then move to (e) by cnd and unv. This is in fact how we
reason. However, all the moves are automatic once we complete the subderivation—
the moves by cnd to get (d), by unv to get (e), and by mathematical induction to get (f)
are automatic once we reach (c). In practice, then, those steps are usually left implicit
and omitted. Having gotten (a) and, from the assumption that all the dominoes prior
to dk fall reached the conclusion that dk falls, we move directly to the conclusion that
all the dominoes fall.

Thus we arrive at a general form for arguments by mathematical induction. Sup-
pose we want to show that P holds for each member of some series. Then an argument
from mathematical induction goes as follows:

(B) Basis: Show that P holds for the first member of the series.

Assp: Assume, for arbitrary k, that P holds for every member of the series
prior to the kth member.

Show: Show that P holds for the kth member of the series.

Indct: Conclude that P holds for every member of the series.

In the domino case, for the basis we show (i). At the assp (assumption) step, we
assume that all the dominoes prior to dk fall. In the show step, we would complete the
subderivation with the conclusion that domino dk falls. From this, moves by cnd to
the conditional statement, and by unv to its generalization, are omitted and we move
directly to the conclusion that all the dominoes fall. Notice that the assumption is
nothing more than a standard assumption for the (suppressed) application of cnd.

Perhaps the “special reason” is too special, and it is not clear how we might
generally reason from the assumption that some P holds for every member of a series
prior to the kth, to the conclusion that it holds for the kth. For our purposes, the key is
that such reasoning is possible in contexts characterized by recursive definitions. As
we have seen, a recursive definition always moves from the parts to the whole. There
are some basic elements, and some rules for combining elements to form further
elements. In general, it is a fallacy (the fallacy of composition) to move directly from
characteristics of parts, to characteristics of a whole. From the fact that the bricks are
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small, it does not follow that a building made from them is small. But there are cases
where facts about parts, together with the way they are arranged, are sufficient for
conclusions about wholes. If the bricks are hard, it may be that the building is hard.
And similarly with recursive definitions.

To see how this works, let us turn to another example. We show that every term of
a certain language has an odd number of symbols. Recall that the recursive definition
TR tells us how terms are formed from others. Variables and constants are terms; and
if hn is a n-place function symbol and t1 : : : tn are n terms, then hnt1 : : : tn is a term.
On tree diagrams, across the top (row 0) are variables and constants—terms with
no function symbols; in the next row are terms constructed out of them, and for any
n 1, terms in row n are constructed out of terms from earlier rows. Let this series
of rows be our series for mathematical induction. Every term must appear in some
row of a tree. We consider a series whose first element consists of terms which appear
in the top row of a tree, whose second element consists of terms which appear in the
next, and so forth. Let Lt be a language with variables and constants as usual, but
just two function symbols, a two-place function symbol f 2 and a four-place function
symbol g4. We show, by induction on the rows in which terms appear, that the total
number of symbols in any term t of this language is odd. Here is the argument:

(C) Basis: If t appears in the top row, then it is a variable or a constant; in this case,
t consists of just one variable or constant symbol; so the total number of
symbols in t is odd.

Assp: For any i such that 0 i k, the total number of symbols in any t

appearing in row i is odd.

Show: The total number of symbols in any t appearing in row k is odd.

If t appears in row k, then it is of the form f 2t1t2 or g4t1t2t3t4 where
t1 : : : t4 appear in rows prior to k. So there are two cases.

(f ) Suppose t is f 2t1t2. Let a be the total number of symbols in t1, and b
be the total number of symbols in t2; then the total number of symbols in
t is .a b/ 1: all the symbols in t1, all the symbols in t2, plus the symbol
f 2. Since t1 and t2 each appear in rows prior to k, by assumption, both
a and b are odd. But the sum of two odds is an even, and the sum of an
even plus one is odd; so .a b/ 1 is odd; so the total number of symbols
in t is odd.

(g) Suppose t is g4t1t2t3t4. Let a be the total number of symbols in t1, b
be the total number of symbols in t2, c be the total number of symbols
in t3, and d be the total number of symbols in t4; then the total number
of symbols in t is Œ.a b/ .c d/� 1. Since t1 : : : t4 each appear in
rows prior to k, by assumption a, b, c, and d are all odd. But the sum of
two odds is an even; the sum of two evens is an even, and the sum of an
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even plus one is odd; so Œ.a b/ .c d/� 1 is odd; so the total number
of symbols in t is odd.

In either case, then, if t appears in row k, the total number of symbols in
t is odd.

Indct: For any term t in Lt , the total number of symbols in t is odd.

Notice that this argument is entirely structured by the recursive definition for
terms. The definition TR includes clauses (v) and (c) for terms that appear in the
top row. In the basis stage, we show that all such terms consist of an odd number of
symbols. Then, for (suppressed) application of cnd and unv we assume that all terms
prior to an arbitrary row k have an odd number of symbols. After that, the show line
simply announces what we plan to do. Observe the way reasoning for the show part
works:

item at stage k

items at stages prior to k results at stages prior to k

result at stage k
H
HHj ��

�*

-inductive assumption

By the recursive definition, items at stage k result from items at stages prior to k. The
inductive assumption applies to the items at stages prior to k, and so gives a result
for those items. And with the recursive definition we put those results together for a
conclusion about stage k. Over and over, you will be able to reason according to this
pattern. And our argument proceeds in just this way: The sentence after show says
how terms at stage k derive from ones before—if f 2t1t2 appears in row k, t1 and t2
must appear in previous rows; then by the assumption they have an odd number of
symbols; and since the number of symbols in the parts are odd, the number of symbols
in the whole is odd. And similarly for g4t1t2t3t4. So any term in row k has an odd
number of symbols. Then by induction it follows that every term in this language Lt

consists of an odd number of symbols.
Returning to the domino analogy, the basis is like (i), where we show that the

first member of the series falls—terms appearing in the top row always have an odd
number of symbols. Then, for arbitrary k, we assume that all the members of the
series prior to the kth fall—that terms appearing in rows prior to the kth always have an
odd number of symbols. We then reason that, given this, the kth member falls—terms
constructed out of others which, by assumption, have an odd number of symbols must
themselves have an odd number of symbols. From this, (ii) follows by cnd and unv,
and the general conclusion by mathematical induction.

The argument works for the same reasons as before: Insofar as a variable or
constant is regarded as a single element of the vocabulary, it is automatic that variables
and constants have an odd number of symbols. So terms in the top row have an odd
number of symbols. Given this expressions in the next row of a tree, as f 2xc, or
g4xycz, must have an odd number of symbols—one function symbol, plus two or
four variables and constants. But if terms from rows zero and one of a tree have an
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odd number of symbols, by reasoning from the show step, terms constructed out of
them must have an odd number of symbols as well. And so forth. So terms in all the
rows have an odd number of symbols. Here is the other way to think about it: Suppose
some terms in Lt have an even number of symbols; then there must be a least row
a where such terms appear. From the basis, this row a is not the top row. But since
a is the least row at which terms have an even number of symbols, terms at all the
earlier rows must have an odd number of symbols. But then, by reasoning as in the
show step, terms at row a have an odd number of symbols. Reject the assumption: no
terms in Lt have an even number of symbols.

In practice, for this sort of case it is common to reason, not based on the row
in which a term appears, but on the number of function symbols in the term. This
differs in detail, but not in effect, from what we have done. In our trees, it may
be that a term in row two, combining one from row zero and another from row
one, has two function symbols, as f 2xf 2ab, or it may be that a term in row two,
combining terms from row one, has three function symbols, as f 2f 2xyf 2ab, or five,
as g4f 2xyf 2abf 2zwf 2cd , and so forth. However, it remains that the total number
of function symbols in each of some terms s1 : : :sn is fewer than the total number of
function symbols in hns1 : : :sn; for the latter includes all the function symbols in
s1 : : :sn plus hn. Thus we may consider the series: terms with no function symbols,
terms with one function symbol, and so forth—and be sure that for any n 0, terms
at stage n are constructed of ones before. Here is a sketch of the argument modified
along these lines:

(D) Basis: If t has no function symbols, then it is a variable or a constant; in this
case, t consists of just the one variable or constant symbol; so the total
number of symbols in t is odd.

Assp: For any i such that 0 i k, the total number of symbols in t with i
function symbols is odd.

Show: The total number of symbols in t with k function symbols is odd.
If t has k function symbols, then it is of the form f 2t1t2 or g4t1t2t3t4
where t1 : : : t4 have less than k function symbols. So there are two cases.

(f ) Suppose t is f 2t1t2. [As before. . . ] the total number of symbols in t is
odd.

(g) Suppose t is g4t1t2t3t4. [As before. . . ] the total number of symbols in
t is odd.

In either case, then, if t has k function symbols, then the total number of
symbols in t is odd.

Indct: For any term t in Lt , the total number of symbols in t is odd.

Here is the key point: If f 2t1t2 has k function symbols, the number of function
symbols in t1 and t2 combined has to be k 1; and since the number of function
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symbols in t1 and in t2 must individually be less than or equal to their combined
total, the number of function symbols in t1 and the number of function symbols in
t2 must also be less than k. And similarly for g4t1t2t3t4. That is why the inductive
assumption applies to t1 : : : t4, and reasoning in the cases can proceed as before.

8.2 Preliminary Examples

Let us turn now to a series of examples, meant to illustrate mathematical induction in
a variety of contexts. Some of the examples have to do with our subject matter. But
some do not. For now, the primary aim is to gain facility with the argument form. As
you work through the cases, think about why the induction works. At first, examples
may be difficult to follow. But they should be more clear by the end.

8.2.1 Case

First, a case where the conclusion may seem too obvious even to merit argument. We
show that any (official) formula P of a quantificational language has an equal number
of left and right parentheses. Again, the relevant definition FR is recursive. Its basis
clause specifies formulas without operator symbols; these occur across the top row of
our trees. FR then includes clauses which say how complex formulas are constructed
out of those that are less complex. We take as our series, formulas with no operator
symbols, formulas with one operator symbol, and so forth; thus the argument is by
induction on the number of operator symbols. As in the above case with terms, this
orders formulas so that we can use facts from the recursive definition in our reasoning.
Let us say L.P / is the number of left parentheses in P , and R.P / is the number of
right parentheses in P . Our goal is to show that for any formula P , L.P / = R.P /.

(E) Basis: If P has no operator symbols, then P is a sentence letter S or an atomic
Rnt1 : : : tn for some relation symbol Rn and terms t1 : : : tn. In either
case, P has no parentheses. So L.P / = 0 and R.P / = 0; so L.P / =
R.P /.

Assp: For any i such that 0 i k, if P has i operator symbols, then
L.P / = R.P /.

Show: For every P with k operator symbols, L.P / = R.P /.
If P has k operator symbols, then it is of the form �A, .A ! B/, or
8xA for variable x and formulas A and B with k operator symbols.

.�/ Suppose P is �A. Then L.P / = L.A/ and R.P / = R.A/. By the
inductive assumption L.A/ = R.A/. So L.P / = L.A/ = R.A/ = R.P /;
so L.P / = R.P /.

(!) Suppose P is .A! B/. Then L.P / = L.A/ L.B/ 1 and R.P / =
R.A/ R.B/ 1. By assumption L.A/ = R.A/, and L.B/ = R.B/. So
L.P / = L.A/ L.B/ 1 = R.A/ R.B/ 1 = R.P /; so L.P / = R.P /.
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Induction Schemes

Schemes for mathematical induction sometimes appear in different forms. But for
our purposes, these amount to the same thing. Suppose a series of objects, and
consider the following:

I.
(a) Show that P holds for the first member
(b) Assume that P holds for members k

(c) Show P holds for member k

(d) Conclude P holds for every member

This is the form as we have seen it.

II.
(a) Show that P holds for the first member
(b) Assume that P holds for members j

(c) Show P holds for member j 1

(d) Conclude P holds for every member

This comes to the same thing if we think
of j as k 1. Then P holds for members
j just in case it holds for members k.

III.
(a) Show that Q holds for the first member
(b) Assume that Q holds for member j
(c) Show Q holds for member j 1

(d) Conclude Q holds for every member

This comes to the same thing if we think
of j as k 1 and Q as the proposition that
P holds for members j .

And similarly the other forms follow from ours. So though in a given context one
form may be more convenient than another, the forms are equivalent—or at least
they are equivalent for sequences corresponding to the natural numbers.

Our form of induction (I) is known as “strong induction,” for its relatively strong
inductive assumption, and the third as “weak.” The second is a sometimes-
encountered blend of the other two. In PA the weak form is mirrored by axiom
PA7; we use that axiom to prove a theorem like (II) in T13.11ah.

It turns out that mathematical induction can be applied not only to sequences
corresponding to the natural numbers but also to sequences indexed by infinite
ordinals. Though we wave in that direction in section 11.4, our main concerns will
be restricted to series ordered by the natural numbers. The infinite ordinals are a
topic for a course in set theory.

Still, a remark for the interested: The first infinite ordinal ! is the number of the
series 0; 1; 2; : : : : But there is no finite number n such that n 1 = !—for any
finite n, n 1 is just another member of the series. So for a sequence ordered by
infinite ordinals, our assumption that P holds for all the members k might hold
though there is no j = k 1 as in the second and third cases. So the equivalence
between the forms breaks down for series that are so ordered.
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(8) Suppose P is 8xA. Then as in the case for .�/, L.P / = L.A/ and
R.P / = R.A/. By assumption L.A/ = R.A/. So L.P / = L.A/ =
R.A/ = R.P /; so L.P / = R.P /.

If P has k operator symbols, L.P / = R.P /.

Indct: For any formula P , L.P / = R.P /.

No doubt, you already knew that the numbers of left and right parentheses match.
But, presumably, you knew it by reasoning of this very sort. Atomic formulas have
no parentheses, and so an equal number of left and right parentheses; after that,
parentheses are always added in pairs; so, no matter how complex a formula may be,
there is never a left parenthesis without a right to match. Reasoning by mathematical
induction may thus seem perfectly natural! All we have done is to make explicit the
various stages that are required to reach the conclusion. But it is important to make
the stages explicit, for many cases are not so obvious. Notice again: We understand
formulas at stage k in terms of formulas from stages before—and so to which the
assumption applies—and then put the results together for a conclusion about stage k.

Here are some closely related problems:

*E8.1. For any (official) formula P of a quantificational language, where A.P / is
the number of its atomic formulas, and B.P / is the number of its arrow symbols,
show that A.P / = B.P / 1. Hint: Argue by induction on the number of operator
symbols in P . For the basis, when P has no operator symbols, it is an atomic, so
that A.P / = 1 and B.P / = 0. Then, as above, you will have cases for �,!, and
8. The hardest case is when P is of the form .A! B/.

E8.2. Consider now expressions which allow abbreviations (_), (^), ($), and (9).
Where A.P / is the number of atomic formulas in P and B.P / is the number of
its binary operators, show that A.P / = B.P / 1. Hint: Now you have seven
cases: (�), (!), and (8) as before, but also cases for (_), (^), ($), and (9). This
suggests the beauty of reasoning just about the minimal language!

8.2.2 Case

Many applications of mathematical induction occur in mathematics. It will be helpful
to have a couple of examples of this sort. These should be illuminating—at least if
you do not get bogged down in the details of the arithmetic! The series of odd positive
integers is 1; 3; 5; 7; : : : where the nth odd number is 2n 1. (The nth even number
is 2n; to find the nth odd, go to the even just above it, and come down one.) Let
S.n/ be the sum of the first n odd positive integers. So S.1/ = 1, S.2/ = 1 3 = 4,
S.3/ = 1 3 5 = 9, S.4/ = 1 3 5 7 = 16 and, in general,

S.n/ = 1 3 � � � .2n 1/
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We consider the series of these sums, S.1/, S.2/, and so forth, and show that, for any
n 1, S.n/ = n2. Observe that S.1/ = 1, and for n 1, S.n/ = S.n 1/C .2n 1/.
The sum of all the odd numbers up to the nth odd number is equal to the sum of all
the odd numbers up to the .n 1/th odd number plus the nth odd number—and since
the nth odd number is 2n 1, S.n/ = S.n 1/ .2n 1/. This gives us the required
recursive connection between a member of the series and one before. Given this, the
argument is straightforward. We argue by induction on the series of sums.

(F) Basis: If n = 1 then S.n/ = 1 and n2 = 1; so S.n/ = n2.

Assp: For any i , 1 i k, S.i/ = i2.

Show: S.k/ = k2. As above, S.k/ = S.k 1/ .2k 1/. But since k 1 k, by the
inductive assumption, S.k 1/ = .k 1/2; so S.k/ = .k 1/2 .2k 1/ =
.k2 2k 1/ .2k 1/ = k2. So S.k/ = k2.

Indct: For any n, S.n/ = n2.

As is often the case in mathematical arguments, the kth element is completely deter-
mined by the one immediately before; so we do not need to consider any more than
this one way that elements at stage k are determined by those at earlier stages.1 Surely
this is an interesting result—though you might have wondered about it after testing
initial cases, we have a demonstration that it holds for every n.

*E8.3. Let S.n/ be the sum of the first n even positive integers; that is S.n/ =
2 4 � � � 2n. So S.1/ = 2, S.2/ = 2 4 = 6, S.3/ = 2 4 6 = 12, and so forth.
Show by mathematical induction that for any n 1, S.n/ = n.n 1/.

E8.4. Let S.n/ be the sum of the first n positive integers; that is S.n/ = 1 2 3 � � � n.
So S.1/ = 1, S.2/ = 1 2 = 3, S.3/ = 1 2 3 = 6, and so forth. Show by
mathematical induction that for any n 1, S.n/ = n.n 1/=2.

8.2.3 Case

Now a case from geometry. Where a polygon is convex iff each of its interior angles is
less than 180ı, we show that the sum of the interior angles in any convex polygon with
n sides is equal to .n 2/180ı. Let us consider polygons with three sides, polygons
with four sides, polygons with five sides, and so forth. The key is that when n 3, any
n-sided polygon may be regarded as one with n 1 sides combined with a triangle.
Thus given an n-sided polygon P,

1Thus arguments by induction in arithmetic and geometry are often conveniently cast according to
the third “weak” induction scheme from the induction schemes reference on page 367. But, as above,
our standard scheme applies as well.
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The result is a triangle Q and a figure R with n 1 sides, where a = c d and b = e f .
The sum of the interior angles of P is the same as the sum of the interior angles of
Q plus the sum of the interior angles of R. Once we realize this, our argument by
mathematical induction is straightforward. For any convex n-sided polygon P, we
show that the sum of the interior angles of P, S.P/ = .n 2/180ı. The argument is by
induction on the number n of sides of the polygon.

(G) Basis: If n = 3, then P is a triangle; but by reasoning as follows,
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c a f

b

d e
By definition, a f = 180ı; but b = d and
if the horizontal lines are parallel, c = e and
d e = f ; so a .b c/ = a .d e/ =
a f = 180ı.

the sum of the angles in a triangle is 180ı. So S.P/ = 180ı. But
.3 2/180ı = 180ı. So S.P/ = .n 2/180ı.

Assp: For any i , 3 i k, every P with i sides has S.P/ = .i 2/180ı.
Show: For every P with k sides, S.P/ = .k 2/180ı.

For P with k sides, construct a line connecting opposite ends of a pair
of adjacent sides; the result divides P into a triangle Q and polygon
R with k 1 sides such that S.P/ = S.Q/ S.R/. Q is a triangle, so
S.Q/ = 180ı. Since k 1 k, the inductive assumption applies to R;
so S.R/ = ..k 1/ 2/180ı. So S.P/ = 180ı ..k 1/ 2/180ı =
.1 k 1 2/180ı = .k 2/180ı. So S.P/ = .k 2/180ı.

Indct: For any n-sided polygon P, S.P/ = .n 2/180ı.

Perhaps reasoning in the basis brings back good (or bad!) memories of high school
geometry. But you do not have to worry about that.

In this case, the sum of the angles of a figure with n sides is completely determined
once we are given the sum of the angles for a figure with n 1 sides. So we do not need
to consider any more than this one way that elements at stage k are determined by
those at earlier stages. It is worth noting however that we do not have to see a k-sided
polygon as composed of a triangle and a figure with k 1 sides. For consider any
diagonal of a k-sided polygon; it divides the figure into two, each with k sides. So
the inductive assumption applies to each figure. So we might reason about the angles
of a k-sided figure as the sum of angles of these arbitrary parts, as in the exercise that
follows.
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*E8.5. Using the fact that any diagonal of a k-sided polygon divides it into two
polygons with k sides, show by mathematical induction that the sum of the
interior angles of any convex polygon P, S.P/ = .n 2/180ı. Hint: If a figure
has k sides, then for some a such that both a and k a are at least two ( 1),
a diagonal divides it into a figure Q with a 1 sides (a sides from P, plus the
diagonal), and a figure R with .k a/ 1 sides (the remaining sides from P, plus
the diagonal). From k a 1, k a 1; and from a 1, k a k 1 so that
k .k a/ 1. So the inductive assumption applies to both Q and R.

E8.6. Where P is a convex polygon with n sides, and D.P/ is the number of its
diagonals (where a diagonal is a line from one vertex to another that is not a
side), show by mathematical induction that any P with n 3 sides is such that
D.P/ = n.n 3/=2.
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Hint: For P with k sides, connecting the vertices of adjacent sides divides P

into a triangle Q and a convex figure R with k 1 sides. Then the diagonals

are all the diagonals of R, plus the base of the triangle, plus k 3 lines from

vertices not belonging to the triangle to the apex of the triangle (P has k

vertices, and diagonals from the apex go to all but 3 of them). Also, in case

your algebra is rusty, .k 1/.k 4/ = k2 5k 4.

8.2.4 Case

Finally we take up a couple of cases of real interest for our purposes—though we limit
consideration just to sentential forms. We have seen cases structured by the recursive
definitions TR and FR. Here is one that uses ST. Say a formula is in normal form
iff its only operators are _, ^, and �, and the only instances of � are immediately
prefixed to atomics (of course, any normal form is an abbreviation of a formula whose
only operators are! and �). Where P is a normal form, let P 0 be like P except that
_ and ^ are interchanged and, for a sentence letter S , S and �S are interchanged.
Thus, for example, if P is an atomic A, then P 0 is �A, if P is .A_ .�B ^C//, then
P 0 is .�A ^ .B _ �C//. We show that if P is in normal form, then IŒ�P � = T iff
IŒP 0� = T. Thus, for the case we have just seen,

IŒ�.A _ .�B ^ C//� = T iff IŒ.�A ^ .B _�C//� = T

So the result works like a generalized semantic version of DeM in combination with
DN: When you push a negation into a normal form, ^ flips to _, _ flips to ^, and
atomics switch between S and �S . Our argument is by induction on the number of
operators in a formula P .

(H) Basis: Suppose P has no operators and is in normal form. Then P is an
atomic S ; so �P = �S and P 0 = �S . So IŒ�P � = T iff IŒ�S � = T;
iff IŒP 0� = T. So if P has no operators then if it is in normal form,
IŒ�P � = T iff IŒP 0� = T.
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Assp: For any i , 0 i k, if P has i operator symbols then if it is in normal
form, IŒ�P � = T iff IŒP 0� = T.

Show: If P has k operator symbols then if it is in normal form, IŒ�P � = T iff
IŒP 0� = T.

Suppose P is in normal form and has k operator symbols. Then P is
�S , A_B, or A^B where S is atomic and A and B are normal forms
with less than k operator symbols. So there are three cases.

(�) P is�S . Then�P is��S , and P 0 is S . So IŒ�P � = T iff IŒ��S � = T;
by ST(�) iff IŒ�S � = T; by ST(�) again iff IŒS � = T; iff IŒP 0� = T. So
IŒ�P � = T iff IŒP 0� = T.

(_) P is A_B. Then �P is �.A_B/, and P 0 is A0 ^B0. So IŒ�P � = T
iff IŒ�.A _B/� = T; by ST(�) iff IŒA _B� = T; by ST0(_) iff IŒA� = T
and IŒB� = T; by ST(�) iff IŒ�A� = T and IŒ�B� = T; by assumption iff
IŒA0� = T and IŒB0� = T; by ST0(^) iff IŒA0 ^B0� = T; iff IŒP 0� = T. So
IŒ�P � = T iff IŒP 0� = T.

(^) Homework.

If P has k operator symbols then if it is in normal form, IŒ�P � = T iff
IŒP 0� = T.

Indct: For any P , if it is in normal form then IŒ�P � = T iff IŒP 0� = T.

Since the thesis to be proved is a conditional, we obtain that conditional for the basis
and show. Similarly, the assumption is a conditional that applies to formulas with
less than k operator symbols that are in normal form. Thus, for application of the
assumption at the show step, it is important not only that A and B have less than
k operator symbols, but that they are in normal form. If they were not, then the
inductive assumption would not apply to them. The overall pattern of the show step
is as usual: In the cases, we break down to parts to which the assumption applies,
apply the assumption, and put the resultant parts back together. In the second case,
we assert that if P is A _B, then P 0 is A0 ^B0. Here A and B may be complex.
We do the conversion on P iff we do the conversion on its main operator, and then
do the conversion on its parts. And similarly for (^). It is this which enables us to
feed into the inductive assumption. Notice that it is convenient to cast reasoning in
the “collapsed” biconditional style.

Where P is any form whose operators are �, _, ^, or !, we now show that
P is equivalent to a normal form. Consider a transform PN defined as follows:
For atomic S , SN = S ; for arbitrary formulas A and B with just those operators,
.A _B/N = .AN _BN/, .A ^B/N = .AN ^BN/, and with prime defined as above,
.A! B/N = .ŒAN�

0 _BN/, and Œ�A�N = ŒAN�
0. To see how this works, consider how

you would construct PN on a tree.
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These trees work very much like unabbreviating trees from section 2.2.3. For each
P on the left, PN is on the right. The conversion of a complex formula depends on
the conversion of its parts. So starting with the parts, we construct the transform of
the whole, one component at a time. Thus for example .B _ A/N is just B _ A; then
Œ�.B _ A/�N = Œ.B _ A/N�

0 = ŒB _ A�0 = �B ^ �A. Observe that at each stage of
the right-hand tree, the result is a normal form.

We show by mathematical induction on the number of operators in P that PN

must be a normal form and that IŒP � = T iff IŒPN� = T. For the argument it will be
important, not only to use the inductive assumption, but also the result from above
that for any P in normal form, IŒ�P � = T iff IŒP 0� = T. In order to apply this result, it
will be crucial that every PN is in normal form. Suppose the operators of P (and so
its subformulas) are just �, _, ^, and!. Here is an outline of the argument, with
parts left as homework:

T8.1. For any P whose operators are �, ^, _, and!, PN is in normal form and
IŒP � = T iff IŒPN� = T.

Basis: If P is an atomic S , then PN = S . An atomic S is in normal form; so
PN = S is in normal form. And IŒP � = T iff IŒS � = T; iff IŒPN� = T.

Assp: For any i , 0 i k if P has i operator symbols, then PN is in normal
form and IŒP � = T iff IŒPN� = T.

Show: If P has k operator symbols, then PN is in normal form and IŒP � = T iff
IŒPN� = T.

If P has k operator symbols, then P is of the form �A, A ^B, A _B,
or A! B for formulas A and B with less than k operator symbols.

(�) P is�A. Then PN = .AN/
0. By assumption AN is in normal form; so since

the prime operation converts a normal form to another normal form, .AN/
0

is in normal form; so PN is in normal form. IŒP � = T iff IŒ�A� = T; by
ST(�), iff IŒA� = T; by assumption iff IŒAN� = T; by ST(�) iff IŒ�.AN/� = T;
since AN is in normal form, by our previous result (H), iff IŒ.AN/

0� = T; iff
IŒPN� = T. So IŒP � = T iff IŒPN� = T.



CHAPTER 8. MATHEMATICAL INDUCTION 374

(^) Homework.

(_) Homework.

(!) Homework.

In any case, if P has k operator symbols, PN is in normal form and IŒP � = T
iff IŒPN� = T.

Indct: For any P , PN is in normal form and IŒP � = T iff IŒPN� = T.

The inductive assumption applies just to formulas with k operator symbols. So it
applies just to formulas on the order of A and B. The result from before applies to
any formulas in normal form. So it applies to AN once we have determined that AN is
in normal form.

E8.7. Complete induction (H) to show that every P in normal form is such that
IŒ�P � = T iff IŒP 0� = T. You should set up the whole induction with statements
for the basis, assumption, and show parts. But then you may appeal to the text for
parts already done, as the text appeals to homework. Hint: If P = .A ^B/ then
P 0 = .A0 _B0/.

E8.8. Complete the demonstration of T8.1 to show that any P with just operators
�, ^, _, and! has a PN in normal form such that IŒP � = T iff IŒPN� = T. Again,
you should set up the whole induction with statements for the basis, assumption,
and show parts. But then you may appeal to the text for parts already done, as the
text appeals to homework.

*E8.9. Show that for any P in normal form,
ǸD
�P $ P 0. Hint: The reasoning is

parallel to the semantic case, but now about what you can derive.

E8.10. Use the result from the previous problem to show that for any P whose
operators are �, _, ^, and!, PN is in normal form and

ǸD
P $ PN. Hint:

Again the reasoning is parallel to the semantic case, but now about what you can
derive.

8.2.5 Case

Here is a result like one we will seek later for the quantificational case. It depends
on the (recursive) notion of a derivation. Because of their relative simplicity, we will
focus on axiomatic derivations. If we were working with “derivations” of the sort
described in the diagram on page 67, then we could reason by induction on the row
in which a formula appears. Formulas in the top row result directly as premises or
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axioms, those in the next row from ones before with MP; and so forth. But our official
notion of an axiomatic derivation is not this; in an official axiomatic derivation, lines
are ordered, where each line is either an axiom, a premise, or follows from previous
lines by a rule. But this is sufficient for us to reason about one line of an axiomatic
derivation based on ones that come before; that is, we reason by induction on the line
number of a derivation. Recall that

ÀDs
P just in case there is a derivation of P in

the sentential fragment of AD with just A1, A2, A3, and MP. We show that if P is a
theorem of ADs, then P is a tautology: if

ÀDs
P then �s P . Thus we establish the

(weak) soundness of ADs.
Suppose

ÀDs
P ; then there is an ADs derivation hA1;A2; : : : ;Ani of P from

no premises, with An = P . By induction on the line numbers of this derivation, we
show that for any j , �s Aj . The case when j = n is the desired result.

(J) Basis: Since hA1;A2; : : : ;Ani is a derivation from no premises, A1 can only
be an instance of A1, A2, or A3.

(A1) Say A1 is an instance of A1 and so of the form P ! .Q ! P /.
Suppose ²s A1; then ²s P ! .Q ! P /; so by SV, there is an I such
that IŒP ! .Q! P /� = T; let J be a particular interpretation of this sort;
then JŒP ! .Q! P /� = T; so by ST(!), JŒP � = T and JŒQ! P � = T;
from the latter, by ST(!), JŒQ� = T and JŒP � = T. This is impossible;
reject the assumption: �s A1.

(A2) Similarly.
(A3) Similarly.

Assp: For any i , 1 i k, �s Ai .
Show: �s Ak .

Ak is either an axiom or arises from previous lines by MP. If Ak is an
axiom then, as in the basis, �s Ak . So suppose Ak arises from previous
lines by MP. In this case, the picture is something like this:
a. B ! C

b. B

k. C a,b MP

where a; b k and C is Ak . Suppose²s Ak ; then²s C and by SV there
is some I such that IŒC � = T; let J be a particular interpretation of this
sort; then JŒC � = T. But by assumption, �s B and �s B ! C ; so by SV,
for any I, IŒB� = T and IŒB ! C � = T; so JŒB� = T and JŒB ! C � = T;
from the latter, by ST(!), JŒB� = T or JŒC � = T; so JŒC � = T. This is
impossible; reject the assumption: �s Ak .

Indct: For any line j of the derivation �s Aj .

We might have continued as above for (A2) and (A3). Alternatively, since we have
already done the work, we might have appealed directly to T7.2s, T7.3s, and T7.4s
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for (A1), (A2), and (A3) respectively. From the case when Aj = P we have �s P .
This result is a precursor to one we will obtain in Chapter 10. There, we will show
strong soundness for the complete system AD, if �

ÀD
P , then � � P . This tells

us that our derivation system can never lead us astray. There is no situation where a
derivation moves from premises that are true to a conclusion that is not. Still, what
we have is interesting in its own right: It is a first connection between the syntactic
notions associated with derivations, and the semantic notions of validity and truth
(and it reflects informal reasoning sketched on page 201).

E8.11. Consider the system A� for exercise E3.5 and take MP in its primitive form.
Show by mathematical induction that A� is weakly sound. That is, show that if

À�
P then �s P .

E8.12. Modify your argument for E8.11 to show that A� is strongly sound. That is,
modify the argument to show that if �

À�
P then � �s P . You may appeal to

reasoning from the previous problem where it is applicable. Hint: When premises
are allowed, Aj is either an axiom, a premise, or arises by a rule. So there is one
additional case in the basis; but that case is trivial—if all of the premises are true,
and Aj is a premise, then Aj cannot be false. And your reasoning for the show
will be modified; now the assumption gives you � �s �.B ^ �C/ and � �s B

and your goal is to show � �s C .

E8.13. Modify table T(�) to a T0.�/ that has IŒ�P � = F both when IŒP � = T and
IŒP � = F; let table T(!) and so ST(!) remain as before. Say a formula is select
iff it is true on every interpretation given the revised tables. Show by mathematical
induction that every consequence of MP with A1 and A2 alone is select. Then
by a table show that the A3 instance .�B ! �A/! Œ.�B ! A/! B� is not
select. It follows that there is no derivation of that formula from A1 and A2 alone
(this is an independence result of the sort discussed in section 11.3). Hint: Your
induction may be a simple modification of argument (J) from above.

E8.14. Let IŒS � = T for every sentence letter S . Where P is any sentential formula
whose only operators are!, ^, _, and$, show by induction on the number of
operators in P that IŒP � = T. Use this result to show that ²s �P .

E8.15. Where t is a term of Lq, let X.t/ be the sum of all the superscripts in t and
Y.t/ be the number of symbols in t. So, for example, if t is z, then X.t/ = 0
and Y.t/ = 1; if t is g1f 2cx, then X.t/ = 3 and Y.t/ = 4. By induction on the
number of function symbols in t, show that for any t in Lq, X.t/ 1 = Y.t/.
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E8.16. For n 1, let S.n/ = 1=2C1=4C� � �C1=2n. Show by mathematical induction
that S.n/ = 1 � 1=2n, and so that S.n/ approaches 1 as n approaches infinity.

E8.17. Show by mathematical induction that for any integer n 0, 3n is odd—that is
that for any n 0, there is some a such that 3n = 2a 1.

E8.18. Show by mathematical induction that for any n 3, an n-sided convex polygon
P may be decomposed into n� 2 triangles (where a triangle is “decomposed” into
itself). So, for example, a five-sided figure decomposes into three triangles.

E8.19. If a Hershey bar has n squares, show by mathematical induction that it takes
n � 1 breaks (along the lines) to divide it into its individual squares.

E8.20. Show by mathematical induction that at a recent convention the number of
logicians who shook hands an odd number of times is even. Assume that 0 is even.
Hints: Reason by induction on the number of handshakes at the convention. At
any stage n, let O.n/ be the number of people who have shaken hands an odd
number of times. Your task is to show that for any n, O.n/ is even. You will want
to consider cases for what happens to O.n/ when (i) someone who has already
shaken hands an odd number of times shakes with someone who has shaken an
odd number of times; (ii) someone who has already shaken hands an even number
of times shakes with someone who has shaken an even number of times; and
(iii) someone who has already shaken hands an odd number of times shakes with
someone who has shaken an even number of times.

E8.21. For any n 1, given a 2n 2n checkerboard with any one square deleted, show
by mathematical induction that it is possible to cover the board with 3-square
L-shaped pieces. For example, a 4 4 board with a corner deleted could be covered
as follows:
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Hint: The basis is easy—a 2 2 board with one square missing is covered by a
single L-shaped piece. The trick is to see how an arbitrary 2k board with one
square missing can be constructed out of an L-shaped piece and 2k 1 size boards
with a square missing.

E8.22. Say P is in disjunctive normal form iff it is of the sort,

.A1 ^ : : : ^Aa/ _ .B1 ^ : : : ^Bb/ _ : : : _ .C1 ^ : : : ^ Cc/

where each Ai ;Bi ; : : : ;Ci is an atomic or negated atomic (omitting inner paren-
theses for the extended conjunctions and disjunction). Allow that a disjunctive
normal form may reduce to a single disjunct and its conjunctions to a single
conjunct—so an atomic or negated atomic is already a disjunctive normal form.
Show that for any normal form PN there is a disjunctive normal form PD such that
IŒPN� = T iff IŒPD� = T. Hint: This is straightforward except for the case where PN

is BN ^ CN. In this case, by assumption there are disjunctive normal forms BD

and CD such that IŒBN� = T iff IŒBD� = T, and IŒCN� = T iff IŒCD� = T. Since they
are in disjunctive normal form, BD and CD are of the sort B1 _B2 _ : : : _Bb

and C1 _ C2 _ : : : _ Cc for some B1 : : :Bb and C1 : : :Cc that are conjunctions
of atomics and negated atomics. Consider a grid as follows:

B1 B2 : : : Bb
C1 B1 ^ C1 B2 ^ C1 Bb ^ C1
C2 B1 ^ C2 B2 ^ C2 Bb ^ C2
:::

Cc B1 ^ Cc B2 ^ Cc Bb ^ Cc

And let PD be the disjunction of conjuncts from the grid. (Effectively, this is like
repeatedly applying Dist to BD ^ CD.) Now you should be able to show that PD is
a disjunctive normal form, and that PN is equivalent to PD.
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E8.23. Limit attention to sentential forms whose only operators are � and$. Show
that under any (sub)formula on a table with at least four rows is an even number
of Ts and Fs. Hints: Reason by induction on the number of operators in P where
P is a (sub)formula on a table with at least four rows. Then by construction of the
table, it is immediate that atomics have an even number of Ts and Fs. The show
step has cases for � and$. The former is easy, the latter is not. Here is a trick
that may help (which I learned from a student): Let each T be assigned an even
number and each F an odd; assign A$ B the sum of the numbers assigned to A

and B; then consider the sum of the numbers in columns of your table.

E8.24. After a few days studying mathematical logic, Zeno hits upon what he thinks
is conclusive proof that all is one. He argues by mathematical induction that all
the members of any n-tuple are identical:

Basis: If A is a 1-tuple, then it is of the sort hoi, and every member of hoi is
identical. So every member of A is identical.

Assp: For any i , 1 i k, all the members of any i -tuple are identical.
Show: All the members of any k-tuple are identical.

If A is a k-tuple, then it is of the form ho1; : : : ; ok 1; oki. But both
ho1; : : : ; ok 2; ok 1i and ho1; : : : ; ok 2; oki are k 1 tuples; so by the
inductive assumption, all their members are identical; but these have
o1 in common and together include all the members of A; so all the
members of A are identical to o1 and so to one another.

Indct: All the members of any n-tuple A are identical.

Given this, he considers the n-tuple consisting of you and Mount Rushmore, and
concludes that you are identical; similarly for you and Donald Trump, and so
forth. What is the matter with Zeno’s reasoning? Hint: Does the reasoning at the
show stage apply to arbitrary k?

8.3 Further Examples (for Part III)

We continue our series of examples, moving now to quantificational cases, and to
some theorems that will be useful especially if you go on to consider Part III.

8.3.1 Case

For variables x and v , where v does not appear in term t, it should be obvious that
Œtx

v �
v
x = t. If we replace every instance of x with v , and then all the instances of

v with x, we get back to where we started. The restriction that v not appear in
t is required to prevent putting back instances of x where there were none in the
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original—as f xvxv is f vv, but then f vvvx is f xx. We demonstrate that when v does
not appear in t, Œtx

v �
v
x = t more rigorously by a simple induction on the number of

function symbols in t.

(K) Basis: If t has no function symbols then it is a variable or a constant. Suppose
v does not appear in t. If t is a variable or a constant other than x, then
tx

v = t (nothing is replaced); and since v does not appear in t, tv
x = t

(nothing is replaced); so Œtx
v �

v
x = tv

x = t. If t is the variable x, then
tx

v = v; and vv
x = x; so Œtx

v �
v
x = vv

x = x = t. So if v does not appear
in t then Œtx

v �
v
x = t.

Assp: For any i , 0 i k, if t has i function symbols and v does not appear
in t, then Œtx

v �
v
x = t.

Show: If t has k function symbols and v does not appear in t, then Œtx
v �

v
x = t.

If t has k function symbols, then it is of the form, hns1 : : :sn for some
function symbol hn and terms s1 : : :sn each of which has k function
symbols. Suppose v does not appear in t; then v does not appear in
any of s1 : : :sn; so the inductive assumption applies to s1 : : :sn; so
by assumption Œs1x

v �
v
x = s1 and . . . and Œsnx

v �
v
x = sn. But Œtx

v �
v
x =

Œhns1 : : :sn
x
v �

v
x ; and since replacements only occur within the terms,

this is hnŒs1
x
v �

v
x : : : Œsn

x
v �

v
x ; and by assumption this is hns1 : : :sn = t.

So Œtx
v �

v
x = t.

Indct: For any term t, if v does not appear in t, Œtx
v �

v
x = t.

Consider a concrete application of reasoning for the show stage: Substitutions applied
to f 2xb, say, do not affect the function symbol, but rather “distribute” onto the
individual terms x and b; so we find Œf 2xbxv �

v
x if we combine the function symbol

with Œxxv �
v
x and Œbxv �

v
x; but Œxxv �

v
x = x and Œbxv �

v
x = b; so Œf 2xbxv �

v
x is just f 2xb. It is

also worthwhile to note the place where it matters that v is not a variable in t: In the
basis case where t is a variable other than x, tv

x = t insofar as nothing is replaced;
but suppose t is v; then tv

x = x = t , and we do not achieve the desired result.
This result can be extended to one with application to formulas. If v is not free in

a formula P and v is free for x in P , then ŒP x
v �

v
x = P . We require the restriction

that v is not free in P for the same reason as before: If v were free in P , we might
end up with instances of x where there are none in the original—as Rxvxv is Rvv,
but then Rvvvx is Rxx. And we need the restriction that v is free for x in P so
that once we have P x

v , instances of x will go back for all the instances of v . So for
example, 8vRxvxv is 8vRvv, but then remains the same when x is substituted for
free instances of v. Here is the basic structure of the argument, with parts left for
homework:
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*T8.2. For variables x and v , if v is not free in a formula P and v is free for x in
P , then ŒP x

v �
v
x = P .

Basis: If P has no operator symbols, then it is a sentence letter S or an atomic
of the form Rnt1 : : : tn for some relation symbol Rn and terms t1 : : : tn.
Suppose v is not free in P and v is free for x in P . (i) If P is S then it has
no variables; so P x

v = P and P v
x = P . So ŒP x

v �
v
x = P v

x = P . (ii) Say P

is Rnt1 : : : tn. Since v is not free in P , v does not appear at all in P or its
terms; so by the previous result (K), Œt1x

v �
v
x = t1 and . . . and Œtnx

v �
v
x = tn.

So ŒP x
v �

v
x = ŒRnt1 : : : tn

x
v �

v
x = RnŒt1

x
v �

v
x : : : Œtn

x
v �

v
x = Rnt1 : : : tn = P .

So if v is not free in P and v is free for x in P then ŒP x
v �

v
x = P .

Assp: For any i , 0 i k, any P with i operator symbols is such that if v is
not free in P and v is free for x in P , then ŒP x

v �
v
x = P .

Show: Any P with k operator symbols is such that if v is not free in P and v is
free for x in P , then ŒP x

v �
v
x = P .

If P has k operator symbols, then it is of the form �A, .A ! B/, or
8wA for some variable w and formulas A and B with k operator
symbols. Suppose v is not free in P and v is free for x in P .

(�) P is �A. Then ŒP x
v �

v
x = Œ.�A/xv �

v
x = �.ŒAx

v �
v
x /. Since v is not free in

P , v is not free in A; and since v is free for x in P , v is free for x in A.
So the assumption applies to A and. . . [homework].

(!) Homework.

(8) P is 8wA. Either x is free in P or not. (i) If x is not free in P , then
P x

v = P and since v is not free in P , P v
x = P ; so ŒP x

v �
v
x = P v

x = P .
(ii) Suppose x is free in P = 8wA. Then x is other than w; and since
v is free for x in P , v is other than w; so the quantifier does not affect
the replacements, and ŒP x

v �
v
x is 8w.ŒAx

v �
v
x /. Since v is not free in P

and is not w , v is not free in A; and since v is free for x in P , v is free
for x in A. So the inductive assumption applies to A; so ŒAx

v �
v
x = A; so

ŒP x
v �

v
x = 8w.ŒAx

v �
v
x / = 8wA = P .

If P has k operator symbols, if v is not free in P and v is free for x in P ,
then ŒP x

v �
v
x = P .

Indct: For any P , if v is not free in P and v is free for x in P , then ŒP x
v �

v
x = P .

There are a few things to note about this argument. First, again, we have to be careful
that the formulas A and B of which P is composed are in fact of the sort to which
the inductive assumption applies. In this case, the requirement is not only that A and
B have k operator symbols, but that they satisfy the additional assumptions, that v

is not free in P but is free for x in P . It is easy to see that this condition obtains in
the cases for � and!, but it is relatively complicated in the case for 8, where there



CHAPTER 8. MATHEMATICAL INDUCTION 382

is interaction with another quantifier. Observe also that we cannot assume that the
arbitrary quantifier has the same variable as x or v . In fact, it is because the variable
may be different that we are able to reason the way we do. Finally, observe that the
arguments of this section for (K) and T8.2 are a “linked pair” in the sense that the
result of the first for terms is required for the basis of the next for formulas. This
pattern repeats in the next cases, including the theorem immediately following.

*T8.3. Where constant c does not appear in formula P , ŒP x
c �

c
v = P x

v .

*E8.25. Provide a complete argument for T8.2, completing cases for (�) and (!).
You should set up the complete induction, but may appeal to the text at parts that
are already completed, just as the text appeals to homework.

*E8.26. Show T8.3. Hint: You will need arguments parallel to (K) and then T8.2.

8.3.2 Case

This example develops another pair of linked results which may seem obvious. Even
so, the reasoning is instructive, and we will need the results for things to come. First,

T8.4. For any interpretation I, variable assignments d and h, and term t, if dŒx� = hŒx�
for every variable x in t, then IdŒt� = IhŒt�.

If variable assignments agree at least on assignments to the variables in t, then
corresponding term assignments agree on the assignment to t. The reasoning, as
one might expect, is by induction on the number of function symbols in t.

Basis: If t has no function symbols, then it is a variable x or a constant c. Suppose
dŒx� = hŒx� for every variable x in t. (i) Say t is a constant c; then by
TA(c), IdŒc� = IŒc� and IŒc� = IhŒc�. So IdŒt� = IdŒc� = IŒc� = IhŒc� = IhŒt�.
(ii) Say t is a variable x; then dŒx� = hŒx�; and by TA(v), IdŒx� = dŒx�
and hŒx� = IhŒx�. So IdŒt� = IdŒx� = dŒx� = hŒx� = IhŒx� = IhŒt]. So if
dŒx� = hŒx� for every variable x in t, then IdŒt� = IhŒt�.

Assp: For any i , 0 i k, if t has i function symbols, and dŒx� = hŒx� for every
variable x in t, then IdŒt� = IhŒt�.

Show: If t has k function symbols, and dŒx� = hŒx� for every variable x in t, then
IdŒt� = IhŒt�.
If t has k function symbols, then it is of the form hns1 : : :sn for some
function symbol hn and terms s1 : : :sn with k function symbols. Sup-
pose dŒx� = hŒx� for every variable x in t; then dŒx� = hŒx� for every
variable x in s1 : : :sn; so the inductive assumption applies to s1 : : :sn;
so IdŒs1� = IhŒs1� and . . . and IdŒsn� = IhŒsn�. So with two applications
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of TA(f), IdŒt� = IdŒhns1 : : :sn� = IŒhn�hIdŒs1� : : : IdŒsn�i = IŒhn�hIhŒs1�
: : : IhŒsn�i = IhŒhns1 : : :sn� = IhŒt�. So if dŒx� = hŒx� for every variable x

in t, then IdŒt� = IhŒt�.

Indct: For any t, if dŒx� = hŒx� for every variable x in t, then IdŒt� = IhŒt�.

It should be clear that we follow our usual pattern to complete the show step: The
assumption gives us information about the parts—in this case, about assignments to
s1 : : :sn; from this, with TA, we move to a conclusion about the whole term t. Notice
again that it is important to show that the parts are of the right sort for the inductive
assumption to apply: It matters that s1 : : :sn have k function symbols, and that
dŒx� = hŒx� for every variable in s1 : : :sn. Perhaps the overall result is intuitively
obvious: If there is no difference in assignments to relevant variables then, by the way
things build from the parts to the whole, there is no difference in assignments to the
whole terms. Our demonstration merely makes explicit how this result follows from
the definitions.

We now turn to a result that is very similar, except that it applies to formulas. In
this case, T8.4 is essential for reasoning in the basis.

*T8.5. For any interpretation I, variable assignments d and h, and formula P , if
dŒx� = hŒx� for every free variable x in P , then IdŒP � = S iff IhŒP � = S.

The argument, as you should expect, is by induction on the number of operator
symbols in the formula P .

Basis: If P has no operator symbols, then it is a sentence letter S or an atomic
of the form Rnt1 : : : tn for some relation symbol Rn and terms t1 : : : tn.
Suppose dŒx� = hŒx� for every variable x free in P . (i) Say P is a sentence
letter S ; then IdŒP � = S iff IdŒS � = S; by SF(s) iff IŒS � = T; by SF(s)
again iff IhŒS � = S; iff IhŒP � = S. (ii) Say P is Rnt1 : : : tn; then since
every variable in P is free, we have dŒx� = hŒx� for every variable in P ;
so dŒx� = hŒx� for every variable in t1 : : : tn; so by T8.4, IdŒt1� = IhŒt1�
and . . . and IdŒtn� = IhŒtn�. So IdŒP � = S iff IdŒRnt1 : : : tn� = S; by SF(r)
iff hIdŒt1� : : : IdŒtn�i 2 IŒRn�; iff hIhŒt1� : : : IhŒtn�i 2 IŒRn�; by SF(r) iff
IhŒRnt1 : : : tn� = S; iff IhŒP � = S. So if dŒx� = hŒx� for every variable x

free in P , then IdŒP � = S iff IhŒP � = S.

Assp: For any i , 0 i k, if P has i operator symbols and dŒx� = hŒx� for every
free variable x in P , then IdŒP � = S iff IhŒP � = S.

Show: If P has k operator symbols and dŒx� = hŒx� for every free variable x in
P , then IdŒP � = S iff IhŒP � = S.

If P has k operator symbols, then it is of the form �A, A! B, or 8vA

for variable v and formulas A and B with k operator symbols. Suppose
dŒx� = hŒx� for every free variable x in P .
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(�) Suppose P is �A. Then since dŒx� = hŒx� for every free variable x in
P , and every variable free in A is free in P , dŒx� = hŒx� for every free
variable in A; so the inductive assumption applies to A. IdŒP � = S iff
IdŒ�A� = S; by SF(�) iff IdŒA� = S; by assumption iff IhŒA� = S; by
SF(�), iff IhŒ�A� = S; iff IhŒP � = S.

(!) Homework.

(8) Suppose P is 8vA. Then since dŒx� = hŒx� for every free variable x in
P , dŒx� = hŒx� for every free variable in A with the possible exception of
v; so for arbitrary o 2 U, d.vjo/Œx� = h.vjo/Œx� for every free variable
x in A. Since the assumption applies to arbitrary assignments, it applies
to d.vjo/ and h.vjo/; so for any o 2 U, by assumption, Id.vjo/ŒA� = S iff
Ih.vjo/ŒA� = S.

Now suppose IdŒP � = S but IhŒP � = S; then IdŒ8vA� = S but IhŒ8vA� = S;
from the latter, by SF(8), there is some o 2 U such that Ih.vjo/ŒA� = S; let
m be a particular individual of this sort; then Ih.vjm/ŒA� = S; so, with the
inductive assumption as above, Id.vjm/ŒA� = S; so by SF(8), IdŒ8vA� = S.
This is impossible; reject the assumption: if IdŒP � = S, then IhŒP � = S.
And similarly [by homework] in the other direction.

If P has k operator symbols and dŒx� = hŒx� for every free variable x in
P , then IdŒP � = S iff IhŒP � = S.

Indct: For any P , if dŒx� = hŒx� for every free variable x in P then IdŒP � = S iff
IhŒP � = S.

Notice again that it is important to make sure the inductive assumption applies. First,
in the (8) case, we are careful to distinguish the arbitrary variable of quantification v

from x of the assumption. Then, for the quantifier case, the condition that d and h
agree on assignments to all the free variables in A is not satisfied merely because they
agree on assignments to all the free variables in P . We solve the problem by switching
to assignments d.vjo/ and h.vjo/, which must agree on all the free variables in A.
(Why?) Reasoning in the quantifier case is more involved than we have seen so far.
But you should be in a position to bear down and follow each step.

From T8.5 it is a short step to three quick corollaries that will be useful for things
to come. First a result that should remind you of A5 from AD,

*T8.6. � 8x.P ! Q/! .P ! 8xQ/ where x is not free in P .

Homework.

Second, a result the proof of which was promised in Chapter 4 (page 122). If a
sentence P is satisfied on any variable assignment, then it is satisfied on every variable
assignment, and so true.
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T8.7. For any interpretation I and sentence P , IŒP � = T iff there is some assignment
d such that IdŒP � = S.

Consider some sentence P and interpretation I. (i) Suppose IŒP � = T; then by TI,
IdŒP � = S for any d; so there is an assignment d such that IdŒP � = S. (ii) Suppose
there is some assignment d such that IdŒP � = S, but IŒP � = T. From the latter, by
TI, there is some assignment h such that IhŒP � = S; but if P is a sentence, it has
no free variables; so (vacuously) every assignment agrees with h in its assignment
to free variables in P ; in particular d agrees with h in its assignment to every free
variable in P ; so by T8.5, IdŒP � = S. This is impossible; reject the assumption: if
IdŒP � = S then IŒP � = T.

In effect, the reasoning is as sketched in Chapter 4. Whether 8xP is satisfied by d
does not depend on the particular object d assigns to x—for the quantifier “overrides”
the assignment from d. The key is contained in reasoning for the (8) case of T8.5,
which “exempts” a quantified variable from ones on which assignments must agree.
Given this, the move to T8.7 is straightforward.

Finally, as we have emphasized, the (�) and (!) clauses of definition SF apply
to satisfaction, not truth. Even so, for sentences of a quantificational language we
recover simple truth conditions as from ST. Reasoning appeals most naturally to T8.7,
though we may think of this as another corollary to T8.5.

*T8.8. For any interpretation I and sentences P and Q,

(i) IŒ�P � = T iff IŒP � = T

(ii) IŒP ! Q� = T iff IŒP � = T or IŒQ� = T.

Homework.

As a quick consequence of this last theorem, we obtain corresponding results for ^,
_, and$. Thus, for the sentential operators, sentences of a quantificational language
obey the same truth conditions as ones from sentential languages.

*E8.27. Provide a complete argument for T8.5, completing the case for (!), and
expanding the other direction for (8). You should set up the complete induction,
but may appeal to the text at parts that are already completed, as the text appeals
to homework.

*E8.28. Show T8.6 and both parts of T8.8.

E8.29. Show that for any interpretation I and sentence P , either IŒP � = T or IŒ�P � = T.
Hint: This is not an argument by induction, but rather another quick corollary to
T8.5; you can begin by supposing the result is false and show that the assumption
is impossible.
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8.3.3 Case

Here is another pair of results, with reasoning like we have already seen.

*T8.9. For any formula P , term t, constant c, and distinct variables v and x, ŒP v
t �

c
x

is the same formula as ŒP c
x �

v
tc

x
.

Notice that ŒP v
t �

c
x might be different from ŒP c

x �
v
t —for if t contains an instance

of c, that instance of c is replaced in the first case, but not in the second. The
proof breaks into two parts. (i) By induction on the number of function symbols
in an arbitrary term r, we show that Œrv

t �
c
x = Œrc

x�
v
tc

x
. Given this, (ii) by induction

on the number of operator symbols in an arbitrary formula P , we show that
ŒP v

t �
c
x = ŒP c

x �
v
tc

x
. Only part (i) is completed here; (ii) is left for homework.

Suppose v = x.

Basis: If r has no function symbols, then it is either v , c, or some other constant
or variable.

(v) Suppose r is v . Then rv
t is t; so Œrv

t �
c
x = tc

x. But rc
x is v; so Œrc

x�
v
tc

x
=

vv
tc

x
= tc

x. So Œrv
t �

c
x = tc

x = Œrc
x�

v
tc

x
.

(c) Suppose r is c. Then rv
t is c and Œrv

t �
c
x is x. But rc

x is x; and, since
v = x, Œrc

x�
v
tc

x
is x. So Œrv

t �
c
x = x = Œrc

x�
v
tc

x
.

(oth) Suppose r is some variable or constant other than v or c. Then Œrv
t �

c
x =

rc
x = r. Similarly, Œrc

x�
v
tc

x
= rv

tc
x

= r. So Œrv
t �

c
x = r = Œrc

x�
v
tc

x
.

Assp: For any i , 0 i k, if r has i function symbols, then Œrv
t �

c
x = Œrc

x�
v
tc

x
.

Show: If r has k function symbols, then Œrv
t �

c
x = Œrc

x�
v
tc

x
.

If r has k function symbols, then it is of the form, hns1 : : :sn for some
function symbol hn and terms s1 : : :sn each of which has k func-
tion symbols; so by assumption, Œs1v

t �
c
x = Œs1c

x�
v
tc

x
and . . . and Œsnv

t �
c
x =

Œsn
c
x�

v
tc

x
. So Œrv

t �
c
x = Œhns1 : : :sn

v
t �

c
x = hnŒs1

v
t �

c
x : : : Œsn

v
t �

c
x = hnŒs1

c
x�

v
tc

x

: : : Œsn
c
x�

v
tc

x
= Œhns1 : : :sn

c
x�

v
tc

x
= Œrc

x�
v
tc

x
; so Œrv

t �
c
x = Œrc

x�
v
tc

x
.

Indct: For any r, Œrv
t �

c
x = Œrc

x�
v
tc

x
.

You will find this result useful when you turn to the final proof of T8.9. That argument
is a straightforward induction on the number of operator symbols in P . For the
case where P is of the form 8wA, notice that v is either w or it is not. On the
one hand, if v is w , then P = 8wA has no free instances of v so that P v

t = P ,
and ŒP v

t �
c
x = P c

x ; but, similarly, P c
x has no free instances of v , so ŒP c

x �
v
tc

x
= P c

x .
On the other hand, if v is a variable other than w , then ŒP v

t �
c
x = 8w.ŒAv

t �
c
x/ and

ŒP c
x �

v
tc

x
= 8w.ŒAc

x�
v
tc

x
/ and you will be able to use the inductive assumption.

*E8.30. Complete the proof of T8.9 by showing by induction on the number of
operator symbols in an arbitrary formula P that if v is distinct from x, then
ŒP v

t �
c
x = ŒP c

x �
v
tc

x
.
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8.3.4 Case

We conclude this section with a result that depends on the one just before. Where
� = hD1 : : :Dni is an AD derivation, and ˆ = fF1;F2 : : :g is a set of formulas, for
some constant a and variable x, say�a

x = hD1
a
x : : :Dn

a
xi and ˆa

x = fF1a
x ;F2

a
x : : :g.

By induction on the line numbers in �, we show,

*T8.10. If � is an AD derivation from ˆ, and x is a variable that does not appear in
�, then for any constant a, �a

x is an AD derivation from ˆa
x .

Suppose � = hD1 : : :Dni is an AD derivation from ˆ, a a constant, and x a
variable that does not appear in �.

Basis: D1 is either a member of ˆ or an axiom.

(prem) If D1 is a member of ˆ, then D1
a
x is a member of ˆa

x ; so hD1
a
xi is a

derivation from ˆa
x .

(A1) If D1 is an instance of A1, then it is of the form, P ! .Q ! P /; so
D1

a
x is ŒP ! .Q! P /�ax = P a

x ! .Qa
x ! P a

x /; but this is an instance
of A1; so if D1 is an instance of A1, then D1

a
x is an instance of A1, and

hD1
a
xi is a derivation from ˆa

x .

(A2) Homework.

(A3) Homework.

(A4) If D1 is an instance of A4, then it is of the form, 8vP ! P v
t , for some

variable v and term t that is free for v in P . So D1
a
x = Œ8vP ! P v

t �
a
x =

Œ8vP �ax ! ŒP v
t �

a
x . But since a is a constant, Œ8vP �ax = 8vŒP a

x �. And
since x does not appear in �, x = v; so by T8.9, ŒP v

t �
a
x = ŒP a

x �
v
ta

x
. So

D1
a
x = 8vŒP a

x �! ŒP a
x �

v
ta

x
; and since x is new to � and t is free for v

in P , ta
x is free for v in P a

x ; so 8vŒP a
x �! ŒP a

x �
v
ta

x
is an instance of A4;

so if D1 is an instance of A4, then D1
a
x is an instance of A4, and hD1

a
xi

is a derivation from ˆa
x .

(A5) Homework.

(eq) If D1 is an equality axiom, A6, A7, or A8, then it includes no constants; so
D1 = D1

a
x ; so D1

a
x is an equality axiom, and hD1

a
xi is a derivation from

ˆa
x .

Assp: For any i , 1 i k, hD1
a
x : : :Di

a
xi is a derivation from ˆa

x .

Show: hD1
a
x : : :Dk

a
xi is a derivation from ˆa

x .

Dk is a member of ˆ, an axiom, or arises from previous lines by MP or
Gen. If Dk is a member of ˆ or an axiom then, by reasoning as in the
basis, hD1

a
x : : :Dk

a
xi is a derivation from ˆa

x . So two cases remain.

(MP) Homework.
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(Gen) If Dk arises by Gen, then there are some lines in �,

i P

:::

k 8vP i Gen

where i k and Dk = 8vP . By assumption P a
x is a member of the deriva-

tion hD1
a
x : : :Dk 1

a
xi fromˆa

x ; so 8vŒP a
x � follows in this new derivation

by Gen; but since a is a constant, this is Œ8vP �ax . So hD1
a
x : : :Dk

a
xi is a

derivation from ˆa
x .

hD1
a
x : : :Dk

a
xi is a derivation from ˆa

x .

Indct: For any n, hD1
a
x : : :Dn

a
xi is a derivation from ˆa

x .

The reason this works is that none of the justifications change: switching x for a

leaves each line justified for the same reasons as before. The only sticking point
may be the case for A4. But we did the real work for this in T8.9. Given this, the
rest is straightforward. Observe that this theorem is generally available: from VC, a
quantificational language has infinitely many variables; but derivations are finitely
long; so there must always be variables that do not appear in a derivation �.

*E8.31. Finish the cases for A2, A3, A5, and MP to complete the proof of T8.10.
You should set up the complete demonstration, but may refer to the text for cases
completed there, as the text refers cases to homework.

E8.32. Where ˆ = fAbg and � is as follows,

1. 8x�Ax ! �Ab A4
2. .8x�Ax ! �Ab/! .��Ab ! �8x�Ax/ T3.13
3. ��Ab ! �8x�Ax 2,1 MP
4. Ab ! ��Ab T3.11
5. Ab ! �8x�Ax 4,3 T3.2
6. Ab prem
7. �8x�Ax 5,6 MP
8. 9xAx 7 abv

apply the method of T8.10 to show that �by is a derivation from ˆby . Do any of
the justifications change? Explain.

E8.33. Set U = f1g, IŒS � = T for every sentence letter S , IŒR1� = f1g for every R1;
IŒR2� = fh1; 1ig for every R2; and in general, IŒRn� = fh1; : : : ; 1ig. Notice that
IŒc� can only be 1 for every constant c, and IŒhn� D fh1; : : : ; 1i; 1ig for every
function symbol hn. Where P is any formula whose only operators are!, ^, _,
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$, 8, and 9, show by induction on the number of operators in P that IdŒP � = S.
Use this result to show that ² �P . Hint: This is a quantificational version of
E8.14; this time you will want to show first that for any term t, IdŒt� = 1; and with
this that IdŒP � = S.

8.4 Additional Examples (for Part IV)

Again, our primary motivation in this section is to practice doing mathematical in-
duction. This final series of examples develops some results about Q that will be
particularly useful if you go on to consider Part IV. As we have already mentioned
(page 305, and compare E7.19), many true generalizations are not provable in Robin-
son Arithmetic. However, we shall be able to show that Q is generally adequate for
some interesting classes of results. As you work through these results, you may find it
convenient to refer to the final Chapter 8 theorems reference on page 404.

First Theorems of Chapter 8

T8.1 For any P whose operators are�, _, ^, and!, PN is in normal form and IŒP � = T
iff IŒPN� = T.

T8.2 For variables x and v , if v is not free in a formula P and v is free for x in P ,
then ŒP x

v �
v
x = P .

T8.3 Where constant c does not appear in formula P , ŒP x
c �

c
v = P x

v .

T8.4 For any interpretation I, variable assignments d and h, and term t, if dŒx� = hŒx�
for every variable x in t, then IdŒt� = IhŒt�.

T8.5 For any interpretation I, variable assignments d and h, and formula P , if dŒx� = hŒx�
for every free variable x in P , then IdŒP � = S iff IhŒP � = S.

T8.6 � 8x.P ! Q/! .P ! 8xQ/ where x is not free in P .

T8.7 For any interpretation I and sentence P , IŒP � = T iff there is some assignment d
such that IdŒP � = S.

T8.8 For any interpretation I and sentences P and Q, (i) IŒ�P � = T iff IŒP � = T; and (ii)
IŒP ! Q� = T iff IŒP � = T or IŒQ� = T. Corollary: Similarly for ^, _, and$.

T8.9 For any formula P , term t, constant c, and distinct variables v and x, ŒP v
t �

c
x is

the same formula as ŒP c
x �

v
tc

x
.

T8.10 If � is an AD derivation from ˆ, and x is a variable that does not appear in �,
then for any constant a, �a

x is an AD derivation from ˆa
x .
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First, we shall string together a series of results sufficient to show that Q cor-
rectly decides atomic sentences of LNT: For any atomic sentence P and the standard
interpretation N, if NŒP � = T then Q

ǸD
P , and if NŒP � = T then Q

ǸD
�P .

Include among the atomic sentences equalities s D t, but also the inequalities, s � t

and s < t.2 Observe that if P is atomic and a sentence, its terms s and t have no
variables.

As a preliminary, let n abbreviate,

nSs‚…„ƒ
S : : : S ;. So, for example, 2 is SS;, and 0 is

just ;. Any such n is a numeral. Observe that S2, say, is just SSS;. Then it is easy
to see that,

T8.11. For any n 2 U and assignment d, NdŒn� = n.

By induction on the value of n. Consider an arbitrary assignment d.

Basis: By TA(c), NdŒ;� = NŒ;� = 0; but this is just to say, NdŒ0� = 0.

Assp: For any i, 0 i k, NdŒ i � = i.

Show: NdŒk� = k. Where k 0, k is the same numeral as Sk 1; and by as-
sumption, NdŒk 1� = k 1. So NdŒk� is NdŒSk 1�; by TA(f), this is
NŒS�hNdŒk 1�i; by assumption this is NŒS�hk 1i; which is .k 1/ 1;
which is k. So NdŒk� = k.

Indct: For any n and d, NdŒn� = n.

If the assignment to k 1 is k 1, then the assignment to Sk 1 is the successor of
k 1 which is k.3 Typically, I shall treat this result as “common knowledge” and assert
(or suppose) NdŒn� = n without explicit appeal to T8.11.

8.4.1 Case

We begin with some simple results for the addition and multiplication of numerals.

T8.12. For any a; b; c 2 U, if a b = c, then Q
ǸD

aC b D c.

By induction on the value of b. Recall that by T6.47, Q
ǸD

t C ; D t and from
T6.48, Q

ǸD
t C Ss D S.t C s/. Further, as above, we depend on the general

fact that, so long as a 0, Sa 1 is the same numeral as a.

2Of course, the inequalities are abbreviations, 9u.uC s D t/ and 9u.SuC s D t/ and as such,
not atomic. However trees to construct abbreviated formulas have inequalities in the top row of their
formula part—and, as for the identification of grammatical parts with other abbreviations, the notion is
thus applied in a derived sense.

3Again, insofar as reasoning applies the assumption just to k 1, it would have been natural to apply
scheme III from the induction schemes reference (assume for m, show for m 1); however we get the
same effect by applying our usual assumption to k 1 (see note 1 on page 369).
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Basis: Suppose b = 0 and a b = c; then a = c; but by T6.47, Q
ǸD

aC 0 D a;
so Q

ǸD
aC b D c.

Assp: For any i, 0 i k if a i = c, then Q
ǸD

aC i D c.

Show: If a k = c, then Q
ǸD

aC k D c.

Suppose a k = c. Since k i, k 0 and so c 0; let k 1 = m and
c 1 = d; then k is the same as Sm, c is the same as Sd, and a m = d.
From the latter, by assumption Q

ǸD
.a C m/ D d; by T6.48, Q

ǸD

.aC Sm/ D S.aC m/; so by DE, Q
ǸD

.aC Sm/ D Sd; and this is
just to say Q

ǸD
aC k D c.

Indct: For any a, b, and c, if a b = c, then Q
ǸD

aC b D c.

Corollary: if a 1 = b then Q
ǸD

Sa D b. Suppose a 1 = b; then as above,
Q

ǸD
aC 1 D b; but by T6.52, Q

ǸD
aC 1 D Sa; so byDE, Q

ǸD
Sa D b.

The basic idea for this theorem is simple: From the basis, Q
ǸD

aC 0 D a; then
given the assumption for one value of b, we use T6.48 to get the next. Observe that
a; b, and c are numbers—objects in the universe—and we informally manipulate them
to conclude that, say, a = c from b = 0 and a b = c. In contrast, a, k, and c are
numerals of the sort S : : : S; and, say, aC k D c is a sentence of LNT which we show
follows from the axioms of Q. It is not as though we somehow forget how to do
arithmetic! Rather we understand arithmetic, and show how Q is related to it. Note
the (slight) typographical difference between ‘C’ in the object language and ‘ ’ to
express the function.

*T8.13. For any a, b, c 2 U, if a b = c then Q
ǸD

a � b D c.

By induction on the value of b. Hint: Let k 1 = m and c a = d. By assumption
you should be able to obtain Q

ǸD
a � m D d; then you will be able to apply

T6.50 and T8.12 for the desired result.

*E8.34. Provide an argument to show T8.13.

8.4.2 Case

We now obtain a series of results for atomics and negated atomics whose terms are
numerals. First, without mathematical induction it is easy to see that Q proves true
atomic sentences with numerals as terms. Recall that s � t is 9u.uC s D t/ and
s < t is 9u.SuC s D t/ for u not in s or t.

T8.14. For any a; b 2 U, (i) if a = b then Q
ǸD

a D b; (ii) if a b then
Q

ǸD
a � b; and (iii) if a b then Q

ǸD
a < b.
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(i) If a = b then Q
ǸD

a D b: Suppose a = b; then a is the same term as b; and
byDI, Q

ǸD
a D b.

(ii) If a b then Q
ǸD

a � b: Suppose a b; then there is some d that is the
difference between them, such that d a = b; so by T8.12, Q

ǸD
dC a D b; so

by 9I, Q
ǸD
9u.uC a D b/; and by abv, Q

ǸD
a � b.

(iii) If a b then Q
ǸD

a < b: Suppose a b; then there is some d such that
.d 1/ a = b; so by T8.12, Q

ǸD
d 1C a D b; but d 1 is the same term

as Sd; so Q
ǸD

Sd C a D b; so by 9I, Q
ǸD
9u.Su C a D b/; so by abv,

Q
ǸD

a < b.

The cases for negated atomics are more interesting. Arguments are similar, though
we require a preliminary for one case:

T8.15. Q
ǸD

Sj C n D j C Sn.

Homework.

With this, we are ready for the results about negated atomics. Recall that according to
T6.45, Q

ǸD
St ¤ 0; and from T6.46, Q

ǸD
St D Ss! t D s.

T8.16. For any a; b 2 U, (i) if a = b, then Q
ǸD

a ¤ b; (ii) if a b, then
Q

ǸD
a — b; and (iii) if a b, then Q

ǸD
a – b.

(i) If a = b, then Q
ǸD

a ¤ b: Suppose a = b. Then there is some d 0 that
is the difference between them, such that either d a = b or d b = a. The
argument is the same either way, so suppose the latter. We show that for any n,
Q

ǸD
d n ¤ n; then when n = b, Q

ǸD
d b ¤ b which is Q

ǸD
a ¤ b.

Basis: Suppose n = 0. Then d = d n and d = d n; and since d 0, d = Sd 1;
so Sd 1 = d = d n. By T6.45, Q

ǸD
Sd 1 ¤ 0; but this is just to say

Q
ǸD

d n ¤ n.

Assp: For 0 i k, Q
ǸD

d i ¤ i .

Show: Q
ǸD

d k ¤ k.

Since k i, k 0; let k 1 = m; then k is Sm and d k is Sd m.
By T6.46, Q

ǸD
Sd m D Sm ! d m D m; but by assumption,

Q
ǸD

d m ¤ m; so by MT, Q
ǸD

Sd m ¤ Sm; which is to say,
Q

ǸD
d k ¤ k.

Indct: For any n, Q
ǸD

d n ¤ n.

So Q
ǸD

d b ¤ b; so Q
ǸD

a ¤ b.
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(ii) If a b, then Q
ǸD

a — b: Suppose a b. Then a b, and for some d 0,
dC b = a. By induction on n, we show that for any n, Q

ǸD
j C d n ¤ n; the

case when n = b gives Q
ǸD

j C a ¤ b; then by 8I, Q
ǸD
8u.uC a ¤ b/;

and the result follows with QN.

Basis: Suppose n = 0; then d = d n. For d 0, let d 1 = m; then d = Sm; and
Sm = d = d n. By T6.48, Q

ǸD
j C Sm D S.j Cm/; and by T6.45,

Q
ǸD

S.j Cm/ ¤ 0; so byDE, Q
ǸD

j C Sm ¤ 0; where this is just
to say Q

ǸD
j C d n ¤ n.

Assp: For 0 i k, Q
ǸD

j C d i ¤ i .

Show: Q
ǸD

j C d k ¤ k.

Since k i, k 0; let k 1 = m; then k = Sm and d k = Sd m. By
T6.46, Q

ǸD
S.jCd m/ D Sm! jCd m D m; but by assumption,

Q
ǸD

j Cd m ¤ m; so by MT, Q
ǸD

S.j Cd m/ ¤ Sm; by T6.48,
Q

ǸD
jCSd m D S.jCd m/; so byDE, Q

ǸD
jCSd m ¤ Sm;

but this is just to say, Q
ǸD

j C d k ¤ k.

Indct: For any n, Q
ǸD

j C d n ¤ n.

So Q
ǸD

j C d b ¤ b which is to say Q
ǸD

j C a ¤ b. So by 8I,
Q

ǸD
8u.uC a ¤ b/; and by QN, Q

ǸD
�9u.uC a D b/; which is to say,

Q
ǸD

a — b.

(iii) If a b, then Q
ǸD

a – b. Homework.

Supposing that Q
ǸD

0C d n D d n (which you can show by an easy induction),
it is possible to reconceive the result of the induction for (i) as an instance of that for
(ii), in the case when j D 0.

E8.35. Provide arguments to show T8.15 and (iii) of T8.16. Hints: T8.15 is a simple
induction on n; for the show, let m = k 1; you will want the assumption in
the form, Q

ǸD
Sj C m D j C Sm. For T8.16, the induction is to show

Q
ǸD

Sj C d n ¤ n. There is a complication, however, in the basis: From
a b, b d = a for d 0; given that d might be 0, we cannot simply treat d as
a successor and set d = Sm as above; you can solve the problem by obtaining
j C Sd ¤ 0 for an application of T8.15. For the show, since k 0, the argument
remains straightforward.

E8.36. Show that for any n, Q
ǸD

0C n D n, and use this to obtain the result of the
induction for T8.16(i) from that for T8.16(ii).
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8.4.3 Case

The results of the previous section were limited to atomics and negated atomics whose
terms are numerals. We now extend results to consider atomics with terms of arbitrary
complexity. The atomic sentences are of course still sentences so that their terms
remain variable-free.

We have said a formula is true iff it is satisfied on every variable assignment. Let
us introduce a parallel notion for terms.

AI The assignment to a term on an interpretation IŒt� = n iff with any d for I,
IdŒt� = n.

If there were some one a such that for every x 2 U, hx; ai 2 IŒh1�, then for any d and
assignment to x, IdŒh1x� = a—and the assignment to h1x, IŒh1x� = a. We meet some
functions of this sort in Chapter 12; but such “constant” functions are not the norm.
More relevantly, from T8.4, if assignments d and h agree on assignments to variables
in t, then IdŒt� = IhŒt�; and if t is without variables then any assignments agree on
assignments to all the variables in t; so it is automatic that, for a variable-free term,
any IdŒt� = IhŒt� = IŒt�.

Given this, we start by establishing that Q proves the proper relation between
arbitrary variable-free terms and numerals.

T8.17. For any variable-free term t of LNT, if NŒt� = n, then Q
ǸD

t D n.

Let t be a variable-free term of LNT. By induction on the number of function
symbols in t,

Basis: Suppose t has no function symbols and NŒt� = n. Then t can only be the
constant ;; so NŒt� = NŒ;� = 0; and n = 0. But by DI, Q

ǸD
0 D 0; so

Q
ǸD

t D n.

Assp: For any i; 0 i k if t has i function symbols and NŒt� = n, then
Q

ǸD
t D n.

Show: If t has k function symbols and NŒt� = n, then Q
ǸD

t D n.

Suppose t has has k function symbols and NŒt� = n. Then t is of the form,
Sr, rC s, or r � s for r;s, with k function symbols.

(S ) t is Sr. Since t is variable-free, r is variable-free and NŒr� = NdŒr� = a
for some a. And since t is variable-free, NŒt� = NdŒt� = NdŒSr�; by TA(f),
this is NŒS�hNdŒr�i = NŒS�hai = a 1; so NŒt� = a 1; so a 1 = n.
By assumption Q

ǸD
r D a; and by DI, Q

ǸD
Sr D Sr; so by DE,

Q
ǸD

Sr D Sa; but since a 1 = n by the corollary to T8.12, Q
ǸD

Sa D n; so byDE, Q
ǸD

Sr D n, where this is to say Q
ǸD

t D n.

(C) t is rC s. Since t is variable-free, r and s are variable-free and NŒr� =
NdŒr� = a and NŒs� = NdŒs� = b for some a and b. Since t is variable-free,
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NŒt� = NdŒt� = NdŒrC s�; by TA(f), NdŒrC s� = NŒC�ha; bi = a b; so
NŒt� = a b; so a b = n. By assumption, Q

ǸD
r D a and Q

ǸD
s D b;

and byDI, Q
ǸD

rC s D rC s; so byDE, Q
ǸD

rC s D aC b; but
since a b = n, by T8.12, Q

ǸD
aCb D n; so byDE, Q

ǸD
rCs D n,

where this is to say Q
ǸD

t D n.

(�) Similarly [by homework].

If variable-free t has k function symbols and NŒt� = n, then Q
ǸD

t D n.

Indct: For any variable-free term t, if NŒt� = n then Q
ǸD

t D n.

Our intended result, that Q correctly decides atomic sentences of LNT is not an
argument by induction, but rather collects what we have done into a simple argument.
The general idea is that from the truth or falsity of an atomic sentence including some
terms s and t, by semantic reasoning we may obtain a result for some corresponding
objects a; b 2 N; then, given T8.14 and T8.16, a result in Q for terms a; b—and
finally, with T8.17, the desired result for the original atomic involving terms s and t.

T8.18. Q correctly decides atomic sentences of LNT: For any sentence P of the sort
s D t, s � t, or s < t, if NŒP � = T then Q

ǸD
P ; and if NŒP � = T then

Q
ǸD
�P .

Consider an atomic sentence P of the sort s D t, s � t, or s < t. Since P is a
sentence, s and t are variable-free. A few selected parts are worked as examples.

(a) Suppose NŒs D t� = T; then by TI, for any d, NdŒs D t� = S; so by SF(r),
hNdŒs�;NdŒt�i 2 NŒD�; so NdŒs� = NdŒt�. But since s and t are variable-
free, for some a and b, NdŒs� = NŒs� = a and NdŒt� = NŒt� = b; so a = b;
so by T8.14, Q

ǸD
a D b; but since NŒs� = a and NŒt� = b, by T8.17,

Q
ǸD

s D a and Q
ǸD

t D b; so byDE, Q
ǸD

s D t.

(b) Suppose NŒs D t� = T; then [by homework] Q
ǸD

s ¤ t.

(c) Suppose NŒs � t� = T; then NŒ9u.u C s D t/� = T; so by TI, for any d,
NdŒ9u.uCs D t/� = S; so by SF0.9/, for some m 2 U, Nd.ujm/ŒuCs D t� =
S. d.ujm/Œu� = m; so by TA(v), Nd.ujm/Œu� = m; since s and t are variable-
free, for some a and b, Nd.ujm/Œs� = NŒs� = a and Nd.ujm/Œt� = NŒt� = b; so by
TA(f), Nd.ujm/ŒuC s� = NŒC�hm; ai = m a. So by SF(r), hm a; bi 2 NŒD�;
so m a = b; so a b; so by T8.14, Q

ǸD
a � b. But since NŒs� = a

and NŒt� = b, by T8.17, Q
ǸD

s D a and Q
ǸD

t D b; so by DE,
Q

ǸD
s � t.

(d) Suppose NŒs � t� = T; then NŒ9u.u C s D t/� = T; so by TI, for some d,
NdŒ9u.uC s D t/� = S; so by SF0.9/, for any o 2 U, Nd.ujo/ŒuC s D t� = S;
let m be an arbitrary individual of this sort; then Nd.ujm/Œu C s D t� = S.
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d.ujm/Œu� = m; so by TA(v), Nd.ujm/Œu� = m; and since s and t are variable-
free, for some a and b, Nd.ujm/Œs� = NŒs� = a and Nd.ujm/Œt� = NŒt� = b; so by
TA(f), Nd.ujm/ŒuC s� = NŒC�hm; ai = m a. So by SF(r), hm a; bi … NŒD�;
so m a = b; and since m is arbitrary, for any o 2 U, o a = b; so a b;
so by T8.16, Q

ǸD
a — b. But since NŒs� = a and NŒt� = b, by T8.17,

Q
ǸD

s D a and Q
ǸD

t D b; so byDE, Q
ǸD

s — t.

(e) Suppose NŒs < t� = T; then [by homework] Q
ǸD

s < t.

(f) Suppose NŒs < t� = T; then [by homework] Q
ǸD

s – t.

This is an interesting result! Q is sufficient to decide arbitrary atomic sentences of
basic arithmetic. So, for example, insofar as the formula 3�2 D 2�3 is true on N, by
T8.18, Q

ǸD
3 � 2 D 2 � 3 (compare E6.40e). And similarly for atomic sentences

and their negations whose terms are arbitrarily complex.

E8.37. Complete the argument for T8.17 by completing the case for (�). You should
set up the entire induction, but may appeal to the text for parts that are already
completed, just as the text appeals to homework.

E8.38. Complete the remaining cases of T8.18 to show that Q correctly decides
atomic sentences of LNT.

8.4.4 Case

We conclude the chapter with some more examples of mathematical induction, this
time working toward important results about inequality. The primary result is a version
of trichotomy, the result that for any n, Q

ǸD
8x.x < n _ x D n _ n < x/. Again,

though, we begin with preliminaries. First, a simple argument that introduces a pattern
of reasoning we shall see again.

T8.19. For any n,
ǸD
8x8y.x D Sy ! Œ.y D 0 _ y D 1 _ : : : _ y D n/ !

.x D S0 _ x D S1 _ : : : _ x D Sn/�/.

By induction on the value of n we show,
ǸD

j D Sk ! Œ.k D 0 _ : : : _
k D n/! .j D S0 _ : : : _ j D Sn/�. The result follows by 8I.

Basis: n = 0. In this case, we require
ǸD

j D Sk ! Œk D 0! j D S0�. But
this is immediate by a couple applications of!I.

Assp: For any i, 0 i k,
ǸD

j D Sk ! Œ.k D 0 _ : : : _ k D i / !
.j D S0 _ : : : _ j D S i /�.
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Show:
ǸD

j D Sk ! Œ.k D 0 _ : : : _ k D k/! .j D S0 _ : : : _ j D Sk/�.
Let m = k 1. For the derivation, see the box below.

Indct: For any n,
ǸD

j D Sk ! Œ.k D 0 _ : : : _ k D n/! .j D S0 _ : : : _
j D Sn/�.

So by 8I,
ǸD
8x8y.x D Sy ! Œ.y D 0 _ : : : _ y D n/! .x D S0 _ : : : _

x D Sn/�/, and the theorem is proved.

The basic idea is that we can use j D Sk together with an extended version of _E on
k D 0_ : : :_ k D n to get the result. The induction works by obtaining the result for
the first disjunct, and then showing that no matter how far we have gone, it is always
possible to go to the next stage. Observe that we have not included parentheses for
extended disjunctions—for it is always possible by Assoc to group disjuncts so as to
justify arbitrary applications of _E and _I as above (and we prove it in E8.40). This
theorem is useful for the next.

Recall that the bounded quantifiers .8x < t/P , .9x < t/P , .8x � t/P , and
.9x � t/P , are abbreviations with associated derived introduction and exploitation
rules (see page 299). Now,
T8.20. For any n, (i) Q

ǸD
.8x � n/.x D 0 _ x D 1 _ : : : _ x D n/ and (ii)

Q
ǸD

.8x < n/.; ¤ ; _ x D 0 _ x D 1 _ : : : _ x D n 1/.

The first disjunct ; ¤ ; in (ii) guarantees that the result is a well-formed sentence
even when n = 0. When n = 0 the series reduces to ; ¤ ; since it contains

T8.19 (show)

1. j D Sk ! Œ.k D 0 _ : : : _ k D m/! .j D S0 _ : : : _ j D Sm/� by assp

2. j D Sk A (g,!I)

3. k D 0 _ : : : _ k D m _ k D k A (g,!I)

4. k D 0 _ : : : _ k D m A (g, 3_E)

5. .k D 0 _ : : : _ k D m/! .j D S0 _ : : : _ j D Sm/ 1,2!E
6. j D S0 _ : : : _ j D Sm 5,4!E
7. j D S0 _ : : : _ j D Sm _ j D Sk 6 _I

8. k D k A (g, 3_E)

9. j D Sk 2,8DE
10. j D S0 _ : : : _ j D Sm _ j D Sk 9 _I
11. j D S0 _ : : : _ j D Sm _ j D Sk 3,4-7,8-10 _E
12. .k D 0 _ : : : _ k D k/! .j D S0 _ : : : _ j D Sk/ 3-11!I
13. j D Sk ! Œ.k D 0 _ : : : _ k D k/! .j D S0 _ : : : _ j D Sk/� 2-12!I
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all the members “up” to n 1 and there are not any; when n = 1 the series is
; ¤ ; _ x D 0; and so forth. We work part (ii). By induction on n,

Basis: Suppose n = 0. We need to show Q
ǸD

.8x < ;/.; ¤ ;/. But this is
easy with T6.54 and the rule (8I).

1. j < ; A (g, (8I))

2. j – ; T6.54
3. ? 1,2 ?I

4. ; ¤ ; 3 ?E

5. .8x < ;/.; ¤ ;/ 1-4 (8I)

Assp: For 0 i k, Q
ǸD

.8x < i /.; ¤ ; _ x D 0 _ : : : _ x D i 1/.
Show: Q

ǸD
.8x < k/.; ¤ ; _ x D 0 _ : : : _ x D k 1/. Let m = k 1. Then

by assumption Q
ǸD

.8x < m/.; ¤ ;_ x D 0_ : : :_ x D m 1/. See
the derivation on page 400.

Indct: For any n, Q
ǸD

.8x < n/.; ¤ ; _ x D 0 _ x D 1 : : : _ x D n 1/.

E8.39. Complete the demonstration of T8.20 by showing part (i). Hint: The basis is
easy with T6.53.

*E8.40. For extended disjunctions we have not included parentheses. Say these
disjunctions are implicitly left-associated as, ....A _ B/ _ C/ _D/ _E/. Then
applications of _-rules apply directly just to the main, rightmost, operator. Where,

Pn = A1 _ : : : _Au _Av _ : : : _An

Q1
u = A1 _ : : : _Au

Qv
n = Av _ : : : _An

are each left-associated, show that our “loose” reasoning is justified by showing
that for any Pn and any u, 1 u n,

ǸD
Pn $ .Q1

u _ Qv
n/. Thus the left-

associated Pn is provably equivalent to disjunctions with arbitrary main operator.
Hint: The argument is by induction on the value of n. Let m = k 1; then
Pk = .Pm _Ak/.

8.4.5 Case

The next theorem is a converse to T8.20 (after unabbreviation of its bounded quan-
tifiers), and illustrates a pattern of reasoning we have already seen in application to
extended disjunctions.

T8.21. For any n, (i) Q
ǸD
8xŒ.x D 0 _ x D 1 _ : : : _ x D n/! x � n� and (ii)

Q
ǸD
8xŒ.; ¤ ; _ x D 0 _ : : : _ x D n 1/! x < n�.
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Again I illustrate just (ii). For any n and a n we show by induction on the value
of a that Q

ǸD
.; ¤ ; _ j D 0 _ : : : _ j D a 1/ ! j < n; the case when

a = n gives Q
ǸD

.; ¤ ;_ j D 0_ : : :_ j D n 1/! j < n; and the desired
result follows immediately by 8I. Observe that when a = 0 the series reduces to
; ¤ ; as before.

Basis: a = 0. We need Q
ǸD
; ¤ ; ! j < n.

1. ; ¤ ; A (g,!I)

2. ; D ; DI
3. ? 2,1 ?I
4. j < n 3 ?E

5. ; ¤ ; ! j < n 1-4!I

Assp: For any i, 0 i k n, Q
ǸD

.; ¤ ;_j D 0_: : :_j D i 1/! j < n.

Show: For k n, Q
ǸD

.; ¤ ; _ j D 0 _ : : : _ j D k 1/ ! j < n. Let
k 1 = m.

1. .; ¤ ; _ j D 0 _ : : : _ j D m 1/! j < n by assp
2. ; ¤ ; _ j D ; _ : : : _ j D m 1 _ j D k 1 A (g,!I)

3. ; ¤ ; _ j D ; _ : : : _ j D m 1 A (g, 2_E)

4. j < n 1,3!E

5. j D k 1 A (g, 2_E)

6. k 1 < n T8.14 (since k 1 n)
7. j < n 6,5DE

8. j < n 2,3-4,5-7 _E

9. .; ¤ ; _ j D 0 _ : : : _ j D k 1/! j < n 2-8!I

Indct: For any a n, Q
ǸD

.; ¤ ; _ j D 0 _ : : : _ j D a 1/! j < n.

So Q
ǸD

.; ¤ ; _ j D 0 _ : : : _ j D n 1/ ! j < n; and by 8I, Q
ǸD

8xŒ.; ¤ ; _ x D 0 _ : : : _ x D n 1/! x < n�.

The next theorem does not require mathematical induction at all, but is required
for our trichotomy result.

T8.22. For any n, (i) Q
ǸD
8xŒn � x ! .n D x _ Sn � x/� and (ii) Q

ǸD

8xŒn < x ! .Sn D x _ Sn < x/�.

Part (ii) is worked in the box on page 402.

With this, we are ready to obtain the result at which we have been aiming:

T8.23. For any n, (i) Q
ǸD
8x.x � n _ n � x/ and (ii) Q

ǸD
8x.x < n _ x D

n _ n < x/.
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T8.20 (show)

1. 8x8y.x D Sy ! Œ.y D 0 _ : : : _ y D m 1/ !
.x D 1 _ : : : _ x D Sm 1/�/ T8.19

2. .8x < m/.; ¤ ; _ x D 0 _ : : : _ x D m 1/ by assp

3. j < k A (g, (8I))

4. j D 0 _ 9y.j D Sy/ from T6.51
5. j D 0 A (g, 4_E)

6. j D 0 _ : : : _ j D k 1 5 _I
7. ; ¤ ; _ j D 0 _ : : : _ j D k 1 6 _I

8. 9y.j D Sy/ A (g, 4_E)

9. j D Sl A (g, 89E)

10. 9u.SuC j D k/ 3 abv
11. ShC j D k A (g, 109E)

12. ShC Sl D k 11,9DE
13. ShC Sl D S.ShC l/ T6.48
14. S.ShC l/ D k 12,13DE
15. S.ShC l/ D Sm 14 abv
16. S.ShC l/ D Sm! ShC l D m T6.46
17. ShC l D m 16,15!E
18. 9u.SuC l D m/ 17 9I
19. l < m 18 abv
20. l < m 10,11-19 9E
21. ; ¤ ; _ l D 0 _ : : : _ l D m 1 2,20 (8E)
22. ; ¤ ; A (g, 21_E)

23. ; ¤ ; _ j D 0 _ j D 1 _ : : : _ j D k 1 22 _I

24. l D 0 _ : : : _ l D m 1 A (g, 21_E)

25. j D Sl ! Œ.l D 0 _ : : : _ l D m 1/ !
.j D 1 _ : : : _ j D Sm 1/� 1 with 8E

26. .l D 0 _ : : : _ l D m 1/! .j D 1 _ : : : _ j D Sm 1/ 25,9!E
27. j D 1 _ : : : _ j D Sm 1 26,24!E
28. j D 1 _ : : : _ j D k 1 27 abv
29. ; ¤ ; _ j D 0 _ j D 1 _ : : : _ j D k 1 28 _I
30. ; ¤ ; _ j D 0 _ j D 1 _ : : : _ j D k 1 21,22-23,24-29 _E
31. ; ¤ ; _ j D 0 _ : : : _ j D k 1 8,9-30 9E
32. ; ¤ ; _ j D 0 _ : : : _ j D k 1 4,5-7,8-31 _E
33. .8x < k/.; ¤ ; _ x D 0 _ x D 1 _ : : : _ x D k 1/ 3-32 (8I)

The derivation is long but straightforward. From T6.51, either j is zero or it is not. If j is
zero, then the result is easy. If j is the successor of some l , then l < m and the assumption
applies; then the result follows with T8.19. Again parentheses for extended disjunctions
are omitted.



CHAPTER 8. MATHEMATICAL INDUCTION 401

We show (ii). By induction on the value of n, Q
ǸD

j < n _ j D n _ n < j ;
the result immediately follows by 8I.

Basis: n = 0. We need to show that Q
ǸD

j < 0 _ j D 0 _ 0 < j .
1. j D 0 _ 9y.j D Sy/ from T6.51
2. j D 0 A (g, 1_E)

3. j D 0 _ 0 < j 2 _I

4. 9y.j D Sy/ A (g, 1_E)

5. j D Sk A (g, 49E)

6. Sk C 0 D Sk T6.47
7. Sk C 0 D j 6,5DE
8. 9u.SuC 0 D j / 7 9I
9. 0 < j 8 abv

10. j D 0 _ 0 < j 9 _I

11. j D 0 _ 0 < j 4,5-10 9E

12. j D 0 _ 0 < j 1,2-3,4-11 _E
13. j < 0 _ j D 0 _ 0 < j 12 _I

Assp: For any i; 0 i k, Q
ǸD

j < i _ j D i _ i < j .

Show: Q
ǸD

j < k _ j D k _ k < j . Let m = k 1.

1. .8x < m/.; ¤ ; _ x D 0 _ x D 1 _ : : : _ x D m 1/ T8.20
2. 8xŒ.; ¤ ; _ x D 0 _ : : : _ x D m 1 _ x D k 1/! x < k� T8.21
3. 8xŒm < x ! .Sm D x _ Sm < x/� T8.22
4. j < m _ j D m _m < j by assp

5. j < m A (g, 4_E)

6. ; ¤ ; _ j D 0 _ : : : _ j D m 1 1,5 (8E)
7. ; ¤ ; _ j D 0 _ : : : _ j D m 1 _ j D k 1 6 _I
8. .; ¤ ; _ j D 0 _ : : : _ j D m 1 _ j D k 1/! j < k 2 8E
9. j < k 8,7!E

10. j < k _ j D k _ k < j 9 _I

11. j D m A (g, 4_E)

12. m < k T8.14 (m k)
13. j < k 12,11DE
14. j < k _ j D k _ k < j 13 _I

15. m < j A (g, 4_E)

16. m < j ! .Sm D j _ Sm < j / 3 8E
17. j D Sm _ Sm < j 16,15!E
18. j D k _ k < j 17 abv
19. j < k _ j D k _ k < j 18 _I

20. j < k _ j D k _ k < j 4,5-19 _E
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Indct: For any n, Q
ǸD

j < n _ j D n _ n < j .

Again, the “three-part” _E from the show is (clear but) not strictly according to
the rule. And since for any n, Q

ǸD
j < n _ j D n _ n < j , by 8I, for any n,

Q
ǸD
8x.x < n _ x D n _ n < x/.

Thus the trichotomy result is established.

E8.41. Complete the demonstration of T8.23 by showing part (i) of T8.21, T8.22, and
then T8.23.

T8.22(ii)

1. n < j A (g,!I)

2. 9u.SuC n D j / 1 abv
3. Sk C n D j A (g, 29E)

4. k D ; _ 9y.k D Sy/ from T6.51
5. k D ; A (g, 4_E)

6. S; C n D j 3,5DE
7. S; C n D Sn T8.12 (1 n = Sn)
8. j D Sn 7,6DE
9. j D Sn _ Sn < j 8 _I

10. 9y.k D Sy/ A (g, 4_E)

11. k D Sl A (g, 109E)

12. Sk C n D k C Sn T8.15
13. k C Sn D j 3,12DE
14. Sl C Sn D j 13,11DE
15. 9u.SuC Sn D j / 14 9I
16. Sn < j 15 abv
17. j D Sn _ Sn < j 16 _I
18. j D Sn _ Sn < j 10,11-17 9E
19. j D Sn _ Sn < j 4,5-9,10-18 _E
20. j D Sn _ Sn < j 2,3-19 9E
21. n < j ! .j D Sn _ Sn < j / 1-20!I
22. 8xŒn < x ! .x D Sn _ Sn < x/� 21 8I

From T6.51, either k is zero or it is not. If k is zero, it is a simple addition problem to show
that j D Sn and so obtain the desired result. If k is a successor, then Sn < j and again
we have the desired result.
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8.4.6 Case

Finally, a couple of quick theorems that move from the provability of particular
instances to the provability of bounded quantifications.

T8.24. For any n and formula P .x/,

(i) if Q
ǸD

P .0/ or . . . or Q
ǸD

P .n/, then Q
ǸD

.9x � n/P .x/

(ii) if 0 = 0 or Q
ǸD

P .0/ or . . . or Q
ǸD

P .n 1/, then Q
ǸD

.9x < n/P .x/.

In the second case, again, we include the first disjunct to keep the conditional
defined in the case when n = 0; then the conditional obtains because the antecedent
does not. This theorem is nearly trivial: (i) For some m n suppose Q

ǸD
P .m/;

by T8.14, Q
ǸD

m � n; so by (9I), Q
ǸD

.9x � n/P .x/. Similarly for (ii).

So if P is provable for some individual n or n then it is immediate that the
corresponding bounded existential generalization is provable.

*T8.25. For any n and formula P .x/,

(i) if Q
ǸD

P .0/ and . . . and Q
ǸD

P .n/, then Q
ǸD

.8x � n/P .x/

(ii) if 0 = 0 and Q
ǸD

P .0/ and . . . and Q
ǸD

P .n 1/, then Q
ǸD

.8x < n/P .x/.

This time in the second case we include a trivial truth in order to keep the condi-
tional defined when n = 0; when n = 0, then the antecedent is trivially true, but the
consequent follows from nothing. The argument is by induction on the value of n.

So if Q proves P for each individual n or n then Q proves the corresponding
bounded universal generalization.

*E8.42. Provide derivations to show both parts of T8.25.

E8.43. For each of the following concepts, explain in an essay of about two pages,
so that (high school age) Hannah could understand. In your essay, you should
(i) identify the objects to which the concept applies, (ii) give and explain the
definition, and give and explicate examples (iii) where the concept applies, and
(iv) where it does not. Your essay should exhibit an understanding of methods
from the text.

a. The use of the inductive assumption in an argument from mathematical induc-
tion.

b. The reason mathematical induction works as a deductive argument form.
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Final Theorems of Chapter 8

T8.11 For any n 2 U and assignment d, NdŒn� = n.

T8.12 For any a; b; c 2 U, if a b = c, then Q
ǸD

aC b D c. Corollary: if a 1 = b
then Q

ǸD
Sa D b.

T8.13 For any a, b, c 2 U, if a b = c then Q
ǸD

a � b D c.

T8.14 For any a; b 2 U, (i) if a = b then Q
ǸD

a D b; (ii) if a b then Q
ǸD

a � b;
and (iii) if a b then Q

ǸD
a < b.

T8.15 Q
ǸD

Sj C n D j C Sn.

T8.16 For any a; b 2 U, (i) if a = b, then Q
ǸD

a ¤ b; (ii) if a b, then Q
ǸD

a — b;
and (iii) if a b, then Q

ǸD
a – b.

T8.17 For any variable-free term t of LNT, if NŒt� = n, then Q
ǸD

t D n.

T8.18 Q correctly decides atomic sentences of LNT: For any sentence P of the sort s D t,
s � t, or s < t, if NŒP � = T then Q

ǸD
P ; and if NŒP � = T then Q

ǸD
�P .

T8.19 For any n,
ǸD
8x8y.x D Sy ! Œ.y D 0_y D 1_ : : :_y D n/! .x D S0_

x D S1 _ : : : _ x D Sn/�/.

T8.20 For any n, (i) Q
ǸD

.8x � n/.x D 0 _ x D 1 _ : : : _ x D n/ and (ii)
Q

ǸD
.8x < n/.; ¤ ; _ x D 0 _ x D 1 _ : : : _ x D n 1/.

T8.21 For any n, (i) Q
ǸD
8x.Œx D 0 _ x D 1 _ : : : _ x D n� ! x � n/ and (ii)

Q
ǸD
8x.Œ; ¤ ; _ x D 0 _ : : : _ x D n 1�! x < n/.

T8.22 For any n, (i) Q
ǸD
8xŒn � x ! .n D x _ Sn � x/� and (ii) Q

ǸD

8xŒn < x ! .Sn D x _ Sn < x/�.

T8.23 For any n, (i) Q
ǸD
8x.x � n _ n � x/ and (ii) Q

ǸD
8x.x < n _ x D n _

n < x/.

T8.24 For any n and formula P .x/,

(i) if Q
ǸD

P .0/ or . . . or Q
ǸD

P .n/, then Q
ǸD

.9x � n/P .x/

(ii) if 0 = 0 or Q
ǸD

P .0/ or . . . or Q
ǸD

P .n 1/, then Q
ǸD

.9x < n/P .x/.

T8.25 For any n and formula P .x/,

(i) if Q
ǸD

P .0/ and . . . and Q
ǸD

P .n/, then Q
ǸD

.8x � n/P .x/

(ii) if 0 = 0 and Q
ǸD

P .0/ and . . . and Q
ǸD

P .n 1/, then Q
ǸD

.8x < n/P .x/.
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Introductory

In Part I we introduced four notions of validity. In this part, we set out to show that
they are interrelated as follows:

Logical Validity
Semantic
Validity

Validity in ND

Validity in AD
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An argument is valid in AD iff it is valid in ND. And an argument is semantically valid
iff it is valid in the derivation systems. So the three formal notions apply to exactly
the same arguments. And if an argument is semantically valid, then it is logically
valid. So any of the formal notions imply logical validity for a corresponding ordinary
argument.

More carefully, in Part I, we introduced four main notions of validity. There
is logical validity from Chapter 1, semantic validity from Chapter 4, and syntactic
validity in the derivation systems AD from Chapter 3 and ND from Chapter 6. These
notions are independently defined. Thus it is not immediate or obvious how they are
related. We turn in this part to the task of thinking about these notions, and especially
about how they are related. The primary result is that � � P iff �

ÀD
P iff �

ǸD
P

(iff �
ǸD

P ). Thus our different formal notions of validity are met by just the same
arguments, and the derivation systems—defined in terms of form, are “faithful” to the
semantic notion—defined in terms of truth. What is derivable is neither more nor less
than what is semantically valid. And this is just right: If what is derivable were more
than what is semantically valid, derivations could lead us from true premises to false
conclusions; if it were less, not all semantically valid arguments could be identified
as such by derivations. That the derivable is no more than what is semantically valid
is soundness of a derivation system; that it is no less is completeness. In addition,
we show that if an argument is semantically valid, then a corresponding ordinary
argument is logically valid. Given the equivalence between the formal notions of
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validity, it follows that if an argument is valid in any of the formal senses, then it is
logically valid. This connects the formal machinery to the notion of validity with
which we began.

Notions of soundness and completeness appear in a variety of contexts. We have
seen sound arguments from Chapter 1; in this part we have sound derivation systems,
and encounter sound theories. Similarly, in this part we have complete derivation
systems and shall encounter complete (and incomplete) theories. These notions of
soundness and completeness are separately defined, and apply to different objects.
This invites confusion! One option is to introduce new vocabulary. But the weight of
tradition is strong. Also, in section 11.4.1 we exhibit a notion of relative soundness
such that both the soundness of derivation systems and the soundness of theories
are instances of it. And similarly, there is a relative completeness such that both the
completeness of derivation systems and the completeness of theories are instances of
it. So the different notions appear as separate instances of more general kinds. In order
to indicate distinctness at the same time as we (honor tradition and) acknowledge
underlying conceptual connections, I introduce a (silent) diacritical mark for each—
identifying the notions with application to derivation systems with an enlarged dot,
(s̊oundness, c̊ompleteness) and ones whose application is to theories with a tilde
(s̃oundness, c̃ompleteness).

We begin in Chapter 9 showing that just the same arguments are valid in the
derivation systems ND and AD. This puts us in a position to demonstrate in Chapter 10
the core result that the derivation systems are both s̊ound and c̊omplete—that if some
premises prove P , then those premises entail P , and if some premises entail P then
those premises prove P . Chapter 11 fills out this core picture in different directions.
It begins with short sections on expressive completeness, unique readability, and
independence (these do not depend on one another or on chapters 9 or 10 and so might
be worked any time). The chapter concludes with a longer section on beginning model
theory; this builds upon the Chapter 10 discussion of relations between interpretations
and formal expressions, and concludes with the identification of some c̃omplete
theories—to contrast with ı̃ncomplete theories from Part IV.



Chapter 9

Preliminary Results

We have said that the aim of this part is to establish the following relations: An
argument is valid in AD iff it is valid in ND; an argument is semantically valid iff it is
valid in AD, and iff it is valid in ND; and if an argument is semantically valid, then it
is logically valid.

Logical Validity
Semantic
Validity

Validity in ND

Validity in AD
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In this chapter, we begin to develop these relations, taking up some of the simpler
cases. We consider the leftmost horizontal arrow, and the rightmost vertical ones. Thus
we show that quantificational (semantic) validity implies logical validity (section 9.1),
that validity in AD implies validity in ND (section 9.2), that validity in ND implies
validity in AD (section 9.3), and extend the results to ND+ (section 9.4). Implications
between semantic validity and the syntactical notions will wait for Chapter 10.

9.1 Semantic Validity Implies Logical Validity

Logical validity is defined for arguments in ordinary language. From LV, an argument
is logically valid iff there is no consistent story in which all the premises are true
and the conclusion is false. Quantificational validity is defined for arguments in a
formal language. From QV, an argument is quantificationally valid iff there is no
interpretation on which all the premises are true and the conclusion is not. So our
task is to show how facts about formal expressions and interpretations connect with
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ordinary expressions and stories. In particular, where P1 : : :Pn=Q is an ordinary-
language argument, and P 01 : : :P

0
n, Q0 are the formulas of a good translation, we show

that if P 01 : : :P
0
n � Q0, then the ordinary argument P1 : : :Pn=Q is logically valid.

The reasoning itself is straightforward. We will spend a bit more time discussing the
result.

Recall our criterion of goodness for translation CG from Chapter 5 (page 135).
When we identify a (sentential or quantificational) interpretation function II, we
thereby identify an intended interpretation II! corresponding to any way ! that the
world can be. For example, corresponding to the interpretation function,

II B: Barack is happy

M : Michelle is happy

II! ŒB� = T just in case Barack is happy at !, and similarly for M . And a formal
translation A0 of some ordinary A is good only if for any !, II! ŒA0� has the same
truth value as A at !. Given this, we can show,

T9.1. For any ordinary argument P1 : : :Pn=Q, with good translation consisting of
II and P 01 : : :P

0
n, Q0, if P 01 : : :P

0
n � Q0, then P1 : : :Pn=Q is logically valid.

Consider an ordinary P1 : : :Pn=Q and good translation consisting of II and
P 01 : : :P

0
n, Q0. Suppose P 01 : : :P

0
n � Q0 but P1 : : :Pn=Q is not logically valid.

From the latter, by LV, there is some consistent story ! where each of P1 : : :Pn
is true but Q is false; and since ! is consistent and Q is false, Q is not true at !.
Since P1 : : :Pn are true at !, by CG, II! ŒP 01� = T and . . . and II! ŒP 0n� = T; and
since Q is not true at !; by CG, II! ŒQ0� = T. So II! is an interpretation I that has
each of IŒP 01� = T and . . . and IŒP 0n� = T, and IŒQ0� = T; so by QV, P 01 : : :P

0
n ² Q0.

This is impossible; reject the assumption: if P 01 : : :P
0
n � Q0 then P1 : : :Pn=Q is

logically valid.

It is that easy. If there is no interpretation where P 01 : : :P
0
n are true but Q0 is not, then

there is no intended interpretation where P 01 : : :P
0
n are true but Q0 is not; so, by CG,

there is no consistent story where the premises are true and the conclusion is not; so
P1 : : :Pn=Q is logically valid. So if P 01 : : :P

0
n � Q0 then P1 : : :Pn=Q is logically

valid. This is good! It shows that we can apply our formal machinery to the arguments
with which we began.

Let us make a couple of observations: First, CG is stronger than is actually
required for our application of semantic validity to logical validity. CG requires a
biconditional for good translation.

A is true at ! ” II! ŒA0� = T
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But our reasoning applies to premises just the left-to-right portion of this condition:
if P is true at ! then II! ŒP 0� = T. And for the conclusion, the reasoning goes in the
opposite direction: if II! ŒQ0� = T then Q is true at ! (so that if Q is not true at !, then
II! ŒQ0� = T). The biconditional from CG guarantees both. But, strictly, for premises,
all we need is that truth of an ordinary expression at a story guarantees truth for the
corresponding formal one at the intended interpretation. And for a conclusion, all we
need is that truth of the formal expression on the intended interpretation guarantees
truth of the corresponding ordinary expression at the story.

Thus we might use our methods to identify logical validity even where translations
are less than completely good. Consider, for example, the following argument:

(A)
Bob took a shower and got dressed
Bob took a shower

As discussed in Chapter 5 (page 152), where II gives S the same value as ‘Bob took a
shower’ and D the same as ‘Bob got dressed’, we might agree that there are cases
where II! ŒS ^ D� = T but ‘Bob took a shower and got dressed’ is false. So we
might agree that the right-to-left conditional is false, and the translation is not good.
However, even if this is so, given our interpretation function, there is no situation
where ‘Bob took a shower and got dressed’ is true but S ^D is F at the corresponding
intended interpretation. So the left-to-right conditional is sustained. So even if the
translation is not good by CG, it remains possible to use our methods to demonstrate
logical validity. Since it remains that if the ordinary premise is true at a story then
the formal expression is true at the corresponding intended interpretation, semantic
validity implies logical validity. A similar point applies to conclusions. Of course,
we already knew that this argument is logically valid. But the point applies to more
complex arguments as well.

Second, observe that our reasoning does not work in reverse. Logical validity for
P1 : : :Pn=Q does not imply P 01 : : :P

0
n � Q0. Or, put the other way around, finding

a quantificational interpretation where P 01 : : :P
0
n are true and Q0 is not shows that

P 01 : : :P
0
n ² Q0; however it does not show that P1 : : :Pn=Q is not logically valid.

Here is why: There may be quantificational interpretations which do not correspond
to any consistent story. The situation is like this:

Intended
Interpretations

Quantificational Interpretations

Intended interpretations are a subset of all interpretations. The intended interpretations
correspond to consistent stories. If no interpretation whatsoever has the premises
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true and the conclusion not, then no intended interpretation has the premises true and
conclusion not, so no consistent story makes the premises true and the conclusion
not. But it may be that some unintended interpretation makes the premises true and
conclusion false. Thus P 01 : : :P

0
n ² Q0, shows that there is an interpretation with

the premises true and conclusion not; but it does not show that there is an intended
interpretation where the premises are true and the conclusion is not; so it does not
show that there is a consistent story where P1 : : :Pn are true but Q is not; so it does
not show that P1 : : :Pn=Q is invalid.

It is easy to see why there might be unintended interpretations. Consider, first,
this standard argument:

(B)
All humans are mortal
Socrates is human
Socrates is mortal

It is logically valid. But consider what happens when we translate into a sentential
language. We might try an interpretation function as follows:

A: All humans are mortal

H : Socrates is human

M : Socrates is mortal

with translation, A, H=M . But, of course, there is an interpretation (row of the truth
table) J on which A andH are T andM is F. So the argument is not sententially valid.
Given the interpretation function, J would correspond to a story where all humans are
mortal, Socrates is human, and Socrates is not mortal—but such a story is inconsistent!
So interpretation J is (unintended and) not sufficient to show that the argument is
logically invalid. The interpretation function matches every consistent story to an
interpretation; but this leaves open that there are interpretations not matched to
consistent stories. Sentential languages are sufficient to identify validity when validity
results from truth functional structure; this argument is valid, but not valid because of
truth functional structure.

We are in a position to expose its validity only in the quantificational case. Thus
we might have,

s: Socrates

H 1: fo j o is humang

M 1: fo j o is mortalg
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with translation 8x.Hx !Mx/, Hs=Ms. The argument is quantificationally valid.
And, as above, it follows that the ordinary one is logically valid.

But related problems may arise even for quantificational languages. Thus consider,

(C)
Socrates is necessarily human
Socrates is human

Again, the argument is logically valid—if Socrates is human according to every
consistent story, then Socrates is human according to the real story. But now, with
a quantificational language, we end up with something like an additional relation
symbol N 1 for fo j o is necessarily humang, and translation Ns=Hs. And this is
not quantificationally valid. Consider, for example, an interpretation with U = f1g,
IŒs� = 1, IŒN � = f1g, and IŒH � = f g. Then the premise is true, but the conclusion is not.
Again, the problem is that the argument includes structure that our quantificational
language fails to capture. As it turns out, modal logic is precisely an attempt to
work with structure introduced by notions of possibility and necessity. Where ‘�’
represents necessity, this argument, with translation �Hs=Hs is valid on standard
modal systems.1

The upshot of this discussion is that our methods are adequate when they work to
identify validity. When an argument is quantificationally valid, we can be sure that it
is logically valid. But not the converse. Thus quantificational invalidity does not imply
logical invalidity. We should not be discouraged by this or somehow put off the logical
project. Rather, we have a rationale for expanding the logical project. In Part I, we set
up formal logic as a “tool” or “machine” to identify logical validity. Beginning with
the notion of logical validity, we introduce our formal languages, learn to translate
into them, and to manipulate arguments by semantical and syntactical methods. The
sentential notions have some utility. But when it turns out that sentential languages
miss important structure, we expand the language to include quantificational structure,
developing the semantical and syntactical methods to match. And similarly, if our
quantificational languages should turn out to miss important structure, we expand the
language to capture that structure, and further develop the semantical and syntactical
methods. As it happens, the classical quantificational logic we have seen so far is
sufficient to identify validity in a wide variety of contexts—and, in particular, for
arguments in mathematics. Also, controversy may be introduced as one expands
beyond the classical quantificational level. So the logical project is a live one. But let
us return to the kinds of validity we have already seen.

E9.1. (i) Recast the above reasoning to show directly a corollary to T9.1: If � Q0,
then Q is necessarily true (that is, there is no consistent story where it is false).
(ii) Suppose ² Q0; does it follow that Q is not necessarily true? Explain.

1Modal logics are introduced in Priest, Non-Classical Logics. His book is profitably read together
with Roy, “Natural Derivations for Priest.”
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*E9.2. In Chapter 5 (page 148) we informally suggest inductive reasoning to show
that our translation procedure (TP) gives the right results. Make this rigorous. That
is, for an ordinary P and good formal translation II and P 0, show by induction on
the number of ordinary truth functional operators (branching in the parse tree for
P ) that P is true at world ! iff II! ŒP 0� = T. Hint: When P has k operators, for
some ordinary operator Op and equivalent formal expression Op0, P is of the sort
Op.A1 : : :An/ and P 0 is Op0.A01 : : :A

0
n/ for A1 : : :An with k operators.

9.2 Validity in AD Implies Validity in ND

It is easy to see that if �
ÀD

P , then �
ǸD

P . Roughly, anything we can accomplish
in AD we can accomplish in ND as well. If a premise appears in an AD derivation,
that same premise can be used in ND. If an axiom appears in an AD derivation, that
axiom can be derived in ND. And if a line is justified by MP or Gen in AD, that
same line may be justified by rules of ND. So anything that can be derived in AD can
be derived in ND. Officially, this reasoning is by induction on the line numbers of
an AD derivation, and it is appropriate to work out the details more formally. The
argument by mathematical induction is longer than anything we have seen so far, but
the reasoning is straightforward.

*T9.2. If �
ÀD

P , then �
ǸD

P .

Suppose �
ÀD

P . Then there is an AD derivation A = hQ1 : : :Qni of P from
premises in � , with Qn = P . We show that there is a corresponding ND derivation
N , such that if Qi appears on line i of A, then Qi appears, under the scope of the
premises alone, on the line numbered i of N . It follows that �

ǸD
P . For any

premises Qa;Qb; : : : ;Qj in A, let N begin,

0.a Qa P
0.b Qb P
:::

0.j Qj P

Now we reason by induction on the line numbers in A. The general plan is
to construct a derivation N which accomplishes just what is accomplished in
A. Fractional line numbers, as above, maintain the parallel between the two
derivations.

Basis: Q1 in A is a premise or an instance of A1, A2, A3, A4, A5, A6, A7, or A8.

(prem) If Q1 is a premise Qi , continue N as follows:
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0.a Qa P
0.b Qb P
:::

0.j Qj P
1 Qi 0.i R

So Q1 appears, under the scope of the premises alone, on the line numbered
1 of N .

(A1) If Q1 is an instance of A1, then it is of the form, B ! .C ! B/, and we
continue N as follows:

0.a Qa P
0.b Qb P
:::

0.j Qj P
1.1 B A (g,!I)

1.2 C A (g,!I)

1.3 B 1.1 R

1.4 C ! B 1.2-1.3!I

1 B ! .C ! B/ 1.1-1.4!I

So Q1 appears, under the scope of the premises alone, on the line numbered
1 of N .

(A2) If Q1 is an instance of A2, then it is of the form, .B ! .C ! D// !

..B ! C/! .B ! D// and we continue N as follows:

0.a Qa P
0.b Qb P
:::

0.j Qj P
1.1 B ! .C ! D/ A (g,!I)

1.2 B ! C A (g,!I)

1.3 B A (g,!I)

1.4 C 1.2, 1.3!E
1.5 C ! D 1.1, 1.3!E
1.6 D 1.5, 1.4!E

1.7 B ! D 1.3-1.6!I

1.8 .B ! C/! .B ! D/ 1.2-1.7!I

1 .B ! .C ! D//! ..B ! C/! .B ! D// 1.1-1.8!I

So Q1 appears, under the scope of the premises alone, on the line numbered
1 of N .

(A3) Homework.
(A4) Homework.
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(A5) If Q1 is an instance of A5, then it is of the form 8x.P ! Q/! .P !

8xQ/ for some variable x that is not free in P , and we continue N as
follows:

0.a Qa P
0.b Qb P
:::

0.j Qj P
1.1 8x.P ! Q/ A (g,!I)

1.2 P A (g,!I)

1.3 P ! Q 1.1 8E
1.4 Q 1.3, 1.2!E
1.5 8xQ 1.4 8I

1.6 P ! 8xQ 1.2-1.5!I

1 8x.P ! Q/! .P ! 8xQ/ 1.1-1.6!I

x is sure to be free for x in P ! Q; so (1.3) meets the constraint on 8E.
In addition, x is sure to be free for x in Q and x is not free in 8xQ; further
x is not free in 8x.P ! Q/ and we are given that x is not free in P , so x

is not free in any undischarged assumption; so the restrictions are met for
8I at (1.5). So Q1 appears, under the scope of the premises alone, on the
line numbered 1 of N .

(A6) Homework.

(A7) If Q1 is an instance of A7, then it is .xi D y/ ! .hnx1 : : :xi : : :xn
D hnx1 : : :y : : :xn/ for some variables x1 : : :xn and y and function
symbol hn, and we continue N as follows:

0.a Qa P
0.b Qb P
:::

0.j Qj P
1.1 xi D y A (g,!I)

1.2 hnx1 : : :xi : : :xn D hnx1 : : :xi : : :xn DI
1.3 hnx1 : : :xi : : :xn D hnx1 : : :y : : :xn 1.2, 1.1DE

1 .xi D y/! .hnx1 : : :xi : : :xn D hnx1 : : :y : : :xn/ 1.1-1.3!I

So Q1 appears, under the scope of the premises alone, on the line numbered
1 of N .

(A8) Homework.

Assp: For any i , 1 i k, if Qi appears on line i of A, then Qi appears, under
the scope of the premises alone, on the line numbered i of N .

Show: If Qk appears on line k of A, then Qk appears, under the scope of the
premises alone, on the line numbered k of N .
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Qk in A is a premise, an axiom, or arises from previous lines by MP or
Gen. If Qk is a premise or an axiom then, by reasoning as in the basis
(with line numbers adjusted to k:n) if Qk appears on line k of A, then Qk

appears, under the scope of the premises alone, on the line numbered k of
N . So suppose Qk arises by MP or Gen.

(MP) If Qk arises from previous lines by MP, then A is as follows:

i B ! C

:::

j B

:::

k C i; j MP

where i; j k and Qk is C . By assumption, then, there are lines in N ,

i B ! C

:::

j B

So we simply continue derivation N :

i B ! C

:::

j B

:::

k C i; j !E

So Qk appears, under the scope of the premises alone, on the line numbered
k of N .

(Gen) If Qk arises from previous lines by Gen, then A is as follows:

i B

:::

k 8xB i Gen

where i k, and Qk is 8xB. By assumption N has a line i ,

:::

i B

:::

under the scope of the premises alone. So we continue N as follows:

i B

:::

k 8xB i 8I



CHAPTER 9. PRELIMINARY RESULTS 417

Since i and k are under the scope of the premises alone, x is not free in an
undischarged assumption. Further, since there is no change of variables,
we can be sure that x is free for every free instance of x in B, and that x is
not free in 8xB. So the restrictions are met on 8I. So Qk appears, under
the scope of the premises alone, on the line numbered k of N .

In any case then, Qk appears, under the scope of the premises alone, on
the line numbered k of N .

Indct: For any line j of A, Qj appears, under the scope of the premises alone, on
the line numbered j of N .

So �
ǸD

Qn, where this is just to say �
ǸD

P . So if �
ÀD

P , then �
ǸD

P .

Notice the way we use line numbers, i:1, i:2, . . . , i:n, i in N to make good on the
claim that for each Qi in A, Qi appears on the line numbered i of N—where the line
numbered i may or may not be the i th line of N . We need this parallel between the
line numbers when it comes to cases for MP and Gen. With the parallel, we are in a
position to use line numbers from justifications in derivation A for the specification of
derivation N .

Given an AD derivation, what we have done shows that there exists an ND
derivation by showing how to construct it. We can see how this works by considering
an application. Thus, for example, consider the following derivation of T3.2:

(D)

1. B ! C prem
2. .B ! C/! ŒA! .B ! C/� A1
3. A! .B ! C/ 2,1 MP
4. ŒA! .B ! C/�! Œ.A! B/! .A! C/� A2
5. .A! B/! .A! C/ 4,3 MP
6. A! B prem
7. A! C 5,6 MP

Let this be derivation A; we will follow the method of our induction to construct a
corresponding ND derivation N . The first step is to list the premises. Premises appear
on lines (1) and (6) and we begin,

0.1 B ! C P
0.6 A! B P

Now to the induction itself. The first line of A is a premise. Looking back to the basis
case of the induction, we see that we are instructed to produce the line numbered 1 by
reiteration. So that is what we do:

0.1 B ! C P
0.6 A! B P

1 B ! C 0.1 R

This may strike you as somewhat pointless! But, again, we need B ! C on the line
numbered 1 in order to maintain the parallel between the derivations. So our recipe
requires this simple step.
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Numeral and Number
Numerals designate numbers. Thus the numeral (symbol) ‘1’ designates the number
(object) 1. Set aside (for philosophy of mathematics) the question what sort of
object numbers are supposed to be. Whatever numbers turn out to be, one often
encounters an ambiguity between numbers and the numerals that designate them.
This does not usually lead to trouble. So, for example, in this text we have said that
sentence letters of Ls are “Roman italics A : : : Z with or without positive integer
subscripts”; but sentence letters are symbols and their subscripts are numerals—
integers are not even candidates for the subscript role. And in a mathematical
induction we might say, “for any i such that 0 i k, Qi has such-and-such
feature”; then Qi is a symbol with a numeral subscript, but i and k of the inequality
are numbers—less than is a relation on numbers not numerals.

A derivation is a syntactical object, with numerals to mark the lines. Thus when we
refer to a line i of some derivation, there are different options: (i) i is a metavariable
mapping to a numeral marking the line—this is the natural understanding of, say,
schematic descriptions of the derivation rules in Chapter 6. (ii) Variable i is assigned
a number, and thereby associated with the numeral h i i that marks the line—this is
the natural understanding of the induction where i is a number, and we reason that
Qi has such-and-such feature. (iii) Another option is that i is assigned a number to
identify the i th line of a derivation. In ordinary cases, the i th line is the same as the
one marked h i i.

In the current discussion, the natural understanding is (ii)—this is so especially
because the i th line may be other than the one marked h i i. Without wholesale
application of the bracket notation, where it is important to make this point I say
the line is “numbered” i .

Line 2 of A is an instance of A1, and the induction therefore tells us to get it “by
reasoning as in the basis.” Looking then to the case for A1 in the basis, we continue
on that pattern as follows:

0.1 B ! C P
0.6 A! B P

1 B ! C 0.1 R
2.1 B ! C A (g,!I)

2.2 A A (g,!I)

2.3 B ! C 2.1 R

2.4 A! .B ! C/ 2.2-2.3!I

2 .B ! C/! .A! .B ! C// 2.1-2.4!I

Notice that this reasoning for the show step now applies to line 2, so that the line
numbers are 2.1, 2.2, 2.3, 2.4, 2 instead of 1.1, 1.2, 1.3, 1.4, 1 as for the basis. Also,
what we have added follows exactly the pattern from the recipe in the induction, given
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the relevant instance of A1.
Line 3 is justified by 2,1 MP. Again, by the recipe from the induction, we continue,

0.1 B ! C P
0.6 A! B P

1 B ! C 0.1 R
2.1 B ! C A (g,!I)

2.2 A A (g,!I)

2.3 B ! C 2.1 R

2.4 A! .B ! C/ 2.2-2.3!I

2 .B ! C/! .A! .B ! C// 2.1-2.4!I
3 A! .B ! C/ 2,1!E

Notice that the line numbers of the justification are identical to those in the justification
from A. And similarly, we are in a position to generate each line in A. Thus, for
example, line 4 of A is an instance of A2. So we would continue with lines 4.1–4.8
and 4 to generate the appropriate instance of A2. As it turns out, the resultant ND
derivation is not very efficient. But it is a derivation, and our point is merely to show
that some ND derivation of the same result exists. So if �

ÀD
P , then �

ǸD
P .

*E9.3. Set up the above induction for T9.2, and complete the unfinished cases to
show that if �

ÀD
P , then �

ǸD
P . For cases completed in the text, you may

simply refer to the text, as the text refers cases to homework.

E9.4. (i) Where A is the derivation (D) from above, complete the process of finding
the corresponding derivation N . Hint: If you follow the recipe correctly, the result
should have exactly 21 lines. (ii) This derivation N is not very efficient. See if
you can find an ND derivation to show A! B, B ! C

ǸD
A! C that takes

fewer than 10 lines.

E9.5. Extend systemA� as described for E3.5 to anA? that has�,^, and 9 primitive
with axioms and rules as follows:

A? A1. P ! .P ^P /

A2. .P ^Q/! P

A3. .O ! P /! Œ�.P ^Q/! �.Q ^O/�

A4. P x
t ! 9xP where t is free for x in P

MP. �.P ^�Q/;P
À?

Q

9R. P ! Q
À?
9xP ! Q where x is not free in Q

Produce a complete demonstration to show that if �
À?

P , then �
ǸD

P .
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9.3 Validity in ND Implies Validity in AD

Perhaps the result we have just attained is obvious: Insofar as the resources of ND
seem to exceed the resources of AD, whenever �

ÀD
P , we expect �

ǸD
P . But

the other direction may be less clear. Insofar as AD may seem to have fewer resources
than ND, one might wonder whether it is the case that if �

ǸD
P , then �

ÀD
P .

But, in fact, it is possible to do in AD whatever can be done in ND. To show this, we
need a couple of preliminary results. I begin with an important result known as the
deduction theorem, turn to some substitution theorems, and finally to the intended
result that whatever is provable in ND is provable in AD.

9.3.1 Deduction Theorem

According to the deduction theorem—subject to an important restriction—if there is
an AD derivation of Q from the members of some set of sentences � plus P , then
there is an AD derivation of P ! Q from the members of� alone: if�[fP g

ÀD
Q

then �
ÀD

P ! Q. In practice, this lets us reason just as we do with!I.

(E)

members of �
a. P

b. Q

c. P ! Q a-b deduction theorem

At (b), there is a derivation of Q from the members of � plus P . At (c), the
assumption is discharged to indicate a derivation of P ! Q from the members of �
alone. By the deduction theorem, if there is a derivation of Q from � plus P , then
there is a derivation of P ! Q from �. Here is the restriction: The discharge of an
auxiliary assumption P is legitimate just in case no application of Gen under its scope
generalizes on a variable free in P . The effect is like that of the ND restriction on
8I—here, though, the restriction is not on Gen, but rather on the discharge of auxiliary
assumptions. In the one case, an assumption available for discharge is one such that
no application of Gen under its scope is to a variable free in the assumption; in the
other, we cannot apply 8I to a variable free in an undischarged assumption (so that,
effectively, every assumption is always available for discharge).

Again, our strategy is to show that given one derivation, it is possible to construct
another. In this case, as indicated on the following page, we begin with an AD
derivation (A), with premises � [ fP g and conclusion Qn = Q. Treating P as an
auxiliary premise, with scope as indicated in (B), we set out to show that there is an AD
derivation (C), with premises in � alone, and lines numbered 1, 2, . . . corresponding
to 1, 2, . . . in (A).
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(A) 1. Q1

2. Q2
:::

P

:::

n. Qn

(B) 1. Q1

2. Q2
:::

P

:::

n. Qn

(C) 1. P ! Q1

2. P ! Q2
:::

P ! P

:::

n. P ! Qn

That is, we construct a derivation with premises in � such that for any formula A on
line i of the first derivation, P ! A appears on the line numbered i of the constructed
derivation. The line numbered n of the resultant derivation is the desired result, so
�

ÀD
P ! Q.

T9.3. If � [ fP g
ÀD

Q, and no application of Gen under the scope of P is to a
variable free in P , then �

ÀD
P ! Q. Deduction Theorem.

Suppose A = hQ1;Q2; : : : ;Qni is an AD derivation of Q from � [ fP g, where
Q is Qn and no application of Gen under the scope of P is to a variable free in P .
By induction on the line numbers in derivation A, we show there is a derivation
C with premises only in �, such that for any line i of A, P ! Qi appears on
the line numbered i of C . The case when i = n gives the desired result, that
�

ÀD
P ! Q.

Basis: Q1 of A is an axiom, a member of �, or P itself.

(i) If Q1 is an axiom or a member of �, then begin C as follows:

1.1 Q1 axiom / premise
1.2 Q1 ! .P ! Q1/ A1

1 P ! Q1 1.2, 1.1 MP

(ii) Q1 is P itself. By T3.1,
ÀD

P ! P ; which is to say P ! Q1; so begin
derivation C ,

1 P ! P T3.1

In either case, P ! Q1 appears on the line numbered 1 of C with premises
in � alone.

Assp: For any i , 1 i k, P ! Qi appears on the line numbered i of C , with
premises in � alone.

Show: P ! Qk appears on the line numbered k of C , with premises in � alone.

Qk of A is a member of �, an axiom, P itself, or arises from previous
lines by MP or Gen. If Qk is a member of �, an axiom, or P itself then,
by reasoning as in the basis, P ! Qk appears on the line numbered k of
C from premises in � alone. So two cases remain.
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(MP) If Qk arises from previous lines by MP, then there are lines in derivation A
of the sort,

i B ! C

:::

j B

:::

k C i ,j MP

where i; j k and Qk is C . By assumption, there are lines in C ,

i P ! .B ! C/

:::

j P ! B

So continue derivation C as follows:

i P ! .B ! C/

:::

j P ! B

:::

k:1 ŒP ! .B ! C/�! Œ.P ! B/! .P ! C/� A2
k:2 .P ! B/! .P ! C/ k:1, i MP
k P ! C k:2, j MP

So P ! Qk appears on the line numbered k of C , with premises in �
alone.

(Gen) If Qk arises from a previous line by Gen, then there are lines in derivation
A of the sort,

i B

:::

k 8xB i Gen

where i k and Qk is 8xB. Either line k is under the scope of P in
derivation A or not.

(i) If line k is not under the scope of P , then 8xB in A follows from� alone.
So continue C as follows:

k:1 Q1 exactly as in A but with prefix
k:2 Q2 k for numeric references

:::

k:k 8xB

k:k 1 8xB ! .P ! 8xB/ A1
k P ! 8xB k:k 1, k:k MP

Since each of the lines in A up to k is derived from � alone, we have
P ! Qk on the line numbered k of C from premises in � alone.
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(ii) If line k is under the scope of P , we depend on the assumption, and
continue C as follows:

i P ! B (by inductive assumption)
:::

k P ! 8xB i T3.29

If line k in derivation A is under the scope of P then, since no application
of Gen under the scope of P is to a variable free in P , x is not free in
P ; so the restriction on T3.29 is met. So we have P ! Qk on the line
numbered k of C , from premises in � alone.

P ! Qk appears on the line numbered k of C , with premises in � alone.

Indct: For any i , P ! Qi appears on the line numbered i of C , from premises
in � alone.

For the last, and most interesting, case: Outside the scope of P each of the lines in
A, including 8xB, is already derived from � alone; so with A1, P ! 8xB from
� alone. Under the scope of P , the restriction guarantees that x is not free in P , so
with T3.29 and P ! B from � alone, P ! 8xB from � alone.

So given an AD derivation of Q from � [ fP g, where no application of Gen
under the scope of assumption P is to a variable free in P , there is sure to be an AD
derivation of P ! Q from �. Notice that T3.29 and T3.32 abbreviate sequences
which include applications of Gen. So the restriction on Gen for the deduction theorem
applies to applications of these results as well. (Some other theorems from T3.28–
T3.38 require Gen, but derivation for theorems of the sort

ÀD
A may be moved to

the start, and so outside the scope of P . So they remain available.)
As a sample application of the deduction theorem (DT), let us consider another

derivation of T3.2. In this case, � = fA! B;B ! Cg, and we argue as follows:

(F)

1. A! B prem
2. B ! C prem
3. A assp (g, DT)

4. B 1,3 MP
5. C 2,4 MP

6. A! C 3-5 DT

At line (5) we have established that � [ fAg
ÀD

C ; it follows from the deduction
theorem that �

ÀD
A! C . But we should be careful: This is not an AD derivation

of A ! C from A ! B and B ! C . And it is not an abbreviation in the sense
that we have seen so far—we do not appeal to a result whose derivation could be
inserted at that very stage. Rather, what we have is a demonstration, via the deduction
theorem, that there exists an AD derivation of A ! C from the premises. If there
is any abbreviating, the entire derivation abbreviates, or indicates the existence of,
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another. Our proof of the deduction theorem shows us that, given a derivation of
� [ fP g

ÀD
Q, it is possible to construct a derivation for �

ÀD
P ! Q.

Let us see how this works in the example. Lines 1–5 become our derivation A,
with � = fA! B;B ! Cg. For each Qi in derivation A, the induction tells us how
to derive A ! Qi from � alone. Thus Qi on the first line is a member of �, and
reasoning from the basis tells us to use A1 as follows:

1.1 A! B prem
1.2 .A! B/! .A! .A! B// A1

1 A! .A! B/ 1.2, 1.1 MP

to get A arrow the form on line 1 of A. Notice that we are again using fractional line
numbers to make lines in derivationA correspond to lines in the constructed derivation.
One may wonder why we bother getting A! Q1. And again, the answer is that our
“recipe” calls for this ingredient at stages connected to MP and Gen. Similarly, we can
use A1 to get A arrow the form on line (2).

1.1 A! B prem
1.2 .A! B/! .A! .A! B// A1

1 A! .A! B/ 1.2, 1.1 MP
2.1 B ! C prem
2.2 .B ! C/! .A! .B ! C// A1

2 A! .B ! C/ 2.2, 2.1 MP

The form on line (3) is A itself. If we wanted a derivation in the primitive system, we
could repeat the steps in our derivation of T3.1. But we will simply continue, as in the
induction,

1.1 A! B prem
1.2 .A! B/! .A! .A! B// A1

1 A! .A! B/ 1.2, 1.1 MP
2.1 B ! C prem
2.2 .B ! C/! .A! .B ! C// A1

2 A! .B ! C/ 2.2, 2.1 MP
3 A! A T3.1

to get A arrow the form on line (3) of A. The form on line (4) arises from lines (1)
and (3) by MP; reasoning in our show step tells us to continue,

1.1 A! B prem
1.2 .A! B/! .A! .A! B// A1

1 A! .A! B/ 1.2, 1.1 MP
2.1 B ! C prem
2.2 .B ! C/! .A! .B ! C// A1

2 A! .B ! C/ 2.2, 2.1 MP
3 A! A T3.1

4.1 .A! .A! B//! ..A! A/! .A! B// A2
4.2 .A! A/! .A! B/ 4.1, 1 MP

4 A! B 4.2, 3 MP
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using A2 to get A! B. Notice that the original justification from lines (1) and (3)
dictates the appeal to (1) at line (4.2) and to (3) at line (4). The form on line (5) arises
from lines (2) and (4) by MP; so, finally, we continue,

1.1 A! B prem
1.2 .A! B/! .A! .A! B// A1

1 A! .A! B/ 1.2, 1.1 MP
2.1 B ! C prem
2.2 .B ! C/! .A! .B ! C// A1

2 A! .B ! C/ 2.2, 2.1 MP
3 A! A T3.1

4.1 .A! .A! B//! ..A! A/! .A! B// A2
4.2 .A! A/! .A! B/ 4.1, 1 MP

4 A! B 4.2, 3 MP
5.1 .A! .B ! C//! ..A! B/! .A! C// A2
5.2 .A! B/! .A! C/ 5.1, 2 MP

5 A! C 5.2, 4 MP

And we have the AD derivation which our proof of the deduction theorem told us
there would be. Notice that this derivation is not very efficient. We did it in seven
lines (without appeal to T3.1) in Chapter 3. What our proof of the deduction theorem
tells us is that there is sure to be some derivation—where there is no expectation that
the guaranteed derivation is particularly elegant or efficient.

Here is a last example which makes use of the deduction theorem. First, an
alternate derivation of T3.3:

(G)

1. A! .B ! C/ prem
2. B assp (g, DT)

3. A assp (g, DT)

4. B ! C 1,3 MP
5. C 4,2 MP

6. A! C 3-5 DT

7. B ! .A! C/ 2-6 DT

In Chapter 3 we proved T3.3 in five lines (with an appeal to T3.2). But perhaps this
version is relatively intuitive, coinciding as it does with strategies from ND. In this
case, there are two applications of DT, and reasoning from the induction therefore
applies twice: First, at line (5), there is an AD derivation of C from fA ! .B !

C/;Bg [ fAg. By reasoning from the induction, then, there is an AD derivation from
just fA ! .B ! C/;Bg with A arrow each of the forms on lines 1–5. So there
is a derivation of A ! C from fA ! .B ! C/;Bg. But then reasoning from
the induction applies again. By reasoning from the induction applied to this new
derivation, there is a derivation from just A! .B ! C/ with B arrow each of the
forms in it. So there is a derivation of B ! .A! C/ from just A! .B ! C/. So
the first derivation, lines 1–5 above, is replaced by another by the reasoning from DT.
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Then it is replaced by another, again given the reasoning from DT. The result is an AD
derivation of the desired result.

Here are a couple more cases, where the latter at least may inspire a certain
affection for the deduction theorem:

T9.4.
ÀD

A! .B ! .A ^B//

T9.5.
ÀD
.A! C/! Œ.B ! C/! ..A _B/! C/�

The deduction theorem streamlines reasoning for many results in AD. And, towards
a demonstration that AD accomplishes whatever is accomplished in ND, with the
deduction theorem we shall be able to show that AD mimics ND rules requiring
subderivations.

E9.6. (i) Making use of the deduction theorem, prove T9.4 and T9.5. (ii) Having
done so, see if you can prove them in the style of Chapter 3, without any appeal to
DT.

E9.7. By the method of our proof of the deduction theorem, convert the above
derivation (G) for T3.3 into an official AD derivation. Hint: As described above,
the method of the induction applies twice: first to lines 1–5, and then to the new
derivation. The result should be derivations with 13, and then 37 lines.

E9.8. Consider the axiomatic system A? from E9.5, and produce a demonstration of
the deduction theorem for it. That is show that if�[fP g

À?
Q and no application

of 9R under the scope of P is to a variable free in P , then �
À?

P ! Q.
Because A? extends A�, you may appeal to any of the A� theorems from E3.5.

9.3.2 Substitution Theorems

Allowing, as it does, substitution of arbitrary terms into arbitrary formulas, the ND
ruleDE applies in contexts where the AD axioms A7 and A8 do not. Again, then, ND
may seem to have resources that AD lacks. As a basis for showing that the resources
of AD match those of ND, we turn now to some substitution results.

Say a complex term r is free in an expression P just in case no variable in r

is bound; then where T is any term or formula, let T r==s be T where at most one
free instance of r is replaced by term s. Having shown in T3.38 that

ÀD
.qi D

s/ ! .Rnq1 : : :qi : : :qn ! Rnq1 : : :s : : :qn/, one might think we have proved
that

ÀD
.r D s/ ! .A ! Ar==s/ for any atomic formula A and any terms

r and s. But this is not so. Similarly, having shown in T3.37 that
ÀD

.qi D

s/! .hnq1 : : :qi : : :qn D hnq1 : : :s : : :qn/, one might think we have proved that
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ÀD
.r D s/ ! .t D tr==s/ for any terms r, s, and t. But this is not so. In each

case, the difficulty is that the replaced term r might be a component of the other
terms q1 : : :qn, and so might not be any of q1 : : :qn. What we have shown is only
that it is possible to replace any of the whole terms, q1 : : :qn. Thus, .x D y/ !

.f 1g1x D f 1g1y/ is not an instance of T3.37 because we do not replace g1x but
rather a component of it.

However, as one might expect, it is possible to replace terms in basic parts; use
the result to make replacements in terms of which they are parts; and so forth, all the
way up to wholes. Both .x D y/! .g1x D g1y/ and .g1x D g1y/! .f 1g1x D

f 1g1y/ are instances of T3.37. (Be clear about these examples in your mind.) From
these, with T3.2 it follows that

ÀD
.x D y/! .f 1g1x D f 1g1y/. This example

suggests a method for obtaining the more general results: Using T3.37, we work from
equalities at the level of the parts, to equalities at the level of the whole. For the case
of terms, the proof is by induction on the number of function symbols in an arbitrary
term t.

T9.6. For arbitrary terms r, s, and t,
ÀD
.r D s/! .t D tr==s/.

Basis: If t has no function symbols, then t is a variable or a constant. Then
either (i) tr==s = t (nothing is replaced) or (ii) r = t and tr==s = s (all
of t is replaced). In the first case, by T3.33,

ÀD
t D t; which is to say,

ÀD
.t D tr==s/; so with A1,

ÀD
.r D s/! .t D tr==s/. In the second

case, .r D s/! .t D tr==s/ is the same as .r D s/! .r D s/; so by
T3.1,

ÀD
.r D s/! .t D tr==s/.

Assp: For any i , 0 i k, if t has i function symbols, then
ÀD

.r D s/ !

.t D tr==s/.
Show: If t has k function symbols, then

ÀD
.r D s/! .t D tr==s/.

If t has k function symbols, then t is of the form hnq1 : : :qn for terms
q1 : : :qn with k function symbols. If all of t is replaced, or no part
of t is replaced, then reason as in the basis. So suppose r is some sub-
component of t; then for some qi , tr==s is hnq1 : : :qi

r==s : : :qn. By as-
sumption,

ÀD
.r D s/ ! .qi D qi

r==s/; and by T3.37,
ÀD

.qi D

qi
r==s/ ! .hnq1 : : :qi : : :qn D hnq1 : : :qi

r==s : : :qn/; so by T3.2,

ÀD
.r D s/! .hnq1 : : :qi : : :qn D hnq1 : : :qi

r==s : : :qn/; but this is
to say,

ÀD
.r D s/! .t D tr==s/.

Indct: For any terms r, s, and t,
ÀD
.r D s/! .t D tr==s/.

We might think of this result as a further strengthened or generalized version of the AD
axiom A7. Where A7 lets us replace just one of the variables x1 : : :xn in hnx1 : : : xn
by a variable y, and T3.37 one of the terms t1 : : : tn in hnt1 : : : tn with a term s, we
are now in a position to replace an arbitrary “subterm” of hnt1 : : : tn with another
term s.
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Now we can go after a similarly strengthened version of A8. We show that for
any formula P , if s is free for the replaced instance of r in P , then

ÀD
.r D s/!

.P ! P r==s/. The argument is by induction on the number of operators in P .

*T9.7. For any formula P and terms r and s, if s is free for any replaced instance of
r in P , then

ÀD
.r D s/! .P ! P r==s/.

Basis: If P is atomic then (i) P r==s = P (nothing is replaced) or (ii) P is
Rnt1 : : : ti : : : tn and P r==s is Rnt1 : : : ti

r==s : : : tn. Suppose s is free for
any replaced instance of r in P . In the first case, by T3.1,

ÀD
P ! P ,

which is to say
ÀD

P ! P r==s; so with A1,
ÀD

r D s! .P ! P r==s/.
In the second case, by T9.6,

ÀD
.r D s/! .ti D ti

r==s/; and by T3.38,

ÀD
.ti D ti

r==s/ ! .Rnt1 : : : ti : : : tn ! Rnt1 : : : ti
r==s : : : tn/; so by

T3.2,
ÀD

.r D s/ ! .Rnt1 : : : ti : : : tn ! Rnt1 : : : ti
r==s : : : tn/; and

this is just to say,
ÀD
.r D s/! .P ! P r==s/.

Assp: For any i , 0 i k, if P has i operator symbols and s is free for any
replaced instance of r in P , then

ÀD
.r D s/! .P ! P r==s/.

Corollary to the assumption: If P has k operators, then P r==s has k

operators; and since s replaces only a free instance of r in P , r is free
for the replacing instance of s in P r==s; so where the outer substitution
is made to sustain ŒP r==s�

s==r = P , we have
ÀD

.s D r/ ! .P r==s !

ŒP r==s�
s==r/ as an instance of the inductive assumption, which is just,

ÀD
.s D r/! .P r==s ! P /. And by T3.34,

ÀD
.r D s/! .s D r/;

so with T3.2,
ÀD
.r D s/! .P r==s ! P /.

Show: If P has k operator symbols and s is free for any replaced instance of r in
P , then

ÀD
.r D s/! .P ! P r==s/.

If P has k operator symbols, then P is of the form,�A, A! B, or 8xA

for variable x and formulas A and B with k operator symbols. If no
replacement is made, reason as in the basis. So suppose some replacement
is made and s is free for the replaced instance of r in P .

(�) Suppose P is �A. Then P r==s is Œ�A�r==s which is the same as �ŒAr==s�.
Since s is free for the replaced instance of r in P , it is free for that
instance of r in A; so by the corollary to the assumption,

ÀD
.r D s/!

.Ar==s ! A/. But by T3.13,
ÀD

.Ar==s ! A/ ! .�A ! �ŒAr==s�/;
so by T3.2,

ÀD
.r D s/ ! .�A ! �ŒAr==s�/; which is to say,

ÀD

.r D s/! .P ! P r==s/.

(!) Suppose P is A ! B. Then P r==s is Ar==s ! B or A ! Br==s. (i)
In the former case, since s is free for the replaced instance of r in P , it
is free for that instance of r in A; so by the corollary to the assumption,

ÀD
.r D s/! .Ar==s ! A/; so we may reason as follows:
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1. .r D s/! .Ar==s ! A/ by assumption
2. r D s assp (g, DT)

3. A! B assp (g, DT)

4. Ar==s assp (g, DT)

5. Ar==s ! A 1,2 MP
6. A 5,4 MP
7. B 3,6 MP

8. Ar==s ! B 4-7 DT

9. .A! B/! .Ar==s ! B/ 3-8 DT

10. .r D s/! Œ.A! B/! .Ar==s ! B/� 2-9 DT

So
ÀD

.r D s/ ! Œ.A ! B/ ! .Ar==s ! B/�; which is to say,

ÀD
.r D s/ ! .P ! P r==s/. (ii) And similarly in the other case [by

homework],
ÀD

.r D s/ ! Œ.A ! B/ ! .A ! Br==s/�. So in either
case,

ÀD
.r D s/! .P ! P r==s/.

(8) Suppose P is 8xA. Then a free instance of r in P remains free in A and
P r==s is 8xŒAr==s�. Since s is free for r in P , s is free for r in A; so by
assumption,

ÀD
.r D s/! .A! Ar==s/; so we may reason as follows:

1. .r D s/! .A! Ar==s/ by assumption
2. r D s assp (g, DT)

3. 8xA! A A4
4. A! Ar==s 1,2 MP
5. 8xA! Ar==s 3,4 T3.2
6. 8xA! 8xAr==s 5 T3.29

7. .r D s/! .8xA! 8xAr==s/ 2-6 DT

Notice that x is sure to be free for itself in A, so that (3) is an instance of
A4. And x is bound in 8xA, so (6) is an instance of T3.29. And because
r is free in P = 8xA, and s is free for r in P , x cannot be a variable in r

or s; so the restriction on DT is met at (7). So
ÀD
.r D s/! .8xA!

8xAr==s/; which is to say,
ÀD
.r D s/! .P ! P r==s/.

For any P with k operator symbols,
ÀD
.r D s/! .P ! P r==s/.

Indct: For any P ,
ÀD
.r D s/! .P ! P r==s/.

So for any formula P and terms r and s, if s is free for a replaced instance of r

in P , then
ÀD
.r D s/! .P ! P r==s/.

Some final substitution results are straightforward on the pattern of what we have
just achieved. Let P t=s be P with some, but not necessarily all, free instances of term
t replaced by term s (as for equality rules of ND), and OP==Q be O with at most one
instance of a subformula P replaced by formula Q (as for replacement rules of ND).
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*T9.8. For any formula P and terms r and s, if s is free for the replaced instances
of r in P , then

ÀD
.r D s/! .P ! P r=s/.

By repeated application of T9.7.

*T9.9. For any formulas O, P , and Q, if �
ÀD

P $ Q, then �
ÀD

O $ OP==Q.

The substitution applies to formulas rather than terms.

T9.10. For any formulas O, P , and Q, interpretation I, and variable assignment d,
if IdŒP � = IdŒQ� then IdŒO� = IdŒOP==Q�. Corollary: If IdŒP $ Q� = S, then
IdŒO $ OP==Q� = S.

This result is semantical rather than syntactical.

So T9.8 permits the substitution of arbitrarily many terms. T9.9 substitutes one
formula for another. And T9.10 is a parallel semantic result. For T9.9, very often
we shall be interested in the case when � is empty, and so if

ÀD
P $ Q, then

ÀD
O $ OP==Q.

*E9.9. Set up the above demonstration for T9.7 and complete the unfinished case to
provide a complete demonstration that for any formula P , and terms r and s, if s

is free for any replaced instance of r in P , then
ÀD
.r D s/! .P ! P r==s/.

*E9.10. Provide a demonstration for T9.8. Hint: Reason by induction on the number
of instances of r that are replaced by s in P . Say Pi is P with i free instances of
r replaced by s. Suppose s is free for the replaced instances of r in P . Show
that for any i ,

ÀD
.r D s/! .P ! Pi /.

*E9.11. Prove T9.9. Hint: In the basis, when O is atomic, either O = P and no
replacement is made, or O = P and all of O is replaced. For the show, when
all of O is replaced or no part of O is replaced, reason as in the basis. If P is a
proper part of O, then the assumption applies. Also, where P $ Q abbreviates
.P ! Q/ ^ .Q! P /, you can use (abv) along with T3.20, T3.21, and T9.4 to
manipulate formulas of the sort P $ Q.

E9.12. Show T9.10.

E9.13. Where the primitive operators are �, ^, and 9, show an analog to T9.9
for derivation system A? from E9.5—that for any formulas O, P , and Q, if
�

À?
P $ Q, then �

À?
O $ OP==Q. Again you may appeal to any of the

theorems from E3.5.
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9.3.3 Intended Result

We are finally ready to show that if �
ǸD

P then �
ÀD

P . As usual, the idea
is that the existence of one derivation guarantees the existence of another. In this
case, we begin with a derivation in ND, and move to the existence of one in AD.
Suppose �

ǸD
P ; then there is an ND derivation N of P from premises in � , with

lines hQ1 : : :Qni and Qn = P . We show that there is an AD derivation of the same
result. Our reasoning applies to a derivation A permitting DT as a rule; then given
this derivation, by the deduction theorem, there is derivation in the primitive AD. Say
derivation A matches N iff any Qi from N appears at the same scope on the line
numbered i of A; and say derivation A is good iff it has no application of Gen to a
variable free in an undischarged auxiliary assumption (so that DT is available at any
stage in A). Then, given derivation N , we show that there is a good derivation A that
matches N . The argument is by induction on the line number of N , where we show
that for any i , there is a good derivation Ai that matches N through line i . The case
when i = n is a good derivation of P under the scope of the premises alone, from
which it follows that �

ÀD
P .

It will be helpful here (and later) to obtain a preliminary theorem,

T9.11.
ÀD
8vP x

v ! 8xP where v is not free in 8xP and free for x in P

Suppose v is not free in 8xP and free for x in P . If x = v , then T9.11 is just
an instance of T3.1. So suppose x = v; then since v is not free in 8xP , v is not
free in P . Reason as follows:

1. 8vP x
v ! 8x.P x

v /
v
x T3.28

2. 8vP x
v ! 8xP 1 with T8.2

In this case, T3.28 requires x not free in 8vP x
v and free for v in P x

v : but since
every free instance of x is replaced in P x

v , x is not free in P x
v and so in 8vP x

v ;
and since v is not free in P , every free instance of v in P x

v replaces a free
instance of x, and x is free for v in P x

v . T8.2 requires v not free in P but free
for x in P : but it is given that v is free for x in P and, from above, v is not free
in P .

Note that the combination of T9.11 with T3.28 yields exchange of bound variables in
both directions: where v is not free in 8xP and free for x in P , then

ÀD
8xP $

8vP x
v . Now we are ready for the main result.

*T9.12. If �
ǸD

P , then �
ÀD

P .

Suppose �
ǸD

P ; then there is an ND derivation N of P from premises in � .
By induction on the line numbers of N , we show that for any i , there is a good
AD derivation Ai that matches N through line i .
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Basis: The first line of N is a premise, an assumption, or arises byDI. Let A1 be
the same (in the latter case with justification T3.33). Then A1 matches N ;
and since there is no application of Gen under an undischarged assumption,
A1 is good.

Assp: For any i , 1 i k, there is a good derivation Ai that matches N through
line i .

Show: There is a good derivation Ak that matches N through line k. Either Qk is
a premise, an assumption, arises byDI, or results from previous lines by
R, ^E, ^I,!E,!I, �E, �I, _E, _I,$E,$I, 8E, 8I, 9E, 9I, orDE.

(B) If Qk is a premise, an assumption, or arises byDI, let Ak continue in the
same way. Then, by reasoning as in the basis, Ak matches N and is good.2

(R) If Qk arises from previous lines by R, then N looks something like this,

i B

k B i R

where i k, B is accessible at line k, and Qk = B. By assumption Ak 1

matches N through line k 1 and is good. So B appears at the same
scope on the line numbered i of Ak 1 and is accessible in Ak 1. So let Ak
continue as follows:
i B

k:1 B ! B T3.1
k B k:1, i MP

So Qk appears at the same scope on the line numbered k of Ak; so Ak
matches N through line k. And since there is no new application of Gen,
Ak is good.

(^E) If Qk arises by ^E, then N is something like this,

i B ^ C

k B i ^E
or

i B ^ C

k C i ^E

where i k and B ^ C is accessible at line k. In the first case, Qk = B.
By assumption Ak 1 matches N through line k 1 and is good. So B ^ C

appears at the same scope on the line numbered i of Ak 1 and is accessible
in Ak 1. So let Ak continue as follows:

i B ^ C

k:1 .B ^ C/! B T3.21
k B k:1, i MP

2There may be an application of Gen in the derivation of T3.33 forDI. However, as mentioned on
page 423, derivations for theorems of the sort ÀD P may appear at the top, and so outside the scope of
any undischarged assumptions.
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So Qk appears at the same scope on the line numbered k of Ak; so Ak
matches N through line k. And since there is no new application of Gen,
Ak is good. And similarly in the other case, by application of T3.20.

(^I) If Qk arises from previous lines by ^I, then N is something like this,

i B

j C

k B ^ C i ,j ^I

where i; j k, B and C are accessible at line k, and Qk = B ^ C . By
assumption Ak 1 matches N through line k 1 and is good. So B and C

appear at the same scope on the lines numbered i and j of Ak 1 and are
accessible in Ak 1. So let Ak continue as follows:

i B

j C

k:1 B ! .C ! .B ^ C// T9.4
k:2 C ! .B ^ C/ k:1, i MP
k B ^ C k:2, j MP

So Qk appears at the same scope on the line numbered k of Ak; so Ak
matches N through line k. And since there is no new application of Gen,
Ak is good.

(!E) If Qk arises from previous lines by!E, then N is something like this,

i B ! C

j B

k C i ,j !E

where i; j k, B ! C and B are accessible at line k, and Qk = C . By
assumption Ak 1 matches N through line k 1 and is good. So B ! C

and B appear at the same scope on the lines numbered i and j of Ak 1

and are accessible in Ak 1. So let Ak continue as follows:

i B ! C

j B

k C i ,j MP

So Qk appears at the same scope on the line numbered k of Ak; so Ak
matches N through line k. And since there is no new application of Gen,
Ak is good.

(!I) If Qk arises by!I, then N is something like this,
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i B

j C

k B ! C i -j !I

where i; j k, the subderivation is accessible at line k, and Qk = B ! C .
By assumption Ak 1 matches N through line k 1 and is good. So B and
C appear at the same scope on the lines numbered i and j of Ak 1; since
they appear at the same scope, the parallel subderivation is accessible in
Ak 1; since Ak 1 is good, no application of Gen under the scope of B is
to a variable free in B. So let Ak continue as follows:

i B

j C

k B ! C i -j DT

So Qk appears at the same scope on the line numbered k of Ak; so Ak
matches N through line k. And since there is no new application of Gen
in this derivation, Ak is good.

(�E) If Qk arises by �E , then N is something like this (reverting to the unab-
breviated form),

i �B

j C ^�C

k B i -j �E

where i; j k, the subderivation is accessible at line k, and Qk = B. By
assumption Ak 1 matches N through line k 1 and is good. So �B and
C ^�C appear at the same scope on the lines numbered i and j of Ak 1;
since they appear at the same scope, the parallel subderivation is accessible
in Ak 1; since Ak 1 is good, no application of Gen under the scope of�B

is to a variable free in �B. So let Ak continue as follows:

i �B

j C ^�C

k:1 �B ! .C ^�C/ i -j DT
k:2 .C ^�C/! C T3.21
k:3 .C ^�C/! �C T3.20
k:4 �B ! C k:1, k:2 T3.2
k:5 �B ! �C k:1, k:3 T3.2
k:6 .�B ! �C/! ..�B ! C/! B/ A3
k:7 .�B ! C/! B k:6, k:5 MP
k B k:7, k:4 MP
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So Qk appears at the same scope on the line numbered k of Ak; so Ak
matches N through line k. And since there is no new application of Gen,
Ak is good.

(�I) Homework.

(_E) If Qk arises by _E, then N is something like this,

f B _ C

g B

h D

i C

j D

k D f,g-h,i -j _E

where f; g; h; i; j k, B _ C and the two subderivations are accessible at
line k, and Qk = D . By assumption Ak 1 matches N through line k 1

and is good. So the formulas at lines numbered f; g; h; i; j appear at the
same scope on corresponding lines in Ak 1; since they appear at the same
scope, B _C and the corresponding subderivations are accessible in Ak 1;
since Ak 1 is good, no application of Gen under the scope of B is to a
variable free in B, and no application of Gen under the scope of C is to a
variable free in C . So let Ak continue as follows:

f B _ C

g B

h D

i C

j D

k:1 B ! D g-h DT
k:2 C ! D i -j DT
k:3 .B ! D/! Œ.C ! D/! ..B _ C/! D/� T9.5
k:4 .C ! D/! ..B _ C/! D/ k:3, k:1 MP
k:5 .B _ C/! D k:4, k:2 MP
k D k:5, f MP

So Qk appears at the same scope on the line numbered k of Ak; so Ak
matches N through line k. And since there is no new application of Gen,
Ak is good.

(_I) Homework.

($E) Homework.

($I) Homework.

(8E) Homework.
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(8I) If Qk arises by 8I, then N looks something like this,

i Bx
v

k 8xB i 8I

where i k, Bx
v is accessible at line k, and Qk = 8xB; further the ND

restrictions on 8I are met: (i) v is free for x in B, (ii) v is not free in
any undischarged auxiliary assumption, and (iii) v is not free in 8xB.
By assumption Ak 1 matches N through line k 1 and is good. So Bx

v

appears at the same scope on the line numbered i of Ak 1 and is accessible
in Ak 1. So let Ak continue as follows:

0:k 8vBx
v ! 8xB T9.11

i Bx
v

k:1 8vBx
v i Gen

k 8xB 0:k, k:1 MP

From constraint (iii) v is not free in 8xB and by (i) v is free for x in B,
so 0:k is an instance of T9.11. So Qk appears at the same scope on the
line numbered k of Ak; so Ak matches N through line k. This time, there
is an application of Gen at k:1. But Ak 1 is good; so no application of
Gen in lines up to k 1 is to a variable free in an undischarged assumption.
And since Ak matches N and by (ii) v is free in no undischarged auxiliary
assumption ofN , v is not free in any undischarged auxiliary assumption of
Ak . There is also an application of Gen in T9.11 at 0:k; but that derivation
is under the scope of no undischarged assumptions. So Ak is good. (Notice
that, in this reasoning, we appeal to each of the restrictions that apply to
8I in N .)

(9E) If Qk arises by 9E, then N looks something like this,

h 9xB

i Bx
v

j C

k C h,i -j 9E

where h; i; j k, 9xB and the subderivation are accessible at line k, and
Qk = C ; further, the ND restrictions on 9E are met: (i) v is free for x in
B, (ii) v is not free in any undischarged auxiliary assumption, and (iii) v

is not free in 9xB or in C . By assumption Ak 1 matches N through line
k 1 and is good. So the formulas at lines numbered h, i , and j appear at
the same scope on corresponding lines in Ak 1; since they appear at the
same scope, 9xB and the corresponding subderivation are accessible in
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Ak 1. Since Ak 1 is good, no application of Gen under the scope of Bx
v is

to a variable free in Bx
v . So let Ak continue as follows:

0:k 8v�Bx
v ! 8x�B T9.11

h 9xB

i Bx
v

j C

k:1 Bx
v ! C i -j DT

k:2 9vBx
v ! C k:1 T3.32

k:3 .8v�Bx
v ! 8x�B/! .�8x�B ! �8v�Bx

v / T3.13
k:4 �8x�B ! �8v�Bx

v k:3, 0:k MP
k:5 9xB ! 9vBx

v k:4 abv
k:6 9vBx

v k:5, h MP
k C k:2, k:6 MP

From constraint (iii), that v is not free in C , k:2 meets the restriction on
T3.32. By (iii) v is not free in 9xB and so in 8x�B and by (i) v is free
for x in B and so in �B, so 0:k is an instance of T9.11. So Qk appears at
the same scope on the line numbered k of Ak; so Ak matches N through
line k. The application of T3.32 at k:2 includes an application Gen to v.
But Ak 1 is good; so no application of Gen in lines up to k 1 is to a
variable free in an undischarged assumption. And since Ak matches N
and by (ii) v is free in no undischarged auxiliary assumption of N , v is
not free in any undischarged auxiliary assumption of Ak . There is also an
application of Gen in T9.11 at 0:k but that derivation is under the scope
of no undischarged assumptions. So Ak is good. (Notice again that we
appeal to each of the restrictions that apply to 9E in N .)

(9I) Homework.

(DE) Homework.

In any case, Ak matches N through line k and is good.

Indct: Derivation A matches N and is good.

So if there is an ND derivation to show �
ǸD

P , then there is a good matching
derivation A to show the same; so with the deduction theorem, �

ÀD
P ; and if

�
ǸD

P , then �
ÀD

P .

From this theorem together with T9.2, AD and ND are equivalent; that is, �
ǸD

P

iff �
ÀD

P . Given this, we will often ignore the difference between AD and ND and
simply write � ` P when there is a(n AD or ND) derivation of P from premises in
� . Also given the equivalence between the systems, we are in a position to transfer
results from one system to the other without demonstrating them directly for both.
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We will come to appreciate this, especially the relative ease of operating in ND and of
operating on AD.

As before, given any ND derivation, we can use the method of our induction to
find a corresponding AD derivation. For a simple example, consider the following
demonstration that �A! .A ^ B/

ǸD
A:

(H)

1. �A! .A ^ B/ P

2. �A A (c, �E)

3. A ^ B 1,2!E
4. A 3 ^E
5. A ^�A 4,2 ^I

6. A 2-5 �E

Given relevant cases from the induction, the corresponding AD derivation is as follows:

1 �A! .A ^ B/ prem
2 �A assp (c, DT)

3 A ^ B 1,2 MP
4.1 .A ^ B/! A T3.21

4 A 4.1, 3 MP
5.1 A! .�A! .A ^�A// T9.4
5.2 �A! .A ^�A/ 5.1, 4 MP

5 A ^�A 5.2, 2 MP

6.1 �A! .A ^�A/ 2-5 DT
6.2 .A ^�A/! A T3.21
6.3 .A ^�A/! �A T3.20
6.4 �A! A 6.1, 6.2 T3.2
6.5 �A! �A 6.1, 6.3 T3.2
6.6 .�A! �A/! ..�A! A/! A/ A3
6.7 .�A! A/! A 6.6, 6.5 MP

6 A 6.7, 6.4 MP

For the first two lines, we simply take over the premise and assumption from the ND
derivation. For (3), the induction uses MP in AD where!E appears in ND; so that is
what we do. For (4), our induction shows that we can get the effect of ^E by appeal
to T3.21 with MP. (5) in the ND derivation is by ^I, and, as above, we get the same
effect by T9.4 with MP. (6) in the ND derivation is by �E. Following the strategy
from the induction, we set up for application of A3 by getting the conditional by DT.
As usual, the constructed derivation is not very efficient. You should be able to get the
same result in just five lines by appeal to T3.21, T3.2, and then T3.7. But, again, the
point is just to show that there always is a corresponding derivation.

*E9.14. Set up the above induction for T9.12 and complete the unfinished cases to
show that if �

ǸD
P , then �

ÀD
P . For cases completed in the text, you may

simply refer to the text, as the text refers cases to homework.
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E9.15. Consider the following ND derivation and, using the method from the induction
for T9.12, construct a derivation to show 9x.C ^ Bx/

ÀD
C .

1. 9x.C ^ Bx/ P

2. C ^ By A (g, 19E)

3. C 2 ^E

4. C 1,2-3 9E

Hint: Your derivation should have 12 lines.

*E9.16. Consider the system A? from E9.5. As a preliminary to the exercise that
follows, where v is not free in 9xP and free for x in P , show that

À?
9xP !

9vP x
v . Again you may appeal to any of the A� results from E3.5. This works as

an A? analog to T9.11.

E9.17. Consider a system N � which is like ND except that its only rules are �E, �I,
^E, ^I, 9E, and 9I, along with the system A? from E9.5. Produce a complete
demonstration that if �

Ǹ�
P , then �

À?
P . You have the result of the previous

exercise, DT from E9.8, and again may use any of the theorems for A� from E3.5.
Hint: You will want to modify the definition of a good derivation to accommodate
9R.

9.4 Extending to ND+

ND+ adds twenty-five rules to ND: the ten inference rules, ?I, ?E, MT, HS, DS,
NB, (8I), (8E), (9I), and (9E) and fifteen replacement rules, DN, Com, Assoc, Idem,
Impl, Trans, DeM, Exp, Equiv, Dist, QS, QD, QP, QN, and RQN—where some of
these have multiple forms. It might seem tedious to go through all the cases but, as it
happens, we have already done most of the work. First, it is easy to see that,

T9.13. If �
ǸD

P then �
ǸD

P .

Suppose �
ǸD

P . Then there is an ND derivation N of P from premises in � .
But since every rule of ND is a rule of ND+, N is a derivation in ND+ as well. So
�

ǸD
P .

From T9.2 and T9.13, then, the situation is as follows:

�
ÀD

P
9:2
999999� �

ǸD
P

9:13
999999� �

ǸD
P

If an argument is valid in AD, it is valid in ND, and in ND+. From T9.12, the
leftmost arrow is a biconditional. Again, however, one might think that ND+ has more
resources than ND, so that more could be derived in ND+ than ND. But this is not so.



CHAPTER 9. PRELIMINARY RESULTS 440

To see this, we might begin with the closer systems ND and ND+ and attempt to show
that anything derivable in ND+ is derivable in ND. Alternatively, we choose simply to
expand the induction of the previous section to include cases for all the rules of ND+.
The result is a demonstration that if �

ǸD
P , then �

ÀD
P . Given this, the three

systems are connected in a “loop”—so that if there is a derivation in any one of the
systems, there is a derivation in the others as well.

*T9.14. If �
ǸD

P , then �
ÀD

P .

Suppose �
ǸD

P ; then there is an ND+ derivation N of P from premises in � .
We show that for any i , there is a good AD derivation Ai that matches N through
line i .

Basis: The first line of N is a premise, an assumption, or arises byDI. Let A1 be
the same, in the latter case with justification T3.33. Then A1 matches N ;
and since there is no application of Gen under an undischarged assumption,
A1 is good.

Assp: For any i , 0 i k, there is a good derivation Ai that matches N through
line i .

Show: There is a good derivation of Ak that matches N through line k.
Either Qk is a premise or assumption, arises by a rule of ND, or by the
ND+ derivation rules ?I, ?E, MT, HS, DS, NB, (8I), (8E), (9I), (9E),
or by replacement rules DN, Com, Assoc, Idem, Impl, Trans, DeM, Exp,
Equiv, Dist, QS, QD, QP, QN, or RQN. If Qk is a premise or assumption
or arises by a rule of ND, then by reasoning as for T9.12, there is a good
derivation Ak that matches N through line k. So suppose Qk arises by one
of the ND+ rules.

?I. If Qk arises from previous lines by ?I, then N is something like this,

i A

j �A

k ? i ,j ?I

which is the same as

i A

j �A

k Z ^�Z

for some sentence Z of the language L. Working on the right-hand version,
i; j k, A and �A are accessible at line k, and Qk = Z ^ �Z. By
assumption Ak 1 matches N through line k 1 and is good. So A and�A

appear at the same scope on the lines numbered i and j of Ak 1 and are
accessible in Ak 1. So let Ak continue as follows:

i A

j �A

k:1 �A! .A! .Z ^�Z// T3.9
k:2 A! .Z ^�Z/ k:1, j MP
k Z ^�Z k:2, i MP



CHAPTER 9. PRELIMINARY RESULTS 441

So Qk appears at the same scope on the line numbered k of Ak; so Ak
matches N through line k. And since there is no new application of Gen,
Ak is good.

?E. Homework.
MT. If Qk arises from previous lines by MT, then N is something like this,

i B ! C

j �C

k �B i ,j MT

where i; j k, B ! C and �C are accessible at line k, and Qk = �B.
By assumption Ak 1 matchesN through line k 1 and is good. So B ! C

and �C appear at the same scope on the lines numbered i and j of Ak 1

and are accessible in Ak 1. So let Ak continue as follows:

i B ! C

j �C

k:1 .B ! C/! .�C ! �B/ T3.13
k:2 �C ! �B k:1, i MP
k �B k:2, j MP

So Qk appears at the same scope on the line numbered k of Ak; so Ak
matches N through line k. And since there is no new application of Gen,
Ak is good.

HS. Homework.
DS. Homework.
NB. Homework.

(8I). If Qk arises from previous lines by (8I), then N is something like this,

i Bx
v

j Cx
v

k .8x W B/C i -j (8I)

which is the same as

i Bx
v

j Cx
v

k 8x.B ! C/

Working on the right-hand version, i; j k, the subderivation is accessible
at k, and Qk is 8x.B ! C/; further, the restrictions on (8I) are met: (i) v

is free for x in B and C , (ii) v is not free in any undischarged assumption,
and (iii) v is not free in 8x.B ! C/. By assumption Ak 1 matches N
through line k 1 and is good. So Bx

v and Cx
v appear at the same scope on

the lines numbered i and j of Ak 1; since they appear at the same scope,
the parallel subderivation is accessible in Ak 1; since Ak 1 is good, no
application of Gen under the scope of Bx

v is to a variable free in Bx
v ; so

let Ak continue as follows:
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0:k 8v.B ! C/xv ! 8x.B ! C/ T9.11

i Bx
v

j Cx
v

k:1 .B ! C/xv i -j DT
k:2 8v.B ! C/xv k:1 Gen
k 8x.B ! C/ 0:k, k:2 MP

From constraint (iii) v is not free in 8x.B ! C/ and by (i) v is free
for x in .B ! C/, so 0:k is an instance of T9.11. So Qk appears at the
same scope on the line numbered k of Ak; so Ak matches N through
line k. This time, there is an application of Gen at k:2. But Ak 1 is
good; so no application of Gen in lines up to k 1 is to a variable free in
an undischarged assumption. And since Ak matches N and by (ii) v is
free in no undischarged auxiliary assumption of N , v is not free in any
undischarged auxiliary assumption of Ak . There is also an application
of Gen at 0:k; but that derivation is under the scope of no undischarged
assumptions. So Ak is good.

(8E). Homework.

(9I). Homework.

(9E). Homework.

rep. If Qk arises from a replacement rule rep of the form C GF D , then N is
something like this,

i B

k BC==D i rep
or

i B

k BD==C i rep

where i k, B is accessible at line k, and, in the first case, Qk = BC==D .
By assumption Ak 1 matches N through line k 1 and is good. But
by T6.11–T6.29, T6.31–T6.37, and T6.44,

ǸD
C $ D ; so with T9.12,

ÀD
C $ D ; so by T9.9,

ÀD
B $ BC==D . Call an arbitrary particular

result of this sort, Tx, and augment Ak as follows:

0:k B $ BC==D Tx

i B

k BC==D 0:k, i T3.24

So Qk appears at the same scope on the line numbered k of Ak; so Ak
matches N through line k. There may be applications of Gen in the
derivation of Tx; but that derivation is under the scope of no undischarged
assumption. And under the scope of any undischarged assumptions, there
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is no new application of Gen. So Ak is good. And similarly in the other
case starting with T6.12 to obtain

ǸD
D $ C from

ǸD
C $ D .

In any case, Ak matches N through line k and is good.

Indct: Derivation A matches N and is good.

That is it! The key is that work we have already done collapses cases for all the
replacement rules into one. So each of the derivation systems, AD, ND, and ND+ is
equivalent to the others. That is, �

ÀD
P iff �

ǸD
P iff �

ǸD
P . And that is

what we set out to show.

*E9.18. Set up the above induction for T9.14 and complete the unfinished cases to
show that if �

ǸD
P , then �

ÀD
P . For cases completed in the text, you may

simply refer to the text, as the text refers cases to homework.

E9.19. Extend the system N � from E9.17 to an N ? that has rules �E, �I, ^E, ^I,
9E, 9I, along with MT and the replacement rule Com (for ^). Augment your
argument from E9.17 to produce a complete demonstration that if �

Ǹ?
P then

�
À?

P . In addition to E9.17, you may appeal to any of the theorems from E3.5
along with the substitution result from E9.13.

E9.20. For each of the following concepts, explain in an essay of about two pages,
so that (college freshman) Hannah could understand. In your essay, you should
(i) identify the objects to which the concept applies, (ii) give and explain the
definition, and give and explicate examples (iii) where the concept applies, and
(iv) where it does not. Your essay should exhibit an understanding of methods
from the text.

a. The reason semantic validity implies logical validity, but not the other way
around.

b. The notion of a constructive proof by mathematical induction.

c. The equivalence between derivation systems AD, ND, and ND+.
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Theorems of Chapter 9

T9.1 For any ordinary argument P1 : : :Pn=Q, with good translation consisting of II and
P 01 : : :P

0
n, Q0, if P 01 : : :P

0
n � Q0, then P1 : : :Pn=Q is logically valid.

T9.2 If �
ÀD

P , then �
ǸD

P .

T9.3 If �[ fP g
ÀD

Q, and no application of Gen under the scope of P is to a variable
free in P , then �

ÀD
P ! Q. Deduction Theorem.

T9.4
ÀD

A! .B ! .A ^B//.

T9.5
ÀD
.A! C/! Œ.B ! C/! ..A _B/! C/�.

T9.6 For arbitrary terms r, s, and t,
ÀD
.r D s/! .t D tr==s/.

T9.7 For any formula P and terms r and s, if s is free for any replaced instance of r in
P , then

ÀD
.r D s/! .P ! P r==s/.

T9.8 For any formula P and terms r and s, if s is free any replaced instances of r in
P , then

ÀD
.r D s/! .P ! P r=s/.

T9.9 For any formulas O, P , and Q, if �
ÀD

P $ Q, then �
ÀD

O $ OP==Q.

T9.10 For any formulas O, P , and Q, interpretation I, and variable assignment d, if
IdŒP � = IdŒQ� then IdŒO� = IdŒOP==Q�.

Corollary: If IdŒP $ Q� = S, then IdŒO $ OP==Q� = S.

T9.11
ÀD
8vP x

v ! 8xP where v is not free in 8xP and free for x in P .

T9.12 If �
ǸD

P , then �
ÀD

P .

T9.13 If �
ǸD

P then �
ǸD

P .

T9.14 If �
ǸD

P , then �
ÀD

P .

And from T9.2, T9.13, and T9.14,

�
ÀD

P iff �
ǸD

P iff �
ǸD

P .



Chapter 10

Main Results

We have introduced four notions of validity, and started to think about their interre-
lations. In Chapter 9, we showed that if an argument is semantically valid, then it
is logically valid, and that an argument is valid in AD iff it is valid in ND. We turn
now to the relation between these derivation systems and semantic validity. This
completes the project of demonstrating that the different notions of validity are related
as follows:

Logical Validity
Semantic
Validity

Validity in ND

Validity in AD

� �
�
����
�

��	
@
@
@@R@
@

@@I

6

?

Since AD and ND are equivalent, it is not necessary separately to establish the relations
between AD and semantic validity, and between ND and semantic validity. Because
it is relatively easy to reason about AD, we mostly reason about a system like AD
to establish that an argument is valid in AD iff it is semantically valid. From the
equivalence between AD and ND it then follows that an argument is valid in ND iff it
is semantically valid.

The project divides into two parts. First, we take up the arrows from right to left,
and show that if an argument is valid in AD, then it is semantically valid: if �

ÀD
P ,

then � � P . Thus our derivation system is s̊ound (recall from page 407 that diacritical
marks distinguish notions of soundness and completeness). If a derivation system is
s̊ound, it never leads from premises that are true on an interpretation, to a conclusion
that is not (section 10.1). Second, moving in the other direction, we show that if
an argument is semantically valid, then it is valid in AD: if � � P , then �

ÀD
P .

Thus our derivation system is c̊omplete. If a derivation system is c̊omplete, there is a

445
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derivation from the premises to the conclusion for every argument that is semantically
valid. The argument for c̊ompleteness divides into sentential (section 10.2), basic
quantificational (section 10.3), and full quantificational (section 10.4) versions.

10.1 S̊oundness

An arbitrary derivation system DS is s̊ound when its provable results are semantically
valid: if �

D̀S
P , then � � P . It is easy to construct derivation systems that are not

s̊ound. An obvious example is the preliminary system NP from Chapter 6—for, as we
showed in table (D) of Chapter 6 (page 201), R2 makes it possible to go from a true
premise to a false conclusion. Or consider a derivation system like AD but without the
restriction on A4 that the substituted term t be free for the variable x in formula P .
Given this, we might reason as follows:

(A)
1. 8x9y�.x D y/ prem
2. 8x9y�.x D y/! 9y�.y D y/ “A4”
3. 9y�.y D y/ 1,2 MP

The y is not free for x in 9y�.x D y/; so line (2) is not an instance of A4. And it is a
good thing: Consider any interpretation with at least two elements in U. Then it is true
that for every x there is some y not identical to it. So the premise is true. But there
is no y in U that is not identical to itself. So the conclusion is not true. So the true
premise leads to a conclusion that is not true. So the derivation system is not s̊ound.

We would like to show that AD is s̊ound—that there is no sequence of moves,
no matter how complex or clever, that would lead from premises that are true to a
conclusion that is not true. The argument itself is straightforward: Suppose �

ÀD
P ;

then there is an AD derivation A = hQ1 : : :Qni of P with Qn = P . By induction
on line numbers in A, we show that for any i , � � Qi . The case when i = n is the
desired result. So if �

ÀD
P , then � � P . This general strategy should by now be

familiar. However, for the case involving A4, it will be helpful to obtain a pair of
preliminary results.

10.1.1 Switching Theorems

In this section, we develop a couple theorems which link substitutions into terms and
formulas with substitutions in variable assignments. The results are a matched pair,
with a first result for terms that feeds into the basis clause for a result about formulas.
Perhaps the hardest part is not so much the proofs of the theorems, as understanding
what the theorems say. Let us turn to the first.

Suppose we have some terms t and r with interpretation I and variable assignment
d. Say IdŒr� = o. Then the first proposition is this: term t is assigned the same object
on Id.xjo/, as tx

r is assigned on Id. Intuitively, this is because the same object is fed
into the x-place of the term in each case. With t and d.xjo/,
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(B)
t: hn . . . x . . .

|
d.xjo/: . . . o . . .

object o is the input to the “slot” occupied by x. But we are given that IdŒr� = o. So
with tx

r and d,

(C)
tx

r : hn . . . r . . .
|

d: . . . o . . .

object o is the input into the “slot” that was occupied by x. So if IdŒr� = o, then
Id.xjo/Œt� = IdŒtx

r�. In the one case, we guarantee that object o goes into the x-place
by meddling with the variable assignment. In the other, we get the same result by
meddling with the term. Be sure you are clear about this in your own mind. This will
be our first result.

*T10.1. For any interpretation I, variable assignment d, with terms t and r, if IdŒr� = o,
then Id.xjo/Œt� = IdŒtx

r�.

For arbitrary terms t and r with interpretation I and variable assignment d, suppose
IdŒr� = o. By induction on the number of function symbols in t, Id.xjo/Œt� = IdŒtx

r�.

Basis: If t has no function symbols, then it is a constant or a variable. Either t is
the variable x or it is not. (i) Suppose t is a constant or variable other than
x; then tx

r = t (no replacement is made); but d and d.xjo/ assign just the
same things to variables other than x; so they assign just the same things to
any variable in t; so by T8.4, IdŒt� = Id.xjo/Œt�. So IdŒtx

r� = IdŒt� = Id.xjo/Œt�.
(ii) If t is x, then tx

r is r (all of t is replaced by r); so IdŒtx
r� = IdŒr� = o.

But t is x; so Id.xjo/Œt� = Id.xjo/Œx�; by TA(v) this is d.xjo/Œx�; which is
just o. So IdŒtx

r� = o = Id.xjo/Œt�.

Assp: For any i , 0 i k, for t with i function symbols, IdŒtx
r� = Id.xjo/Œt�.

Show: If t has k function symbols, then IdŒtx
r� = Id.xjo/Œt�.

If t has k function symbols, then it is of the form, hns1 : : :sn where
s1 : : :sn have k function symbols. In this case, tx

r = Œhns1 : : :sn�
x
r

= hns1
x
r : : :sn

x
r; and by assumption, IdŒs1x

r� = Id.xjo/Œs1� and . . . and
IdŒsnx

r� = Id.xjo/Œsn�. So IdŒtx
r� = IdŒhns1

x
r : : :sn

x
r�; by TA(f), this is

IŒhn�hIdŒs1x
r� : : : IdŒsn

x
r�i = IŒhn�hId.xjo/Œs1� : : : Id.xjo/Œsn�i; and by TA(f)

again, this is Id.xjo/Œhns1 : : :sn� = Id.xjo/Œt�. So IdŒtx
r� = Id.xjo/Œt�.

Indct: For any t, IdŒtx
r� = Id.xjo/Œt�.

Since the “switching” leaves assignments to the parts the same, the assignment to the
whole remains the same as well.

Similarly, suppose we have term r with interpretation I and variable assignment
d, where IdŒr� = o as before. Suppose r is free for variable x in formula Q. Then
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the second proposition is that Q is satisfied on Id.xjo/ iff Qx
r is satisfied on Id. Again,

intuitively, this is because the same object is fed into the x-place of the formula in
each case. With Q and d.xjo/,

(D)
Q: Q . . . x . . .

|
d.xjo/: . . . o . . .

object o is the input to the “slot” occupied by x. But IdŒr� = o. So with Qx
r and d,

(E)
Qx

r: Q . . . r . . .
|

d: . . . o . . .

object o is the input into the “slot” that was occupied by x. So if IdŒr� = o (and r is
free for x in Q), then Id.xjo/ŒQ� = S iff IdŒQx

r� = S. This is our second result, which
draws directly upon the first.

T10.2. For any interpretation I, variable assignment d, term r, and formula Q, if
IdŒr� = o, and r is free for x in Q, then IdŒQx

r� = S iff Id.xjo/ŒQ� = S.

By induction on the number of operator symbols in Q,

Basis: Suppose r is free for x in Q and IdŒr� = o. If Q has no operator symbols,
then it is a sentence letter S or an atomic of the form Rnt1 : : : tn. In
the first case, Qx

r = Sx
r = S . So IdŒQx

r� = S iff IdŒS � = S; by SF(s),
iff IŒS � = T; by SF(s) again, iff Id.xjo/ŒS � = S; iff Id.xjo/ŒQ� = S. In the
second case, Qx

r = ŒRnt1 : : : tn�
x
r = Rnt1

x
r : : : tn

x
r. So IdŒQx

r� = S iff
IdŒRnt1

x
r : : : tn

x
r� = S; by SF(r), iff hIdŒt1x

r� : : : IdŒtn
x
r�i 2 IŒRn�; since

IdŒr� = o, by T10.1, iff hId.xjo/Œt1� : : : Id.xjo/Œtn�i 2 IŒRn�; by SF(r), iff
Id.xjo/ŒRnt1 : : : tn� = S; iff Id.xjo/ŒQ� = S.

Assp: For any i , 0 i k, if Q has i operator symbols, r is free for x in Q, and
IdŒr� = o, then IdŒQx

r� = S iff Id.xjo/ŒQ� = S.
Show: If Q has k operator symbols, r is free for x in Q, and IdŒr� = o, then

IdŒQx
r� = S iff Id.xjo/ŒQ� = S.

Suppose r is free for x in Q and IdŒr� = o. If Q has k operator symbols,
then Q is of the form �B, B ! C , or 8vB for variable v and formulas
B and C with k operator symbols.

(�) Suppose Q is �B. Then Qx
r = Œ�B�xr = �ŒBx

r �. Since r is free for x in
Q, r is free for x in B; so the assumption applies to B. IdŒQx

r� = S iff
IdŒ�Bx

r � = S; by SF(�), iff IdŒBx
r � = S; by assumption iff Id.xjo/ŒB� = S;

by SF(�), iff Id.xjo/Œ�B� = S; iff Id.xjo/ŒQ� = S.
(!) Homework.
(8) Suppose Q is 8vB. Either there are free occurrences of x in Q or not.

(i) Suppose there are no free occurrences of x in Q. Then Qx
r is just Q

(no replacement is made). But since d and d.xjo/ make just the same
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assignments to variables other than x, they make just the same assignments
to all the variables free in Q; so by T8.5, IdŒQ� = S iff Id.xjo/ŒQ� = S. So
IdŒQx

r� = S iff IdŒQ� = S; iff Id.xjo/ŒQ� = S.

(ii) Suppose there are free occurrences of x in Q. Then x is some variable
other than v , and Qx

r = Œ8vB�xr = 8vŒBx
r �.

First, since r is free for x in Q, r is free for x in B, and v is not a variable
in r; from this, for any m 2 U, the variable assignments d and d.vjm/
agree on assignments to variables in r; so by T8.4, IdŒr� = Id.vjm/Œr�;
so Id.vjm/Œr� = o; so the requirement of the assumption is met for the
assignment d.vjm/ and, as an instance of the assumption, for any m 2 U,
Id.vjm/ŒBx

r � = S iff Id.vjm;xjo/ŒB� = S.

Now suppose Id.xjo/ŒQ� = S but IdŒQx
r� = S; then Id.xjo/Œ8vB� = S but

IdŒ8vBx
r � = S. From the latter, by SF(8), there is some m 2 U such that

Id.vjm/ŒBx
r � = S; so by the above result, Id.vjm;xjo/ŒB� = S; so by SF(8),

Id.xjo/Œ8vB� = S; this is impossible. And similarly [by homework] in the
other direction. So Id.xjo/ŒQ� = S iff IdŒQx

r� = S.

If Q has k operator symbols, r is free for x in Q, and IdŒr� = o, then
IdŒQx

r� = S iff Id.xjo/ŒQ� = S.

Indct: For any Q, if r is free for x in Q and IdŒr� = o, then IdŒQx
r� = S iff

Id.xjo/ŒQ� = S.

Perhaps the quantifier case looks more difficult than it is. The key point is that since
r is free for x in Q, changes in the assignment to v do not affect the assignment
to r. Thus the assumption applies to B for variable assignments that differ in their
assignments to v . This lets us “take the quantifier off,” apply the assumption, and
then “put the quantifier back on” in the usual way. Another way to make this point
is to see how the argument fails when r is not free for x in Q = 8vB. If r is not
free for x in Q, then a change in the assignment to v may affect the assignment to
r. In this case, although IdŒr� = o, Id.vjm/Œr� might be something else. So there is no
reason to think that substituting r for x will have the same effect as assigning o to x.
As we shall see, this restriction corresponds directly to the one on axiom A4.

*E10.1. Complete the cases for (!) and (8) to complete the demonstration of T10.2.
You should set up the complete demonstration, but for cases completed in the text,
you may simply refer to the text, as the text refers cases to homework.

10.1.2 S̊oundness

We are now ready for our main proof of s̊oundness for AD. Actually, all the parts are
already on the table. It is simply a matter of pulling them together into a complete
demonstration.
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*T10.3. If �
ÀD

P , then � � P . S̊oundness.

Suppose �
ÀD

P . Then there is an AD derivation A = hQ1 : : :Qni of P from
premises in � , with Qn = P . By induction on the line numbers in A, we show
that for any i , � � Qi . The case when i = n is the desired result.

Basis: The first line of A is a premise or an axiom. So Q1 is either a member of
� or an instance of A1, A2, A3, A4, A5, A6, A7, or A8. The cases for
A1–A3, A5–A8 are treated together.

(prem) Suppose Q1 is a member of � and � ² Q1, then by QV there is some I
such that IŒ�� = T but IŒQ1� = T; but since IŒ�� = T and Q1 2 � , IŒQ1� = T.
This is impossible; reject the assumption: � � Q1.

(Ax) Suppose Q1 is an instance of A1, A2, A3, A5, A6, A7, or A8 and � ² Q1.
Then by QV, there is some I such that IŒ�� = T but IŒQ1� = T. But by T7.2,
T7.3, T7.4, T8.6, T7.8, T7.9, and T7.10, � Q1; so by QV, IŒQ1� = T. This
is impossible; reject the assumption: � � Q1.

(A4) If Q1 is an instance of A4, then it is of the form 8xB ! Bx
r where

term r is free for variable x in formula B. Suppose � ² Q1. Then by
QV, there is an I such that IŒ�� = T, but IŒ8xB ! Bx

r � = T. From the
latter, by TI, there is some d such that IdŒ8xB ! Bx

r � = S; so by SF(!),
IdŒ8xB� = S but IdŒBx

r � = S; from the first of these, by SF(8), for any
o 2 U, Id.xjo/ŒB� = S; so where IdŒr� = m, Id.xjm/ŒB� = S; so, since r is
free for x in formula B, by T10.2, IdŒBx

r � = S. This is impossible; reject
the assumption: � � Q1.

Assp: For any i , 1 i k, � � Qi .
Show: � � Qk .

Qk is either a premise, an axiom, or arises from previous lines by MP or
Gen. If Qk is a premise or an axiom then as in the basis � � Qk . So
suppose Qk arises by MP or Gen.

(MP) Homework.
(Gen) If Qk arises by Gen, then A is something like this,

i B

:::

k 8xB i Gen

where i k and Qk = 8xB. Suppose � ² Qk; then � ² 8xB; so by
QV, there is some I such that IŒ�� = T but IŒ8xB� = T. By assumption,
� � B; so with IŒ�� = T, by QV, IŒB� = T; so by T7.6, IŒ8xB� = T. This
is impossible; reject the assumption: � � Qk .

� � Qk .

Indct: For any n, � � Qn.
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So if �
ÀD

P , then � � P . So AD is s̊ound. And since AD is s̊ound, with theorems
T9.2, T9.13, and T9.14 it follows that ND and ND+ are s̊ound as well.

*E10.2. Complete the case for (MP) to round out the T10.3 demonstration that AD is
s̊ound. You should set up the complete demonstration, but for cases completed in
the text, you may simply refer to the text, as the text refers cases to homework.
Hint: T8.8 may smooth your reasoning.

E10.3. Consider the derivation system A? from E9.5 and provide a complete demon-
stration that it is s̊ound. Notice that (A1)–(A3) and MP are the same as A�

from E8.11, and you demonstrated the s̊oundness of A� from E8.11 and E8.12
(and given T8.8, your sentential reasoning for those exercises converts directly
to the quantificational case). You may appeal to prior exercises and theorems as
appropriate.

10.1.3 Consistency

The proof of s̊oundness is the main result we set out to achieve in this section. But
before we go on, it is worth pausing to make an application to consistency. Say a set
� of formulas is consistent iff there is no formula A such that � ` A and � ` �A.
Consistency is thus defined in terms of derivations rather than semantic notions. But
we show,

T10.4. If there is an interpretation M such that MŒ�� = T (a model for �), then � is
consistent.

Suppose there is an interpretation M such that MŒ�� = T but � is inconsistent.
From the latter, there is a formula A such that � ` A and � ` �A; so by T10.3,
� � A and � � �A. But MŒ�� = T; so by QV, MŒA� = T and MŒ�A� = T; from
the second of these and T8.8, MŒA� = T. This is impossible; reject the assumption:
if there is an interpretation M such that MŒ�� = T, then � is consistent.

This is an interesting and important theorem. Suppose we want to show that some set
of formulas is inconsistent. For this, it is enough to derive a contradiction from the set.
But suppose we want to show that there is no way to derive a contradiction. Merely
failing to find a derivation does not show that there is not one! But, with s̊oundness,
we can demonstrate that there is no such derivation by finding a model for the set.

Similarly, if we want to show that � ` A, it is enough to produce the derivation.
But suppose we want to show that � ° A. Merely failing to find a derivation does
not show that there is not one! Still, given s̊oundness, we can demonstrate that there
is no derivation by finding a model on which the premises are true and the conclusion
is not.
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T10.5. If there is an interpretation M such that MŒ�� = T and MŒA� = T, then � ° A.

Suppose there is an interpretation M such that MŒ�� = T and MŒA� = T; then by
QV, � ² A; so by T10.3 (read from right to left), � ° A.

Again, the result is useful. In chapters 4 and 7 we showed � ² A by finding
interpretations with the premises true and conclusion not; with T10.5 it immediately
follows that the premises do not prove the conclusions, � ° A. Suppose, for example,
we want to show that �8xPx ° �Pa. You may be unable to find a derivation, and
be able to point out flaws in a friend’s attempt. But we show that there is no derivation
by finding a model on which �8xPx is true and �Pa is not. And this is easy. We
did it with trees in Chapter 4 (page 126), but we can do it in the style of Chapter 7 as
well. Let U = f1; 2g with MŒa� = 1 and MŒP � = f1g.

(i) For arbitrary h, h.xj2/Œx� = 2; so by TA(v), Mh.xj2/Œx� = 2; so by SF(r), Mh.xj2/ŒP x� =
S iff h2i 2 MŒP �; but h2i … MŒP �; so Mh.xj2/ŒP x� = S; so for some o 2 U, Mh.xjo/ŒP x� =
S; so by SF(8), MhŒ8xPx� = S; so by SF(�), MhŒ�8xPx� = S; and since h is arbitrary,
for any assignment d, MdŒ�8xPx� = S; so by TI, MŒ�8xPx� = T. (ii) MŒa� = 1; so for
arbitrary h, by TA(c) MhŒa� = 1; so by SF(r), MhŒPa� = S iff h1i 2 MŒP �; but h1i 2 MŒP �;
so MhŒPa� = S; so by SF(�), MhŒ�Pa� = S; so by TI, MŒ�Pa� = T. So MŒ�8xPx� = T
and MŒ�Pa� = T.

So by T10.5, �8xPx ° �Pa.

If there is a model on which all the members of � are true and A is not, then it is not
the case that � � A. So, with s̊oundness, there cannot be a derivation of A from � .
For a more substantive example, E7.19, which tells us that Q does not entail certain
results by finding an interpretation on which the axioms are true and the result is not,
gives us that Q does not prove the results.

E10.4. (a) Show that f9xAx; �Aag is consistent. (b) Show that 8x.Ax ! Bx/;

�Ba ° �9xAx.

10.2 Sentential C̊ompleteness

An arbitrary derivation system DS is c̊omplete when semantically valid results are
provable: if � � P , then �

D̀S
P . It is easy to construct derivation systems that are

not c̊omplete. Again, the preliminary system NP from Chapter 6 is an easy example—
because each rule starts with an input, there is no P such that

ǸP
P ; so any tautology

is a formula such that that � P without
ǸP

P . Or consider a derivation system like
AD but without A1. It is easy to see that such a system is s̊ound, and so that derivations
without A1 do not go astray—all we have to do is leave the case for A1 out of the proof
of s̊oundness. But, as will appear from our section 11.3 discussion of independence
(together with E11.8), there is no derivation of the A1 instance A! .B ! A/ from
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the other axioms. So without A1, there is a formula P such that � P , but for which
there is no derivation. So the derivation system would not be c̊omplete. We turn
now to showing that our derivation systems are in fact c̊omplete. Given this, with
s̊oundness, we have � � P iff � ` P , so that our derivation systems deliver just the
results they are supposed to.

C̊ompleteness for a system like AD was first proved by Kurt Gödel in his 1930
doctoral dissertation. While the proof of s̊oundness is straightforward given methods
we have used before, the demonstration of completeness applies those methods in new
and interesting ways. The version of the proof that we will consider is the standard
one, essentially due to L. Henkin.1 An interesting feature of these proofs is that they
are not constructive. So far, for the deduction theorem and such, we have been able to
show that there are certain derivations by showing how to construct them. However,
just as it is possible to prove an existential 9xPx without finding an a such that Pa,
so we shall be able to prove that there are certain derivations without a construction of
them. As we shall see in Part IV, a constructive proof of c̊ompleteness for our full
predicate logic is impossible. So this is the only way to go.

The proof of c̊ompleteness is more involved than any we have encountered so
far. Each of the parts is comparable to what has gone before; but there are enough
parts that it is possible to lose the forest for the trees. I thus propose to come at the
argument three times: In this section, we will prove sentential c̊ompleteness, that for
expressions in a sentential language, if � � P then � ` P —this should enable us to
grasp the overall shape of the argument without interference from too many details.
We will then consider a basic version of the quantificational argument. And finally,
after addressing a few complications, put it all together for the full version. Notation
and theorem numbers are organized to preserve parallels between the cases.

10.2.1 Basic Idea

The basic idea is straightforward: Let us restrict ourselves to an arbitrary sentential
language Ls and to sentential semantic rules. Derivations are automatically restricted
to sentential rules by the restricted language. For formulas in this language, our goal
is to show that if � �s P , then � ` P . We can see how this works with just a couple
of preliminaries.

We begin with a definition and a theorem. As before, let us say,

Con A set � of formulas is consistent iff there is no formula A such that � ` A

and � ` �A.

So consistency is a syntactical notion. A set of formulas is consistent just in case there
is no way to derive a contradiction from it. Now for the theorem,

1Henkin, “Completeness of the First-Order Calculus.” Kurt Gödel, “Die Vollständigkeit der Axiome
des Logischen Funktionenkalküls.” English translation in van Heijenoort, From Frege to Gödel, reprint
in Feferman et al., Gödel’s Collected Works: Volume I.
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T10.6s. For any set of formulas � and sentence P , if � ° �P , then � [ fP g is
consistent.

Suppose � ° �P , but � [ fP g is not consistent. From the latter, there is some
A such that � [ fP g ` A and � [ fP g ` �A. So by DT, � ` P ! A and
� ` P ! �A; by T3.10, ` ��P ! P ; so by T3.2, � ` ��P ! A, and
� ` ��P ! �A; but by A3, ` .��P ! �A/ ! Œ.��P ! A/ ! �P �;
so by two instances of MP,� ` �P . But this is impossible; reject the assumption:
if � ° �P , then � [ fP g is consistent.

The idea is simple: If � [ fP g is inconsistent, then by reasoning as for �I in ND,
�P follows from � alone; transposing, if �P cannot be derived from � alone, then
�[ fP g is consistent. Notice that insofar as the language is sentential, derivations do
not include any applications of Gen, so the applications of DT are sure to meet the
restriction on Gen.

In the last section, we saw that any set with a model is consistent. Now suppose
we knew the converse, that any consistent set of formulas †0 has a model.

.�/ For any consistent set of formulas †0, there is an interpretation M0 such that
M0Œ†0� = T.

This sets up the key connection between syntactic and semantic notions, between
consistency on the one hand, and truth on the other, that we will need for c̊ompleteness.
Schematically, then, with .�/ we have the following:

1. � [ f�P g has a model � � ²s P

2. � [ f�P g is consistent � � [ f�P g has a model .�/

3. � [ f�P g is not consistent � � ` P

Where � [ f�P g = †0, (2) is just .�/. (1) is by simple semantic reasoning: Suppose
�[f�P g has a model; then there is some M such that MŒ�[f�P g� = T; so MŒ�� = T
and MŒ�P � = T; from the latter, by ST(�), MŒP � = T; so MŒ�� = T and MŒP � = T; so
by SV, � ²s P . (3) is by straightforward syntactic reasoning: Suppose � [ f�P g is
not consistent; then by T10.6s, reading from right to left, � ` ��P ; but by T3.10,
` ��P ! P ; so by MP, � ` P . And (1)–(3) together yield the c̊ompleteness result:

Suppose � �s P ; then by (1), reading from right to left, � [ f�P g does not have
a model; so by (2), again from right to left, � [ f�P g is not consistent; so by (3),
� ` P . So if � �s P , then � ` P .

And this is what we want. Of course, knowing that there is some way to derive P is
not the same as knowing what that way is. All the same, .�/ tells us that there must
exist a model of a certain sort, from which it follows that there must exist a derivation.
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And the work of our demonstration of c̊ompleteness reduces to a demonstration of
.�/.

So we need to show that every consistent set of formulas †0 has an interpretation
M0 such that M0Œ†0� = T. Here is the basic idea: We show that any consistent †0 is
a subset of a corresponding “big” set †00 specified in such a way that it must have a
model M0—which in turn is a model for the smaller †0. Following the arrows,

†0

6

†00
Z
Z~

M0
�
�=

Given a consistent †0, we show that there is the big set †00. From this we show that
there must be an M0 that is a model not only for †00 but for †0 as well. So if †0 is
consistent, then it has a model. We proceed through a series of theorems to show that
this can be done.

10.2.2 Gödel Numbering

In constructing our big sets, we will want to consider sentences, for inclusion or
exclusion, serially—one after another. For this, we need to “line them up” for
consideration. Thus, where an enumeration of some objects sorts them into a series
with a first member, a second member, and so forth, in this section we show,

T10.7s. There is an enumeration Q1;Q2; : : : of all sentences in Ls .

The proof is by construction. We develop a method by which the sentences can
be lined up. The method is interesting in its own right, and foreshadows methods
from Part IV on Gödel’s ı̃ncompleteness theorem for arithmetic.

In section 2.2.1, we required that any sentential language Ls has countably many
sentence letters, which can be ordered into a series, S0, S1; : : : : Assume some such
series. We want to show that the sentences of Ls can be so ordered as well. Begin by
assigning to each symbol s in the language an integer gŒs�, called its Gödel number.

a. gŒ.� = 3

b. gŒ/� = 5

c. gŒ�� = 7

d. gŒ!� = 9

e. gŒSn� = 11 2n
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So, for example, gŒS0� = 11 and gŒS4� = 11 2 4 = 19. Clearly each symbol gets a
unique Gödel number, and Gödel numbers for individual symbols are 1 and odd.

Now we are in a position to assign Gödel numbers to expressions as follows:
Where s0;s1; : : : ;sn are the symbols, in order from left to right, in some expression
Q,

gŒQ� = 2gŒs0� 3gŒs1� 5gŒs2� � � � pn
gŒsn�

where 2; 3; 5; : : : ; pn are the first n prime numbers. So, for example, gŒ��S0� =
27 37 511; similarly, gŒ�.S0 ! S4/� = 27 33 511 79 1119 135 =
15463; 36193; 79608; 90364; 71042; 41201; 87066; 87500; 00000—a very big inte-
ger! All the same, it is an integer, and it is clear that every expression is assigned
some integer.

Further, different expressions get different Gödel numbers. It is a theorem of
arithmetic that every integer 1 is uniquely factored into primes (see the arithmetic
for Gödel numbering and more arithmetic for Gödel numbering references on pages
457 and 467). So a given integer can correspond to at most one expression: Given a
Gödel number, we can find its unique prime factorization; then if there are seven 2s in
the factorization, the first symbol is �; if there are seven 3s, the second symbol is �;
if there are eleven 5s, the third symbol is S0; and so forth. Notice that numbers for
individual symbols are odd, where numbers for expressions always have a multiplier
of two and so are even (where the number for an atomic comes out odd when it is
thought of as a symbol, but even when it is thought of as an expression).

The point is not that this is a practical, or a fun, procedure. Rather, the point is
that we have natural numbers associated with each expression of the language. Given
this, we can take the set of all sentences, and order its members according to their
Gödel numbers—so that there is an enumeration Q1;Q2; : : : of all sentences. And
this is what was to be shown.

E10.5. Find Gödel numbers for each of the following. Treat the first as a simple
symbol. (For the last, you need not do the calculation!)

S7 �S0 S0 ! �.S1 ! �S0/

E10.6. Determine the objects that have the following Gödel numbers:

49 1944 27 33 511 79 117 1313 175

E10.7. (i) Is every positive integer a Gödel number? Explain. (ii) Explain how this
does or does not matter for the result that there is an enumeration of all formulas
in Ls.
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Some Arithmetic Relevant to Gödel Numbering
Say an integer i has a “representation as a product of primes” if there are some
primes pa; pb; : : : ; pj such that pa pb � � � pj = i . We understand a single
prime p to be its own representation.

G1. Every integer 1 has at least one representation as a product of primes.

Basis: 2 is prime and so is its own representation; so the first integer 1 has
a representation as a product of primes.

Assp: For any i , 1 i k, i has a representation as a product of primes.

Show: k has a representation as a product of primes.

If k is prime, the result is immediate; so suppose there are some
i; j k such that k = i j ; by assumption i has a representation as a
product of primes pa � � � pb and j has a representation as a product
of primes qa � � � qb; so k = i j = pa � � � pb qa � � � qb has a
representation as a product of primes.

Indct: Any i 1 has a representation as a product of primes.

Corollary: any integer 1 is evenly divided by at least one prime.

G2. There are infinitely many prime numbers.

Suppose the number of primes is finite; then there is some list p1; p2; : : : ; pn
of all the primes; consider q = p1 p2 � � � pn 1; no pi in the list p1 : : : pn
divides q evenly, since each leaves remainder 1; but by the corollary to (G1),
q is divided by some prime; so some prime is not on the list; reject the
assumption: there are infinitely many primes.

Note: Sometimes q, calculated this way, is itself prime: when the list is f2g,
q = 2 1 = 3, and 3 is prime. Similarly, 2 3 1 = 7, 2 3 5 1 = 31,
2 3 5 7 1 = 211, and 2 3 5 7 11 1 = 2311, where 7, 31, 211, and
2311 are all prime. But 2 3 5 7 11 13 1 = 30031 = 59 509. So we
are not always finding a prime not on the list, but rather only showing that
there is a prime not on it.

G3. For any i 1, if i is the product of the primes p1, p2; : : : ; pa, then no
distinct collection of primes q1, q2; : : : ; qb is such that i is the product of
them. Fundamental Theorem of Arithmetic.

For a proof, see the more arithmetic for Gödel numbering reference in the
corresponding part of section 10.3.
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10.2.3 The Big Set

Recall that a set � is consistent iff there is no A such that � proves both A and �A.
Now say a set � is maximal iff for any A the set proves one or the other.

Max A set � of formulas is maximal iff for any sentence A, � ` A or � ` �A.

Again, this is a syntactical notion. If a set is maximal, then it proves A or �A for any
sentence A; if it is consistent, then it does not prove both. We set out to construct a
big set †00 from †0, and show that †00 is both maximal and consistent.

Cns†00 Construct †00 from †0 as follows: By T10.7s, there is an enumeration, Q1,
Q2; : : : of all the sentences in Ls . Consider this enumeration, and let �0 be
the same as †0. Then for any i 0 let,

�i = �i 1 if �i 1 ` �Qi

else,
�i = �i 1 [ fQig if �i 1 ° �Qi

then,
†00 =

S
i 0�i—that is, †00 is the union of all the �i s

Beginning with set †0 (= �0), we consider the sentences in the enumeration Q1,
Q2; : : : one by one, adding a sentence to the set just in case its negation is not already
derivable. †00 contains all the members of †0 together with all the sentences added
this way. Observe that †0 � †00. One might think of the �is as constituting a big
“sack” of formulas, and the Qi s as coming along on a conveyor belt: For a given Qi ,
if there is no way to derive its negation from formulas already in the sack, we throw
the Qi in; otherwise, we let it go on by. Of course, this is not a procedure we could
complete in finite time. Rather, we give a logical condition which specifies, for any
sentence Qi in the language, whether it is to be included in †00 or not. The important
point is that some †00 meeting these conditions exists.

As an example, suppose †0 = f�A ! Bg and consider an enumeration which
begins A, �A, B , �B; : : : : Then,

(F)

�0 = †0; so �0 = f�A! Bg.

Q1 = A, and �0 ° �A; so �1 = f�A! Bg [ fAg = f�A! B;Ag.

Q2 = �A, and �1 ` ��A; so �2 is unchanged; so �2 = f�A! B;Ag.

Q3 = B , and �2 ° �B; so �3 = f�A! B;Ag [ fBg = f�A! B;A;Bg.

Q4 = �B , and �3 ` ��B; so �4 is unchanged; so �4 = f�A! B;A;Bg.

So we include Qi each time its negation is not proved. Ultimately, we will use this set
to construct a model. For now, though, the point is simply to understand the condition
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under which a sentence is included or excluded from the set and, with this, to think
about its nature.

We now show that if †0 is consistent, then †00 is maximal and consistent. Perhaps
the first is obvious: We guarantee that †00 is maximal by including Qi as a member
whenever �Qi is not already a consequence. The other is not much more difficult.

T10.8s. If †0 is consistent, then †00 is maximal and consistent.

The proof comes to the demonstration of three results. Given the assumption that
†0 is consistent, we show, (a) †00 is maximal; (b) each �i is consistent; and use
this to show (c), †00 is consistent. Suppose †0 is consistent.

(a) †00 is maximal. Suppose otherwise. Then there is some sentence Qi such that
both †00 ° Qi and †00 ° �Qi . For this i , by construction, each member of �i 1
is in †00; so if �i 1 ` �Qi then †00 ` �Qi ; but †00 ° �Qi ; so �i 1 ° �Qi ;
so by construction, �i = �i 1 [ fQig; and by construction again, Qi 2 †

00; so
†00 ` Qi . This is impossible; reject the assumption: †00 is maximal.

(b) Each �i is consistent. By induction on the series of �i s,

Basis: �0 = †0 and †0 is consistent; so �0 is consistent.
Assp: For any i , 0 i k, �i is consistent.

Show: �k is consistent.
�k is either �k 1 or �k 1 [ fQkg. Suppose the former; by assumption,
�k 1 is consistent; so �k is consistent. Suppose the latter; then by con-
struction, �k 1 ° �Qk; so by T10.6s, �k 1 [ fQkg is consistent; so �k
is consistent. So, either way, �k is consistent.

Indct: For any i , �i is consistent.

(c) †00 is consistent. Suppose †00 is not consistent; then there is some A such that
†00 ` A and †00 ` �A. Consider derivations D1 and D2 of these results, and the
premises Qi : : :Qj of these derivations. Where Qj is the last of these premises in
the enumeration of sentences, by the construction of †00, each of Qi : : :Qj must
be a member of �j ; so D1 and D2 are derivations from �j ; so �j is inconsistent.
But by (b) �j is consistent. This is impossible; reject the assumption: †00 is
consistent.

Observe that there is something to show at (c). The concern is that members of a
sequence might individually be consistent, but the union of them all not. Consider the
following example:

…0 = fa has finitely many membersg

…1 = fa has finitely many members, a has at least 1 memberg

…2 = fa has finitely many members, a has at least 1 member, a has at least 2 membersg
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and so forth. Intuitively, each …n is consistent with the proposition that a has exactly
n members. But the union of them all is inconsistent—for any finite n, the proposition
that a has n members is inconsistent with …nC1. We show that this cannot happen in
the construction of †00, insofar as any inconsistency must emerge at some finite stage:
Because derivations of A and �A have only finitely many premises, all the premises
in a derivation of a contradiction must show up in some �j ; so if †00 is inconsistent,
then some �j is inconsistent, which is impossible. So we have what we set out to
show: †0 � †00, and if †0 is consistent, then †00 is both maximal and consistent.

E10.8. (i) Suppose†0 = fA! �Bg and the enumeration of sentences begins A, �A,
B , �B; : : : : What are �0, �1, �2, �3, and �4? (ii) What are they when the
enumeration begins B , �B , A, �A; : : :?

10.2.4 The Model

We now construct a model M0 for †0. The key is that the maximal and consistent set
contains enough information that we can extract from it a specification for a model of
the whole. In this sentential case, the specification is particularly simple.

CnsM0 For any atomic S , let M0ŒS � = T iff †00 ` S .

Notice that there clearly exists some such interpretation M0: We assign T to every
sentence letter that can be derived from †00, and F to the others. It will not be the
case that we are in a position to do all the derivations, and so to know what are all
the assignments to the atomics. Still, it must be that any atomic either is or is not
a consequence of †00, and so that there exists a corresponding interpretation M0 on
which those sentence letters either are or are not assigned T.

We now want to show that if †0 is consistent, then M0 is a model for †0—that if
†0 is consistent then M0Œ†0� = T. As we shall see, this results immediately from the
following theorem.

*T10.9s. If †0 is consistent, then for any sentence P of Ls , M0ŒP � = T iff †00 ` P .

Suppose †0 is consistent. Then by T10.8s, †00 is maximal and consistent. Now by
induction on the number of operators in P ,

Basis: If P has no operators, then it is an atomic of the sort S . But by the
construction of M0, M0ŒS � = T iff †00 ` S ; so M0ŒP � = T iff †00 ` P .

Assp: For any i , 0 i k, if P has i operator symbols, then M0ŒP � = T iff
†00 ` P .

Show: If P has k operator symbols, then M0ŒP � = T iff †00 ` P .

If P has k operator symbols, then it is of the form �A or A! B where
A and B have k operator symbols.
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(�/ Suppose P is �A. (i) Suppose M0ŒP � = T; then M0Œ�A� = T; so by ST(�),
M0ŒA� = T; so by assumption, †00 ° A; so by maximality, †00 ` �A;
which is to say, †00 ` P . (ii) Suppose †00 ` P ; then †00 ` �A; so
by consistency, †00 ° A; so by assumption, M0ŒA� = T; so by ST(�),
M0Œ�A� = T; which is to say, M0ŒP � = T. So M0ŒP � = T iff †00 ` P .

(!) Suppose P is A ! B. (i) Suppose M0ŒP � = T; then M0ŒA ! B� = T;
so by ST(!), M0ŒA� = T or M0ŒB� = T; so by assumption, †00 ° A or
†00 ` B; from the first of these, by maximality, †00 ` �A; in either case
by _I, †00 ` �A _ B; so by Impl, †00 ` A ! B where this is to say,
†00 ` P . (ii) Suppose †00 ` P but M0ŒP � = T; by [homework], this is
impossible: so if †00 ` P , then M0ŒP � = T. So M0ŒP � = T iff †00 ` P .

If P has k operator symbols, then M0ŒP � = T iff †00 ` P .

Indct: For any P , M0ŒP � = T iff †00 ` P .

The key to this is that †00 is both maximal and consistent—so that we can move
between the failure to prove a sentence and the proof of its negation. And the
maximality and consistency of †00 are required to make the consequences of †00

match truths on M0. Thus in example (F), †0 = f�A! Bg; so †0 ° A and †0 ° B;
if we were simply to follow our construction procedure as applied to this set, the result
would have M0ŒA� = T and M0ŒB� = T; but then M0Œ�A ! B� = T and there is no
model for†0. But�4, and so†00, have A and B as members; so†00 ` A and†00 ` B .
So by the construction procedure, M0ŒA� = T and M0ŒB� = T; so M0Œ�A ! B� = T.
Thus it is the construction, together with the maximality and consistency of †00, that
puts us in a position to draw the parallel between the consequences of †00 and what is
true on M0. With this, it will be a short step to see that we have a model for †0 and so
.�/ that we have been after.

*E10.9. Complete (ii) for the conditional case to complete the proof of T10.9s. You
should set up the entire induction, but may refer to the text for parts completed
there, as the text refers to homework.

E10.10. (i) Where †0 = fA! �Bg, and the enumeration of formulas is as in the first
part of E10.8, what assignments does M0 make to A and B? (ii) What assignments
does it make on the second enumeration? Use a truth table to show, for each case,
that the assignments result in a model for †0. Explain.

10.2.5 Final Result

The proof of sentential c̊ompleteness is now a simple matter of pulling together what
we have done. First, it is a simple matter to show,
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T10.10s. If †0 is consistent, then M0Œ†0� = T. .�/

Suppose †0 is consistent but M0Œ†0� = T. From the latter, there is some formula
P 2 †0 such that M0ŒP � = T. Since P 2 †0, by construction, P 2 †00; so
†00 ` P ; so since †0 is consistent, by T10.9s, M0ŒP � = T. This is impossible;
reject the assumption: if †0 is consistent, then M0Œ†0� = T.

That is it! Going back to the beginning of our discussion of sentential c̊ompleteness,
all we needed was .�/, and now we have it. So the final argument is as sketched
before:

T10.11s. If � �s P , then � ` P . Sentential C̊ompleteness.

Suppose � �s P but � ° P . Say, for the moment, that � ` ��P ; by T3.10,
` ��P ! P ; so by MP, � ` P ; but this is impossible; so � ° ��P . Given
this, by T10.6s, � [ f�P g = †0 is consistent; so by T10.10s, there is a model
M0 such that M0Œ� [ f�P g� = T; so M0Œ�� = T and M0Œ�P � = T; from the latter,
by ST(�), M0ŒP � = T; so M0Œ�� = T but M0ŒP � = T; so by SV, � ²s P . This is
impossible; reject the assumption: if � �s P , then � ` P .

Try again to get the complete picture in your mind: The key is that consistent sets
always have models. If there is no derivation of P from � , then � [ f�P g is
consistent; and if � [ f�P g is consistent, then it has a model—so that � ²s P . Thus,
put the other way around, if � �s P , then there is a derivation of P from � . We
get the key point, that consistent sets have models, by finding a relation between
consistent, and maximal consistent sets. If a set is both maximal and consistent, then it
contains enough information about its atomics that a model for its atomics is a model
for the whole.

It is obvious that the argument is not constructive—we do not see how to show
that � ` P whenever � �s P . But it is interesting to see why. The argument turns
on the existence of our big sets under certain conditions, and so on the existence of
models. We show that the sets must exist and have certain properties, though we are
not in a position to find all their members. This puts us in a position to know the
existence of derivations, though we do not say what they are.2

E10.11. Suppose our primitive operators are � and ^ and the derivation system
is A� from E3.5 (Chapter 3, page 76). Present a complete demonstration of
c̊ompleteness for this derivation system—with all the definitions and theorems.
You may simply appeal to the text for results that require no change. You have the
results of E3.5 along with DT by E9.8.

2In fact, there are constructive approaches to sentential c̊ompleteness. See, for example, Lemma
1.13 and Proposition 1.14 of Mendelson, Introduction to Mathematical Logic. Our primary purpose,
however, is to set up the argument for the quantificational case, where such methods do not apply.
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10.3 Quantificational C̊ompleteness: Basic Version

As promised, the demonstration of quantificational c̊ompleteness is parallel to what
we have seen. Return to a quantificational language and to our regular quantificational
semantic and derivation notions. The goal is to show that if � � P , then � `
P . Certain complications are avoided if we suppose that the language L0 includes
infinitely many constants not in � or P , and does not include the ‘D’ symbol for
equality. The constants will be required for the construction of our big sets. And
withoutD in the language, the model specification is simplified. We will work through
the basic argument in this section and, dropping constraints on the language, return to
the general case in the next. If you are confused at any stage, it may help to refer back
to the parallel section for the sentential case.

10.3.1 Basic Idea

As before, our main argument turns on the idea that every consistent set has a model.
Thus we begin with a definition and a theorem.

Con A set � of formulas is consistent iff there is no formula A such that � ` A

and � ` �A.

So a set of formulas is consistent just in case there is no way to derive a contradiction
from it. Of course, now we are working with full quantificational languages, and so
with our full quantificational derivation systems.

For the following theorem, notice that � is a set of formulas, and P a sentence (a
distinction without a difference in the sentential case). As before,

T10.6. For any set of formulas � and sentence P , if � ° �P , then � [ fP g is
consistent.

For some sentence P , suppose � ° �P but � [ fP g is not consistent. From
the latter, there is some formula A such that � [ fP g ` A and � [ fP g ` �A;
since P is a sentence, it has no free variables; so by DT, � ` P ! A and
� ` P ! �A; by T3.10, ` ��P ! P ; so by T3.2, � ` ��P ! A and
� ` ��P ! �A; but by A3, ` .��P ! �A/ ! Œ.��P ! A/ ! �P �;
so by two instances of MP, � ` �P . This is impossible; reject the assumption: if
� ° �P , then � [ fP g is consistent.

Insofar as P is required to be a sentence, it has no free variables; so no application of
Gen is to a variable free in P ; so the restriction on DT is sure to be met. So T10.6
does not apply for an arbitrary formula P .

To the extent that T10.6 plays a direct role in our basic argument for c̊ompleteness,
this point that it does not apply to an arbitrary formula P might seem to present a
problem about reaching our general result, that if � � P then � ` P , which is
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supposed to apply in the arbitrary case. But there is a way around the problem. For
any formula P , let its universal closure P u be P prefixed by a universal quantifier
for every variable free in P . To make P u unique, for some enumeration of variables,
x1;x2; : : : let the quantifiers be in order of ascending subscripts. So if P has no free
variables, P u = P ; if x1 is free in P , then P u = 8x1P ; if x1 and x3 are free in P ,
then P u = 8x18x3P ; and so forth. So for any formula P , P u is a sentence. As it
turns out, we will be able to argue about arbitrary formulas P by using their closures
P u as intermediaries.

Let �P u be �.P u/ and suppose the members of � [ f�P ug = †0 are formulas
of L0. Then it will be sufficient to show that any consistent set of this sort has a model.

.?/ For any consistent set †0 of formulas in L0, there is an interpretation M0 such
that M0Œ†0� = T.

Again, this sets up the key connection between syntactic and semantic notions—
between consistency on the one hand, and truth on the other—that we will need for
c̊ompleteness. Supposing .?/ we have the following:

1. � [ f�P ug has a model � � ² P

2. � [ f�P ug is consistent � � [ f�P ug has a model .?/

3. � [ f�P ug is not consistent � � ` P

Where � [ f�P ug = †0, (2) is just .?/. Observe that (1) and (3) switch between P u

and P . Reasoning is as before except that T7.6 and A4 provide the required bridge
between P u and P : (1) Suppose � [ f�P ug has a model; then there is some M such
that MŒ� [ f�P ug� = T; so MŒ�� = T and MŒ�P u� = T; from the latter, by T8.8,
MŒP u� = T; so by repeated application of T7.6, MŒP � = T; so MŒ�� = T and MŒP � = T;
so by QV, � ² P . (3) Suppose � [ f�P ug is not consistent; then since P u is a
sentence, by an application of T10.6, � ` ��P u; but by T3.10, ` ��P u ! P u;
so by MP, � ` P u; and by repeated applications of A4 and MP, � ` P .

Now suppose � � P ; then from (1), �[f�P ug does not have a model; so by (2),
� [ f�P ug is not consistent; so by (3), � ` P . So if � � P , then � ` P . Again, it
remains to show .?/, that every consistent set †0 of formulas has a model. And, again,
our strategy is to find a “big” set related to †0 which can be used to specify a model
for †0.

10.3.2 Gödel Numbering

As before, in constructing our big sets, we will want to line up expressions serially—
one after another. The method merely expands our approach for the sentential case.
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T10.7. There is an enumeration Q1, Q2; : : : of all the sentences, terms, and the like
in L0.

The proof is again by construction: We develop a method by which all the
expressions of L0 can be lined up. Then the collection of all sentences, taken in
that order, is an enumeration of all sentences; the collection of all terms, taken in
that order, is an enumeration of all terms; and so forth.

Insofar as the collections of variable symbols, constant symbols, function symbols,
sentence letters, and relation symbols in any quantificational language are countable,
they are capable of being sorted into series, x0, x1; : : : and a0, a1; : : : and hn0;h

n
1; : : :

and Rn
0 ;R

n
1 ; : : : for variables, constants, function symbols, and relation symbols re-

spectively (where we think of sentence letters as 0-place relation symbols). Supposing
that they are sorted into such series, begin by assigning to each symbol s in L0 an
integer gŒs� called its Gödel number.

a. gŒ.� = 3 f. gŒ8� = 13
b. gŒ/� = 5 g. gŒxi � = 15 10i

c. gŒ�� = 7 h. gŒai � = 17 10i

d. gŒ!� = 9 i. gŒhni � = 19 10.2n 3i /

e. gŒD� = 11 j. gŒRn
i � = 21 10.2n 3i /

Officially, we do not yet have ‘D’ in the language, but it is easy enough to leave it
out for now. So, for example, gŒx0� = 15, gŒx1� = 15 10 1 = 25, and gŒR2

1� =
21 10.22 31/ = 141.

To see that each symbol gets a distinct Gödel number, first notice that numbers in
different categories cannot overlap: Each of (a)–(f) is obviously distinct and 13. But
(g)–(j) are all greater than 13, and when divided by 10, the remainder is 5 for variables,
7 for constants 9 for function symbols, and 1 for relation symbols; so numbers for
variables, constants, function symbols, and relation symbols do not overlap. Second,
different symbols get different numbers within the categories. This is obvious except
in cases (i) and (j). For these we need to see that each n=i combination results in a
different multiplier.

Suppose this is not so, that there are some combinations n; i and m; j such that 2n 3i =
2m 3j but n = m or i = j . If n = m then, dividing both sides by 2n, we get 3i = 3j , so
that i = j . So suppose n = m and, without loss of generality, that n m. Dividing each
side by 2m, we get 2n m 3i = 3j ; since n m, n m is a positive integer; so 2n m is
1 and even. So 3i 3j and i j . Dividing both sides again by 3i , we get 2n m = 3j i ;

but since j i , j � i is a positive integer and 3j i is odd. Reject the assumption: if
2n 3i = 2m 3j , then n = m and i = j .



CHAPTER 10. MAIN RESULTS 466

So each n=i combination gets a different multiplier, and we conclude that each
symbol gets a different Gödel number. (This result is a special case of the fundamental
theorem of arithmetic treated on the following page.)

Now, as before, assign Gödel numbers to expressions as follows: Where s0;s1;

: : : ;sn are the symbols, in order from left to right, in some expression Q,

gŒQ� = 2gŒs0� 3gŒs1� 5gŒs2� � � � pn
gŒsn�

where 2; 3; 5; : : : ; pn are the first n prime numbers. So, for example, gŒ��R2
1x0x1� =

27 37 5141 715 1125—a relatively large integer (one with over 130 digits)! All
the same, it is an integer, and different expressions get different Gödel numbers.
Given a Gödel number, we can find the corresponding expression by finding its prime
factorization; then if there are seven 2s in the factorization, the first symbol is �; if
there are seven 3s, the second symbol is �; if there are one hundred forty-one 5s, the
third symbol is R2

1; and so forth. Notice that numbers for individual symbols are odd,
where numbers for expressions always have a multiplier of two and so are even.

So we can take the set of all sentences, the set of all terms, or whatever, and order
their members according to their Gödel numbers—so that there is an enumeration
Q1;Q2; : : : of all sentences, terms, and so forth. And this is what was to be shown.

E10.12. Find Gödel numbers for each of the following. Treat the first as a simple
symbol. For the last, you need not do the calculation!

R2
3 h11x1 8x2R

2
1a2x2

E10.13. Determine the objects that have the following Gödel numbers:

61 213 315 53 715 1111 1315 175

10.3.3 The Big Set

Last time, to build our big set we added sentences to †0 to form a †00 that was both
maximal and consistent. From Con a set of formulas is consistent just in case there is
no formula A such that both A and �A are consequences. As before, however, both
the notion of maximality and our construction of †00 proceed in terms of sentences.
So,

Max A set � of formulas is maximal iff for any sentence A, � ` A or � ` �A.

And this time we require an additional property for our big sets. If a maximal and
consistent set has some sentence 8xP as a member, then it has P x

a as a consequence
for every constant a. (Be clear about why this is so.) But in a maximal and consistent
set, the status of a universal 8xP is not always reflected at the level of its instances.
Thus, for example, though a set has P x

a as a consequence for every constant a, it
may consistently include �8xP as well—for it may be that a universal is falsified by
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More Arithmetic Relevant to Gödel Numbering

G3. For any i 1, if i is the product of the primes p1, p2; : : : ; pa, then no
distinct collection of primes q1; q2; : : : ; qb is such that i is the product of
them. Fundamental Theorem of Arithmetic.

Basis: The first integer 1 = 2; but the only collection of primes such that their
product is equal to 2 is the collection containing just 2 itself; so no distinct
collection of primes is such that 2 is the product of them.

Assp: For any i , 1 i k, if i is the product of primes p1 : : : pa, then no distinct
collection of primes q1 : : : qb is such that i is the product of them.

Show: k is such that if it is the product of the primes p1 : : : pa, then no distinct
collection of primes q1 : : : qb is such that k is the product of them.

Suppose there are distinct collections of primes p1 : : : pa and q1 : : : qb such
that k = p1 � � � pa = q1 � � � qb; divide out terms common to both lists
of primes; then for some subclasses of the original lists, n = p1 � � � pc =
q1 � � � qd , where no member of p1 : : : pc is a member of q1 : : : qd and vice
versa (of course this p1 may be distinct from the one in the original list, and so
forth). So p1 = q1; suppose, without loss of generality, that p1 q1; and let
m = q1.n=q1 n=p1/ = .p1 q1/.n=p1/ = n .q1=p1/n = n q1 p2 � � � pc .

Some preliminary results: (i) n=q1 and n=p1 are integers, with the first
greater than the second; so their difference n=q1 n=p1 is a positive integer;
so either n=q1 n=p1 = 1 or it has a prime factorization. (ii) Since m =
n q1 p2 � � � pc , m n; and n k; so m k. Further, since q1 is prime,
q1 1; and since n=q1 n=p1 is a positive integer,m = q1.n=q1 n=p1/ 1.
So the inductive assumption applies to m. (iii) .p1 q1/=q1 = p1=q1 1;
since p1 is prime, this is no integer; so q1 does not divide .p1 q1/.

Either p1 q1 = 1 or it has some prime factorization; and n=p1 has a prime
factorization, p2 � � � pc ; since m = .p1 q1/.n=p1/, the product of these
factorization(s) is a prime factorization of m. Given the cancellation of
common terms to get n, q1 is not a member of p2 � � � pc; and by (iii),
q1 is not a member of the factorization of p1 q1; so q1 is not a member
of this factorization of m. But by (i) either n=q1 n=p1 = 1 or it has a
prime factorization pf ; in the first case q1 itself is a prime factorization of
m = q1.n=q1 n=p1/, and in the other the product of q1 and pf is a prime
factorization of m; in either case, q1 is a member of some prime factorization
of m. But by (ii), the inductive assumption applies to m; so m has only one
prime factorization. Reject the assumption: there are no distinct collections
of primes, p1 : : : pa and q1 : : : qb such that k = p1 � � � pa = q1 � � � qb .

Indct: For any i 1, if i is the product of the primes p1; : : : ; pa, then no distinct
collection of primes q1; : : : ; qb is such that i is the product of them.
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some individual to which no constant is assigned. But when we come to showing by
induction that there is a model for our big set, it will be important that the status of a
universal is reflected at the level of its instances. We guarantee this by building the set
to satisfy the following condition:

Scgt A set � of formulas is a scapegoat set iff for any sentence �8xP , if � `
�8xP , then there is some constant a such that � ` �P x

a .

Equivalently, � is a scapegoat set just in case any sentence 9xP is such that if
� ` 9xP , then there is some constant a such that � ` P x

a . In a scapegoat set,
we assert the existence of a particular individual (a scapegoat) corresponding to any
existential claim. Notice that since �8xP is a sentence, �P x

a is a sentence too.
So we set out to construct from †0 a maximal consistent scapegoat set. As before,

the idea is to line the sentences up, and consider them for inclusion one by one.
In addition, this time, we consider an enumeration of constants c1;c2; : : : not in
†0 and for any included sentence of the form �8xP , add �P x

c where c does not
so-far appear in the construction. We have assumed that L0 includes infinitely many
constants not in � or P ; so there are infinitely many constants not in†0 = �[f�P ug;
so at each (finite) stage i of the construction, there remain constants to include.

Cns†00 Construct†00 from†0 as follows: By T10.7, there is an enumeration, Q1;Q2;

: : : of all the sentences in L0 and also an enumeration c1;c2; : : : of constants
not in †0. Let �0 = †0. Then for any i 0, let

�i = �i 1 if �i 1 ` �Qi

else,
�i� = �i 1 [ fQig if �i 1 ° �Qi

and,
�i = �i� if Qi is not of the form �8xP

�i = �i� [ f�P x
c g if Qi is of the form �8xP ; c the first

constant not in �i�
then,

†00 =
S
i 0�i—that is, †00 is the union of all the �i s

Beginning with set †0 (= �0), we consider the sentences in the enumeration Q1;Q2;

: : : one by one, adding a sentence just in case its negation is not already derivable.
In addition, if Qi is of the sort �8xP , we add �P x

c using a new constant. Observe
that if c is not in �i� , then c is not in �8xP . †00 contains all the formulas in †0,
together with all the sentences added this way.

It remains to show that if †0 is consistent, then †00 is a maximal consistent
scapegoat set.
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T10.8. If †0 is consistent, then †00 is a maximal consistent scapegoat set.

Suppose †0 is consistent. The proof comes to showing (a) †00 is maximal. (b)
Each �i is consistent. From this, (c) †00 is consistent. And (d) †00 is a scapegoat
set.

(a) †00 is maximal. Suppose †00 is not maximal. Then there is some sentence
Qi such that both †00 ° Qi and †00 ° �Qi . For this i , by construction, each
member of�i 1 is in †00; so if�i 1 ` �Qi then†00 ` �Qi ; but†00 ° �Qi ; so
�i 1 ° �Qi ; so by construction, �i� = �i 1 [ fQig; and by construction again,
Qi 2 †

00; so †00 ` Qi . This is impossible; reject the assumption: †00 is maximal.

(b) Each �i is consistent. By induction on the series of �i s,

Basis: �0 = †0 and †0 is consistent; so �0 is consistent.

Assp: For any i , 0 i k, �i is consistent.

Show: �k is consistent.

�k is either (i) �k 1, (ii) �k� = �k 1 [ fQkg, or (iii) �k� [ f�P x
c g.

(i) Suppose �k is �k 1. By assumption, �k 1 is consistent; so �k is consis-
tent.

(ii) Suppose�k is�k� = �k 1[fQkg. Then by construction,�k 1 ° �Qk ;
so, since Qk is a sentence, by T10.6, �k 1 [ fQkg is consistent; so
�k� = �k is consistent.

(iii) Suppose �k is �k� [ f�P x
c g for c not in �k� and so not in �8xP . In

this case, as in (ii) above, �k� is consistent; and by construction �8xP 2

�k� ; so �k� ` �8xP .

Suppose �k is inconsistent; then there are formulas A and �A such that
�k ` A and�k ` �A; so�k�[f�P x

c g ` A and�k�[f�P x
c g ` �A.

But since �P x
c is a sentence, the restriction on DT is met, and both

�k� ` �P x
c ! A and �k� ` �P x

c ! �A; by A3, ` .�P x
c !

�A/ ! Œ.�P x
c ! A/ ! P x

c �; so by two instances of MP, �k� ` P x
c .

Consider some derivation of this result; by T8.10, we can switch c for
some variable v that does not occur in the derivation, and the result is
a derivation; so �k�c

v ` ŒP x
c �

c
v ; but since c does not occur in �k� ,

�k�
c
v = �k� , and since c does not appear in �8xP , it does not appear in

P , so with T8.3, ŒP x
c �

c
v = P x

v ; so �k� ` P x
v ; so by Gen, �k� ` 8vP x

v ;
since v is new it is free for x in P and not free in 8xP and by T9.11,
` 8vP x

v ! 8xP ; so by MP, �k� ` 8xP . But �k� ` �8xP . So �k�
is inconsistent. This is impossible; reject the assumption: �k is consistent.

�k is consistent.

Indct: For any i , �i is consistent.
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(c) †00 is consistent. Suppose †00 is not consistent; then there is some A such
that †00 ` A and †00 ` �A; consider derivations D1 and D2 of these results, and
the premises Pa : : :Pb of these derivations. Let j be the least index such that
each of Pa : : :Pb is a member of �j : if all of Pa : : :Pb are members of †0, then
j = 0; otherwise take all the members of Pa : : :Pb not in †0 (ones added by the
construction), then for Qz the last of these in the enumeration of setnences, j = z;
in either case, by the construction of †00, each of Pa : : :Pb must be a member of
�j . So D1 and D2 are derivations from �j ; so �j is inconsistent. But by (b), �j
is consistent. This is impossible; reject the assumption: †00 is consistent.

(d) †00 is a scapegoat set. Suppose †00 ` Qi , for some sentence Qi of the
form �8xP . By (c), †00 is consistent; so †00 ° ��8xP ; which is to say,
†00 ° �Qi ; so, �i 1 ° �Qi ; so by construction, �i� = �i 1 [ f�8xP g and
�i = �i� [ f�P x

c g; so by construction, �P x
c 2 †

00; so †00 ` �P x
c . So if

†00 ` �8xP , then †00 ` �P x
c , and †00 is a scapegoat set.

For (c), a premise might be some open formula in †0, and so not a member of the
enumeration of sentences; even so, any such premise, together with premises added
in the construction, remains a member of �j and the argument goes through as
before. More interesting is the case (iii) for consistency. In effect, we “push” a
supposed inconsistency in �k back to inconsistency in �k�—and so to contradiction
with its already established consistency. Given �k� ` �8xP , the idea is to obtain
�k� ` 8xP toward the contradiction. For this, having shown that �k� ` P x

c

for c not in �k� or in P , we want to generalize to show that �k� ` 8xP . But
generalization is on variables, not constants.3 To get the generalization we want, we
first use T8.10 to replace c in the derivation with a new variable v; this gets P x

v and
so by Gen 8vP x

v . From this, 8xP follows by exchange of bound variables.

E10.14. Let †0 = f8x�Bx;Cag and consider enumerations of sentences and con-
stants in L0 that begin, Ab, Ba, �8xCx; : : : and b; c; : : : : What are �0, �1� ,
�1, �2� , �2, �3� , �3?

E10.15. Suppose some �i 1 = fAc;8x.Ax ! Bx/g. Show that �i is inconsistent
if Qi = �8xBx, and we add �8xBx and then �Bc to form �i� and �i . Why
cannot this happen in the construction of †00?

3In fact, subject to appropriate constraints, some treatments allow generalization on constants (for
example Bergmann, Moor, and Nelson, The Logic Book). Restricted to sentences, all the same arguments
come out valid. Even so, this approach has the disconcerting consequence that 8I and Gen apply between
expressions that are not equivalent—and so not related as by our T7.6. Compare the variable semantics
reference (Chapter 7 page 352).
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10.3.4 The Model

We turn now to constructing the model M0 for †0. Again the key is that the maximal
consistent scapegoat set contains enough information to extract a specification for a
model of the whole. As it turns out, the construction is simplified by our assumption
that ‘D’ does not appear in the language. A quantificational interpretation has a
universe, with assignments to sentence letters, constants, function symbols, and
relation symbols.

CnsM0 Let the universe U be the set of natural numbers, f0; 1; : : :g. Then, where a
variable-free term consists just of function symbols and constants, consider
an enumeration t0; t1; : : : of all the variable-free terms in L0. If tz is a
constant, set M0Œtz� = z. If tz = hnta : : : tb for some function symbol hn

and n variable-free terms ta : : : tb , then let hha : : : bi; zi 2 M0Œhn�. For a
sentence letter S , let M0ŒS � = T iff †00 ` S . And for a relation symbol Rn, let
ha : : : bi 2 M0ŒRn� iff †00 ` Rnta : : : tb .4

Thus, for example, where t1 and t3 from the enumeration of terms are constants and
†00 ` Rt1t3, then M0Œt1� = 1, M0Œt3� = 3, and h1; 3i 2 M0ŒR�. Given this, it should
be clear why Rt1t3 comes out satisfied on M0: Put generally, where ta : : : tb are
constants, we set M0Œta� = a and . . . and M0Œtb� = b; so by TA(c), for any variable
assignment d, M0dŒta� = a and . . . and M0dŒtb� = b. So by SF(r), M0dŒR

nta : : : tb� = S
iff ha : : : bi 2 M0ŒRn�; by construction, iff †00 ` Rnta : : : tb . Just as in the sentential
case, our idea is to make atomic sentences true on M0 just in case they are proved by
†00.

Our aim has been to show that if †0 is consistent, then †0 has a model. We have
constructed an interpretation M0, and turn now to showing that M0 is a model for †0.
As in the sentential case, the main weight is carried by a preliminary theorem. And,
as in the sentential case, the key is that we can appeal to special features of †00, this
time that it is a maximal consistent scapegoat set. Notice that P is a sentence.

T10.9. If †0 is consistent, then for any sentence P of L0, M0ŒP � = T iff †00 ` P .

Suppose †0 is consistent and P is a sentence of L0. From the former, by T10.8,
†00 is a maximal consistent scapegoat set.

We begin with a preliminary result which connects arbitrary variable-free terms to
our treatment of constants in the example above: For any variable-free term tz
and variable assignment d, M0dŒtz� = z. For this, suppose tz is a variable-free term
and d is an arbitrary variable assignment. By induction on the number of function
symbols in tz ,

4It is common to let U just be the set of variable-free terms in L0, and the interpretation of a term be
itself. There is nothing the matter with this. However, working with the natural numbers emphasizes
continuity with other models we have seen, and positions us for further results.
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Basis: If tz has no function symbols, then it is a constant. In this case, by
construction, M0Œtz� = z; so by TA(c), M0dŒtz� = z.

Assp: For any i , 0 i k, if tz has i function symbols, then M0dŒtz� = z.

Show: If tz has k function symbols, then M0dŒtz� = z.

If tz has k function symbols, then it is of the form hnta : : : tb for function
symbol hn and variable-free terms ta : : : tb each with k function sym-
bols. By assumption, M0dŒta� = a and . . . and M0dŒtb� = b; and since tz =
hnta : : : tb is a variable-free term, by construction hha : : : bi; zi 2 M0Œhn�.
So M0dŒtz� is M0dŒh

nta : : : tb�; by TA(f) this is M0Œhn�hM0dŒta� : : :M
0
dŒtb�i;

by assumption, this is M0Œhn�ha : : : bi; and since hha : : : bi; zi 2 M0Œhn�,
this is just z. So M0dŒtz� = z.

Indct: For any tz , M0dŒtz� = z.

Given this, we are ready to show, by induction on the number of operators in P ,
that M0ŒP � = T iff †00 ` P . Recall that P is a sentence.

Basis: If P is a sentence with no operators, then it is a sentence letter S , or
an atomic Rnta : : : tb for relation symbol Rn and variable-free terms
ta : : : tb . In the first case, by construction, M0ŒS � = T iff †00 ` S . In the
second case, by TI, M0ŒRnta : : : tb� = T iff for arbitrary d, M0dŒR

nta : : : tb�

= S; by SF(r), iff hM0dŒta� : : :M
0
dŒtb�i 2 M0ŒRn�; since ta . . . tb are variable-

free terms, by the above result, iff ha : : : bi 2 M0ŒRn�; by construction, iff
†00 ` Rnta : : : tb . In either case, then, M0ŒP � = T iff †00 ` P .

Assp: For any i , 0 i k if a sentence P has i operator symbols, then M0ŒP � = T
iff †00 ` P .

Show: If a sentence P has k operator symbols, then M0ŒP � = T iff †00 ` P .

If P has k operator symbols, then it is of the form, �A, A! B, or 8xA,
for variable x and A and B with k operator symbols.

(�) Suppose P is �A. Homework. Hint: Given T8.8, your reasoning may be
very much as in the sentential case.

(!) Suppose P is A! B. Homework.

(8) Suppose P is 8xA. Then since P is a sentence, x is the only variable that
could be free in A.

(i) Suppose M0ŒP � = T but †00 ° P ; from the latter, †00 ° 8xA; since
†00 is maximal, †00 ` �8xA; and since †00 is a scapegoat set, for some
constant c,†00 ` �Ax

c; so by consistency,†00 ° Ax
c; but Ax

c is a sentence;
so by assumption, M0ŒAx

c� = T; so by TI, for some d, M0dŒA
x
c� = S; but,

where c is some ta, by construction, M0Œc� = a; so by TA(c), M0dŒc� = a;
so, since c is free for x in A, by T10.2, M0d.xja/ŒA� = S; so by SF(8),
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M0dŒ8xA� = S; so by TI, M0Œ8xA� = T; and this is just to say, M0ŒP � = T.
But this is impossible; reject the assumption: if M0ŒP � = T, then †00 ` P .

(ii) Suppose †00 ` P but M0ŒP � = T; from the latter, M0Œ8xA� = T; so by
TI, there is some d such that M0dŒ8xA� = S; so by SF(8), there is some
a 2 U such that M0d.xja/ŒA� = S; but for variable-free term ta, by our above
result, M0dŒta� = a, and since ta is variable-free, it is free for x in A, so by
T10.2, M0dŒA

x
ta
� = S; so by TI, M0ŒAx

ta
� = T; but Ax

ta
is a sentence; so by

assumption, †00 ° Ax
ta

; so by the maximality of †00, †00 ` �Ax
ta

; but ta
is free for x in A, so by A4, ` 8xA! Ax

ta
; so by MT, †00 ` �8xA; so

by the consistency of †00, †00 ° 8xA; which is to say, †00 ° P . This is
impossible; reject the assumption: if †00 ` P , then M0ŒP � = T.

If P has k operator symbols, then M0ŒP � = T iff †00 ` P .

Indct: For any sentence P , M0ŒP � = T iff †00 ` P .

We are now just one step away from .?/. It will be easy to see that M0Œ†0� = T, and so
to reach the final result.

E10.16. Complete the � and! cases to complete the demonstration of T10.9. You
should set up the complete demonstration, but may refer to the text for cases
completed there, as the text refers cases to homework.

E10.17. Reconsider �3 from E10.14 along with an enumeration of constants that
begins, a; b; c; : : : :Where U = f1; 2; 3g, find the (partial) interpretation that results
by our method, and show it makes all the members of �3 true (your reasoning
may be relatively informal).

10.3.5 Final Result

And now we are in a position to get the final result. With some care about the
distinction between formulas and sentences, this works just as before. First,

T10.10. If †0 is consistent, then M0Œ†0� = T. .?/

Suppose †0 is consistent, but M0Œ†0� = T. From the latter, there is some formula
P 2 †0 such that M0ŒP � = T. Since P 2 †0, by construction, P 2 †00, so
†00 ` P ; so, where P u is the universal closure of P , by application of Gen
as necessary, †00 ` P u; so since P u is a sentence and †0 is consistent, by
T10.9, M0ŒP u� = T; so by applications of T7.6 as necessary, M0ŒP � = T. This is
impossible; reject the assumption: if †0 is consistent, then M0Œ†0� = T.
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Notice that this result applies to arbitrary sets of formulas. We bridge between P u

and P by Gen and T7.6 (in the direction from IŒ8xP � = T to IŒP � = T). But now we
have the .?/ that we have needed for c̊ompleteness.

So that is it! All we needed for the proof of c̊ompleteness in this case with L0

restricted was .?/. And we have it. So here is the final argument. Suppose the
members of � and P are formulas of L0.

T10.11r. If � � P , then � ` P . Quantificational C̊ompleteness. (L0 restricted)

Suppose � � P but � ° P . Say, for the moment that � ` ��P u; by T3.10,
` ��P u ! P u; so by MP, � ` P u; so by repeated applications of A4 and
MP, � ` P ; but this is impossible; so � ° ��P u. Given this, since ��P u is
a sentence, by T10.6, � [ f�P ug = †0 is consistent; so by T10.10, there is a
model M0 such that M0Œ� [ f�P ug� = T. So M0Œ�� = T and M0Œ�P u� = T; from
the latter, by T8.8, M0ŒP u� = T; so by repeated applications of T7.6, M0ŒP � = T;
so M0Œ�� = T but M0ŒP � = T; so by QV, � ² P . This is impossible; reject the
assumption: if � � P then � ` P .

This time we bridge between P u and P by A4 and T7.6 (in the other direction, so if
IŒ8xP � = T then IŒP � = T).

Again, you should try to get the complete picture in your mind: The key is that
consistent sets always have models. If there is no derivation of P from � , then
� [ f�P g is consistent; and if � [ f�P g is consistent, then it has a model—so that
� ² P . Put the other way around, if � � P , there is a derivation of P from � .
We get the key point, that consistent sets have models, by finding a relation between
consistent, and maximal consistent scapegoat sets. If a set is maximal and consistent
and a scapegoat set, then it contains enough information to specify a model for the
whole. The model for the big set then guarantees the existence of a model M0 for the
original � . All of this is very much parallel to the sentential case.

E10.18. Consider again A? of E9.5. Provide a complete demonstration that A? is
c̊omplete—that if � � P then �

À?
P . You may suppose the language has

no symbol for equality, and there are infinitely many constants not in � or P ;
and you may appeal to any results from the text whose demonstration remains
unchanged, but should recreate parts whose demonstration is not the same (but you
may simply assume ?-versions of T10.2 and any required Chapter 8 theorems).

Hints: You will need to redefine consistency, maximality, and scapegoat set for the
new context. Where the free variables of P are xa;xb; : : : ;xn, let the closure of
P be �9xa9xb : : : 9xn�P . You have DT from E9.8, and may appeal to E9.16,
as well as to theorems from E3.5. It will be helpful to establish as a preliminary
to the theorem that �P

À?
�9xP ; for this you will find it helpful to obtain

�P
À?

P ! .Z ^ �Z/ as an intermediate result. Also you will reach a point
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where it will be helpful to have �9xP
À?
�P and, as a corollary (or alternative)

to T7.6, that for any I and P , IŒ�P � = T iff IŒ�9xP � = T.

10.4 Quantificational C̊ompleteness: Full Version

So far, we have shown that if � � P , then � ` P where the members of � and P are
formulas of an L0 which does not include ‘D’ and has infinitely many constants not in
� or P . Now allow that the members of � and P are in an arbitrary quantificational
language L. Then we shall require not .?/ according to which a consistent set in L0

has a model M0, but the more general,

.??/ For any consistent set of formulas † in an arbitrary quantificational language
L, there is an interpretation M such that MŒ†� = T.

Given this, reasoning is exactly as before:

1. � [ f�P ug has a model � � ² P

2. � [ f�P ug is consistent � � [ f�P ug has a model .??/

3. � [ f�P ug is not consistent � � ` P

Reasoning for (1) and (3) remains the same. (2) is .??/. And from (1)–(3) it follows
that if � � P , then � ` P . Supposing that .??/ has application to arbitrary sets of
formulas from L, the result has application to arbitrary premises and conclusion from
L. So we are left with two issues relative to our reasoning from before: L might lack
the infinitely many constants not in � or P , and L might include equality.

10.4.1 Adding Constants

Suppose L does not have infinitely many constants not in � or P . This can happen in
different ways. Perhaps L simply does not have infinitely many constants. Or perhaps
the constants of L are a0;a1; : : : and � = fRa0;Ra1; : : :g; then L has infinitely
many constants, but there are not any constants in L that do not appear in � . And we
need the extra constants for construction of the maximal consistent scapegoat set. To
avoid this sort of worry, we simply add infinitely many constants to form a language
L0 out of L.

CnsL0 Where L is a language whose constants are members of a0;a1; : : : let L0 be
like L but with the addition of new constants c0, c1; : : : :

By reasoning as in the Chapter 2 countability reference, insofar as they can be lined up,
a0;c0;a1;c1; : : : the collection of constants remains countable, so that L0 remains a
perfectly legitimate quantificational language. Clearly, every formula of L remains
a formula of L0. Thus, where † is a set of formulas in language L, let †0 be like †
except that its members are formulas of language L0.



CHAPTER 10. MAIN RESULTS 476

Our reasoning for .?/ has application to sets of the sort †0. That is, where L0 has
infinitely many constants not in †0, we have been able to find a maximal consistent
scapegoat set †00, and from this a model M0 for †0. But given an arbitrary † of
formulas in L, we need that it has a model M. That is, we shall have to establish a
bridge between † and †0, and between M0 and M. Thus, to obtain .??/, we show,

2a. † is consistent � †0 is consistent
2b. †0 is consistent � †0 has a model M0

2c. †0 has a model M0 � † has a model M

(2b) is just .?/ from before. And by a sort of hypothethical syllogism, together these
yield .??/. So we need (2a) and (2c).

For the first result, we need that if † is consistent, then †0 is consistent. Of
course, † and †0 contain just the same formulas, only formulas of the one are in a
language with extra constants. But there might be derivations in L0 from †0 that
are not derivations in L from †. So we need to show that these extra derivations do
not result in contradiction. For this, the overall idea is simple: If we can derive a
contradiction from †0 in the enriched language then, by a modified version of that
very derivation, we can derive a contradiction from † in the reduced language. So if
there is no contradiction in the reduced language L, then there is no contradiction in
the enriched language L0. The argument is straightforward given T8.10. Let † be a
set of formulas in L, and †0 those same formulas in L0. We show,

T10.12. If † is consistent, then †0 is consistent.

Suppose † is consistent but †0 is not. From the latter, there is a formula A in
L0 such that †0 ` A and †0 ` �A; so by ^I, †0 ` A ^ �A, and (�) there
is a derivation of a contradiction from †0. By induction on the number of new
constants which appear in a derivation � = hD1;D2; : : : ;Dni, we show that no
� is a derivation of a contradiction from †0.

Basis: Suppose � contains no new constants and � is a derivation of some
contradiction A ^ �A from †0. Since � contains no new constants,
every member of � is also a formula of L, so � = hD1;D2; : : :i is a
derivation of A^�A from†; so by ^E,† ` A and† ` �A; so† is not
consistent. This is impossible; reject the assumption: � is not a derivation
of a contradiction from †0.

Assp: For any i , 0 i k, if � contains i new constants, then it is not a
derivation of a contradiction from †0.

Show: If � contains k new constants, then it is not a derivation of a contradiction
from †0.
Suppose � contains k new constants and is a derivation of a contradiction
A ^ �A from †0. Where c is one of the new constants in � and x is
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a variable not in �, by T8.10, �c
x is a derivation of ŒA ^ �A�cx from

†0
c
x. But all the members of †0 are in L; so c does not appear in any

member of †0; so †0cx = †0. And ŒA ^�A�cx = Ac
x ^�ŒA

c
x�. So �c

x is a
derivation of a contradiction from †0. But �c

x has k 1 new constants and
so, by assumption, is not a derivation of a contradiction from †0. This is
impossible; reject the assumption: � is not a derivation of a contradiction
from †0.

Indct: No derivation � is a derivation of a contradiction from †0.

So with (�) there is and is not a derivation of a contradiction from †0. Reject the
assumption: if † is consistent, then †0 is consistent.

So if we have a consistent set of formulas in L, and convert to L0 with additional
constants, we can be sure that the converted set is consistent as well.

With the extra constants in hand, all our reasoning goes through as before to
show that there is a model M0 for †0. Officially, though, an interpretation for some
formulas in L0 is not a model for some formulas in L: A model for formulas in L has
assignments for its constants, function symbols, and relation symbols, where a model
for L0 has assignments for its constants, function symbols, and relation symbols. A
model M0 for †0, then, is not the same as a model M for †. But it is a short step to a
solution.

CnsM Let M be like M0 but without assignments to constants not in L.

M is an interpretation for language L. M and M0 have exactly the same universe, and
exactly the same interpretations for all the symbols that are in L. It turns out that the
evaluation of any formula in L is therefore the same on M as on M0—that is, for any
P in L, MŒP � = T iff M0ŒP � = T. Given the way satisfaction builds from the parts to
the whole, it may be that this is obvious. However, it is worthwhile to consider a proof.
Thus we need the following matched pair of theorems (in fact, we show somewhat
more than is necessary, as M and M0 differ only by assignments to constants). The
proofs are straightforward, and mostly left as an exercise. I do just enough to get you
started.

Suppose L0 extends L by the addition of some constants, function symbols,
sentence letters, or relation symbols, and M0 is like M except that it makes assignments
to the constants, function symbols, sentence letters, and relation symbols in L0 but
not in L.
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*T10.13. For any variable assignment d, and for any term t in L, MdŒt� = M0dŒt�.

The argument is by induction on the number of function symbols in t. Let d be a
variable assignment, and t a term in L.

Basis: If t has no function symbols, then MdŒt� = M0dŒt�. Homework.

Assp: For any i , 0 i k, if t has i function symbols, then MdŒt� = M0dŒt�.

Show: If t has k function symbols, then MdŒt� = M0dŒt�.

If t has k function symbols, then it is of the form, hnt1 : : : tn for func-
tion symbol hn and terms t1 : : : tn with k function symbols. Since t

is in L, hn and t1 : : : tn are symbols in L. By construction, MŒhn� =
M0Œhn�; and by assumption, MdŒt1� = M0dŒt1� and . . . and MdŒtn� = M0dŒtn�.
So with TA(f), MdŒt� = MdŒh

nt1 : : : tn� = MŒhn�hMdŒt1� : : :MdŒtn�i =
M0Œhn�hM0dŒt1� : : :M

0
dŒtn�i = M0dŒh

nt1 : : : tn� = M0dŒt�.

Indct: For any t in L, MdŒt� = M0dŒt�.

*T10.14. For any variable assignment d, and for any formula P in L, MdŒP � = S iff
M0dŒP � = S.

The argument is by induction on the number of operator symbols in P . Let d be a
variable assignment, and P a formula in L.

Basis: If P has no operator symbols, then it is a sentence letter S in L, or an
atomic Rnt1 : : : tn for relation symbol Rn and terms t1 : : : tn in L. In the
first case, MdŒP � = S iff MdŒS � = S; by SF(s), iff MŒS � = T; by construction
iff M0ŒS � = T; by SF(s), iff M0dŒS � = S; iff M0dŒP � = S. For the second case,
by construction, MŒRn� = M0ŒRn�; and by T10.13, MdŒt1� = M0dŒt1� and . . .
and MdŒtn� = M0dŒtn�. So MdŒP � = S iff MdŒR

nt1 : : : tn� = S; by SF(r) iff
hMdŒt1� : : :MdŒtn�i 2 MŒRn�; iff hM0dŒt1� : : :M

0
dŒtn�i 2 M0ŒRn�; by SF(r)

iff M0dŒR
nt1 : : : tn� = S; iff M0dŒP � = S. In either case, then, MdŒP � = S iff

M0dŒP � = S.

Assp: For any i , 0 i k, and any variable assignment d, if P has i operator
symbols, MdŒP � = S iff M0dŒP � = S.

Show: For any variable assignment d, if P has k operator symbols, MdŒP � = S iff
M0dŒP � = S. Homework.

Indct: For any formula P of L, MdŒP � = S iff M0dŒP � = S.

And now we are in a position to show that M is indeed a model for †. In particular, it
is easy to show,
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T10.15. If M0Œ†0� = T, then MŒ†� = T.

Suppose M0Œ†0� = T, but MŒ†� = T. From the latter, there is some formula P 2 †

such that MŒP � = T; so by TI, for some d, MdŒP � = S; so by T10.14, M0dŒP � = S;
so by TI, M0ŒP � = T; and since P 2 †, we have P 2 †0; so M0Œ†0� = T. This is
impossible; reject the assumption: if M0Œ†0� = T, then MŒ†� = T.

Finally, T10.12, T10.10, and T10.15 together yield a preliminary version of the
theorem we are after.

T10.16p. If † is consistent, then † has a model M. (L without equality)

Suppose † is consistent; then by T10.12, †0 is consistent; so by T10.10, †0 has a
model M0; so by T10.15, † has a model M.

And that is what we needed to recover the c̊ompleteness result for L without the
constraint on constants. Where L does not include infinitely many constants not in �
or P , we simply add them to form L0. Our theorems from this section ensure that the
results go through as before.

*E10.19. Complete the proof of T10.13. You should set up the complete induction,
but may refer to the text, as the text refers to homework.

*E10.20. Complete the proof of T10.14. As usual, you should set up the complete
induction, but may refer to the text for cases completed there, as the text refers to
homework.

E10.21. Adapt the demonstration of T10.11r for the supposition that L need not be
the same as L0. You may appeal to theorems from this section.

10.4.2 Accommodating Equality

Dropping the assumption that language L lacks the symbol ‘D’ for equality results in
another sort of complication. In constructing our models, where t1 and t3 from the
enumeration of variable-free terms are constants and †00 ` Rt1t3, we set M0Œt1� = 1,
M0Œt3� = 3, and h1; 3i 2 M0ŒR�. Suppose R is the equal sign, ‘D’; then by our
procedure, h1; 3i 2 M0ŒD�. But this is wrong! Where U = f0; 1; : : :g, the proper
interpretation of ‘D’ is fh0; 0i; h1; 1i; : : :g, and h1; 3i is not a member of this set. So
our procedure does not result in the specification of a legitimate model. The procedure
works fine for relation symbols other than equality. There are no restrictions on assign-
ments to other relation symbols, so nothing stops us from specifying interpretations
as above. But there is a restriction on the interpretation of ‘D’. So we cannot proceed
blindly this way.
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Here is the nub of a solution: Say †00 ` a1 D a3; then let the set f1; 3g be an
element of U, and let M0Œa1� = M0Œa3� = f1; 3g. Similarly, if a2 D a4 and a4 D a5
are consequences of †00, let f2; 4; 5g be a member of U, and M0Œa2� = M0Œa4� =
M0Œa5� = f2; 4; 5g. That is, let U consist of certain sets of natural numbers—where
these sets are specified by atomic equalities that are consequences of †00. Then let
M0Œaz� be the set of which z is a member. Given this, if †00 ` Rnta : : : tb , then
include the tuple consisting of the set assigned to ta and . . . and the set assigned
to tb , in the interpretation of Rn. So on the above interpretation of the constants,
if †00 ` Ra1a4, then hf1; 3g; f2; 4; 5gi 2 M0ŒR�. And if †00 ` a1 D a3, then
hf1; 3g; f1; 3gi 2 M0ŒD�. You should see why this is so. And it is just right! If
f1; 3g 2 U, then hf1; 3g; f1; 3gi should be in M0ŒD�. So we respond to the problem by
a revision of the specification for CnsM0.

Let us now turn to the details. Our idea has been to make atomic sentences true on
M0 just in case they are proved by †00. We want an interpretation that preserves this
feature while accommodating equality. A model consists of a universe U, along with
assignments to constants, function symbols, sentence letters, and relation symbols.
We take up these elements, one after another.

The universe. The elements of our universe U are to be certain sets of natural
numbers.5 Consider an enumeration t0, t1; : : : of all the variable-free terms in L0,
and let there be a relation' on the set f0; 1; : : :g of natural numbers such that i ' j iff
†00 ` ti D tj . Let [n] be the set of natural numbers which stand in the' relation to
n—that is, [n] = fz 2 N j z ' ng. So z 2 [n] iff z ' n. Notice that if the things which
stand in the ' relation to m are the same as the ones that stand in that relation to n
then [m] = [n]. The universe U of M0 is then the collection of all these sets—that is,

CnsM0 For any natural number, the universe includes the class corresponding to it.
U = f[n] j n 2 Ng.

The way this works is really quite simple. If according to †00, t1 equals only itself,
then the only z such that z ' 1 is 1; so [1] = f1g, and this is a member of U. If,
according to †00, t1 equals just itself and t2, then 1 ' 2 so that [1] = [2] = f1; 2g,
and this set is a member of U. If, according to †00, t1 equals itself, t2, and t3, then
1 ' 2 ' 3 so that [1] = [2] = [3] = f1; 2; 3g, and this set is a member of U. And so
forth.

In order to make progress, it will be convenient to establish some facts about the
' relation, and about the sets in U. Recall that ' is a relation on the natural numbers
which is specified relative to expressions in †00, so that i ' j iff †00 ` ti D tj . First
we show that' is reflexive, symmetric, and transitive.

5Again, it is common to let the universe be sets of terms in L0 (see note 4 on page 471).
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Reflexivity. For any i 2 N, i ' i: By T3.33, ` ti D ti ; so †00 ` ti D ti ; so by
construction, i ' i.

Symmetry. For any i; j 2 N, if i ' j, then j ' i: Suppose i ' j; then by construction,
†00 ` ti D tj ; but by T3.34, ` ti D tj ! tj D ti ; so by MP, †00 ` tj D ti ; so
by construction, j ' i.

Transitivity. For any i; j; k 2 N, if i ' j and j ' k, then i ' k: Suppose i ' j and
j ' k; then by construction, †00 ` ti D tj and †00 ` tj D tk; but by T3.35,
` ti D tj ! .tj D tk ! ti D tk/; so by two instances of MP, †00 ` ti D tk;
so by construction, i ' k.

A relation which is reflexive, symmetric, and transitive is an equivalence relation.
As an equivalence relation, it divides or partitions the members of f0; 1; : : :g into
mutually exclusive classes such that each member of a class bears ' to each of the
others in its partition, but not to members outside the partition. More particularly,
because ' is an equivalence relation, the collections [n] = fz 2 N j z ' ng in U are
characterized as follows:

Self-membership. For any n 2 N, n 2 [n]: By reflexivity, n ' n; so by construc-
tion, n 2 [n]. Corollary: Every natural number n is a member of at least one
class.

Uniqueness. For any i 2 N, i is an element of at most one class: Suppose i is an
element of more than one class; then there are some m and n such that i 2 [m] and
i 2 [n] but [m] = [n]. Since [m] = [n] there is some j such that j 2 [m] and j … [n], or
j 2 [n] and j … [m]; without loss of generality, suppose j 2 [m] and j … [n]. Since
j 2 [m], by construction, j ' m; and since i 2 [m], by construction i ' m; so by
symmetry, m ' i; so j ' m and m ' i and by transitivity, j ' i. Since i 2 [n], by
construction i ' n; so by transitivity again, j ' n; so by construction, j 2 [n]. This
is impossible; reject the assumption: i is an element of at most one class.

Equality. For any m; n 2 N, m ' n iff [m] = [n]: (i) Suppose m ' n. Then
by construction, m 2 [n]; but by self-membership, m 2 [m]; so by uniqueness,
[m] = [n]. Suppose [m] = [n]; by self-membership, m 2 [m]; so m 2 [n]; so by
construction, m ' n.

Corresponding to the relations by which they are formed, classes characterized by
self-membership, uniqueness, and equality are equivalence classes. From self-mem-
bership and uniqueness, every natural number n is a member of exactly one such class.
And from equality, m ' n just when [m] is the very same thing as [n]. So, for example,
if 1 ' 1, and 1 ' 2, and 2 ' 1, and 2 ' 2 (and nothing else), then [1] = [2] = f1; 2g.
You should be able to see that these formal specifications develop just the informal
picture with which we began.
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Terms. The specification for constants is simple:

CnsM0 If tz in the enumeration of variable-free terms t1; t2; : : : is a constant, then
M0Œtz� = [z].

Thus, with self-membership, any constant tz designates the equivalence class of which
z is a member. In this case, we need to be sure that the specification picks out exactly
one member of U for each constant. The specification would fail if the relation '
generated classes such that some natural number was an element of no class, or some
was an element of more than one. But, as we have just seen, by self-membership and
uniqueness, every natural number z is a member of exactly one class. So far, so good!

CnsM0 If tz in the enumeration of variable-free terms t1; t2; : : : is hnta : : : tb for
function symbol hn and variable-free terms ta : : : tb , then hh[a] : : : [b]i; [z]i 2
M0Œhn�.

Thus when the input to hn is h[a] : : : [b]i, the output is [z]. This time, we must be sure
that the result is a total function—that (i) there is at least one output object for every
input n-tuple, and (ii) there is at most one output object associated with any one input
n-tuple. The former worry is easily dispatched. The second concern is that we might
have h[a]; [u]i; h[b]; [v]i 2 M0Œh� but with [a] = [b] and [u] = [v]; in this case, we fail to
specify a function.

(i) There is at least one output object: Corresponding to any hn and h[a] : : : [b]i
where [a] : : : [b] are members of U, consider the variable-free term hnta : : : tb; this
is some tz from the sequence t1; t2; : : :; so by construction, hh[a] : : : [b]i; [z]i 2
M0Œhn�. So M0Œhn� has an output object when the input is h[a] : : : [b]i.

(ii) There is at most one output object: Suppose hh[a] : : : [c]i; [u]i 2 M0Œhn� and
hh[d] : : : [f]i; [v]i 2 M0Œhn�, where h[a] : : : [c]i = h[d] : : : [f]i. Since h[a] : : : [c]i =
h[d] : : : [f]i, [a] = [d] and . . . and [c] = [f]; so by equality, a ' d and . . . and
c ' f; so by construction, †00 ` ta D td and . . . and †00 ` tc D tf . Since
hh[a] : : : [c]i; [u]i 2 M0Œhn� and hh[d] : : : [f]i; [v]i 2 M0Œhn�, by construction, there
are some variable-free terms, tu = hnta : : : tc and tv = hntd : : : tf in the enu-
meration. By DI, †00 ` hnta : : : tc D hnta : : : tc; so by repeated applications
of DE, †00 ` hnta : : : tc D hntd : : : tf ; but this is to say †00 ` tu D tv; so by
construction, u ' v; so by equality, [u] = [v].

So there is at least one, and at most one output object for any input n-tuple and, as
they should be, function symbols are well-defined.

We are now in a position to recover an analogue to the preliminary result for
demonstration of T10.9: For any variable-free term tz and variable assignment d,
M0dŒtz� = [z]. The argument is very much as before. Suppose tz is a variable-free
term. By induction on the number of function symbols in tz ,
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Basis: If tz has no function symbols, then it is a constant. In this case, by construction,
M0Œtz� = [z]; so by TA(c), M0dŒtz� = [z].

Assp: For any i , 0 i k, if tz has i function symbols, then M0dŒtz� = [z].

Show: If tz has k function symbols, then M0dŒtz� = [z].

If tz has k function symbols, then it is of the form, hnta : : : tb where ta : : : tb
have k function symbols. Since tz = hnta : : : tb is a variable-free term,
hh[a] : : : [b]i; [z]i 2 M0Œhn�; by assumption, M0dŒta� = [a] and . . . and M0dŒtb�
= [b]. So with TA(f), M0dŒtz� = M0dŒh

nta : : : tb� = M0Œhn�hM0dŒta� : : :M
0
dŒtb�i =

M0Œhn�h[a] : : : [b]i = [z]; so M0dŒtz� = [z].

Indct: For any variable-free term tz , M0dŒtz� = [z].

So the interpretation of any variable-free term is the equivalence class corresponding
to its position in the enumeration of terms.

Atomics. The result we have just seen for terms makes the specification for atomics
particularly natural. Sentence letters are easy. As before,

CnsM0 For a sentence letter S , M0ŒS � = T iff †00 ` S .

Then for relation symbols, the idea is as sketched above. We simply let the assignment
be such as to make a variable-free atomic come out true iff it is a consequence of †00.

CnsM0 For a relation symbol Rn, where ta : : : tb are n members of the enumeration
of variable-free terms, let h[a] : : : [b]i 2 M0ŒRn� iff †00 ` Rnta : : : tb .

To see that the specification for relation symbols is legitimate, we need to be clear that
the specification is consistent—that we do not both assert and deny that some tuple
is in the extension of Rn, and we need to be sure that M0ŒD� is as it should be—that
M0ŒD� = fh[n]; [n]i j [n] 2 Ug. The case for equality is easy. The former concern is
that we might have some [a] = [b] where [a] 2 M0ŒR� but [b] … M0ŒR�.

(i) h[m]; [n]i 2 MŒD� iff [m] = [n]: By equality, [m] = [n] iff m ' n; by construction
iff †00 ` tm D tn; by construction iff h[m]; [n]i 2 M0ŒD�.

(ii) The specification is consistent: Suppose that h[a] : : : [c]i = h[d] : : : [f]i and
h[a] : : : [c]i 2 M0ŒRn�. From the first of these, [a] = [d] and . . . and [c] = [f];
so by equality, a ' d and . . . and c ' f; so by construction, †00 ` ta D td
and . . . and †00 ` tc D tf . But since h[a] : : : [c]i 2 M0ŒRn�; by construc-
tion, †00 ` Rnta : : : tc; so by repeated applications of DE, †00 ` Rntd : : : tf ;
so by construction h[d] : : : [f]i 2 M0ŒRn�. So if h[a] : : : [c]i = h[d] : : : [f]i and
h[a] : : : [c]i 2 M0ŒRn�, then h[d] : : : [f]i 2 M0ŒRn�.
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This completes the specification of M0. The specification is more complex than for
the basic version, and we have had to work to demonstrate its consistency. Still, the
result is a perfectly ordinary model M0, with a domain, assignments to constants,
assignments to function symbols, assignments to sentence letters, and assignments to
relation symbols.

With this revised specification for M0, the demonstration of T10.9 proceeds as
before. Here is the key portion of the basis. We are showing that M0ŒP � = T iff
†00 ` P .

Suppose P is an atomic sentence Rnta : : : tb . By TI, M0ŒRnta : : : tb� = T iff
for arbitrary d, M0dŒR

nta : : : tb� = S; by SF(r), iff hM0dŒta� : : :M
0
dŒtb�i 2 M0ŒRn�;

since ta : : : tb are variable-free terms, by the preliminary result for terms, iff
h[a] : : : [b]i 2 M0ŒRn�; by construction, iff †00 ` Rnta : : : tb . So M0ŒP � = T iff
†00 ` P .

So all that happens is that we depend on the conversion from individuals to sets of
individuals for both assignments to terms and assignments to relation symbols. Given
this, the argument is exactly parallel to the one from before.

E10.22. Suppose the enumeration of variable-free terms begins, a; b; f 1a; f 1b; : : :
(so these are t0 : : : t3) and, for these terms, †00 proves just a D a, b D b,
f 1a D f 1a, f 1b D f 1b, a D f 1a, and f 1a D a. (i) What objects stand in
the ' relation? (ii) What are [0], [1], [2], and [3]? (iii) Given this much, what
things must be in U?

E10.23. Return to the case from E10.22. Explain how' satisfies reflexivity, symme-
try, and transitivity. Explain how U satisfies self-membership, uniqueness, and
equality.

E10.24. Where †00 and U are as in the previous two exercises, what are M0Œa�, M0Œb�,
and M0Œf �? Supposing that †00 ` R1a, R1f 1a, and R1f 1b, but †00 ° R1b,
what is M0ŒR1�? Given the consequences of†00 from E10.22, by the method, what
is M0ŒD�? Is this as it should be? Explain.

E10.25. Complete the demonstration of T10.9 on the revised specification for M0.
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10.4.3 The Final Result

We are really done with the demonstration of c̊ompleteness. Perhaps, though, it will
be helpful to draw the parts together. Begin with some basic definitions, a simple
theorem, and the construction of L0.

Con A set � of formulas is consistent iff there is no formula A such that � ` A

and � ` �A.

Max A set � of formulas is maximal iff for any sentence A, � ` A or � ` �A.

Scgt A set � of formulas is a scapegoat set iff for any sentence �8xP , if � `
�8xP , then there is some constant a such that � ` �P x

a .

T10.6 For any set of formulas � and sentence P , if � ° �P , then � [ fP g is
consistent.

CnsL0 Where L is a language whose constants are members of a0;a1; : : : let L0 be
like L but with the addition of new constants c0;c1; : : : :

Where † is a set of formulas in language L, let †0 be like † except that its members
are formulas of language L0. Then we proceed in language L0, for a maximal
consistent scapegoat set †00 constructed from any consistent †0.

T10.7 There is an enumeration Q1;Q2; : : : of all the sentences, terms, and the like in
L0.

Cns†00 Construct†00 from†0 as follows: By T10.7, there is an enumeration, Q1;Q2;

: : : of all the sentences in L0 and also an enumeration c1;c2; : : : of constants
not in †0. Let �0 = †0. Then for any i 0, let �i = �i 1 if �i 1 ` �Qi .
Otherwise, �i� = �i 1 [ fQig if �i 1 ° �Qi . Then �i = �i� if Qi is
not of the form �8xP , and �i = �i� [ f�P x

c g if Qi is of the form �8xP ,
where c is the first constant not in �i� . Then †00 =

S
i 0�i .

T10.8 If †0 is consistent, then †00 is a maximal consistent scapegoat set.

Given the maximal consistent scapegoat set †00, we turn to the model M0 such that
M0Œ†0� = T: Consider an enumeration t0; t1; : : : of all the variable-free terms in L0,
and let ' be the relation on the set f0; 1; : : :g of natural numbers such that i ' j iff
†00 ` ti D tj . Let [n] = fz 2 N j z ' ng.

CnsM0 U = f[n] j n 2 Ng. If tz in the enumeration of variable-free terms t0; t1; : : : is
a constant, then M0Œtz� = [z]. If tz is hnta : : : tb for function symbol hn and
variable-free terms ta : : : tb , then hh[a] : : : [b]i; [z]i 2 M0Œhn�. For a sentence
letter S , M0ŒS � = T iff †00 ` S . For a relation symbol Rn, where ta : : : tb are
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n members of the enumeration of variable-free terms, h[a] : : : [b]i 2 M0ŒRn�

iff †00 ` Rnta : : : tb .

This modifies the relatively simple version where U = f0; 1; : : :g. And for an
enumeration of variable-free terms, if tz is a constant, M0Œtz� = z. If tz =
hnta : : : tb for some relation symbol hn and n variable-free terms ta : : : tb ,
hha : : : bi; zi 2 M0Œhn�. For a sentence letter S , M0ŒS � = T iff †00 ` S . And
for a relation symbol Rn, ha : : : bi 2 M0ŒRn� iff †00 ` Rnta : : : tb .

T10.9 If †0 is consistent, then for any sentence P of L0, M0ŒP � = T iff †00 ` P .

T10.10 If †0 is consistent, then M0Œ†0� = T. .?/

CnsM Let M be like M0 but without assignments to constants not in L.

Then we have had to connect results for †0 in L0 to † in L, and M0 for L0 to M for L.

T10.12 If † is consistent, then †0 is consistent.

T10.15 If M0Œ†0� = T, then MŒ†� = T.

This is supported by the matched pair of theorems, T10.13 on which, if d is a
variable assignment, then for any term t in L, MdŒt� = M0dŒt�, and T10.14 on
which, if d is a variable assignment, then for any formula P in L, MdŒP � = S
iff M0dŒP � = S.

And we are in a position for the key result.

T10.16. If † is consistent, then † has a model M. (L unconstrained) .??/

From T10.12, T10.10, and T10.15.

This puts us in a position to recover the c̊ompleteness result. Recall that our argument
runs through P u the universal closure of P .

T10.11. If � � P , then � ` P . Quantificational C̊ompleteness.

Suppose � � P but � ° P . Say, for the moment that � ` ��P u; by T3.10,
` ��P u ! P u; so by MP, � ` P u; so by repeated applications of A4 and
MP, � ` P ; but this is impossible; so � ° ��P u. Given this, since ��P u is a
sentence, by T10.6, � [ f�P ug = † is consistent; so by T10.16, there is a model
M such that MŒ� [ f�P ug� = T. So MŒ�� = T and MŒ�P u� = T; from the latter,
by T8.8, MŒP u� = T; so by repeated applications of T7.6, MŒP � = T; so MŒ�� = T
and MŒP � = T; so by QV, � ² P . This is impossible; reject the assumption: if
� � P then � ` P .
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The sentential version had parallels to Con, Max, Cns†00, and CnsM0 along with
theorems T10.6s–T10.11s. (The distinction between .?/ and .??/ is a distinction
without a difference in the sentential case.) The basic quantificational version requires
its own versions of Con, Max, and Cns†00, along with Scgt, T10.6–T10.11 and the
simple version of CnsM0. For the full version, we have had to appeal also to T10.12
and T10.15 (and so T10.16), and use the relatively complex specification for CnsM0.

The argument works for all the same reasons as before: Consistent sets have
models. If there is no derivation of P from � , then � [ f�P g is consistent; and if
� [ f�P g is consistent, then it has a model—so that � ² P . Put the other way
around, if � � P , then there is a derivation of P from � . We get the key point, that
consistent sets have models, by finding a relation between consistent, and maximal
consistent scapegoat sets. If a set is a maximal consistent scapegoat set, then it
contains enough information to specify a model for the whole. The model for the big
set then guarantees the existence of a model M for the original � .

E10.26. Augment A? from E9.5 (and E10.18) to an A# which has A1–A4, MP, and
9R as before with,

A5 t D t

A6 r D s! .P ! P r==s/ where s is free for the replaced instance of r

in P

Now without assumptions that the language has no symbol for equality, and has
infinitely many constants not in � or P , provide a complete demonstration that
A# is c̊omplete. Because axioms are treated together, you still have DT from
E9.8. You may appeal to any results from the text or E10.18 whose demonstration
remains unchanged, but should recreate parts whose demonstration is not the same
(but you may simply assume #-versions of T10.2 and any required Chapter 8
theorems).

E10.27. By T10.3 and T10.11, AD is s̊ound and c̊omplete: � � P iff �
ÀD

P .
Similarly A# is s̊ound and c̊omplete just in case � � P iff � `

A# P . Given this,
� `

A# P iff � � P iff �
ÀD

P —and so � `
A# P iff �

ÀD
P (iff �

ǸD
P iff

�
ǸD

P ). Thus we obtain a means for demonstrating equivalence of derivation
systems in addition to the “direct” approach of Chapter 9. By E10.26, if � � P

then � `
A# P . We lack the biconditional only because the demonstration of

s̊oundness from E10.3 is for A? not A#. Extend your argument from E10.3 to
provide a complete demonstration that A# is equivalent to AD. You may take as
given that for any interpretation I, variable assignment d, formula P , and terms
r and s, if IdŒr� = IdŒs� and s is free for the replaced instance of r in P , then
IdŒP � = IdŒP r==s�.
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E10.28. We have shown from T10.4 that if a set of formulas has a model, then it is
consistent; and now from T10.16 that if a set of formulas is consistent, then it
has a model—and one whose U is a set of sets of natural numbers. Notice that
any such U is countable insofar as its members can be put into correspondence
with the natural numbers (since the sets are disjoint, we might order them by
their least elements). But by reasoning related to that in the more on countability
reference (Chapter 2, page 48) the real numbers are uncountable.6 How might this
be a problem for the logic of real numbers? Hint: Think about the consequences
sentences in an arbitrary � may have about the number of elements in U. (This
exercise anticipates the Löwenheim-Skolem theorems as discussed at the end of
section 11.4.2.)

E10.29. For each of the following concepts, explain in an essay of about two pages,
so that (college freshman) Hannah could understand. In your essay, you should
(i) identify the objects to which the concept applies, (ii) give and explain the
definition, and give and explicate examples (iii) where the concept applies, and
(iv) where it does not. Your essay should exhibit an understanding of methods
from the text.

a. The s̊oundness of a derivation system, and its demonstration by mathematical
induction.

b. The c̊ompleteness of a derivation system, and the basic strategy for its demon-
stration.

c. Maximality and consistency, and the reasons for them.

d. Scapegoat sets, and the reasons for them.

6A real number is the limit of a decimal representation. But the limit of :5000 : : : is the same as that
of :4999 : : : so that these are representations of the same real number. Explicitly the more on countability
reference shows that there are uncountably many decimal representations. But the argument converts to
demonstration that the real numbers themselves are uncountable if we exclude duplicate representations
(say ones ending in an infinite string of 9s).
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Theorems of Chapter 10

T10.1 For any interpretation I, variable assignment d, with terms t and r, if IdŒr� = o,
then Id.xjo/Œt� = IdŒtx

r�.

T10.2 For any interpretation I, variable assignment d, term r, and formula Q, if IdŒr� = o,
and r is free for x in Q, then IdŒQx

r� = S iff Id.xjo/ŒQ� = S.

T10.3 If �
ÀD

P , then � � P . S̊oundness.

T10.4 If there is an interpretation M such that MŒ�� = T (a model for �), then � is
consistent.

T10.5 If there is an interpretation M such that MŒ�� = T and MŒA� = T, then � ° A.

T10.6s For any set of formulas� and sentence P , if� ° �P , then�[fP g is consistent.

T10.6 For any set of formulas� and sentence P , if� ° �P , then�[fP g is consistent.

T10.7s There is an enumeration Q1Q2; : : : of all sentences in Ls .

T10.7 There is an enumeration Q1;Q2; : : : of all the sentences, terms, and the like in L0.

T10.8s If †0 is consistent, then †00 is maximal and consistent.

T10.8 If †0 is consistent, then †00 is a maximal consistent scapegoat set.

T10.9s If †0 is consistent, then for any sentence P of Ls , M0ŒP � = T iff †00 ` P .

T10.9 If †0 is consistent, then for any sentence P of L0, M0ŒP � = T iff †00 ` P .

T10.10s If †0 is consistent, then M0Œ†0� = T. .�/

T10.10 If †0 is consistent, then M0Œ†0� = T. .?/

T10.11s If � �s P , then � ` P . Sentential C̊ompleteness.

T10.11r If � � P , then � ` P . Quantificational C̊ompleteness. (L0 restricted)

T10.11 If � � P , then � ` P . Quantificational C̊ompleteness.

T10.12 If † is consistent, then †0 is consistent.

T10.13 For any variable assignment d, and for any term t in L, MdŒt� = M0dŒt�.

T10.14 For any variable assignment d, and for any formula P in L, MdŒP � = S iff
M0dŒP � = S.

T10.15 If M0Œ†0� = T, then MŒ†� = T.

T10.16p If † is consistent, then † has a model M. (L without equality)

T10.16 If † is consistent, then † has a model M. (L unconstrained) .??/



Chapter 11

More Main Results

In this chapter, we take up some results which deepen our understanding of the power
and limits of logic. The first short sections restrict discussion to sentential forms, for
results about expressive completeness (section 11.1), unique readability (section 11.2),
and independence (section 11.3). The last more extended section (section 11.4)
develops basic results from model theory, concluding with some c̃ompleteness results
that serve as a background and counterpoint to Part IV. These sections are independent
of one another and may be taken in any order.

11.1 Expressive Completeness

In Chapter 5 we introduced the idea of a truth functional operator, where the truth
value of the whole is a function of the truth values of the parts. We exhibited operators
as truth functional by tables. Thus, if some ordinary expression P with components
A and B has table,

(A)

A B P

T T T
T F F
F T F
F F F

then it is truth functional. And we translate by an equivalent formal expression: in this
case A ^B does fine. Of course, not every such table, or truth function, is directly
represented by one of our operators. Thus, suppose some expression P has the table,

(B)

A B P

T T F
T F T
F T T
F F F

None of our operators is equivalent to this. But it takes only a little ingenuity to see
that, say, �.A$ B/ has the same table, and so results in a good translation. It turns

490
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out that for any table a truth functional operator may have, there is always some way
to generate that table by means of our formal operators—and, in fact, by means of just
the operators � and!, or just the operators � and ^, or just the operators � and _.
It is also possible to express any truth function by means of just the operator " (see
Chapter 7, page 319). In this section, we prove these results. First, a result weaker
than the ones announced.

T11.1. It is possible to represent any truth function by means of an expression with
just the operators �, ^, and _.

The proof is by construction. Given an arbitrary truth function, we provide a
recipe for constructing an expression with the same table.

Suppose we are given an arbitrary truth function, in this case with four basic sentences
as on the left.

(C)

S1 S2 S3 S4 P

1 T T T T F C1 = S1 ^ S2 ^ S3 ^ S4
2 T T T F F C2 = S1 ^ S2 ^ S3 ^ �S4
3 T T F T T C3 = S1 ^ S2 ^ �S3 ^ S4
4 T T F F F C4 = S1 ^ S2 ^ �S3 ^ �S4

5 T F T T T C5 = S1 ^ �S2 ^ S3 ^ S4
6 T F T F F C6 = S1 ^ �S2 ^ S3 ^ �S4
7 T F F T F C7 = S1 ^ �S2 ^ �S3 ^ S4
8 T F F F F C8 = S1 ^ �S2 ^ �S3 ^ �S4

9 F T T T F C9 = �S1 ^ S2 ^ S3 ^ S4
10 F T T F F C10 = �S1 ^ S2 ^ S3 ^ �S4
11 F T F T F C11 = �S1 ^ S2 ^ �S3 ^ S4
12 F T F F T C12 = �S1 ^ S2 ^ �S3 ^ �S4

13 F F T T T C13 = �S1 ^ �S2 ^ S3 ^ S4
14 F F T F F C14 = �S1 ^ �S2 ^ S3 ^ �S4
15 F F F T F C15 = �S1 ^ �S2 ^ �S3 ^ S4
16 F F F F F C16 = �S1 ^ �S2 ^ �S3 ^ �S4

For a sentence P with basic sentences S1 : : :Sn, corresponding to each row j there
is a characteristic sentence Cj = S 0j1 ^ : : : ^ S 0jn (with appropriate parentheses). If
the interpretation of Si on row j is T, then S 0ji = Si ; if the interpretation of Si on row
j is F, then S 0ji = �Si . Then the characteristic sentence Cj is the conjunction of each
S 0ji . The characteristic sentences are true only on their corresponding rows. Thus C4
above is true only when IŒS1� = T, IŒS2� = T, IŒS3� = F, and IŒS4� = F.

Now given the characteristic sentences, where P is T on rows a; b; : : : ; d , .S1 ^
�S1/ _ .Ca _ Cb _ : : : _ Cd / has the same table as P . The first disjunct guarantees
that the specification is well-defined and has the right result in the case where P is F
on every row. Then the disjunction of Ca : : :Cd goes true on just the rows where P

is true. Thus, for example, .S1 ^�S1/ _ .C3 _ C5 _ C12 _ C13/, that is,

.S1^�S1/_Œ.S1^S2^�S3^S4/_.S1^�S2^S3^S4/_.�S1^S2^�S3^�S4/_.�S1^�S2^S3^S4/�
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has the same table as P above. Inserting parentheses, the resultant table is,

(D)

S1 S2 S3 S4 .S1 ^ � S1) _ Œ.C3 _ C5/ _ .C12 _ C13/� P

1 T T T T F F F F F F F F F F F
2 T T T F F F F F F F F F F F F
3 T T F T F F T T T F T F F F T
4 T T F F F F F F F F F F F F F

5 T F T T F F T F T T T F F F T
6 T F T F F F F F F F F F F F F
7 T F F T F F F F F F F F F F F
8 T F F F F F F F F F F F F F F

9 F T T T F T F F F F F F F F F
10 F T T F F T F F F F F F F F F
11 F T F T F T F F F F F F F F F
12 F T F F F T T F F F T T T F T

13 F F T T F T T F F F T F T T T
14 F F T F F T F F F F F F F F F
15 F F F T F T F F F F F F F F F
16 F F F F F T F F F F F F F F F

And we have constructed an expression with the same table as P . And similarly for
any truth function with which we are confronted. So given any truth function, there is
a formal expression with the same table.

In a by now familiar pattern, the expressions produced by this method are not
particularly elegant or efficient. Thus for the table,

(E)

A B P

T T T
T F F
F T T
F F T

by our method we get the expression .A^�A/_Œ.A^B/_.�A^B/_.�A^�B/�.
It has the right table. But, of course, A! B is much simpler! The point is not that
the resultant expressions are elegant or efficient, but that for any truth function, there
exists a formal expression that works the same way.

We have shown that we can represent any truth function by an expression with
operators �, ^, and _. But any such expression is an abbreviation of one whose only
operators are � and!. So we can represent any truth function by an expression with
just operators � and!. And we can argue for other cases. Thus, for example,

T11.2. It is possible to represent any truth function by means of an expression with
just the operators � and!, with just the operators � and ^, and with just the
operators � and _.

The first is immediate from T11.1 and abbreviation. The last is left as an exercise.
For the other, reasoning is straightforward: Given T11.1, if we can show that any
P whose operators are �, ^, and _ corresponds to a P � whose operators are just
� and ^ such that P and P � have the same table (such that IŒP � = IŒP �� for any
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I), we will have shown that any truth function can be represented by an expression
with just � and ^. To see that this is so, where P is an atomic S , set P � = S ;
where P is �A, set P � = �A�; where P is A ^B, set P � = A� ^B�; and
where P is A_B, set P � = �.�A� ^�B�/. Suppose the only operators in P

are �, ^, and _, and consider an arbitrary interpretation I.

Basis: Where P is a sentence letter S , then P � is S . So IŒP � = IŒS � = IŒP ��.
Assp: For any i , 0 i k, if P has i operator symbols, then IŒP � = IŒP ��.

Show: If P has k operator symbols, then IŒP � = IŒP ��.
If P has k operator symbols, then it is of the form �A, A ^B, or A _B

where A and B have k operator symbols.
(�) Suppose P is �A; then P � is �A�. IŒP � = T iff IŒ�A� = T; by ST(�),

iff IŒA� = T; by assumption iff IŒA�� = T; by ST(�), iff IŒ�A�� = T; iff
IŒP �� = T.

(^) Suppose P is A ^B; then P � is A� ^B�. IŒP � = T iff IŒA ^B� = T;
by ST0(^), iff IŒA� = T and IŒB� = T; by assumption iff IŒA�� = T and
IŒB�� = T; by ST0(^), iff IŒA� ^B�� = T; iff IŒP �� = T.

(_) Suppose P is A_B; then P � is�.�A�^�B�/. IŒP � = T iff IŒA_B� =
T; by ST0(_), iff IŒA� = T or IŒB� = T; by assumption iff IŒA�� = T or
IŒB�� = T; by ST(�), iff IŒ�A�� = T or IŒ�B�� = T; by ST0(^), iff
IŒ�A� ^�B�� = T; by ST(�), iff IŒ�.�A� ^�B�/� = T; iff IŒP �� = T.

If P has k operator symbols then IŒP � = IŒP ��.

Indct: For any P , IŒP � = IŒP ��.

So if the operators in P are�, ^, and_, there is a P � with just operators� and^ that
has the same table. Since we can represent any truth function by an expression whose
only operators are �, ^, and _, and we can represent any such P by a P � whose
only operators are � and ^, we can represent any truth function by an expression
with just operators � and ^. Perhaps this result was obvious as soon as we saw that
�.�A ^ �B/ has the same table as A _ B. And, by similar reasoning, we can
represent any truth function by expressions whose only operators are � and _, and by
expressions whose only operator is ". This is left for homework.

In E8.14, we showed that if the operators in P are limited to!, ^, _, and$ then
when the interpretation of every atomic is T, the interpretation of P is T. Perhaps this
is obvious insofar as tables always remain T in the top row. It follows that not every
truth function can be represented by expressions whose only operators are!, ^, _,
and$; for there is no way to represent a function that is F on the top row. Though
it is more difficult to establish, we showed in E8.23 that any expression whose only
operators are � and$ (with at least four rows in its truth table) has an even number
of Ts and Fs under its main operator. It follows that not every truth function can be
represented by expressions whose only operators are � and$.
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E11.1. Use the method of this section to find expressions whose operators are �, ^,
_ with tables corresponding to P1, P2, and P3. Then show on a table that your
expression for P1 in fact has the same truth function as P1.

A B C P1 P2 P3

T T T T F F
T T F T T F
T F T F T T
T F F F F F

F T T F F T
F T F F T F
F F T F F T
F F F F F T

E11.2. (i) Show that we can represent any truth function by expressions whose only
operators are � and _ and so complete the demonstration of T11.2. (ii) Show
that we can represent any truth function by expressions whose only operator is
the up arrow " (see Chapter 7 page 319 and E7.6). Hint: Given what we have
shown above, it is enough to show that you can represent expressions whose only
operators are � and!. (iii) Without going through the full-blown argument, find
expressions whose tables match those of� and _ to show that we can do the same
with just the down arrow operator # mentioned in Chapter 5 page 188, note 9.

E11.3. Show that is not possible to represent arbitrary truth functions by expressions
whose only operators are binary � and ı with tables TFFT and FTTF respectively.
Hint: Think about E8.23.

11.2 Unique Readability

Unique readability is one of those results whose conclusion may seem too obvious
to merit argument. Still, it is a result upon which we depend at every stage—and its
demonstration is not so simple as you might think: We show that every formula of Ls

is parsed uniquely into its immediate subformulas. Things are set up so that this is so.
But suppose that instead of FR(!) and ST(!) we had,

FR.!/� If P and Q are formulas, then P ! Q is a formula

ST.!/� IŒP ! Q� = T iff IŒP � = F or IŒQ� = T

without parentheses. For some atomics A, B , and C , suppose IŒA� = IŒB� = IŒC � = F.
Then A ! B is a formula, and IŒA ! B� = T; so A ! B ! C is a formula, and
IŒA ! B ! C � = F. But again B ! C is a formula, and IŒB ! C � = T; so
A! B ! C is a formula; and IŒA! B ! C � = T. So something is wrong: the one
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expression A! B ! C , reconceived with different immediate subformulas, comes
out false one way but true the other. A recursive definition like ST assigns unique
values to expressions only if there are unique parts to which the definition applies.
Thus, if our definitions are to yield determinate results, it is important that formulas
be uniquely parsed into their parts.

So far, we have simply presupposed that this is so. Now we prove it. For the
sentential case, according to unique readability, for any formula P of Ls exactly one
of the following holds:

(s) P is a sentence letter.

(�) There is a unique formula A such that P is �A.

(!) There are unique formulas A and B such that P is .A! B/.

Given a couple preliminary theorems, the result is straightforward. First, ignoring
uniqueness,

T11.3. For any formula P of Ls, exactly one of the following holds: (i) P is a
sentence letter; (ii) there is a formula A such that P is �A; (iii) there are
formulas A and B such that P is .A! B/.

First, by the closure clause to definition FR, any formula P results by FR(s), FR(�),
or FR(!); if FR(s), P is is a sentence letter; if FR(�), P is �A for formula A,
and if FR(!), P is .A! B/ for formulas A and B; in any case at least one of
(i), (ii), or (iii). And, just as easy, at most one of (i), (ii), or (iii): If P is a sentence
letter it begins with a sentence letter; if P is �A it begins with ‘�’; and if P is
.A! B/ it begins with ‘.’. (i) Suppose P is a sentence letter; then it does not
begin with ‘�’ or ‘.’; so not (ii) and not (iii). Suppose P is �A; then it does not
begin with a sentence letter or ‘.’; so not (i) or (iii). Suppose P is .A! B/; then
it does not begin with a sentence letter or ‘�’ so not (i) or (ii).

Say A is an initial segment of an expression P just in case there is some (possibly
empty) B such that P = AB—just in case P is the concatenation of A and B. If B

is a non-empty sequence so that A is not all of P , then A is a proper initial segment of
P . So AB is a proper initial segment of ABC . To make progress on the uniqueness
conditions, we show the following:

T11.4. If P is a formula of Ls, then no proper initial segment of P is a formula.
Suppose P is a formula.

Basis: If P is atomic, then P = AB only if (i) P = A and B is empty, or (ii)
P = B and A is empty. In the first case, A is not a proper initial segment.
In the second case A is an (empty) proper initial segment; but from T11.3
no empty segment is a formula; so A is not a formula. In either case then,
no proper initial segment of P is a formula.
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Assp: For any i , 0 i k, if P has i operator symbols, then no proper initial
segment of P is a formula.

Show: If P has k operator symbols, then no proper initial segment of P is a
formula. If P has k operator symbols then it is �A or .A ! B/ for
formulas A and B with k operator symbols.

(�) P is �A for some formula A. Suppose some proper initial segment of P

is a formula; then for some formula B and non-empty C , P = �A = BC .
B is either empty or starts with ‘�’; so with T11.3, B is �D for some
formula D . So P = �A = �DC ; dropping the initial tilde, A = DC ; so
D is a proper initial segment of A; so by assumption, D is not a formula.
Reject the assumption: no proper initial segment of P is a formula.

(!) P is .A! B/. Suppose some proper initial segment of P is a formula;
then for some formula C and non-empty D , P = .A ! B/ = CD . C

is either empty or starts with ‘.’; so with T11.3, C is .E ! F / for some
formulas E and F ; so .A ! B/ = .E ! F /D . Observe that each
of A;B;E;F must have fewer than the number of operator symbols in
P = .A ! B/ = .E ! F /D , and so k operator symbols. From
.A ! B/ = .E ! F /D , dropping the initial parenthesis, we get A !

B/ = E ! F /D ; given their position at the start, either A is identical to
E , or A overlaps E , or E overlaps A—that is, either A = E or one is a
proper initial segment of the other; suppose one is a proper initial segment
of the other; then by assumption one or the other is not a formula; this is
impossible. So A = E; so! B/ = ! F /D ; so B/ = F /D ; so the last
character of D is /; so B overlaps at least F /; so F is a proper initial
segment of B; so by assumption F is not a formula. Reject the assumption:
no proper initial segment of P is a formula.

If P has k operator symbols, then no proper initial segment of P is a
formula.

Indct: For any formula P , no proper initial segment of P is a formula.

Observe that we “add” and “subtract” from sequences so that, for example �A = �B

iff A = B. It is also worth noting the point at which parentheses matter for the (!)
case. At the stage where B/ = F /D , suppose D is just / and there were no / between
F and D ; then B/ = F D = F /; so B = F —and there is no contradiction. The
parenthesis makes it the case that F must be a proper initial segment of B, which is
impossible.

And now we are ready to establish unique readability.
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T11.5. For any formula P of Ls, exactly one of the following holds:

(s) P is a sentence letter.

(�) There is a unique formula A such that P is �A.

(!) There are unique formulas A and B such that P is .A! B/.

For any formula P of Ls, by T11.3, exactly one of (i) P is a sentence letter, (ii)
there is a formula A such that P is �A, (iii) there are formulas A and B such
that P is .A! B/. We are now in a position to establish uniqueness constraints
for cases (ii) and (iii) by showing that there can be just one A such that P is �A,
and just one A and one B such that P is .A! B/.

(�) Suppose P = �A and there is some formula B such that P = �B; then
�A = �B; so, dropping the initial symbol, A = B. So there is a unique
formula A such that P = �A.

(!) Suppose P = .A ! B/ and there are formulas C and D such that P =
.C ! D/; then .A! B/ = .C ! D/; so A! B/ = C ! D/; so either
A = C or one is a proper initial segment of the other; but by T11.4, neither
is a proper initial segment of the other; so A = C ; so B/ = D/; so B = D .
So there are unique formulas A and B such that P = .A! B/.

Thus unique readability is established.

*E11.4. Show unique readability for the terms of Lq—that for every term t of Lq,
exactly one of the following holds:

(v) t is a variable.

(c) t is a constant.

(f) There are unique terms s1 : : :sn and function symbol hn such that t =
hns1 : : :sn.

Hint: The argument is based on TR; you will want to show that no proper initial
segment of a term is a term.

E11.5. Show unique readability for the formulas of Lq—that for every formula P of
Lq, exactly one of the following holds:

(s) P is a sentence letter.

(r) There are unique terms t1 : : : tn and relation symbol Rn such that P =
Rnt1 : : : tn.

(�) There is a unique formula A such that P = �A.
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(!) There are unique formulas A and B such that P = .A! B/.

(8) There is unique variable x and formula A such that P = 8xA.

Hint: This time the argument is based on FR.

11.3 Independence

As we have seen, axiomatic systems are convenient insofar as their compact form
makes reasoning about them relatively easy. In addition, axiomatic systems are
attractive insofar as they exhibit a minimal ground or foundation for the logical
systems. Given these aims, it is natural to wonder whether we could get the same
results without one or more of our axioms. Say an axiom is independent in a derivation
system just in case it cannot be derived by the other axioms and rules, and an axiom
schema is independent just in case not all the axioms which are its instances can be
derived without the schema. An axiom is independent iff it makes a difference to what
can be derived: Suppose an axiom is not independent; then there is a derivation of
it from other axioms and rules, and any result of the system with the axiom can be
derived using the theorem in place of the axiom; so the axiom makes no difference
to what can be derived. Suppose an axiom is independent, then the axiom itself
is something not derived from the other axioms and rules; so the axiom makes a
difference to what can be derived. In this section, we show that schemas A1, A2, and
A3 of the sentential fragment of AD are independent of one another.

Say we want to show that A1 is independent of A2 and A3. When we showed,
in Chapter 8, that the sentential part of AD is weakly s̊ound, we showed that A1, A2,
A3, and their consequences have a certain feature—that there is no interpretation
where an axiom or consequence is false. The basic idea here is to find a sort of
“interpretation” with some feature sustained by A2, A3, and their consequences, but
not by all instances of A1. It follows that those instances of A1 are not among the
consequences of A2 and A3, and so that A1 is independent of A2 and A3. Here is the
key point: Any “interpretation” will do. In particular, consider the following tables
which define a sort of numerical property for forms involving � and!:

A1(�)

P �P

0 1
1 0
2 0

A1(!)

P Q P ! Q

0 0 0
0 1 2
0 2 2

1 0 0
1 1 0
1 2 2

2 0 0
2 1 0
2 2 0
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Do not worry about what these tables “say”; it is sufficient that, given a numerical
interpretation of the parts, we can always calculate the numerical value Num of the
whole. Thus, for example,

(F)

A.0/ B.2/

�
�
�
�
�
��

�A.1/ By A1(�) row 1

@
@
@

�A! B.2/ By A1(!) row 6

if NumŒA� = 0 and NumŒB� = 2, then NumŒ�A ! B� = 2. The calculation is
straightforward based on the tables. And similarly for sentential forms of arbitrary
complexity. Say a formula is select iff it takes the value 0 on every numerical
interpretation of its parts. (Compare the notion of sentential validity on which a
formula is valid iff it is T on every interpretation of its parts.) Again, do not worry about
what the tables mean. They are constructed for the special purpose of demonstrating
independence: We show that every consequence of A2 and A3 is select but that the
A1 instance A ! .B ! A/ is not. It follows that not every instance of A1 is a
consequence of A2 and A3 and so that A1 is independent of A2 and A3.

To see that instances of A2 and A3 are select, but A! .B ! A/ is not, all we
have to do is complete the tables. For A! .B ! A/ and A3,

(G)

A B A ! .B ! A/

0 0 0 0
0 1 0 0
0 2 0 0

1 0 2 2
1 1 0 0
1 2 0 0

2 0 0 2
2 1 0 2
2 2 0 0

A B .�B ! �A/ ! Œ.�B ! A/ ! B�

0 0 1 0 1 0 1 0 0
0 1 0 2 1 0 0 0 2
0 2 0 2 1 0 0 0 2

1 0 1 0 0 0 1 0 0
1 1 0 0 0 0 0 2 0
1 2 0 0 0 0 0 2 0

2 0 1 0 0 0 1 2 0
2 1 0 0 0 0 0 2 0
2 2 0 0 0 0 0 2 0

Since it evaluates to 2 in the fourth row, the A1 instance A! .B ! A/ is not select.1

From the table, instances of A3 are select. To see that instances of A2 are select,
again, it is enoungh to complete the table. For this, see table (H) on page 501. So any
instance of A2 or A3 is select. But now we are in a position to show,

T11.6. In the sentential fragment of AD, axiom A1 is independent of A2 and A3.

Consider any derivation hQ1;Q2 : : :Qni where there are no premises, and the
only axioms are instances of A2 and A3. By induction on line number, for any i ,
Qi is select.

1Not every instance of A1 fails to be select. Thus for example, if C is select then D ! C and so
C ! .D ! C/ are select—the latter an instance of A1.
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Basis: Q1 is an instance of A2 or A3, and as we have just seen, instances of A2
and A3 are select. So Q1 is select.

Assp: For any i , 0 i k, Qi is select.
Show: Qk is select.

Qk is an instance of A2 or A3 or arises from previous lines by MP. If Qk

is an instance of A2 or A3 then by reasoning as in the basis, Qk is select.
If Qk arises from previous lines by MP, then the derivation has some lines,
a. B ! C

b. B

k. C a,b MP

where a; b k and C is Qk . By assumption, B ! C and B are select; so
they evaluate to 0 on every row. But the only case where B ! C and B

both evaluate to 0 is the top row of A1(!) where C evaluates to 0 as well;
so if on every row NumŒB ! C � = 0 and NumŒB� = 0, then on every row
NumŒC � = 0. So Qk is select.

Indct: For any n, Qn is select.

Since consequences of A2 and A3 are select and the A1 instance A! .B ! A/

is not, that instance cannot be derived from A2 and A3; so A1 is independent of
A2 and A3.

The basic strategy is like that from T10.5 where we found an interpretation with
premises true and conclusion not in order to demonstrate that premises do not prove a
conclusion. The difference is that the axioms are always true on interpretations with
the standard tables—so only a nonstandard semantic account can separate one axiom
from the others. In fact multiple tables of the sort A1(�) and A1(!) are sufficient for
the result. We pick just one option.2 Similarly we may show,

T11.7. In the sentential fragment of AD, A2 is independent of A1 and A3, and A3 is
independent of A1 and A2.

Homework.

Our independence results apply to the axioms of a derivation system. But inde-
pendence results might also apply to axioms of a theory (like Q or PA). An important
example is the demonstration that both the continuum hypothesis and its negation
are independent of the axioms of ZFC set theory (see note 9 on page 534). Such
demonstrations often require considerable creativity—and results for the continuum
hypothesis were a major achievement. Still, the basic idea of such demonstrations
remains the same: Independence is demonstrated by a structure on which other axioms
and their consequences have some feature that the independent one lacks.

2In this case, there are 64 solutions by three-valued tables but over 500,000 three-valued table
combinations. So the solutions remain a small fraction of the total.
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(H)

A B C .A ! .B ! C// ! ..A ! B/ ! .A ! C//

0 0 0 0 0 0 0 0 0
0 0 1 2 2 0 0 2 2
0 0 2 2 2 0 0 2 2
0 1 0 0 0 0 2 0 0
0 1 1 0 0 0 2 0 2
0 1 2 2 2 0 2 0 2
0 2 0 0 0 0 2 0 0
0 2 1 0 0 0 2 0 2
0 2 2 0 0 0 2 0 2

1 0 0 0 0 0 0 0 0
1 0 1 2 2 0 0 0 0
1 0 2 2 2 0 0 2 2
1 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
1 1 2 2 2 0 0 2 2
1 2 0 0 0 0 2 0 0
1 2 1 0 0 0 2 0 0
1 2 2 0 0 0 2 0 2

2 0 0 0 0 0 0 0 0
2 0 1 0 2 0 0 0 0
2 0 2 0 2 0 0 0 0
2 1 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0
2 1 2 0 2 0 0 0 0
2 2 0 0 0 0 0 0 0
2 2 1 0 0 0 0 0 0
2 2 2 0 0 0 0 0 0

E11.6. Use the following tables to show that A2 is independent of A1 and A3. Then
explain how E8.13 already shows that A3 is independent of A1 and A2 and so
complete the demonstration of T11.7.

A2(�)

P �P

0 1
1 0
2 1

A2(!)

P Q P ! Q

0 0 0
0 1 2
0 2 1

1 0 0
1 1 2
1 2 0

2 0 0
2 1 0
2 2 0

E11.7. Produce tables to show that the axioms of A� from E3.5 are independent of
one another. You need not demonstrate independence by induction, but should
briefly explain how your tables suffice. Hint: This exercise requires considerable
ingenuity (and patience). Alternatively, given requisite background, you might



CHAPTER 11. MORE MAIN RESULTS 502

employ a computing device to search by “brute force” for (three-valued) tables
that do the job.

*E11.8. Consider our full derivation system AD, and show that A1 is independent
of A2–A8. You can do this by assigning 0 to every atomic equality t1 D t2,
otherwise collapsing any atomic with relation symbol R to a single sentence
letter R0 (so any P x

t is just P ), collapsing quantifiers to a single unary sentential
operator, and supplementing tables A1(�) and A1(!) with a table A1(8). Find
this table, and explain how the result demonstrates that A1 is independent of the
other axioms.

11.4 Beginning Model Theory

Model theory investigates relations between formal expressions and models. Put
this way, s̊oundness and c̊ompleteness are already results in model theory. But many
interesting results of this kind are possible, so that s̊oundness and c̊ompleteness
are only a beginning. Introductions to model theory (for example Manzano, Model
Theory) typically presuppose a background including to groups, rings, and fields (such
as would be part of a course in abstract algebra) and to transfinite arithmetic (such as
would appear in a course on set theory). These supply examples and extend the range
of results. The examples and results are beneficial given the required background,
but a stumbling block without. Though I shall wave in the direction of some such
results, our main discussion is restricted to more generally accessible applications and
to the sets with which we are already familiar. Inevitably, notions from set theory
extend what we have seen so far. However, I make every effort to explain concepts
as they arise. The results remain interesting, and shall be sufficient for our purposes.
After this brief introduction, we turn to some basic concepts (11.4.1), results from
compactness (11.4.2), and some c̃ompleteness results (11.4.3).

Let † be a set of formulas and M a class of models. This † and M are language-
relative: † is a set of formulas in some language L, and M a class of models for that
language (mostly, though, the italicized part is left implicit). † is an axiomatization
of M just in case MŒ†� = T iff M 2 M. So the members of M are the models that
make members of † true. M is axiomatizable iff it is axiomatized by some †; M

is finitely axiomatizable iff it is axiomatized by some finite †. Let Md.†/ be the
class of models axiomatized by †. Notice that there must be some such class. In the
extreme, if † is empty then (vacuously) the members of † are true on any model and
Md.†/ is the class of all models; if † is inconsistent, then by T10.4 its members are
not true on any model and Md.†/ is the empty class.
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Given these notions, we may raise questions in two directions: We might start
with a set of formulas and ask about the models axiomatized by it; or we might start
with some models, and ask about formulas to axiomatize them. Thus, for example,
we may ask if there is a † such that Md.†/ is,

� the class of models whose only member is N

� the class of all models with an infinite universe

� the class of all models with a finite universe

and, with vocabulary to be introduced below,

� the class of all models isomorphic to N

� the class of all models elementarily equivalent to N

The first four are among questions answered in this section. An answer to the last will
have to wait for Part IV.

11.4.1 Basic Concepts

I introduce some basic concepts and prove some results about them. We begin with a
short section introducing relative notions of soundness and completeness. Then we
turn to isomorphism and equivalence, and to submodels and embeddings. A number of
definitions are collected in the model theory definitions reference on pages 521–522,
to which you may find it helpful to refer.

A qualification: On the usual account there is no set of all sets. This is a consequence
of the way sets appear in an unending hierarchy such that the members of sets at
any “rank” come from ranks below. The universe of an interpretation may be any
set. Thus there is no set of all universes, and no set of all interpretations. Some
theorists introduce proper classes as entities which may have sets from every rank
as members. But then it is difficult to resist the suggestion that proper classes are
themselves members of sets and are thus so many more members of the hierarchy
of sets. We shall not enter into this controversy. For we may regard references
to proper classes as an eliminable manner of speaking: By the metalanguage,
we identify some feature of sets or models and talk about ones that have it. So,
for example, where M is the class of all models with a finite universe, M 2 M

just in case M has a finite universe. Talk of classes permits pleasingly concise
specifications of that which would otherwise be more difficult (and the use of
Fraktur variables reminds us of the underlying metalinguistic specification).
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Relative Soundness and Completeness

We shall be able locate different concepts of soundness and completeness under the
umbrella of a relative soundness and completeness.

As a preliminary, let jMj be the set of formulas that are true on each M 2M, so
jMj = fP j for every M 2M;MŒP � = Tg. Roughly, as a class of models expands, the
class of formulas true on all its members contracts. In the extreme, if M is empty,
then vacuously every P is true on each M 2M, and jMj is the set of all formulas; if
M is the class of all models, then the members of jMj are just the tautologies, true on
every M. And in general,

T11.8. If M � N then jNj � jMj.

Suppose M � N. To show that jNj � jMj, suppose P 2 jNj, but P … jMj.
From the latter, there is some M 2 M such that MŒP � = T; but since M � N,
M 2 N; so P … jNj. This is impossible; reject the assumption: if P 2 jNj, then
P 2 jMj; so jNj � jMj.

The converse to this theorem need not obtain: it is not always the case that if jNj �
jMj then M � N. To see this, observe that adding or subtracting models from a class
does not always change the set of formulas true on all its members. In particular,
consider some A and models L;M 2 A that make all the same formulas true (we will
meet cases of this kind below). Let A� be like A but without M. Then jA�j = jAj so
that jA�j � jAj; but A has a member that A� does not, so A ª A�.

Now say † is sound with respect to M just in case for any P , if † ` P then
P 2 jMj. So † is sound with respect to M when formulas proved by † are true on
each member of M. Then given s̊oundness, we can show that † is sound with respect
to some models just in case they are among the models on which all the members of
† are true.

T11.9. If derivations are s̊ound, then † is sound with respect to M iff M �Md.†/.

Suppose derivations are s̊ound.

(i) Suppose † is sound with respect to M. To show that M �Md.†/ consider
an arbitrary M 2M; we need that M 2Md.†/. If † is empty then Md.†/ is the
class of all models and M 2 Md.†/. So suppose † is not empty and consider
an arbitrary P 2 †; trivially † ` P ; and since † is sound with respect to M,
P 2 jMj; from this and M 2M, MŒP � = T; and since P is arbitrary, MŒ†� = T;
so M 2Md.†/.

(ii) Suppose M �Md.†/. To show that † is sound with respect to M, consider
an arbitrary P and suppose † ` P ; we need that P 2 jMj. If M is empty
then jMj is the set of all formulas, and P 2 jMj. So suppose M is not empty
and consider an arbitrary M 2 M; then since M � Md.†/, MŒ†� = T; so by
s̊oundness MŒP � = T; and since M is arbitrary, P 2 jMj.
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So given s̊oundness from Chapter 10, † is sound with respect to M iff M �Md.†/.
And with Md.†/ �Md.†/, † is sound with respect to Md.†/.

This result extends to show that s̊oundness is equivalent to a condition on relative
soundness.

T11.10. Derivations are s̊ound iff every † is sound with respect to Md.†/.

From Md.†/ � Md.†/ and T11.9, if derivations are sound, then † is sound
with respect to Md.†/. For the other direction, suppose every † is sound with
respect to Md.†/; then for s̊oundness, consider arbitrary † and P and suppose
† ` P . If there is no model such that MŒ†� = T then, trivially, † � P . So
consider an arbitrary M such that MŒ†� = T; then M 2Md.†/; and since † ` P

and † is sound with respect to Md.†/, P 2 jMd.†/j; so MŒP � = T; and since
M is arbitrary, † � P . So derivations are s̊ound.

Say † is complete with respect to M just in case for any formula P , if P 2 jMj

then † ` P . Trivially, jMj is complete with respect to M—if P 2 jMj then
jMj ` P . So specified, however, there may be no reasonable way to identify the
individual formulas that are members of jMj. Ordinarily, we shall be interested in
cases where there is some reasonable syntactic method for identifying the members
of † (a notion to be made precise in Part IV). Examples of sets so specified are the
axioms of Q and PA as developed in chapters 3 and 6.

And we have theorems like ones for relative soundness. First, given c̊ompleteness,
† is complete with respect to some models if they include the models on which † is
true.

T11.11. If derivations are c̊omplete and Md.†/ � M, then † is complete with
respect to M.

Suppose derivations are c̊omplete and Md.†/ �M; to show that † is complete
with respect to M, consider an arbitrary P 2 jMj; we need that † ` P . If
Md.†/ is empty, then † is inconsistent and † ` P . So suppose Md.†/ is not
empty and consider an arbitrary M such that MŒ†� = T; then M 2 Md.†/; and
since Md.†/ �M, M 2M; then since P 2 jMj, MŒP � = T; and since this is so
for for arbitrary M, † � P ; so by c̊ompleteness † ` P .

So given c̊ompleteness from Chapter 10, if Md.†/ � M then † is complete with
respect to M. And with Md.†/ �Md.†/, † is complete with respect to Md.†/.

In this case, the implication does not go the other way—it may be that † is
complete with respect to M but Md.†/ ªM. To see this, let A = Md.†/; then, as
we have seen, † is complete with respect to A. Again consider L;M 2 A that make
all the same sentences true, and let A� be like A but without M; then jAj = jA�j.
Suppose P 2 jA�j; then P 2 jAj; and since† is complete with respect to A,† ` P ;
so if P 2 jA�j then † ` P , and † is complete with respect to A�. But A ª A� and
so Md.†/ ª A�. So † is complete with respect to A� but Md.†/ ª A�.



CHAPTER 11. MORE MAIN RESULTS 506

It remains, however, that T11.11 extends to show that c̊ompleteness is equivalent
to a condition on relative completeness.

*T11.12. Derivations are c̊omplete iff every † is complete with respect to Md.†/.

Homework.

*E11.9. Show T11.12.

Isomorphism and Equivalence

In general, a total function f from rn to (into) s maps each member of rn to some
member of s. Very often we have seen cases where both r and s are the universe of
an interpretation and so the same set, but this is not required. f is onto s iff for every
member of s, there is some member of rn that maps to it. And f is one-to-one (1:1) iff
different members of rn never map to the same member of s. So, for example, each of
the following satisfy the described conditions.

rn s

˘
˘
˘

˘
˘
˘

-

��*
-

(total)

rn s

˘
˘
˘
˘

˘
˘
˘

-

-

-

��*

onto

rn s

˘
˘
˘

˘
˘
˘
˘

-

-

HHj

1:1

rn s

˘
˘
˘

˘
˘
˘

-

-

-

1:1, onto

Each is a total function from rn to s. The first is neither onto nor 1:1; the second is
onto but not 1:1; the third is 1:1 but not onto; and the last is 1:1 and onto. So a (total)
1:1 function from rn onto s “matches” the members of rn with the members of s.3

Given this, interpretations (models) are isomorphic when they have a sort of
structural similarity that results by a 1:1 function from the universe of one onto the
universe of the other.

IS For some language L with models L and M, L is �-isomorphic to M (L �
Š M) iff �

is a 1:1 function from the universe of L onto the universe of M and,

(s) For a sentence letter S , MŒS � = LŒS �.

(c) For a constant c, MŒc� = �.LŒc�/.

(f) For a function symbol hn; MŒhn�h�.ma/ : : : �.mb/i = �.LŒhn�hma : : :mbi/.

(r) For a relation symbol Rn, h�.ma/ : : : �.mb/i 2 M.Rn/ iff hma : : :mbi 2

LŒRn�.

3A function which is onto is very often called a surjection, a function which is 1:1 an injection, and
one which is both 1:1 and onto a bijection.
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If there is some � such that L
�
Š M, then L is isomorphic to M (L Š M). For an

isomorphism, the interpretation of sentence letters is the same. Then � maps one
interpretation onto the other. We might think of the two interpretations as already
existing, and finding a function � to exhibit them as isomorphic. Alternatively, given
a model L and 1:1 function � from its universe UL onto some set UM, we might think
of M as resulting from application of � to L. As we shall see, structurally, isomorphic
interpretations “mirror” one another.

Here are some example isomorphic interpretations. In the first, the structural
similarity between interpretations L and M is perhaps particularly obvious.

(I)
UL W Balto Fido Coco Milo

# # # #

UM W Benji Fang Cookie Morris

UL = fBalto, Fido, Coco, Milog. As represented by the arrows, function � maps these
onto a disjoint set UM. Then given the intended model L as below, the corresponding
isomorphic interpretation is M as on the right.

LŒb� = Balto

LŒc� = Coco

LŒD� = fBalto, Fidog

LŒC � = fCoco, Milog

LŒP � = fhBalto, Cocoi; hFido, Miloig

MŒb� = Benji

MŒc� = Cookie

MŒD� = fBenji, Fangg

MŒC � = fCookie, Morrisg

MŒP � = fhBenji, Cookiei; hFang, Morrisig

On model L, where Balto and Fido are dogs, and Coco and Milo are cats, and P
represents pursuit, we have that every dog pursues at least one cat. So Db and Cc
and 8x.Dx ! 9y.Cy ^ Pxy//. And, supposing that Benji and Fang are dogs,
and Cookie and Morris are cats, the same properties and relations are preserved on
M—with only the particular individuals switched.

For a second case, let UL be the same, but UK the very same set, only permuted or
shuffled so that each object in UL has a mate in UK.

(J)
UL W Balto Fido Coco Milo

# # # #

UK W Balto Coco Fido Milo

So � maps members of UL to members of the very same set. Then given L as before,
the corresponding isomorphic interpretation K is as follows:

LŒb� = Balto

LŒc� = Coco

LŒD� = fBalto, Fidog

LŒC � = fCoco, Milog

LŒP � = fhBalto, Cocoi; hFido, Miloig

KŒb� = Balto

KŒc� = Fido

KŒD� = fBalto, Cocog

KŒC � = fFido, Milog

KŒP � = fhBalto, Fidoi; hCoco, Miloig

This time, there is no simple way to understand KŒD� as the set of all dogs, and KŒC �
as the set of all cats. And we cannot say that the interpretation of P reflects dogs
pursuing cats. But Coco plays the same role in K as Fido in L; and similarly Fido
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plays the same role in K as Coco in L. Thus, on K, it remains that Db and Cc and
that each thing in the interpretation of D stands in the relation P to at least one thing
in the interpretation of C so that 8x.Dx ! 9y.Cy ^ Pxy//—and this is just as in
model L.

A final example switches to LNT and has an infinite U. We let UN be the set N of
natural numbers, UP the set P of positive integers, and � be the function m 1.

(K)
UN W 0 1 2 3 � � �

# # # #

UP W 1 2 3 4 � � �

Then where N is the standard interpretation for the symbols of LNT,

NŒ;� = 0

NŒS� = fhm; ni jm; n 2 N , and n is the successor of mg

NŒC� = fhhm; ni; oi jm; n; o 2 N , and m plus n equals og

NŒ�� = fhhm; ni; oi jm; n; o 2 N , and m times n equals og

we obtain P as follows:

PŒ;� = 1

PŒS� = fhm 1; n 1i jm; n 2 N , and n is the successor of mg

PŒC� = fhhm 1; n 1i; o 1i jm; n; o 2 N , and m plus n equals og

PŒ�� = fhhm 1; n 1i; o 1i jm; n; o 2 N , and m times n equals og

We build P explicitly by the rule for isomorphisms—simply finding �.m/ = m 1
for each object in N. In this case, we cannot understand PŒC� and PŒ�� as the
ordinary addition and multiplication functions. For example, since hh1; 1i; 2i 2 NŒC�,
hh2; 2i; 3i 2 PŒC�—and, of course, hh2; 2i; 3i … NŒC�. Nevertheless, insofar as
matched objects play the same role on the different interpretations, the same formulas
come out true on N as on P. So, for example, S; C S; D SS; is true on N and,
insofar as hh2; 2i; 3i 2 PŒC� and PŒS;� = 2 and PŒSS;� = 3, on P as well. This is
very much as for examples (I) and (J).

We shall be able to show that this sort of relation holds in general for isomorphic
interpretations. That is,

EE For some language L, models L and M are elementarily equivalent (L � M) iff
for any formula P , LŒP � = T iff MŒP � = T.

We show that isomorphic models are elementarily equivalent. This is straightforward
given a matched pair of results, of the sort we have seen before.

T11.13. For some language L, if models D
�
Š H and assignments d for D and h for H

are such that for any x, hŒx� = �.dŒx�/, then for any term t, HhŒt� = �.DdŒt�/.

Suppose D
�
Š H and corresponding assignments d and h are such that for any x,

h.x/ = �.d.x//. By induction on the number of function symbols in t:
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Basis: If t has no function symbols, then it is a variable or a constant. Suppose t

is a variable x; by TA(v) HhŒx� is hŒx�; by the assumption to the theorem
this is �.dŒx�/; and by TA(v) this is �.DdŒx�/; so HhŒx� = �.DdŒx�/. Suppose
t is a constant c; by TA(c), HhŒc� is HŒc�; since D

�
Š H, this is �.DŒc�/;

and by TA(c), this is �.DdŒc�/; so HhŒc� = �.DdŒc�/.
Assp: For any i , 0 i k if t has i function symbols, then HhŒt� = �.DdŒt�/.

Show: If t has k function symbols, then HhŒt� = �.DdŒt�/. If t has k function
symbols, then it is of the form hns1 : : :sn for relation symbol hn and
terms s1 : : :sn with k function symbols. By assumption, HhŒs1� =
�.DdŒs1�/ and . . . and HhŒsn� = �.DdŒsn�/. So HhŒt� = HhŒh

ns1 : : :sn�;
by TA(f) this is HŒhn�hHhŒs1� : : :HhŒsn�i; with the assumption, this is
HŒhn�h�.DdŒs1�/ : : : �.DdŒsn�/i; and since D

�
Š H, this is �.DŒhn�hDdŒs1�

: : :DdŒsn�i/; by TA(f) again, this is �.DdŒh
ns1 : : :sn�/ = �.DdŒt�/. So

HhŒt� = �.DdŒt�/.

Indct: For any t, HhŒt� = �.DdŒt�/.

So when D and H are �-isomorphic and for any variable x, � maps dŒx� to hŒx�, then
for any term t, � maps DdŒt� to HhŒt�.

Now we are in a position to extend the result to one for satisfaction of formulas. If
D and H are �-isomorphic, and for any variable x, � maps dŒx� to hŒx�, then a formula
P is satisfied on D with d just in case it is satisfied on H with h.

*T11.14. For some language L, if interpretations D
�
Š H and assignments d for D

and h for H and are such that for any x, hŒx� = �.dŒx�/, then for any formula P ,
HhŒP � = S iff DdŒP � = S.

By induction on the number of operators in P . Suppose D
�
Š H.

Basis: Suppose P has no operator symbols and d and h are such that for any
x, hŒx� = �.dŒx�/. Then P is sentence letter S or an atomic Rnt1 : : : tn
for relation symbol Rn and terms t1 : : : tn. Suppose the former; then by
SF(s), HhŒS � = S iff HŒS � = T; since D

�
Š H iff DŒS � = T; by SF(s),

iff DdŒS � = S. Suppose the latter; by SF(r), HhŒR
nt1 : : : tn� = S iff

hHhŒt1� : : :HhŒtn�i 2 HŒRn�; since D
�
Š H and hŒx� = �.dŒx�/, by T11.13

iff h�.DdŒt1�/ : : : �.DdŒtn�/i 2 HŒRn�; since D
�
Š H iff hDdŒt1� : : :DdŒtn�i 2

DŒRn�; by SF(r), iff DdŒR
nt1 : : : tn� = S.

Assp: For any i , 0 i k, for P with i operator symbols and any d and h such
that for any x, hŒx� = �.dŒx�/, HhŒP � = S iff DdŒP � = S.

Show: For any P with k operator symbols and any d and h such that for any x,
hŒx� = �.dŒx�/, HhŒP � = S iff DdŒP � = S.
If P has k operator symbols, then it is of the form �A, A! B, or 8xA

for variable x and formulas A and B with k operator symbols. Suppose
for any x, hŒx� = �.dŒx�/.
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(�) Suppose P is of the form�A. Then HhŒP � = S iff HhŒ�A� = S; by SF(�),
iff HhŒA� = S; by assumption, iff DdŒA� = S; by SF(�) iff DdŒ�A� = S;
iff DdŒP � = S.

(!) Homework.

(8) Suppose P is of the form 8xA. (i) Suppose HhŒP � = S but DdŒP � = S;
from the latter, DdŒ8xA� = S; so by SF(8), there is some m 2 UD such
that Dd.xjm/ŒA� = S; but d.xjm/ and h.xj�.m// have all their members
related by �; so by assumption Hh.xj�.m//ŒA� = S; so there is an o 2 UH

such that Hh.xjo/ŒA� = S; so by SF(8), HhŒ8xA� = S; so HhŒP � = S. This
is impossible; reject the assumption: if HhŒP � = S, then DdŒP � = S. (ii)
And similarly, [by homework] in the other direction.

For d and h such that for any x, hŒx� = �.dŒx�/ and P with k operator
symbols, HhŒP � = S iff DdŒP � = S.

Indct: For d and h such that for any x, hŒx� = �.dŒx�/, and any P , HhŒP � = S iff
DdŒP � = S.

As often occurs, the most difficult case is for the quantifier. The key is that the
assumption applies to HhŒP � and DdŒP � for any assignments d and h related so that for
any x, hŒx� = �.dŒx�/. Supposing that d and h are so related, there is no reason to think
that d.xjm/ and h remain in that relation. The problem is solved with a corresponding
modification to h: with d.xjm/; we modify h so that the assignment to x simply is
�.m/. Thus d.xjm/ and h.xj�.m// are related so that the assumption applies.

Now it is a simple matter to show that isomorphic models are elementarily equiva-
lent.

T11.15. If D Š H, then D � H.

Suppose D Š H and consider an arbitrary formula P . Since D Š H there is some
� such that D

�
Š H; and where d and h are related as in T11.14, HhŒP � = S iff

DdŒP � = S. (i) Suppose DŒP � = T; then by T7.6, DŒP u� = T; so by T8.7, there is
some d such that DdŒP

u� = S; so by T11.14, HhŒP
u� = S; so by T8.7, HŒP u� = T;

and by T7.6, HŒP � = T. (ii) Similarly in the other direction. And since P is
arbitrary, D � H.

Suppose M 2Md.†/ and M Š L; then MŒ†� = T and by this theorem, M � L; so
L.†/ = T and L 2Md.†/. At best, then, a set of formulas characterizes models “up
to isomorphism”—if M 2Md.†/ then Md.†/ includes all the models isomorphic to
M.4 This already answers the first question posed in the introduction to section 11.4: If
N 2Md.†/ then any L Š N is in Md.†/ as well; so there is no † such that Md.†/

4In Reason, Truth and History, Hilary Putnam makes this point to show that truth values of sentences
are not sufficient to fix the interpretation of a language. The technical point is clear enough. It is another
matter whether it bears the philosophical weight he means for it to bear!
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is the class whose only member is N (that there are interpretations isomorphic to N is
immediate from example (K)). Note also that we now have the definitions at least to
understand the last two questions.

Given notions of isomorphism and equivalence, let us briefly return to relative
soundness and completeness. This time we connect relative soundness and complete-
ness with s̃oundness and c̃ompleteness. Associate†with a class I of intended models.
Then† is s̃ound iff it is sound with respect to I , so for any formula P if† ` P , then
P 2 jI j. One option is to set I = Md.†/; then by T11.9, it is immediate that † is
sound with respect to I . Alternatively, and more relevantly, I might be independently
specified; thus the intended interpretation for Q and PA is just N. Then there is an open
question whether a given † is sound with respect to I . In general, from T11.9, † is
s̃ound iff I �Md.†/. From this, s̃oundness is closely related to logical soundness
from Chapter 1: given s̊oundness, † entails whatever it proves—s̃oundness then adds
the requirement that the members of † are true on intended models.

† is (negation) c̃omplete iff † ` P or † ` �P for every sentence P of its
language. So c̃ompleteness is like maximality from Chapter 10 (though c̃ompleteness
applies especially to theories). We show that † is c̃omplete iff it is complete relative
to some M whose members are elementarily equivalent.

*T11.16. † is c̃omplete iff it is complete relative to some M such that for all L;M 2
M, L � M.

(i) Suppose † is c̃omplete. By [homework] there is an M such that for all
L;M 2M, L � M. Hint: Md.†/ is an M with the required properties.

(ii) Suppose † is complete relative to some M such that for all L;M 2M, L � M.
Suppose M = ¿; then jMj is the set of all formulas; so by relative completeness
† (is inconsistent and) proves P and �P for every P ; so for every sentence P ,
† ` P or † ` �P . Suppose M = ¿; then there is some M 2 M, and from
E8.29 for any sentence P , MŒP � = T or MŒ�P � = T. Suppose MŒP � = T; and
consider an arbitrary L 2 M; since L � M, LŒP � = T; and since L is arbitrary,
P 2 jMj; so by relative completeness † ` P ; so † ` P or † ` �P . Suppose
MŒ�P � = T; and consider an arbitrary L 2 M; since L � M, LŒ�P � = T; and
since L is arbitrary, �P 2 jMj; so by relative completeness, † ` �P ; so † ` P

or † ` �P . In any case, then, † ` P or † ` �P ; so † is c̃omplete.

Suppose † is c̃omplete; by the reasoning for (i), the members of Md.†/ are elemen-
tarily equivalent. Suppose the members of Md.†/ are elementarily equivalent; by
T11.11 † is complete with respect to Md.†/; so by (ii) † is c̃omplete. So (�) † is
c̃omplete iff the members of Md.†/ are elementarily equivalent.

Now say† is categorical iff it characterizes models up to isomorphism, iff for any
L;M 2Md.†/, L Š M. Then as another quick corollary to T11.16, if† is categorical,
it is c̃omplete: Suppose † is categorical; and consider arbitrary L;M 2Md.†/, since
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† is categorical, L Š M; so by T11.15, L � M; and since L and M are arbitrary, for all
L;M 2Md.†/, L � M; so from (�) † is c̃omplete.

*E11.10. Suppose L
�
Š M. It is possible to manipulate definition IS to show that

clauses (c) and (f) yield (intuitive) conditions as for relation symbols. So, for
constants, MŒc� = �.m/ iff LŒc� = m.

If MŒc� = �.m/, then with IS(c), �.LŒc�/ = MŒc� = �.m/, and since � is 1:1,
LŒc� = m. And if LŒc� = m, then with IS(c), MŒc� = �.LŒc�/ = �.m/.

Demonstrate the related result for function symbols, that hh�.ma/ : : : �.mb/i; �.o/i 2
MŒhn� iff hhma : : :mbi; oi 2 LŒhn�. It is sufficient to restrict attention to one-place
function symbols.

E11.11. (i) Explain what truth value the sentence �9x.Dx ^ 8y.Cy ! Pxy// has
on interpretation L and then M in example (I). Explain what truth value it has on K
in example (J). (ii) Explain what truth value the sentence 9x.x C x D x/ has on
interpretations N and P in example (K). Are these results as you expect? Explain.

*E11.12. Complete the proof of T11.14 including the cases for! and 8. You should
set up the complete induction, but may refer to the text, as the text refers to
homework. Hint for the quantifier case: Since � is onto UH, for any m 2 UH there
must be some n 2 UD such that �.n/ = m; so d.xjn/ and h.xjm/ are related as the
assumption requires.

*E11.13. Complete the proof of T11.16. Hint: do not forget that you can use T7.6.

Submodel and Embedding

We conclude this section with discussion of submodels and elementary submodels,
then embeddings and elementay embeddings.

First submodel. For a relation rn say the restriction of rn to set s, rn � s =
fhm1 : : :mni j hm1 : : :mni 2 rn and hm1 : : :mni 2 sng. We take just the members
of rn that are included in sn. Similarly, for a function fn, the restriction of fn to s,
fn � s = fhhm1 : : :mni; ai j hhm1 : : :mni; ai 2 fn and hm1 : : :mni 2 sng. We take the
members of fn whose inputs are included in sn. A set s is closed under fn just in case
whenever hhm1 : : :mni; ai 2 fn � s, then a 2 s. So, for example, let 2N be the set
f0; 2; 4; : : :g of even numbers. Then the usual addition function plus restricted to 2N

includes pairs hh2; 2i; 4i, hh2; 4i; 6i, and so forth; and insofar as the sum of two evens
is always even, 2N is closed under plus. The usual successor function suc restricted
to 2N has members h0; 1i, h2; 3i, h4; 5i, and so forth; but insofar as successors of
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First Theorems of Chapter 11

T11.1 It is possible to represent any truth function by means of an expression with just
the operators �, ^, and _.

T11.2 It is possible to represent any truth function by means of an expression with just the
operators � and!, with just the operators � and ^, and with just the operators �
and _.

T11.3 For any formula P of Ls, exactly one of the following holds: (i) P is a sentence
letter; (ii) there is a formula A such that P is �A; (iii) there are formulas A and
B such that P is .A! B/.

T11.4 If A is a formula of Ls, then no proper initial segment of A is a formula.

T11.5 For any formula P of Ls, exactly one of the following holds: (s) P is a sentence
letter; (�) there is a unique formula A such that P is �A; (!) there are unique
formulas A and B such that P is .A! B/.

T11.6 In the sentential fragment of AD, axiom A1 is independent of A2 and A3.

T11.7 In the sentential fragment of AD, A2 is independent of A1 and A3, and A3 is
independent of A1 and A2.

T11.8 If M � N then jNj � jMj.

T11.9 If derivations are s̊ound, then † is sound with respect to M iff M �Md.†/.

T11.10 Derivations are s̊ound iff every † is sound with respect to Md.†/.

T11.11 If derivations are c̊omplete and Md.†/ �M, then † is complete with respect to
M.

T11.12 Derivations are c̊omplete iff every † is complete with respect to Md.†/.

T11.13 For some language L, if models D
�
Š H and assignments d for D and h for H are

such that for any x, hŒx� = �.dŒx�/, then for any term t, HhŒt� = �.DdŒt�/.

T11.14 For some language L, if interpretations D
�
Š H and assignments d for D and h for

H and are such that for any x, hŒx� = �.dŒx�/, then for any formula P , HhŒP � = S
iff DdŒP � = S.

T11.15 If D Š H, then D � H.

T11.16 † is c̃omplete iff it is complete relative to some M such that for all L;M 2 M,
L � M.

Corollary: † is c̃omplete iff the members of Md.†/ are elementarily equivalent.

Corollary: If † is categorical then † is c̃omplete.
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evens are odd, 2N is not closed under suc. For model M of some language L, and
some V � U, say V is closed under the constants of M just in case for any constant
symbol c, MŒc� 2 V. And V is closed under the functions of M just in case for any
function symbol h, V is closed under MŒh�.

Given this, the relations and functions in a submodel of M restrict the functions
and relations of M to a subset of the universe of M.

SM For some language L with models L and M, L is a submodel of M (L v M/ iff,

(u) UL � UM, and UL is closed under the constants and functions of M.

(s) For a sentence letter S , MŒS � = LŒS �.

(c) For a constant c, M.c/ = L.c/.

(f) For a function symbol hn, MŒhn� � UL = LŒhn�.

(r) For a relation symbol Rn, MŒRn� � UL = LŒRn�.

So when L v M the relations and functions of L are restrictions of the relations and
functions of M to UL. Insofar as we require that the interpretation of any constant be
a member of the universe, and that the elements in members of a function be from
the universe, SM would fail to specify an interpretation apart from the requirements
on UL from (u). Trivially, M v M; in this case, M and its submodel have the same
universe. If the language lacks constants and function symbols, then the restriction
to any nonempty UL � UM results in a submodel (because the constraints from
(u) are trivially met). If there are no constants and all the functions are such that
hhm1 : : :mni; ai 2 f only if a is among m1 : : :mn then, again, the constraints are
automatically met. Otherwise, supposing that UM has nonempty proper subsets (has
at least two members), not all of them result in a submodel. But for any nonempty
subset of UM that meets the conditions from (u), there is a submodel of M that restricts
the relations and functions of M to that set.

For an example, consider a language like LNT
< but without S , where UM = N and

UL = 2N. Then UL � UM. Let,

(L)

MŒ;� = 0

MŒ<� = fhm; ni jm; n 2 N , and m is less than ng

MŒC� = fhhm; ni; oi jm; n; o 2 N , and m plus n equals og

MŒ�� = fhhm; ni; oi jm; n; o 2 N , and m times n equals og

LŒ;� = 0 ; LŒ<� = MŒ<� � UL; LŒC� = MŒC� � UL; LŒ�� = MŒ�� � UL

So M is the standard interpretation of these symbols, and L restricts its functions and
relation to 2N. Insofar as the assignment to ; is the same on M and L, and the sum
of two evens is even, and the product of two evens is even, UL is closed under the
constants and functions of M; so L v M. For this submodel L, it remains that LŒC� and
LŒ�� work like (part of) the usual functions plus and times. If S were to have remained
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in the language (given its usual interpretation for M), then L œ M insofar as 2N is not
closed under suc. As specified, M 6� L—so, for example, 9x.; < x ^ x � x D x/

is true on M insofar as 1 1 = 1, but not true on L insofar as 1 … UL. And since the
interpretations are not elementarily equivalent, by T11.15 they are not isomorphic.
If we were to have omitted � from the language it would remain that L v M. In
this case, however, M Š L—for �.m/ = 2m becomes a 1:1 function from N onto 2N

that maps one model into the other—and since these models are isomorphic, they are
elementarily equivalent. So a submodel of M may but need not be isomorphic and/or
equivalent to M.

But submodels may be restricted so that elementary submodels of M are elemen-
tarily equivalent to M.

ES For some language L with models L and M, L is an elementary submodel of M
(L � M) iff L v M and for any formula P of L and variable assignment d into
UL, MdŒP � = S iff LdŒP � = S.

So an elementary submodel is a submodel such that MdŒP � = LdŒP � for any assignment
d into UL. Observe that L v M and M � L do not imply L � M. For consider (L)
above without � in the language. Then M � L. But any d into 2N such that dŒy� = 2
has MdŒ9x.x C x D y/� = S just because 1 1 = 2; but there is no m 2 2N such that
m m = 2 so that LdŒ9x.x C x D y/� = S. So L is not an elementary submodel of M.
The implication does, however, go the other way: an elementary submodel of M is
elementarily equivalent to M.

T11.17. If L � M then L � M.

Suppose L � M and consider an arbitrary formula P . (i) Suppose LŒP � = T; then
by T7.6, LŒP u� = T; so by T8.7, there is some d into UL such that LdŒP

u� = S; so
since L � M, MdŒP

u� = S; so by T8.7, MŒP u� = T; so by T7.6, MŒP � = T. (ii)
Suppose MŒP � = T; then by T7.6, MŒP u� = T; so by TI, MhŒP

u� = S for every
assignment h into UM and, in particular, MdŒP

u� = S for some assignment d into
UL; so since L � M, LdŒP

u� = S; so by T8.7, LŒP u� = T; so by T7.6, LŒP � = T.
And since P is arbitrary, L � M.

This much is clear. As we have seen (L), even without � in the language, is an example
of a submodel not an elementary submodel. Trivially, for any M, M � M. Beyond
that, though, given the universal requirements that ES places on formulas and variable
assignments, it is not easy to produce an obvious example of a submodel that is an
elementary submodel. The following matched pair of theorems focus the question.

T11.18. Suppose L v M and d is a variable assignment into UL. Then for any term t,
MdŒt� = LdŒt�.

By induction on the number of function symbols in t. Suppose L v M and d is a
variable assignment into UL.
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Basis: Suppose t has no function symbols. Then t is a variable x or a constant c.
(i) Suppose t is a constant c. Then MdŒt� = MdŒc�; by TA(c) this is MŒc�;
and since L v M, this is LŒc�; by TA(c) again, this is LdŒc�; which is just
LdŒt�. (ii) Suppose t is a variable x. Then MdŒt� = MdŒx�; by TA(v), this is
dŒx� and by TA(v) again, this is LdŒx�; which is just LdŒt�.

Assp: For any i , 0 i k, if t has i function symbols, then MdŒt� = LdŒt�.
Show: If t has k function symbols, MdŒt� = LdŒt�. If t has k function symbols,

then it is of the form hns1 : : :sn for some terms s1 : : :sn with k func-
tion symbols. MdŒt� = MdŒh

ns1 : : :sn�; by TA(f) this is MŒhn�hMdŒs1� : : :

MdŒsn�i; with the assumption, this is MŒhn�hLdŒs1� : : : LdŒsn�i; but since
LdŒs1� : : : LdŒsn� are in UL, this is just .MŒhn� � UL/hLdŒs1� : : : LdŒsn�i;
and since L v M, this is LŒhn�hLdŒs1� : : : LdŒsn�i; and by TA(f), this is
LdŒh

ns1 : : :sn�; which is just LdŒt�.

Indct: For any term t, MdŒt� = LdŒt�.

T11.19. Suppose that L v M and that for any formula P and every variable assignment
d into UL such that MdŒ9xP � = S there is an m 2 UL such that Md.xjm/ŒP � = S;
then L � M.

Suppose L v M and that for any formula P and every variable assignment d into
UL such that MdŒ9xP � = S there is an m 2 UL such that Md.xjm/ŒP � = S. We show
by induction on the number of operators in P that for d any assignment into UL,
MdŒP � = S iff LdŒP � = S and so that L � M.

Basis: Suppose d is an assignment into UL. If P is atomic then it is either a
sentence letter S or an atomic of the form Rnt1 : : : tn for some relation
symbol Rn and terms t1 : : : tn. (i) Suppose P is S . Then MdŒP � = S iff
MdŒS � = S; by SF(s), iff MŒS � = T; since L v M, iff LŒS � = T; by SF(s), iff
LdŒS � = S; iff LdŒP � = S. (ii) Suppose P is Rnt1 : : : tn. Then MdŒP � =
S iff MdŒR

nt1 : : : tn� = S; by SF(r) iff hMdŒt1� : : :MdŒtn�i 2 MŒRn�;
since L v M and with T11.18, iff hLdŒt1� : : : LdŒtn�i 2 MŒRn�; since
LdŒt1� : : : LdŒtn� are in UL, iff hLdŒt1� : : : LdŒtn�i 2 .MŒRn� � UL/; since
L v M, iff hLdŒt1� : : : LdŒtn�i 2 LŒRn�; by SF(r) iff LdŒR

nt1 : : : tn� = S;
iff LdŒP � = S.

Assp: For any i , 0 i k, if P has i operator symbols, then for d any assignment
into UL, MdŒP � = S iff LdŒP � = S.

Show: If P has k operator symbols, then for d any assignment into UL, MdŒP � = S
iff LdŒP � = S.
If P has k operator symbols, then it is of the form �A, A! B, or 9xA

for variable x and formulas A and B with k operator symbols (treating
8xP as equivalent to �9x�P ). Let d be an assignment into UL.
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(�) Suppose P is �A. MdŒP � = S iff MdŒ�A� = S; by SF(�) iff MdŒA� = S;
by assumption iff LdŒA� = S; by SF(�) iff LdŒ�A� = S; iff LdŒP � = S.

(!) Homework.

(9) Suppose P is 9xA. (i) Suppose MdŒP � = S; then MdŒ9xA� = S; so by the
assumption to the theorem, there is an m 2 UL such that Md.xjm/ŒA� = S;
since d is an assignment into UL, d.xjm/ is an assignment into UL; so by
assumption Ld.xjm/ŒA� = S; so by SF0.9/, LdŒ9xA� = S; so LdŒP � = S. (ii)
Suppose LdŒP � = S; then LdŒ9xA� = S; so by SF0.9/, there is some o 2 UL

such that Ld.xjo/ŒA� = S; so since d.xjo/ is an assignment into UL, by
assumption, Md.xjo/ŒA� = S; so by SF0.9/, MdŒ9xA� = S; so MdŒP � = S.
So MdŒP � = S iff LdŒP � = S.

In any case, if P has k operator symbols, MdŒP � = S iff LdŒP � = S.

Indct: For any P , MdŒP � = S iff LdŒP � = S.

So a submodel is an elementary submodel so long as existentially quantified formulas
are guaranteed by “witnesses” in the universe of the submodel. With this in mind, you
might consider again our page 515 example to show that (L), even without � in the
language, is not an example of an elementary submodel.

With a small change to the definition of an isomorphism, embeddings combine
the notions of submodel and isomorphism. In particular, we drop the requirement that
the 1:1 function � be from the domain of one model onto the domain of the other.

EM For some language L with models L and M, there is an �-embedding of L into M
(L

�
@
� M) iff � is a 1:1 function from UL to UM and,

(s) For a sentence letter S , MŒS � = LŒS �.

(c) For a constant c, MŒc� = �.LŒc�/.

(f) For a function symbol hn, MŒhn�h�.ma/ : : : �.mb/i = �.LŒhn�hma : : :mbi/.

(r) For a relation symbol Rn, h�.ma/ : : : �.mb/i 2 M.Rn/ iff hma : : :mbi 2

LŒRn�.

If there is some � such that L
�
@
� M, then there is an embedding of L into M (L @� M).

At the extreme, if L
�
Š M then L

�
@
� M. For a 1:1 function from UL onto UM remains

a 1:1 function from UL to UM and all the conditions from EM are satisfied. But the
interesting thing is that for an embedding the function � need not be onto. Again at the
extreme, if L v M then L @� M. For the identity function �.m/ = m is a 1:1 function
from UL to UM that trivially satisfies the conditions from EM. So for example, on their
standard interpretations of LNT, a model for the natural numbers is embedded into a
model for the integers. The identity function �.m/ = m is a 1:1 function from N to
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the set Z of all integers such that L @� M.5 More interestingly, suppose a language has
constant a, two-place function symbol �, and relation symbol <. Then where L and M
have universe N and,

(M)

LŒa� = 0

LŒ<� = fhm; ni jm; n 2 N , and m is less than ng

LŒ�� = fhhm; ni; oi jm; n; o 2 N , and m plus n equals og

MŒa� = 1

MŒ<� = fhm; ni jm; n 2 N , and m is less than ng

MŒ�� = fhhm; ni; oi jm; n; o 2 N , and m times n equals og

we have L @� M. Even though L and M have the same universe, given their assignments
to the constant and function symbols, L œ M. Nevertheless, �Œm� = 2m is a 1:1 function
from N to N (from N onto a proper subset of N) that meets the conditions from EM.
So, MŒa� = 1 = 20 = �.0/ = �.LŒa�/. Similarly, h�.a/; �.b/i 2 MŒ<� iff h2a; 2bi 2 MŒ<�;
iff 2a 2b; iff a b; iff ha; bi 2 LŒ<�. And MŒ��h�.a/; �.b/i = MŒ��h2a; 2bi =
2a � 2b = 2aCb = �.aC b/ = �.LŒ��ha; bi/. So L @� M.

In these examples, L maps to a submodel of M. And we may show that this relation
holds in general, that L

�
@
� M when there is a K v M such that L

�
Š K (something like

this may be suggested by the notation). The situation may be pictured as follows:

(N) �
Š vL K M

L
�
@
� M:

*T11.20. L
�
@
� M iff there is a K v M such that L

�
Š K.

For a function f from rn to s, let its range ran.f/ be that subset of s onto which f
maps: for a one place function f, ran.f/ = fy j hx; yi 2 fg. Then when L

�
@
� M, L is

isomorphic to a K v M that restricts the relations and functions of M to ran.�/.

(i) Suppose L
�
@
� M. We need a K such that K v M and L

�
Š K. Let UK = ran.�/,

KŒS � = MŒS �, KŒc� = MŒc�, KŒhn� = MŒhn� � UK, and KŒRn� = MŒRn� � UK.

(a) K v M. Since � is a function from UL to UM, UK � UM. Then UK is closed
under the constants and functions of M: First, since L

�
@
� M, MŒc� = �.LŒc�/; and

since � is a function to UK, MŒc� 2 UK; so UK is closed under the constants of
M. Next, for simplicity consider a one-place function symbol h and suppose

5This ignores a fine point about whether members of N are the same objects as ones in Z. I simply
suppose that the natural numbers are among the integers.



CHAPTER 11. MORE MAIN RESULTS 519

ha; bi 2 MŒhn� � UK; then a 2 UK and we require that b 2 UK. Since a 2 UK

there is some m 2 UL such that �.m/ = a; so MŒhn�h�.m/i = b; and since L
�
@
� M,

MŒhn�h�.m/i = �.LŒhn�hmi/; so �.LŒhn�hmi/ = b, and b 2 UK; so UK is closed
under the functions of M. Then by construction it is immediate that K meets other
conditions for a submodel of M.

(b) L
�
Š K. Since L

�
@
� M, � is a 1:1 function from UL to UM; so � is a 1:1 function

from UL onto ran.�/ = UK. Now working on the conditions from IS: (s) By
construction KŒS � = MŒS �; and since L

�
@
� M, MŒS � = LŒS �; so KŒS � = LŒS �. (c) By

construction KŒc� = MŒc�; since L
�
@
� M, MŒc� = �.LŒc�/; so KŒc� = �.LŒc�/. (f) For

simplicity consider a one-place function symbol h: by construction, KŒh�h�.m/i =
.MŒh� � UK/h�.m/i; but �.m/ 2 UK; so .MŒh� � UK/h�.m/i = MŒh�h�.m/i; and
since L

�
@
� M, MŒh�h�.m/i = �.LŒh�hmi/; so KŒh�h�.m/i = �.LŒh�hmi/. (r) For

simplicity consider a one-place relation symbol R: by [homework] �.m/ 2 KŒR�
iff m 2 LŒR�.

(ii) Suppose there is some K v M such that L
�
Š K. We need that L

�
@
� M. Since

L
�
Š K, � is a 1:1 function from UL onto UK and since K v M, UK � UM; so �

is a 1:1 function from UL to UM. Now working on the conditions from EM: (s)
Since K v M, MŒS � = KŒS �; since L

�
Š K, KŒS � = LŒS �; so MŒS � = LŒS �. (c)

Since K v M, MŒc� = KŒc�; since L
�
Š K, KŒc� = �.LŒc�/; so MŒc� = �.LŒc�/.

(f) For simplicity consider a one-place function symbol h: take an arbitrary
m 2 UL; then �.m/ 2 UK, and MŒh�h�.m/i = .MŒh� � UK/h�.m/i; since K v M,
.MŒh� � UK/h�.m/i = KŒh�h�.m/i; and since L

�
Š K, KŒh�h�.m/i = �.LŒh�hmi/; so

MŒh�h�.m/i = �.LŒh�hmi/. (r) For simplicity consider a one-place relation symbol
R: by [homework] �.m/ 2 MŒR� iff m 2 LŒR�.

As for submodels themselves, it may be that L @� M without L � M. So in example
(M), LŒ9x.x < a/� = T but MŒ9x.x < a/� = T. But we may restrict the range of
embeddings as for the restriction of submodels to elementary submodels.

EL For some language L with models L and M, there is an �-elementary embedding
of L into M (L

�- M) iff L
�
@
� M and for variable assignment d into UL and h such

that for all x, h.x/ = �.dŒx�/, and any P in L, MhŒP � = S iff LdŒP � = S.

If there is an � such that L
�- M, then there is an elementary embedding of L into M

(L - M). Roughly, an elementary embedding is to an embedding, as an elementary
submodel is to a submodel. Thus an elementary submodel adds a constraint on
satisfaction to the conditions for a submodel; and an elementary embedding adds a
constraint on satisfaction to the conditions for an embedding. To exhibit

�- in diagram
(N) change the relation between K and M from v to �. And we may obtain results for
elementary embeddings like ones before.



CHAPTER 11. MORE MAIN RESULTS 520

*T11.21. L
�- M iff there is a K � M such that L

�
Š K.

Homework.

T11.22. If L - M, then L � M.

Homework.

Observe that we might have taken the notion of an embedding as fundamental
and defined isomorphism and submodel in terms of it. L is �-isomorphic to M just in
case L

�
@
� M and � is a function from the universe of L onto the universe of M. L is a

submodel of M just in case L
�
@
� M and � is the identity function �.m/ = m on a subset

of the universe of M. And L is an elementary submodel of M just in case L
�- M with �

the identity function on a subset of M. So embedding is the more general or flexible
notion, and others appear as instances of it.

E11.14. (i) For P and N of example (K), explain why P œ N. (ii) Let UL = P and
UM = N and the only symbol of the language be < (with equality); let MŒ<� be
standard, and LŒ<� be its restriction to P ; then explain why L v M; explain why
L Š M; and show that L � M. Hint: Consider the formula, 8y.x ¤ y ! x < y/.

E11.15. Complete the demonstration of T11.19 by completing the case for!. You
should set up the entire induction, but may defer parts to the text as the text defers
to homework.

E11.16. Complete the demonstration of T11.20 by completing the cases for relation
symbols.

E11.17. Suppose L v M. (i) Let P be any formula without quantifiers; show that
if d is an assignment into UL, then MdŒP � = S iff LdŒP � = S. (ii) Let Q be
8x1 : : :8xnP for P without quantifiers; show that if d is an assignment into UL,
then if MdŒQ� = S, LdŒQ� = S. With T8.7 it follows that if such a Q is a sentence,
then if MŒQ� = T, LŒQ� = T. Hint: These are arguments by induction; you will
find T11.18 helpful.

*E11.18. Show T11.21 and T11.22. Hint: For the first, you will be able to focus
questions by appeal to T11.20.
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Basic Definitions for Model Theory
Let † be a set of formulas and M a class of models. jMj is the set of formulas true on
each M 2M; Md.†/ is the class of all models on which the members of † are true.

AX † is an axiomatization of M just in case MŒ†� = T iff M 2M. M is axiomatizable
iff it is axiomatized by some †. M is finitely axiomatizable iff it is axiomatized by
some finite †.

RS † is sound with respect to M just in case for any formula P , if † ` P then
P 2 jMj.

RC † is complete with respect to M just in case for any formula P , if P 2 jMj then
† ` P .

SI Associate † with a class I of intended models; then † is s̃ound iff it is sound with
respect to I .

NC † is (negation) c̃omplete iff † ` P or † ` �P for every sentence P .

CA † is categorical iff it characterizes models up to isomorphism, iff for any L;M 2
Md.†/, L Š M.

(�) EE For some language L, models L and M are elementarily equivalent (L � M) iff for
any formula P , LŒP � = T iff MŒP � = T.

(Š) IS For some language L with models L and M, L is �-isomorphic to M (L �
Š M) iff � is

a 1:1 function from the universe of L onto the universe of M and,

(s) For a sentence letter S , MŒS � = LŒS �.

(c) For a constant c, MŒc� = �.LŒc�/.

(f) For a function symbol hn; MŒhn�h�.ma/ : : : �.mb/i = �.LŒhn�hma : : :mbi/.

(r) For a relation symbol Rn, h�.ma/ : : : �.mb/i 2 M.Rn/ iff hma : : :mbi 2 LŒRn�.

If there is some � such that L
�
Š M, then L is isomorphic to M (L Š M).

(v) SM For some language L with models L and M, L is a submodel of M (L v M/ iff,

(u) UL � UM, and UL is closed under the constants and functions of M.

(s) For a sentence letter S , MŒS � = LŒS �.

(c) For a constant c, M.c/ = L.c/.

(f) For a function symbol hn, MŒhn� � UL = LŒhn�.

(r) For a relation symbol Rn, MŒRn� � UL = LŒRn�.

(�) ES For some language L with models L and M, L is an elementary submodel of M
(L � M) iff L v M and for any formula P of L and variable assignment d into UL,
MdŒP � = S iff LdŒP � = S.
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Basic Definitions for Model Theory (cont.)
(@
�) EM For some language L with models L and M, there is an �-embedding of L into M

(L
�
@
� M) iff � is a 1:1 function from UL to UM and,

(s) For a sentence letter S , MŒS � = LŒS �.

(c) For a constant c, MŒc� = �.LŒc�/.

(f) For a function symbol hn, MŒhn�h�.ma/ : : : �.mb/i = �.LŒhn�hma : : :mbi/.

(r) For a relation symbol Rn, h�.ma/ : : : �.mb/i 2 M.Rn/ iff hma : : :mbi 2 LŒRn�.

If there is some � such that L
�
@
� M, then there is an embedding of L into M (L @� M).

(-) EL For some language L with models L and M, there is an �-elementary embedding of
L into M (L

�- M) iff L
�
@
� M and for variable assignment d into UL and h such that

for all x, h.x/ = �.dŒx�/, and any P in L, MhŒP � = S iff LdŒP � = S.

If there is an � such that L
�- M, then there is an elementary embedding of L into M

(L - M).

11.4.2 Compactness

We turn now to some applications that build upon our basic concepts. We begin
with the compactness theorem. This apparently simple result has many interesting
consequences.

The Compactness Theorem

For † a set formulas, compactness connects models for † and models for its finite
subsets. Say a set† of formulas is satisfiable iff it has a model. † is finitely satisfiable
iff every finite subset of it has a model.

T11.23. A set of formulas † is satisfiable iff it is finitely satisfiable. Compactness.

(i) Suppose † is satisfiable but not finitely satisfiable. Then there is some M such
that MŒ†� = T; but there is a finite � � † such that for any L, LŒ�� = T; so
MŒ�� = T; so there is a formula P 2 � such that MŒP � = T; but since � � †,
P 2 †; so MŒ†� = T. This is impossible; reject the assumption: if † is satisfiable,
then it is finitely satisfiable.

(ii) Suppose † is finitely satisfiable but not satisfiable. By T10.16, if † is consis-
tent, then it has a model M. But since † is not satisfiable, it has no model; so it is
not consistent; so there is some formula A such that † ` A and † ` �A. Con-
sider derivations of these results, and the set � of premises of these derivations;
since derivations are finite, � is finite; and since � includes all the premises for
the derivations, � ` A and � ` �A; so by s̊oundness, � � A and � � �A.
But since† is finitely satisfiable, there must be some model D such that DŒ�� = T;
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then by QV, DŒA� = T and DŒ�A� = T; and from the latter by T8.8, DŒA� = T.
This is impossible; reject the assumption: if † is finitely satisfiable, then it is
satisfiable.

Perhaps part (i) is obvious: if there is a model for the whole of †, that very model
is one for its parts. On its face, compactness is a semantic result that does not have
anything to do with derivation systems and so the derivations to which we appeal
at (ii)—and there are alternate demonstrations of compactness that do not appeal to
derivations. However, given what we have already done, this demonstration is close at
hand, and lets us turn directly to applications.

Infinite Domains

In Chapter 5 we learned to say ‘at most’ and ‘at least’ in simple cases. So, for
example, 8y8x18x2.y D x1 _ y D x2/ is true iff there are at most two things.
And 9x19x2.x1 ¤ x2/ is true iff there are at least two things. Let us generalize the
method to arbitrary finite numbers. For some formulas A1 : : :An, let

W
1�i�n

Ai be
the disjunction of the Ai s and

V
1�i�n

Ai be their conjunction. Then for any n 1,

Mn = 8y8x1 : : :8xn
W

1�i�n

y D xi

is true just in case there are at most n things. So, for example,

M4 = 8y8x18x28x38x4.y D x1 _ y D x2 _ y D x3 _ y D x4/

is true iff there are at most four things. With a modification to the simple indexing
from above, we get ‘at least’. Thus for any n 1,

Ln = 9x1 : : : 9xn

�
x1 D x1 ^

V
1�i<j�n

xi ¤ xj

�
is true iff there are at least n things. Starting with i = 1 include the inequality for
each j greater than it up to n. Then do the same for each i n. (The first conjunct
in the square bracket merely guarantees that the result is a formula when n = 1 and
there are no i; j such that 1 i j n so that the extended conjunction includes no
formulas.) Thus for example,

L4 = 9x19x29x39x4Œx1 D x1 ^ .x1 ¤ x2 ^ x1 ¤ x3 ^ x1 ¤ x4 ^ x2 ¤ x3 ^ x2 ¤ x4 ^ x3 ¤ x4/�

is true iff there are at least four things. And, of course Mn ^ Ln is true iff there
are exactly n things. Manipulating these sentences becomes impractical quickly!
Nonetheless in a straightforward sense our language has the capacity to express these
properties.
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In this way, given some quantificational language L with equality, we can (finitely)
axiomatize the class of all models whose universe has at most n elements, the class of
all models whose universe has at least n elements, and the class of all models whose
universe has exactly n elements. What about I the class of all models with an infinite
domain? This class may be axiomatized as well. Let � = fLn j n 1g. The members
of � are L1;L2; : : : constructed as above. So according to � , there is at least one
thing; there are at least two things; there are at least three things; and so forth. Every
member of � is true on an infinite domain. But on a domain with n members, LnC1

is sure to be false. So � is true on all and only interpretations with an infinite domain
and Md.�/ = I .

In this case, I is not finitely axiomatized. Is there a finite axiomatization of the
class of models with an infinite domain? There are, of course, finite sets true only
on infinite domains. Let the language be LNT and the members of � the axioms of
Q; then � has finitely many members; and any D 2Md.�/ has an infinite domain.
But the members of Md.�/ are not all the models with an infinite domain. So, for
example, 8x.x – ;/ is a theorem of Q (from T6.54) and so true on any member of
Md.�/. But a standard interpretation Z of LNT on the set Z of all integers has an
infinite domain and ZŒ8x.x – ;/� = T; so Z 2 I but Z … Md.�/. Still, we might
wonder if there is some other set of formulas that is a finite axiomatization of I . We
can use the compactness theorem to show that there is not.

T11.24. For I the class of all models with an infinite domain, there is no finite †
such that Md.†/ = I .

Suppose otherwise, that for some language L, I is the class of all models with an
infinite domain, and for † with finitely many members, Md.†/ = I . Let A be
the conjunction of the members of † and Au its universal closure; with T7.6, Au

is true on just the same interpretations as † and so just on models with an infinite
domain. Consider the axiomatization of I from above, � = fLn jn 1g. Then any
finite � � f�Aug [ � is satisfiable: � may have as members �Au and finitely
many sentences La : : :Lb; let n be whichever is greater of 1 and the maximum
subscript from La : : :Lb; all of La : : :Lb are satisfied on a universe with n
members; but by hypothesis Au is satisfied on all and only interpretations with an
infinite domain; so �Au is satisfied on all and only interpretations with a finite
domain; so �Au is satisfied on a universe with n members; so all the members
of � are satisfied on a universe with n members; so a finite � � f�Aug [ � is
satisfiable; and since � is arbitrary, by compactness f�Aug [ � is satisfiable.
But this is impossible; �Au is satisfied only on universes with a finite domain
and � only on universes with an infinite domain; so no interpretation satisfies
f�Aug [ � . Reject the assumption: where I is the class of all models with an
infinite domain, there is no finite † such that Md.†/ = I .

This first application of compactness may be less than earth-shattering. It is interesting,
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though, just to have seen how compactness applies to establish the universal claim
about axiomatizations.

Finite Domains

Now for a language L, let F be the class of interpretations with a finite domain,
and consider the question whether there is some � to axiomatize it. We have seen
axiomatizations of models with at most n members, and of models with exactly n
members. But these are not axiomatizations of the class F of all interpretations with
a finite domain. If some † were a finite axiomatization of the class of all models with
an infinite domain, then �Au constructed as above would axiomatize F; but we have
just seen that there is no such axiomatization. Notice also that fMn j n 1g will not
do: given M1 as an element, this set is satisfied just on interpretations with a single
member! A set of formulas is true under conditions something like a big conjunction;
thus our set � including each Ln says that the universe has at least 1 one member, and
it has at least 2 members, and. . . . To say that the universe is finite, however, we would
require something like a big disjunction: the universe has at most one member, or it
has at most two members, or. . . . So the set of all the Mns is not right, and neither is
any one formula of our language long enough to be the disjunction of them all (but see
the box on the following page). Again, however, it is natural to wonder whether there
is some other way to axiomatize F the class of all interpretations with a finite domain.

That there is no axiomatization for F follows as a corollary to the following
theorem.

T11.25. If † has arbitrarily large finite models, then † has an infinite model.

For some language L, suppose † has arbitrarily large finite models and consider
again � = fLn j n 1g. Let � be an arbitrary finite subset of † [ �; then �
may have as members some elements of † and finitely finitely many sentences
La : : :Lb; let n be whichever is greater of 1 and the maximum of subscripts from
La : : :Lb; then all of La : : :Lb are satisfied on a universe with n members; and
since † is satisfied on arbitrarily large finite models, † and so each member of †
in � is satisfied on a universe with n members as well; so � is satisfiable, and by
compactness † [ � is satisfiable. But � is satisfied only on infinite domains; so
† [ � is satisfied only on an infinite domain; and any model that satisfies † [ �
satisfies † as well; so † has an infinite model.

Corollary: The class F of all finite models is not axiomatizable. Suppose other-
wise; that for some †, Md.†/ = F; then † is satisfied on arbitrarily large finite
models; so by the main result, † has an infinite model. So Md.†/ = F. This is
impossible; reject the assumption: there is no † such that Md.†/ = F.

By our discussion of infinite and finite domains, we have answered the second and
third questions posed in the introduction to section 11.4: There is an axiomatization
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Extensions of Classical Logic
Difficulties about axiomatizing the class of models with a finite domain (and other
cases from this section) alter in context of infinitary and second-order logics.

� Though our languages have infinitely many symbols, formulas are always
finitely long. Infinitary logic permits infinitely long formulas. On this account,
where … is a (possibly infinite) set of formulas,

V
… and

W
… are formulas,

and if „ is a set of variables and P a formula, 8„P and 9„P are formulas.
Intuitively,

V
… is satisfied iff each P 2 … is satisfied,

W
… is satisfied

iff some P 2 … is satisfied, 8„P is satisfied iff P is satisfied for every
assignment of objects to the variables in „, and 9„P is satisfied so long as
P is satisfied for some assignment to the variables in„. Then

W
fMn jn 1g

is satisfied only on interpretations with a finite domain.

� Our logic is first-order insofar as quantifiers range just over individuals
of the universe. Second-order logic permits quantification not only over
individuals of the universe but over relations and functions as well. Then
we might take advantage of a feature of infinite sets—that there is a 1:1 map
from an infinite set to a proper subset of it. Thus for function variable f ,
9f Œ8x8y.f x D fy ! x D y/ ^ 9y8x.f x ¤ y/� is true just on infinite
domains. The first conjunct requires that f be 1:1, and the second that f not
be onto. Then the negation of this sentence is true only on finite domains.

Unfortunately, both infinitary and second-order logics are ı̊ncomplete. In this way
there is a trade-off between the c̊ompleteness of our classical system, and the
expressive power of infinitary and second-order languages.

For second-order logic see Shapiro, Foundations Without Foundationalism, and
Manzano, Extensions of First Order Logic. Discussions of infinitary logic pre-
suppose significant background in set theory, though Bell, “Infinitary Logic” and
Nadel, “L!1! and Admissible Fragments” are a reasonable place to start.

of the class of all models with an infinite universe, and there is no axiomatization of
the class of all models with a finite universe.

Orderings

Consider a language L with two-place relation symbol G and model M such that the
interpretation of G is a relationC. ThenC is a partial order of (or on) U just in case
C is transitive and irreflexive: if a C b and b C c then a C c, and it is never the
case that a C a. In caseC is a partial order, we say U (and derivatively the model) is
partially ordered. Many different relations are partial orders. Thus (a), (b), (c), and
(d) below each depict partial orders.
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In each case, a C b when there is a path “up” the lines from a to b. In (a) C is the
proper subset relation on the subsets of f0; 1; 2g. (b) is a portion of a diagram that
would extend infinitely vertically and to the right where C is the relation of proper
divisibility on the natural numbers—where a C b just in case a = 1 and a = b and
a evenly divides b. (c) applies the usual relation to f0; 1; 2; 3g. (d) depicts the
natural numbers with their usual relation (in the picture, each step a quarter of the
remaining distance to !), and after all of them a copy of the natural numbers again,
where every member of the first copy is less than all the members of the second (a
two-place relation is a set of pairs on some domain, and nothing prevents objects and
pairs so-arranged). Similarly the sets of all natural numbers, all integers, all rational
numbers, and all real numbers are partially ordered by their usual relation. The
class P of all partial orderings is axiomatized in the natural way by,

O1 8x8y8zŒ.x G y ^ y G z/! x G z�

O2 8x.x 6G x/

The interpretations on which O1 and O2 are true are ones that assign to G some partial
orderC.

A model is a linear ordering when it is a partial ordering and for all a; b 2 U,
a C b or a = b or b C a. In a linear ordering, the members of U are sorted into a “line.”
Examples (c) and (d) above are linear orderings, though (a) and (b) are not. Standard
linear orderings are the sets of all natural numbers, all integers, all rational numbers,
and all real numbers with their usual relation. Linear orderings are axiomatized by
adding to O1 and O2,

O3 8x8yŒx G y _ x D y _ y G x�

Interpretations that satisfy O1–O3 are ones that assign to G some linear orderC.
A model is a well-ordering when it is a linear ordering and every nonempty S � U

has a least member—an a 2 S such that for every b 2 S if b = a then a C b. Example
(c) is of a well-order. The natural numbers with the usual relation are a standard
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example. Example (d) is a well-order too. However, although they are linear orders,
the sets of all integers, all rational numbers, and all real numbers with their usual
relation are not well-orders. To see this, it is enough to recognize that the whole sets,
which continue infinitely in the negative direction, are subsets without a least member.
But neither are the set of all rationals 0 nor the set of all reals 0 with their usual

relation well-orders. In these cases the collection of all a such that 0 a 1, for
example, is a subset such that every member has one less than it, and so without a
least member.6

Notice that the well-ordering of the natural numbers is presupposed by our justifi-
cation of mathematical induction at the start of Chapter 8 (page 361): Assuming some
members of a series which do not “fall,” we moved to the existence of a least member
which does not fall, and from that to contradiction—and so to the conclusion that all
the members fall. And our reasoning by mathematical induction has been restricted to
series (well-)ordered by the natural numbers. So well-orderings are important. But we
can use compactness to see that the class W of all well-orderings is not axiomatizable.

T11.26. The class W of all well-orderings is not axiomatizable.

Suppose otherwise, that for language L there is a † such that Md.†/ = W; then
MŒ†� = T just in case its assignment to some symbol G is a well-order. Extend
L to an L0 by the addition of infinitely many constants c0;c1;c2; : : : and let †0

be the same as † except in the new language L0. For some M and M0 like M
except that it makes assignments to the new constants, by T10.14, MŒ†� = T iff
M0Œ†0� = T; in particular, M0Œ†0� = T iff the assignment to G is a well-order.

Let An = cnC1 G cn, and set � 0 = fAn j 0 ng; so, listing the members from
right to left, � 0 = f: : :c3 G c2;c2 G c1;c1 G c0g. Consider an arbitrary finite
�0 � †0 [ � 0. �0 may have as elements some members of †0 together with
finitely many of the sentences cj G ci . Where m is whichever is greater of 0 and
the maximum of these subscripts, consider some objects c0 : : : cm and a model D0

with a universe consisting of those objects and,

D0Œci � = ci for 0 � i � m, and otherwise D0Œci � = c0

D0ŒG� = fhcb; cai j cb; ca 2 UD and b ag

Observe that cb C ca not only when cb G ca 2 �
0, but for every cb such that

b a. Then the assignment to G is a well-order; so †0 and all the elements of
†0 in �0 are satisfied on D0; additionally, each cj G ci 2 �

0 is satisfied on D0.

6In the usual ZFC set theory (Zermelo-Fraenkel set theory with the axiom of choice) it is a theorem,
equivalent to the axiom of choice, that any set can be well-ordered. So the sets of all integers, all
rationals, and all reals have well-orderings—only this ordering is not the usual relation. The Chapter 2
countability reference exhibits mechanisms sufficient for well-ordering of the integers and of the rationals
(challenge: show how). It is less clear how the reals are well-ordered, though the theorem says that such
an ordering must exist.



CHAPTER 11. MORE MAIN RESULTS 529

So �0 is satisfied on D0; so �0 is satisfiable, and by compactness, †0 [ � 0 is
satisfiable. But this is impossible: †0 is satisfied only on well-orderings; but any
well-ordering is a linear ordering; and given a linear ordering, all the members
of � 0 are satisfied only when the interpretation of G has no least member, and so
when the interpretation is not a well-ordering. Reject the assumption: there is no
† such that Md.†/ = W.

An interpretation M0 of � 0 with the assignment of G to a linear orderC need not assign
ci and ciC1 to adjacent members of the series. Nonetheless, for any m supposed to
be the least member of UM0 , take the greatest subscript i such that m E M0Œci �; then it
is not the case that m E M0ŒciC1�; so M0ŒciC1� C m.

This general strategy of introducing new constants is one that we saw in the
demonstration of c̊ompleteness, and one that we shall see again.

Number Theory

Consider again the standard interpretation N for LNT and let N be the class of all models
isomorphic to N. Ideally there would be some categorical † such that Md.†/ = N.
If Md.†/ = N then by T11.9 † is sound with respect to N, and since models
isomorphic to N make all the same formulas true, s̃ound on the intended model N.
And if † is categorical then by the corollary to T11.16, † is c̃omplete. Unfortunately,
we can show that there is no † to axiomatize N.

T11.27. For N the class of models isomorphic to N, there is no † such that Md.†/ =
N.

Suppose otherwise, that some † is such that Md.†/ = N. Extend the language
LNT to an L0NT by the addition of a single constant c and let †0 be the same as †
except in the new language L0NT. For M 2 N, let M0 be like M except that it makes
some assignment to c. Then by T10.14, M satisfies † iff M0 satisfies †0.

Let n be as in Chapter 8 (page 390) and set � 0 = fc ¤ n j n 2 Ng; so � 0 = fc ¤
;; c ¤ S;; c ¤ SS;; c ¤ SSS;; : : :g. Consider an arbitrary finite�0 � †0[� 0.
�0 may have as elements some members of †0 together with finitely many of
the sentences c ¤ n; for m whichever is larger of 0 and the greatest n such that
c ¤ n 2 �0, and the standard interpretation N, let N0 be the same as N except that
N0Œc� = m 1. All the members of †0 in �0 remain satisfied on N0; additionally,
since c is assigned to an object other than any n such that c ¤ n 2 �0, each
c ¤ n 2 �0 is satisfied on N0; so �0 is satisfiable, and by compactness, †0 [ � 0 is
satisfied by some model K0.

Now for K like K0 except without the assignment to c, both K 2 Md.†/ and
N 6Š K. The first is easy: K0 satisfies †0; so K satisfies †; so K 2Md.†/.

But N and K are not isomorphic: For any a 2 N, K0Œc ¤ a� = T; so for arbitrary
h, K0hŒc ¤ a� = S; let K0hŒc� = c for some c 2 UK0 , and for any a 2 N, K0hŒa� = a

¯
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for a
¯
2 UK0 ; so by SF(�) and SF(r), hc; a

¯
i … K0ŒD�; so for any a 2 N and a, c = a

¯(notice that we cannot simply identify a and a
¯
, since we are not given that N and

K assign the same object to a).

Suppose N Š K. Then for some �, N
�
Š K; so for � a 1:1 map from UN onto UK, there

is some a 2 UN such that �.a/ = c. Consider a d into UN such that dŒy� = a, and
an h into UK such that for each x, h.x/ = �.dŒx�/; then hŒy� = �.dŒy�/ = �.a/ = c.
Since N Š K, by T11.13 for any P , NdŒP � = S iff KhŒP � = S; so NdŒy D a� = S
iff KhŒy D a� = S; since NdŒy� = a and NdŒa� = a, by SF(r), NdŒy D a� = S; so
KhŒy D a� = S; but KhŒy� = c and KhŒa� = a

¯
; so by SF(r), hc; a

¯
i 2 KŒD�; so c = a

¯
.

This is impossible; reject the assumption: N 6Š K, and there is no † such that
Md.†/ = N.

Since no † axiomatizes N, even jNj does not axiomatize N; and no formulas are
sufficient to “pin down” models up to isomorphism with N. This answers the fourth
question posed in the introduction to section 11.4: There is no axiomatization of the
class of all models isomorphic to N. So we have answers to all but the last.

A model of jNj that is not isomorphic to N is a nonstandard model of arithmetic.
We have shown that there are nonstandard models. It is worth pausing to think about
what such models are like. Consider our model K in the case where† = jNj. K retains
in its universe all the same objects as are in UK0 ; so it retains the object c distinct from
any a

¯
. But K requires much more than a single c distinct from each a

¯
(for E7.19 we

found a nonstandard model of the axioms of Q by adding just single object to the
natural numbers; but, and this was the point, that was not a model for all the members
of jNj). Let assignments of K to ;, S ,C, �, and < be some object o

¯
, functions s, ˚,

˝, and relationC.7 Then a
¯
, the assignment to a, is s : : : s.o

¯
/ with a repetitions of s.

Observe that the following are all true on N.

a. 8x8y8zŒ.x < y ^ y < z/! x < z�

b. 8x.x – x/

c. 8x8y.x < y _ x D y _ y < x/

d. 8x.x ¤ ; ! ; < x/

e. 8x.x ¤ ; ! 9y.Sy D x//

f. 8x8y.x < y ! Sx � y/

g. 8x8y.x < Sy ! x � y/

7In LNT, x < y abbreviates 9z.Sz C x D y/. So C is not an assignment to any symbol of the
language, but rather the set of pairs ha; bi such that Md.xja;yjb/Œ9z.Sz C x D y� = S—and so is fixed
by the assignments to S andC.
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h. 8xŒ.x C ;/ D x�

i. 8x8yŒ.x C Sy/ D S.x C y/�

Since they are true on N, and K models all the formulas true on N, they are true on
K (one way to see that they are true on N is to recognize that they are theorems of Q
or PA). From (a), (b), (c),C is a linear order on UK. From (d), for any m 2 UK other
than o

¯
, o

¯
C m.

Let m ' n just in case there is some a
¯

such that m ˚ a
¯

= n or n ˚ a
¯

= m.
From (h) and (i) m ' n just in case you can get from one to the other by finitely
many applications of s. Then ' is reflexive, symmetric, and transitive, and so an
equivalence relation. Let [m] = fz j z ' mg. Then [m] is an equivalence class and, as
in Chapter 10, satisfies self-membership, uniqueness, and equality. Since c is distinct
from each a

¯
it is not the case that applying s to any a

¯
results in c; so there are at least

two such classes, Œo
¯
� and [c]. The first has members o

¯
; 1

¯
: : : : But every object has a

successor; so there are objects c
C1 = s.c/, c

C2 = s.c
C1/, and so forth; and from (e)

objects other than o
¯

are successors; so there is a c
�1 such that s.c

�1/ = c, a c
�2 such

that s.c
�2/ = c

�1 , and so forth. So [c] includes objects : : : ; c
�2 ; c�1 ; c; cC1 ; cC2 ; : : : :

Insofar as Œo
¯
� “looks” like the natural numbers (discrete members with a beginning and

no end) it is an N-chain, and insofar as [c] looks like the integers (discrete members
extending in both directions), it is a Z-chain.

And we can see that all the members of one chain are less than all the members
of another. Suppose [a] = [b] and a C b; let x 2 [a] and y 2 [b]; we show x C y.
First, x C b: Since C is a linear order, x C a or x = a or a C x. If x = a, then
x C b. If x C a, then by transitivity, x C b. For the case a C x consider first
x = s.a/; from a C b and (f), s.a/ E b; but s.a/ 2 [a]; so by uniqueness s.a/ = b;
so s.a/ C b; from this, s.s.a// E b, and by uniqueness, s.s.a// C b; and the same
for any member of the chain after a; so x C b. But now, y C b or y = b or b C y.
If y = b then from x C b, x C y. If b C y, then with x C b and transitivity x C y.
And for y C b, consider first b = s.y/; then x C s.y/; so with (g), x E y; and since
[x] = [a] = [b] = [y], by uniqueness x C y; and similarly for any member of the chain
prior to b; so x C y. In any case then x C y; so every member of [a] is less than all
the members of [b]. Thus given Œo

¯
� = [c] and o

¯
C c, the situation is so far as follows:

K Zc : : : : c : : :

N0: o
¯
; 1

¯
; 2

¯
; : : :

The universe has objects in the sequences N0 and Zc . Each sequence is ordered by
C. And every member of N0 is less than all the members of Zc . It remains that C
satisfies the conditions for a linear order. But, insofar as Zc has no least member,C is
not a well-order on UK.
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And there is more! Say [a] C [b] just in case all the members of [a] are less than
all the members of [b]. Then, as we have just seen, if [a] = [b] and a C b, [a] C [b].
Now, simply presupposing background as from (a)–(i),

(i) There can be no greatest Z-chain. For consider a Z-chain [z]. Because [z] is a Z

chain, z … Œo
¯
�; so z = o

¯
; so z C z ˚ z. Further, since z … Œo

¯
�, it is not an a

¯
and

z˚ z is not of the sort z˚ a
¯
; so z 6' z˚ z, and [z] = [z ˚ z]. So both z C z˚ z and

[z] = [z ˚ z]; so [z] C [z ˚ z].

(ii) Between any two chains there is another. Suppose [a] C [c]. Then a C c and
there is a b, a C b C c such that either a˚ c = b˚ b or a˚ c˚ 1

¯
= b˚ b. For this,

observe first that 8u9b.u D bC b _ Su D bC b/ is a theorem of PA; intuitively
then, for u whichever of a ˚ c or s.a ˚ c/ = a ˚ s.c/ is even, there is a b that
averages a and c or a and s.c/—and so, since a and c are in different chains and
separated by more than a single application of s, such that a C b C c. To take
just the first case, suppose a ˚ c = b ˚ b.

Suppose [a] = [b]; then b 2 [a] and there is some d
¯

such that b = a˚d
¯

or a = b˚d
¯
;

since a C b, not the latter; so b = a ˚ d
¯
. So a ˚ c = b ˚ b = a ˚ d

¯
˚ a ˚ d

¯
; so

c = a˚ d
¯
˚ d

¯
; but d

¯
˚ d

¯
is some e

¯
; so c 2 [a]; so [a] = [c]; this is impossible; reject

the assumption: [a] = [b]. So a C b and [a] = [b]; so [a] C [b].

Suppose [b] = [c]; then c 2 [b] and there is some d
¯

such that c = b˚d
¯

or b = c˚d
¯
;

since b C c, not the latter; so c = b˚ d
¯
. So b˚ b = a˚ c = a˚ b˚ d

¯
; so b = a˚ d

¯
;

so c = b ˚ d
¯

= a ˚ d
¯
˚ d

¯
; but d

¯
˚ d

¯
is some e

¯
; so c 2 [a]; so [a] = [c]; this is

impossible; reject the assumption: [b] = [c]. So b C c and [b] = [c]; so [b] C [c].

So [a] C [b] C [c].

(iii) There is no least Z-chain: suppose otherwise, that [q] is the least Z-chain; then
by (ii) there is a Z-chain [p], Œo

¯
� C [p] C [q]; this is impossible.

Thus sequence of Z chains is like the sequence of rational numbers—densely ordered
and without endpoints. Not only do nonstandard models of arithmetic fail to be
isomorphic to N, but they include (at least) objects from the infinitely many Z-chains.8

Insofar as C is not a well-order, you might worry that there is some problem
about mathematical induction. There is a problem reasoning in the metalanguage
by induction on the order relation C (as in Chapter 8). If a domino falls in one
chain, there is no reason to think that dominoes fall in the next; similarly we cannot
contradict a supposition that some dominoes do not fall by finding a least domino
that does not fall, and showing that the assumption must fail. But instances of the
induction axiom (PA7) remain true on K. The simplest way to make this point is

8Interestingly, nonstandard models have mathematical applications. Notably A. Robinson, Non-
Standard Analysis applies nonstandard models of the real numbers to find the infinitesimals of calculus
without use of limits.
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to observe that K is such that instances of the axiom are true. Up to now, we have
thought of the standard model as given, and seen how instances of the axiom are true
on it. But now we start with jNj and show there is a model on which its members are
satisfied. Since instances of the induction axiom are members of jNj, they are true
on K. But perhaps we can say a bit more: Let KŒŒP .x/�� = fa j Kd.xja/ŒP .x/� = Sg; so
the members of KŒŒP .x/�� are objects to satisfy P .x/. Even though UK has nonempty
subsets without a least member, it turns out that sets defined by our formal language
do—as developed in the box below, each nonempty KŒŒP .x/�� has a least member.
But this is sufficient for reasoning by induction applied to sets so defined: Suppose
D � UK is some KŒŒP .x/��; then its complement D (all the members of U that are not
in D) is KŒŒ�P .x/�� and so such that it is either empty or has a least member. Given
this, if D has the special property that o

¯
2 D, and if a 2 D then s.a/ 2 D, it follows

that D = UK: Suppose D = UK, then D is nonempty; so it has a least member a; but
o
¯
2 D; so o

¯
… D; so o

¯
= a; so a is some s.m/; but since s.m/ is the least member

of D, m 2 D, from which it follows that s.m/ 2 D; so s.m/ … D; this is impossible;
so D = UK. Of course, the boxed argument to show that each nonempty KŒŒP .x/��
has a least member relies upon the induction axiom—thus, as a justification for the
induction axiom, this reasoning is entirely circular; it may, however, help clarify or
explain how the induction axiom remains true on K.

From compactness there must exist a nonstandard model. We have described
the order relation on one such model. As it turns out, functions for addition and
multiplication are complex in a way that resists straightforward description (for
discussion see Boolos, Burgess, and Jeffrey, Computability and Logic, Chapter 25). K
is weird! Interestingly, its existence was proved considering just finite satisfiability on
perfectly straightforward models of arithmetic. As we shall see in the next section,
there are members of Md.jNj/ weirder still.

Each nonempty KŒŒP .x/�� has a least member: Suppose otherwise, that KŒŒP .x/�� is
nonempty but has no least element, and consider Q.y/ = .8x � y/�P .x/.

(i) Suppose KŒQ.0/� = T; then there is some d such that KdŒQ.0/� = S; so
KdŒ.8x � 0/�P .x/� = S; so Kd.xjo

¯
/Œ�P .x/� = S, and Kd.xjo

¯
/ŒP .x/� = S. But

then o
¯

is the least member of KŒŒP .x/��; this is impossible: KŒQ.0/� = T. (ii)
Suppose KŒ8y.Q.y/ ! Q.Sy//� = T; then there is a d and m 2 UK such that
Kd.yjm/ŒQ.y/� = S and Kd.yjm/ŒQ.Sy/� = S; so Kd.yjm/Œ.8x � y/�P .x/� = S and
Kd.yjm/Œ.8x � Sy/�P .x/� = S; with the former, objectsE m fail to satisfy P .x/;
with the latter, there is an a E s.m/ that does satisfy P .x/; so a = s.m/. But then a
is the least member of KŒŒP .x/��; this is impossible: KŒ8y.Q.y/! Q.Sy//� = T.

But instances of the induction axiom are true on K; from this, with (i) and (ii),
KŒ8yQ.y/� = T; so KŒŒP .x/�� is empty. This is impossible; reject the assumption:
if KŒŒP .x/�� is nonempty then it has a least element.
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Löwenheim-Skolem

Associate the size of a model with the size of its domain. A countable model has a
countable domain, an uncountable model an uncountable domain. Given an infinite
model for some †, the Löwenheim-Skolem theorems tell us that † has models
of different infinite sizes. All of this inevitably pushes us toward thinking about
the infinite sets at which we said we would merely wave. Now is the time to say
“hello.” We shall not engage the details. However we should be able to say enough to
understand the theorems and see something of their consequences. Along with what
you have from the Chapter 2 countability and more on countability references, we
require this much:

Sets r and s are the same size (r � s/ iff there is a 1:1 function from one onto the
other. But not all infinite sets are the same size; r 4 s just in case there is a 1:1
function from r into s, and r � s iff r 4 s and r ¨ s. Then either r 4 s or s � r
(equivalent to the axiom of choice), and if both r 4 s and s 4 r then r � s (the
Schröder-Bernstein theorem). In particular, the set of all real numbers has more
members than the set of all natural numbers. And from Cantor’s theorem, for every
set there is one bigger than it (see the box on page 536). The cardinal numbers are
certain sets designated to measure the size of others—set s has cardinality ˛ just
in case s � ˛. Let card.s/ be the cardinality of set s; card.r/ = card.s/ iff r � s,
and card.r/ card.s/ iff r 4 s. If, along the lines of the example appearing on
page 641, we think of a natural number n as a set with n members, then the finite
cardinals are members of N; the first infinite cardinal @0 is the size of the set of
natural numbers; then @1, and so forth (@ aleph is the first letter of the Hebrew
alphabet).9

The members of any set, and so of an infinite set, may be well-ordered. The
ordinal numbers are certain well-ordered sets to measure the “length” of well-
ordered sets. On a standard account the members of an ordinal are all the ordinals
smaller than it (again see the example on page 641); then the finite ordinals are
just the members of N; ! is the first ordinal greater than all of them, then ! 1,
! 2; : : :; and greater than all of them ! 2, ! 2 1; : : :; and greater than all
of them ! 3, ! 3 1; : : :; and after continuing this way for finite multiples
of !, ! ! = !2. Example (d) on page 527 would locate ! 2 at the very
top greater than all the members of series below, and then !2 greater than all
members of all the series for finite multiples of !. And the process continues
to incredible lengths! Different ordinal numbers may have the same cardinality;

9The proposition that @1 is the cardinality of the set R of all real numbers (the continuum of points
in the number line) is the continuum hypothesis (CH). If CH is true, then no cardinal lies between
the cardinals of N and R. Supposing that ZFC is consistent, P. Cohen (“The Independence of the
Continuum Hypothesis”) shows that CH does not follow from its axioms, and Gödel (The Consistency
of the Continuum Hypothesis) that neither does not-CH. These are results for an intermediate course in
set theory.
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so for example, fa0; a1; : : :g and fa0; a1; : : : ; b0; b1; : : :g are like ! and ! � 2
but, as from the countability reference, @0 maps onto both—and, in general, if r
and s are infinite sets and card.r/ card.s/, then the cardinality of their union,
card.r [ s/ = card.s/. It is usual to identify initial ordinals as ordinals whose
cardinality is greater than all the ones before, and then the cardinal numbers with
the initial ordinals. Because the ordinals are well-ordered it is possible to state
recursive definitions and apply mathematical induction to sequences ordered by
them. Reasoning is extended from what we have seen insofar as limit ordinals (for
example !) are not the successor of any other. Given reasoning for limit cases,
however, the basic idea remains the same.

If we accept this much, we shall be in a position to make progress (for details see
most any introduction to set theory as Enderton, Elements of Set Theory).

The Löwenheim-Skolem theorems appear in somewhat different forms. At the
simplest level, they tell us about the size of models. So given an infinite model M
for some formulas †, there are models for † whose size is different from M. An
immediate consequence is a difficulty about our ability to “pin down” isomorphic
interpretations: Given the 1:1 function � from the universe of one onto the universe of
the other, isomorphic models are the same size; so if models are not the same size,
they are not isomorphic. Here is a first result of this type, accessible from what we
have already done (compare E10.28):

(O)

If † has a model, then it has a countable model. Suppose † has a model K.
Then by T10.4, † is consistent; so by T10.16, † has a model M whose universe
is constructed of disjoint sets of natural numbers. But UM is countable, for
we might map the sets in UM to natural numbers by, say, their least elements.
Alternatively we might set up a function � from each set in UM to its least
element, to establish an isomorphic interpretation M0 whose universe just is a set
of natural numbers; then by T11.15, M0Œ†� = T. Either way, † has a countable
model.

Thus, for example, if † has a model whose universe is the set of all real numbers,
then it also has a model whose universe is a set of natural numbers. Observe that this
result makes good our Chapter 4 (page 128) claim that if there is any interpretation of
some formulas, then there is one whose universe is a set of integers.

The above result can be generalized by a corresponding generalization of T10.16.
To reach T10.16, starting from an L0 with constants cn matched to natural numbers,
we constructed a maximal consistent scapegoat set, and then the model whose domain
is the set of disjoint sets with natural numbers as members. Suppose we relax the
requirement that a language have just countably many constants. Then for some
uncountable �, the set of constants may have members c˛ matched to ordinal numbers
�—and so, on the standard account, to the members of �. (We assume that languages

have countably many symbols as usual except that they may be specified to include



CHAPTER 11. MORE MAIN RESULTS 536

extra constants.) A language with uncountably many constants is a “theoretical object”
to the extent that there are more symbols than can be represented by finite strings
humans speak and write. All the same, we can reason about features of the theoretical
object. In particular, it is possible to obtain a T10.16�, starting from an L0 with
constants c˛ matched to ordinal numbers �, constructing a maximal consistent
scapegoat set, and then a model whose domain is a set of disjoint sets whose members
are ordinal numbers �. The argument is modified to accommodate uncountable
ordinals in the specification of the “big” set, and for the demonstration that the result
is a maximal consistent scapegoat set. But the basic idea is the same. Given T10.16�,
we can reason very much as before:

Cantor’s Theorem
The result that every set has one with more members than it underlies the discussion
of this section. Though the demonstration is somewhat to the side of our main
concerns, it is worth seeing how it goes.

As we have seen from the Chapter 4 set theory reference, set a is a sub-
set of set b iff every member of a is a member of b. Now the powerset
of a, }.a/ is the set of all the subsets of a. So the powerset of fa; b; cg is
ff g; fag; fbg; fcg; fa; bg; fa; cg; fb; cg; fa; b; cgg.

T11.28. For any set s, }.s/ is greater than s, s � }.s/ Cantor’s Theorem.

Suppose otherwise, that s ˜ }.s/; then }.s/ 4 s, and there is a 1:1 function g
from }.s/ into s; the converse of this function, with hb; ai for each ha; bi 2 g,
is a 1:1 function h from (some) members of s onto all the members of }.s/.
Since h is a function from objects in s to sets of those objects, we may ask if a
given x 2 s is itself a member of h.x/. Thus, with integers, if some function f
has f.2/ = f2; 4; 6g and f.3/ = f19; 127g, then 2 is a member of f.2/ but 3 is not
a member of f.3/. Consider c = fx 2 s j x … h.x/g, the set of all elements x in s
such that x is not a member of h.x/; c is formed by collecting every member x in
s which is not a member of the subset to which it is mapped by h. Any member
of c is collected from s; so c is a subset of s and thus a member of }.s/. But
c is designed so that it differs from every h.x/ in membership of x: Consider
an arbitrary set h.x/; if x is a member of h.x/, then by construction, x is not
included in c, so h.x/ = c; if x is not a member of h.x/, then by construction, x is
included in c and again h.x/ = c; either way h.x/ = c. So there is no x such that
h.x/ = c, and h does not map onto all the members of }.s/. This contradicts
the specification of h, itself a consequence of the original assumption about s;
reject the assumption: s � }.s/.
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T11.29. If the members of † are in a language L whose constants are matched
to ordinals less than an infinite � and † has a model, then † has a model of
cardinality �. Downward Löwenheim-Skolem.

Suppose the members of † are in an L whose constants are matched to ordinals
less than an infinite � and † has a model. Then by T10.4, † is consistent; so
by T10.16�, † has a model M whose universe consists of disjoint sets of ordinal
numbers �. But then a map from sets in UM to their least members is a 1:1
function from UM into �; so UM 4 �, and card.M/ �.

In the case (O) just above, � was ! with the result that† in a language with countably
many constants has a countable model (a model with cardinality !). Now the result
is generalized to arbitrary cardinal �.

Given T10.16� we may obtain a compactness� whose application is to languages
that allow arbitrarily large infinite sets of constants. Reasoning is parallel to that for
T11.23. And with compactness�, there is an “upward” Löwenheim-Skolem theorem.

T11.30. If † has an infinite model, then for any infinite cardinal �, † has a model of
cardinality �. Upward Löwenheim-Skolem.

Suppose † has an infinite model M and � is an infinite cardinal. Extend L to an
L0 including some new constants c˛ for ˛ �; and let � 0 = fcˇ ¤ c j ˇ;  �

and ˇ = g. Consider an arbitrary finite �0 � †0 [ � 0; �0 may have as members
some elements of †0 and finitely many sentences cˇ ¤ c . Extend the infinite
model M for † to an M0 that assigns the (finitely many) new constants from �0

to distinct members of UM0 and otherwise assigns c˛ to some constant member
of the domain. With T10.14, M0 satisfies †0 and so all the members of †0 in �0;
and since constants from �0 are assigned to distinct members of UM0 , M0 satisfies
sentences cˇ ¤ c from �0 as well; so �0 has a model. And since �0 is arbitrary,
by compactness�, †0 [ � 0 has a model K0. Since K0 is a model for †0 [ � 0, it is a
model for †0; and with T10.14 again, K a model for †. But K0 satisfies cˇ ¤ c
for all ˇ;  � such that ˇ =  ; so K0Œcˇ � = K0Œc �; so � such that �.˛/ = K0Œc˛�
maps the ordinal numbers � to distinct members of the universe, and so is a 1:1
function from � into UK0 ; so � card.K0/; but UK = UK0 ; so � card.K/.

Just as the universe for our nonstandard model of arithmetic includes more nonstandard
members than a single element assigned to the extra constant c, so we cannot be sure
that K does not include more than members assigned to extra constants. But given
that K0 satisfies the inequalities from � 0 we can be sure that K0 and so K include at
least as many objects as there are extra constants, and so that the cardinality of K is at
least as great as the cardinality of the set of extra constants.

And T11.29 and T11.30 combine to a “full” version of the Löwenheim-Skolem
theorem:
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T11.31. If the members of † are in a language whose constants are matched to
ordinals less than an infinite � and † has an infinite model, then for any infinite
cardinal � � , † has a model of cardinality �. Full Löwenheim-Skolem.

Suppose the memebers of † are in a language whose constants are matched to
ordinals less than an infinite � , and † has an infinite model. Let � be an infinite
cardinal � . Extend L to an L0 including some new constants c˛ for ˛ �;
and let � 0 = fcˇ ¤ c j ˇ;  � and ˇ = g and ˆ0 = †0 [ � 0. Since † has
an infinite model, the upward Löwenheim-Skolem theorem tells us that † has a
model K of cardinality �; so there are at least as many members of UK as there
are constants c˛; extend K to a K0 that assigns distinct members of UK0 to the
constants c˛; then K0 is a model for ˆ0. So ˆ0 has a model; further, since � �

the cardinality of the set of constants in L0 is �, and all the constants of L0 match
to ordinals less than �; so by the downward Löwenheim-Skolem theorem ˆ0 has
a model M0 such that card.M0/ �. But given the inequalities satisfied by M0,
an � such that �.˛/ = M0Œc˛� is a 1:1 function from � into UM0 ; so � card.M0/.
So card.M0/ = �; but UM = UM0 ; so card.M/ = �. And since M0 is a model for
ˆ0 = †0 [ � 0, M0 is a model for †0, and M a model for †.

From these results, there is no infinite ˛ such that the class of models with
cardinality ˛ is axiomatizable. Suppose otherwise, that for some language L, M˛ is
the class of all models with cardinality ˛, and Md.†/ = M˛; then for some M 2M˛ ,
MŒ†� = T; so † has an infinite model; so † has models of cardinality other than than
˛; so Md.†/ = M˛. Similarly, if M is a model of infinite cardinality ˛ and M is
the class of models isomorphic to it, there is no † such that Md.†/ = M. Suppose
otherwise; then MŒ†� = T; so † has an infinite model; so † has models of cardinality
other than ˛, and so models not isomorphic to M; so Md.†/ = M.

It is worth observing that the Löwenheim-Skolem theorems extend to forms that
specify a certain content for the models of different size. In particular, models may be
such that one is an elementary submodel of the other:

(i) Suppose the members of † are in a language whose constants are matched to
ordinals less than an infinite � , and † has a model M of infinite cardinality  � .
Then for any ˇ, � � ˇ �  there is an L of cardinality ˇ such that L � M.

(ii) Suppose the members of † are in a language whose constants are matched to
ordinals less than an infinite � , and † has model M of infinite cardinality  � .
Then for any ˇ  , there is a model L of cardinality ˇ such that M � L.

These are interesting (and not the only results of the sort). But demonstrations would
unduly stress our background from set theory. Since we do not require the additional
results, we rest content with what we have.
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Skolem’s paradox. At first glance, results from the Löwenheim-Skolem theorems
may seem strange: If there are more real numbers than natural numbers, how is it that
a theory of real numbers can be true on a universe of the natural numbers? And if there
are more real numbers than natural numbers, how is it that a theory of natural numbers
can be true on the reals? Similarly, and more dramatically, there is a formula U.x/ in
the language of ZFC set theory that is true of just uncountable sets; and 9xU.x/ is a
theorem of ZFC. But if ZFC is consistent then it has a model; and ZFC is expressed
in an ordinary countable language; so by the downward Löwenheim-Skolem theorem
it has a countable model M; and since 9xU.x/ is a theorem of ZFC, it is true on M; so
there is some m 2 UM such that Md.xjm/ŒU.x/� = S—but, clearly, there are not enough
objects in UM for any member of it to have uncountably many elements. Technically,
we already understand the response: No † is sufficient to pin down the cardinality of
an infinite model; so the axioms of ZFC (or any other theory in first-order language)
are not sufficient to pin down the cardinality of an infinite universe. On their intended
interpretations, functions and relations assigned toC, �, 2, apply as we expect. But,
as for the case of number theory, nonstandard interpretations reinterpret the vocabulary
so as to model sentences in alternative ways. Thus 9xU.x/ may be true on a model,
even though the model is without an uncountable universe.

E11.19. In showing that between any two chains there is another ((ii) on page 532),
there were cases for b ˚ b = a ˚ c and b ˚ b = a ˚ c ˚ 1

¯
. Work the second case.

Hint: From a C b and b = a ˚ d
¯
, it follows that d

¯
= o

¯
(else a ¶ b); so there is

some e
¯

such that d
¯

= e
¯
˚ 1

¯
.

E11.20. Use compactness to show that if † � P , then for some finite � � †,
� � P . Hint: If † [ f�P ug is unsatisfiable, then by compactness some finite
� � † [ f�P ug is unsatisfiable.

*E11.21. Use the compactness theorem to show that if K = Md.†/ is axiomatized
by some finite ˆ then K is axiomatized also by a finite subset of †. Hint:
Where A is the conjunction of the members of ˆ, and Au its universal closure,
� = †[ f�Aug is not satisfiable, and by compactness must have an unsatisfiable
finite subset.

E11.22. Let K be any class of models and M the class of all models that are not
members of K (so K [M is the class of all models and K \M = ¿). (a) Show
K is finitely axiomatizable iff both K and M are axiomatizable. (b) Use this
result with our demonstration that there is an axiomatization of models with an
infinite domain and T11.24 to provide another demonstration that the class of
all finite models is not axiomatizable. Hint for (a) right to left: If K and M are
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axiomatizable, there are some � and † such that K = Md.�/ and M = Md.†/;
consider an application of compactness to � [†.

*E11.23. In 1977 Appel and Haken, “Solution of the Four-Color Map Problem”
solved a longstanding problem, proving that every planar map can be colored
with four colors without adjacent regions having the same color. Such a map is
understood to be finite. Supposing their result, use the compactness theorem to
show that even an infinite map can be colored with four colors.10

Suppose an infinite M with language L assigns a two-place irreflexive and sym-
metric relation Î to symbol Í (so 8x.x ® x/ and 8x8y.x Í y ! y Í x/); let
extensions M and L be like M and L but with one-place relations C1;C2;C3;C4
assigned to symbols C1; C2; C3; C4. We think of members of the universe as
regions, m Î n when m is adjacent to (shares a border with) n, and m 2 Ci when
m has color Ci . Let,

ˆ =

8̂<̂
:
8x.C1x _C2x _C3x _C4x/;

8xŒ.C1x!�.C2x _C3x _C4x//^ .C2x!�.C1x _C3x _C4x// ^

.C3x!�.C1x _C2x _C4x//^ .C4x!�.C1x _C2x _C3x//�;

8x8yŒx Í y! .�.C1x ^C1y/^�.C2x ^C2y/^�.C3x ^C3y/^�.C4x ^C4y//�

Intuitively: Every region has a color; no region has more than one color; and
adjacent regions do not have the same color. By the four-color theorem, for any
finite L v M there is an L such that L Œˆ � = T. The task is to show that there
exists an M such that M Œˆ � = T, and so that M is four-colorable.

Hints: This breaks into two interesting parts: (i) Extend L to an L0 by the
addition of a constant a for each a 2 UM; let †0 = ˆ [ fm Í n jm; n 2 UM and
m Î ng [ fm ¤ n jm; n 2 UM and m = ng. For finite �0 � †0 , let the members of
UH be objects to which constants in �0 are assigned and HŒ Í � be the restriction of
MŒ Í � to UH; then H v M and by the four-color theorem there is a H extending H
such that H Œˆ � = T. From H you will be able to find a H0 to satisfy �0 and so
a J0 to satisfy †0. (ii) While J0 satisfies ˆ , it is not yet the M we want insofar
as its universe may be other than the universe of M—but we can manipulate J0 to
obtain the desired interpretation. Consider J like J0 but without assignments to
extra constants, and then K v J restricting the universe of K to fJ0 Œa� j a 2 UMg,
and finally the L Š K that maps J0 Œa� to a; you will be able to show that L Œˆ �

remains true, and that L is an M —so that M is four-colorable. You should find
E11.17 to be helpful.

10Interestingly, Appel and Haken employ a computer to verify cases (more cases than can be verified
by hand). This inspires debate about the nature of proof.
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E11.24. On a finite universe, it is always possible to extend a partial order C to a
linear orderC�—so where the relations are sets of pairs,C�C� andC� is a linear
order: Intuitively, for U with n members, choose an m 2 U such that no member of
U is less than it (a minimal element of U), and let a1 = m; then choose a minimal
n 2 U fa1g—from among objects in U but not in fa1g—and let a2 = n; then
choose a minimal o 2 U fa1; a2g and let a3 = o; continue in this way until all the
members of U are included in a1 : : : an. Then the relation ai C� aj iff 1 i j n
has a1 C� a2 C� a3 C� � � � C� an and extendsC to a linear order.

Use this result with compactness� to show that it is possible to do the same on an
infinite universe. That is, suppose language L has just a single two-place relation
symbol G and infinite model M for language L assigns a partial order C to the
symbol G. Show that M can be extended to an M that assigns to G a linear order
C� . Observe that this is not obvious: at least, on an infinite universe there might
be no minimal element of a partial order so that intuitive reasoning for the finite
sets is inapplicable.

Hints: This works very much like the previous exercise. Let ƒ be the set whose
members are the axioms O1, O2, and O3 for a liner order. Extend L to an L0 by
the addition of a constant a for each a 2 UM; let †0 = ƒ [ fm G n j m; n 2 UM

and m C ng [ fm ¤ n j m; n 2 UM and m = ng. You should be able to find a J0

to satisfy †0, and manipulate this interpretation to a linear order M extending M.
Again, you will find E11.17 useful.

11.4.3 C̃ompleteness

We have seen from the corollary to T11.16 that a categorical † is c̃omplete. But from
the Löwenheim-Skolem theorems, no † with an infinite model is categorical. This
may seem a problem to the extent that we desire c̃omplete theories. So far as the
Löwenheim-Skolem theorems go, however, “space” for c̃ompleteness remains: If M
is finite, nothing from the Löwenheim-Skolem theorems blocks an axiomatization
of the class of all models isomorphic to it. Further, by T11.15 isomorphism implies
elementary equivalence; and from T11.16, a † whose models are elementarily equiva-
lent is c̃omplete. But elementary equivalence does not require isomorphism—this is a
moral of our discussion of number theory and Löwenheim-Skolem; so models might
be elementarily equivalent without being isomorphic—and so † c̃omplete without
being categorical. In this section we see that, in some cases at least, c̃omplete theories
do occupy this space.11

11Especially with respect to arithmetic and results of Part IV, questions of c̃ompleteness are motivated
in the introductions to Part IV and to Chapter 12. You might want to look over that material now.
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Finite Models

Suppose D is a finite model and let D be the class of all models isomorphic to it. Then
we may show that there is a † such that Md.†/ = D. Given the finite model D, we
construct †, and show that members of Md.†/ are isomorphic—and so that † is
categorical. First, then, given D, we set out to construct †. We do this by finding a
sequence of formulas Ce0 ;C

e
1 ; : : : that, taken together, are an axiomatization of D.

First, since D is finite, UD is some fm1;m2; : : : ;mng. For some enumeration of
variables x1;x2; : : : consider an assignment d such that dŒx1� = m1, and dŒx2� = m2,
and . . . and dŒxn� = mn. Then, drawing upon our discussion of ‘at least’ and ‘at most’,
let C0 be the open formula,V

1�i<j�n

xi ¤ xj ^ 8v
W

1�i�n

v D xi

So in the case of a four-member universe C0 is,

.x1¤x2^x1¤x3^x1¤x4^x2¤x3^x2¤x4^x3¤x4/^8v.vDx1_vDx2_vDx3_vDx4/

By analogy with 9x9y.x ¤ y ^ 8v.v D x _ v D y// for ‘there are exactly two’ the
existential closure of this expression, 9x19x2 : : : 9xnC0 is true just when there are
exactly n things.

Now consider an enumeration, A1;A2; : : : of those atomic formulas in L whose
only variables are x1 : : :xn—so a member of the enumeration is either a sentence
letter S , or an atomic Rta : : : tb such that the only variables in ta : : : tb are from
x1 : : :xn. With C0 and d as above, set Ci = Ci 1 ^Ai if DdŒAi � = S, and otherwise
Ci = Ci 1 ^ �Ai . It is easy to see that for any i , DdŒCi � = S. The argument is by
induction on the sequence C0;C1; : : : :

Basis: For any a and b such that 1 a b n, since d assigns to xa and xb distinct
members of UD, DdŒxa ¤ xb� = S; so by repeated applications of SF0(^),
DdŒ
V
1�i<j�n

xi ¤ xj � = S. And since each member of UD is assigned to
some variable in x1 : : :xn, for any m 2 UD, there is some a, 1 a n

such that Dd.vjm/Œv D xa� = S; then by repeated applications of SF0(_),
Dd.vjm/Œ

W
1�i�n

v D xi � = S; and since this is so for every m 2 UD, by SF(8),
DdŒ8v

W
1�i�n

v D xi � = S. So by SF0(^), DdŒC0� = S.

Assp: For any i , 0 i k, DdŒCi � = S.

Show: DdŒCk� = S.

Ck is of the form Ck 1 ^Ak or Ck 1 ^�Ak . In the first case, by assumption,
DdŒCk 1� = S, and by construction, DdŒAk� = S; so by SF0(^), DdŒCk 1 ^

Ak� = S; which is to say, DdŒCk� = S. In the second case, again DdŒCk 1� = S;
and by construction, DdŒAk� = S; so by SF(�), DdŒ�Ak� = S; so by SF0(^),
DdŒCk 1 ^�Ak� = S; which is to say, DdŒCk� = S.

Indct: For any i , DdŒCi � = S.
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This paves the way to construct †, and show that it is true on D. For any
Ci , let its existential closure Cei = 9x1 : : : 9xnCi ; and set † = fCei j i 0g—so
† = fCe0 ;C

e
1 ; : : :g. Then it is easy to see that each Cei , and so † itself, is true on D:

Suppose otherwise, that not every Cei is true on D; then for some i , DŒ9x1 : : :
9xnCi � = T; so by TI, there is some assignment d0 such that Dd0 Œ9x1 : : : 9xnCi � =
S; so, since there are no free variables, by T8.5, DdŒ9x1 : : : 9xnCi � = S; then
repeatedly removing an xa-quantifier by SF0.9/ leaves the formula unsatisfied for
every assignment to xa and so unsatisfied on d itself, so that DdŒCi � = S; but as
have just seen, this is impossible; reject the assumption: every Cei is true on D,
and so DŒ†� = T.

Now consider an arbitrary H 2Md.†/; we set out to show that D Š H. Since
H 2Md.†/, HŒ†� = T; so HŒCe0 � = T, that is HŒ9x1 : : : 9xnC0� = T; and, as we have
already noted, this can be the case iff there are exactly n members of UH. We set out
to find an assignment h such that for any i , HhŒCi � = S. Given d and this h, our idea is
to let � consist of pairs hdŒx�; hŒx�i, and with this to show D

�
Š H.

For some assignment k into UH, let h range over assignments that differ from k at
most in assignments to x1 : : :xn. Set �i = fh j HhŒCi � = Sg, and � =

T
i�0�i . So

each �i is the set of all assignments h on which the open formula Ci is satisfied, and
� collects assignments that are common to them all.

(i) No �i is empty. Since HŒ†� = T, HŒ9x1 : : : 9xnCi � = T; so by TI, that for-
mula is satisfied on any assignment; in particular for the assignment k into UH,
HkŒ9x1 : : : 9xnCi � = S; so by repeated applications of SF0.9/, there is some h
such that HhŒCi � = S. When the quantifiers come off, the result is some assignment
that differs at most in assignments to x1 : : :xn and so some assignment h.

(ii) For any j i ,�j � �i . Intuitively, since Cj adds conjuncts to Ci , Cj is satisfied
by fewer assignments than Ci—so that �j is reduced relative to �i . Suppose
otherwise, that j i but �j ª �i ; then there is some h such that h 2 �j but
h … �i ; so by construction, HhŒCj � = S but HhŒCi � = S; if j = i this is impossible;
so suppose j i ; then Cj is of the sort, Ci ^ Bi 1 ^ Bi 2 ^ : : : ^ Bj where
Bi 1 : : :Bj are either atomics or negated atomics; so by repeated application of
SF0(^), HhŒCi � = S. This is impossible; reject the assumption: �j � �i .

(iii) There are at most finitely many assignments of the sort h: Since any h differs
from k at most in assignments to x1 : : :xn, and there are just n members of UH,
there are nn assignments of the sort h; so there are finitely many assignments h.

From these results it follows that � is non-empty:
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Suppose otherwise, that no h is a member of each �i ; then for any h, there is
some �i such that h … �i . For each h consider the least a such that h … �a and
let A be the set of these subscripts; then for any h there is some a 2 A such that
h … �a. Since by (iii) there are finitely many assignments, A has finitely many
members; let b be the maximum of the members in A and consider �b; by (i)
there is some h 2 �b; but for every a 2 A, b a so by (ii) �b � �a; so h 2 �a;
so there is no a 2 A such that h … �a. This is impossible; reject the assumption:
� is not empty.

So we have what we wanted: assignments in� are such that for any i , HhŒCi � = S; and
since� is non-empty there must exist an assignment h such that for any i , HhŒCi � = S.
And we are ready for the result at which we have been aiming.

*T11.32. If D is a finite model and D is the class of all models isomorphic to it, then
there is a categorical † such that Md.†/ = D.

Suppose D is a finite model and D is the class of all models isomorphic to it. Let
† be as above and suppose H 2Md.†/. Then, as above, there are assignments d
and h such that for each i , DdŒCi � = S and HhŒCi � = S. For 1 i n, let � have
members hdŒxi �; hŒxi �i—so that hŒxi � = �.dŒxi �/. Since HhŒC0� = S, h assigns
each xi a different member of UH and each member of UH is assigned to some
xi ; so � is 1:1 and onto UH, as it should be. We now set out to show that the other
conditions for isomorphism are met.

(s) If S is a sentence letter, then S is some Ai . (i) Suppose DŒS � = T; then
DŒAi � = T; so by SF(s), DdŒAi � = S; and by construction, Ai is a conjunct of
Ci . But HhŒCi � = S; so by SF0(^), HhŒAi � = S; so by SF(s), HŒAi � = T; so
HŒS � = T. (ii) Suppose DŒS � = T; then DŒAi � = T; so by SF(s), DdŒAi � = S;
and by construction, �Ai is a conjunct of Ci . But HhŒCi � = S; so by SF0(^),
HhŒ�Ai � = S; so by SF(�), HhŒAi � = S; so by SF(s), HŒAi � = T; so HŒS � = T.
So DŒS � = HŒS �.

(c) If c is a constant, we require HŒc� = �.DŒc�/. For some mi, DŒc� = mi; and
since dŒxi � = mi, hŒxi � = �.dŒxi �/ = �.mi/.

By TA(c), DdŒc� = DŒc� = mi; and by TA(v), DdŒxi � = dŒxi � = mi; so DdŒc� =
DdŒxi �; so hDdŒc�;DdŒxi �i 2 DŒD�; so by SF(r), DdŒc D xi � = S; so c D xi is
a conjunct in some Cn. But HhŒCn� = S; so by SF0(^), HhŒc D xi � = S; so by
SF(r), hHhŒc�;HhŒxi �i 2 HŒD�; so HhŒc� = HhŒxi �; but by TA(c), HhŒc� = HŒc�,
and by TA(v), HhŒxi � = hŒxi �; so HŒc� = hŒxi �; so HŒc� = �.mi/ = �.DŒc�/.

(f) For simplicity, consider a one-place function symbol h. For any ma, we
require HŒh�h�.ma/i = �.DŒh�hmai/. For some mb, (�) DŒh�hmai = mb. And
since dŒxa� = ma and dŒxb� = mb, (��) both hŒxa� = �.dŒxa�/ = �.ma/ and
hŒxb� = �.dŒxb�/ = �.mb/.
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With TA(v), DdŒxa� = dŒxa� = ma and DdŒxb� = dŒxb� = mb; from this
with with TA(f) and (�), DdŒhxa� = DŒh�hDdŒxa�i = DŒh�hmai = mb =
DdŒxb�; so DdŒhxa� = DdŒxb�; so hDdŒhxa�;DdŒxb�i 2 DŒD�; so by SF(r),
DdŒhxa D xb� = S; so hxa D xb is a conjunct of some Cn. But HhŒCn� =
S; so by SF0(^), HhŒhxa D xb� = S; so by SF(r), hHhŒhxa�;HhŒxb�i 2

HŒD�; so HhŒhxa� = HhŒxb�; and by TA(f), HhŒhxa� = HŒh�hHhŒxa�i; so
HŒh�hHhŒxa�i = HhŒxb�. But by TA(v) with (��), HhŒxa� = hŒxa� = �.ma/;
and HhŒxb� = hŒxb� = �Œmb�; so HŒh�h�.ma/i = �.mb/; so with (�) HŒh�h�.ma/i

= �.DŒh�hmai/.

(r) For simplicity consider a one-place relation symbol R. For any ma, we require
�.ma/ 2 H.R/ iff ma 2 DŒR�. (i) Suppose ma 2 DŒR�; by [homework],
�.ma/ 2 HŒRn�. (ii) Suppose ma … DŒR�; by [homework] �.ma/ … HŒR�.

This is an interesting result! Since every D;H 2 Md.†/ is such that D Š H, † is
categorical; so by the corollary to T11.16, † is c̃omplete. Many structures, including
some from abstract algebra, have a finite domain—although most of the structures we
shall care about do not. Even so, we have a first case where c̃ompleteness is possible.

*E11.25. Complete the demonstration of T11.32 by completing the case for relation
symbols.

E11.26. Consider a language with no function symbols or constants and just relation
symbolsA1, B2 (andD). Let UD = f1; 2g, DŒA� = f1g, and DŒB� = fh1; 1i; h1; 2ig.
(i) By the method of this section, find † to axiomatize D, the class of all models
isomorphic to D. (ii) As a sample for c̊ompleteness, show that † ` 8x.Ax !
9yBxy/. Hint: † should have as members some Ce0 : : :C

e
10.

Quantifier Elimination

Consider a sentential language with just two sentence letters A and B . Suppose
† = fA;�Bg. On a truth table, there is just one row were the members of † are both
true, and on that row, any P in the language is either T or F, so that one of P or �P

is T.

(P)

A B A �B / P �P

T T T F � �

T F T T T /F F /T
F T F F � �

F F F T � �

So for any P , either † � P or † � �P . But by c̊ompleteness, if � � P then
� ` P ; so for any P , either † ` P or † ` �P , and † is c̃omplete. Alternatively,
from † ` A and † ` �B , one might reason by induction on the number of operators
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in P that † ` P or † ` �P . Either way † is c̃omplete. Of course, this case is not
very interesting!

Still, if we could show that things are “like this” for some more interesting†, then
we could show that† is c̃omplete. That is the strategy of quantifier elimination: Say†
admits quantifier elimination just in case for each formula P in its language L, there
is some quantifier-free Q with the same free variables as P such that † � P $ Q.
Observe that such a P and Q need not be equivalent in the sense that they take
the same value for any M and d—rather, when † is true then they are satisfied or
not together. All the same, suppose † admits quantifier elimination; then for any
sentence P , there is a quantifier-free sentence Q such that † � P $ Q, and so by
c̊ompleteness, such that † ` P $ Q. Suppose further that † ` A or † ` �A for
atomic sentences of its language; then by reasoning as above, † ` Q or † ` �Q

for quantifier-free sentences of L. From these together, by$E or NB, † ` P or
† ` �P , and † is c̃omplete. It is not always the case that when † is c̃omplete, it
may be shown to be c̃omplete by quantifier elimination (and quantifier elimination
is not the only approach). Still, the method applies for some cases that we shall care
about. We have seen how a † might prove A or �A for atomic sentences of its
language (think about Q). The trick, then, is to see how (in the world) an interesting
† including quantified expressions admits quantifier elimination. We make a start
with the following theorem:

T11.33. If every P = 9x.A1 ^ : : : ^An/ with A1 : : :An atomic or negated atomic
has a quantifier-free Q with the same free variables such that † � P $ Q, then
† admits quantifier elimination.

Suppose every P = 9x.A1^ : : :^An/ with A1 : : :An atomic or negated atomic
has a quantifier-free Q with the same free variables such that † � P $ Q. By
induction on the number of operator symbols,

Basis: Suppose P has no operator symbols; then P is an atomic; let Q be the
same formula. Then Q is quantifier-free has the same free variables as P .
But † � P $ P ; so † � P $ Q.

Assp: For any i , 0 i k, if P has i operator symbols, then there is a quantifier-
free Q with the same free variables as P such that † � P $ Q.

Show: If P has k operator symbols, then there is a quantifier-free Q with the
same free variables as P such that † � P $ Q.
If P has k operator symbols, then it is of the form �A, A ! B, or
9xA for A, B with k operator symbols (treating 8xA as equivalent to
�9x�A).

(�) P is �A. By assumption there is some quantifier-free B with the same
free variables as A such that † � A$ B; let Q be �B. It remains that
�B is quantifier-free and has the same free variables as �A. Further, it is
easy to see that † � �A$ �B; so † � P $ Q.
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(!) P is A! B. Homework.

(9) P is 9xA. By assumption there is some quantifier-free B with the same
free variables as A such that † � A $ B. Then it is easy to see that
† � 9xA$ 9xB—although, of course, 9xB is not yet quantifier-free.
By reasoning from T8.1 as applied to SF (rather than ST), for any quantifier-
free B there is a BN in normal form with the same free variables such that
IdŒB� = S iff IdŒBN� = S. And as developed in E8.22 for each BN there is a
formula BD in disjunctive normal form,

BD = .D1 ^ : : : ^Dd / _ .E1 ^ : : : ^ Ee/ _ : : : _ .F1 ^ : : : ^ Ff /

with each Di and Ei and . . . and Fi atomic or negated atomic, where free
variables the same, and IdŒBN� = S iff IdŒBD� = S. From these together, for
any quantifier-free B, there is a BD in disjunctive normal form with the
same free variables such that IdŒB� = S iff IdŒBD� = S, and given that I and
d are arbitrary such that � B $ BD.12 Then with T9.10,

† � 9xA$ 9xŒ.D1 ^ : : : ^Dd / _ .E1 ^ : : : ^ Ee/ _ : : : _ .F1 ^ : : : ^ Ff /�

and with (a semantic version of) QD,

† � 9xA$ Œ9x.D1 ^ : : : ^Dd / _ 9x.E1 ^ : : : ^ Ee/ _ : : : _ 9x.F1 ^ : : : ^ Ff /�

But by the assumption to the theorem, there is some quantifier-free Qd

with the same free variables as 9x.D1^ : : :^Dd / such that† � 9x.D1^

: : : ^Dd /$ Qd and . . . and there is a quantifier-free Qf with the same
free variables as 9x.F1 ^ : : : ^ Ff / such that † � 9x.F1 ^ : : : ^ Ff /$

Qf . So by T9.10 again, † � 9xA $ .Qd _ Qe _ : : : _ Qf /; so
Q = Qd _Qe _ : : :_Qf is quantifier-free and has the same free variables
as 9xA; and † � P $ Q.

If P has k operator symbols, then there is a quantifier-free Q with the
same free variables as P such that † � P $ Q.

Indct: For every P there is a quantifier-free Q with the same free variables as P

such that † � P $ Q.

So the project of showing that † admits quantifier elimination reduces to the project
of showing that each P = 9x.A1 ^ : : : ^ An/ with A1 : : :An atomic or negated
atomic has a quantifier-free Q with the same free variables such that † � P $ Q.
We turn now to showing that some theories in fact admit quantifier elimination.

12It is also possible to appeal to reasoning from T11.1: On any I and d, a quantifier-free B and its
atomics are satisfied or not, and by the method of the theorem there is a BD in disjunctive normal form
satisfied under the same conditions.
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E11.27. Consider the sentential language whose only sentence letters are A and B ,
where † ` A and † ` �B . Produce the argument by induction on the number of
operator symbols to show that † ` P or † ` �P .

E11.28. Provide a demonstration of the (!) case for T11.33 in which you work
through all the semantic details.

Theory S. Consider a language like LNT whose only function symbol is S . Then
terms are of the sort Snt where Sn indicates n instances of S and t is a variable or ;;
atomic formulas are Sms D Snt again where s and t are the constant ; or a variable.
Let S be a set whose members are as follows:

(S1) Sx ¤ ;

(S2) Sx D Sy ! x D y

(S3) x ¤ ; ! 9y.x D Sy/

(S4) Snx ¤ x for any n 1

As from E7.17, S1 and S2 require that the universe have infinitely many members. And
this theory is s̃ound on a standard interpretation with universe N, 0 assigned to ;, and
the interpretation of S the successor function. Observe that there are infinitely many
axioms corresponding to instances of S4. From these axioms we have as theorems,

(Sa) If m = n then S ` Smx D Snx.

(Sb) If m = n then S ` Smx ¤ Snx.

(Sc) S ` Sas D t $ SdCas D Sd t.

(Sd) S ` 9x.Snx D t/$ .t D t^ t ¤ S0;^ t ¤ S1;^ : : :^ t ¤ Sn�1;/ – x not in t.

The left side of Sd requires that t n and so “big enough” that n successors of some
x may be equal to it. Intuitively, in our limited vocabulary, the right side requires the
same (and with the first conjunct the expression remains defined when n is zero). For
hints see the associated exercise, E11.29. By s̊oundness, these theorems are true on
models of S.

To show that S admits quantifier elimination, consider P = 9x.A1 ^ : : : ^An/,
where A1 : : :An are Sms D Snt or Sms ¤ Snt and s and t are the constant ; or a
variable. We require a quantifier-free Q with the same free variables as P such that
S � P $ Q. For this, consider an arbitrary M such that MŒS� = T; then to obtain
MŒP $ Q� = T, we require that for arbitrary d, MdŒP � = S iff MdŒQ� = S.

As a preliminary, consider 9x.A1 ^ : : :^Ai ^ : : :^An/ with S ` Ai $ B. By
s̊oundness S � Ai $ B; so MŒAi $ B� = T and MdŒAi $ B� = S; so from T9.10,
MdŒ9x.A1 ^ : : :^Ai ^ : : :^An/� = S iff MdŒ9x.A1 ^ : : :^B ^ : : :^An/� = S. In
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such cases, I typically cite just the original theorem, S ` Ai $ B, and move directly
to the result.

For P = 9x.A1 ^ : : : ^An/, first suppose x does not appear in some Ai ; then,

(Q)
MdŒ9x.A1 ^ : : :^Ai ^ : : :^An/� = S

iff

MdŒAi ^ 9x.A1 ^ : : :^Ai�1 ^AiC1 ^ : : :^An/� = S

Ai moves to the front by standard quantifier placement rules (QP). And free variables
remain the same. So if we reduce the second conjunct to quantifier-free form, we will
have reduced the whole.

Concentrating then on the second conjunct, consider 9x.B1 ^ : : :^Bn/ where x
is a component of each Bi . Suppose Bi is of the sort Smx D Snx. First let m = n;
then,

(R)

MdŒ9x.B1 ^ : : :^ S
mx D Snx ^ : : :^Bn/� = S

iff

MdŒ9x.B1 ^ : : :^ ; D ;^ : : :^Bn/� = S

iff

MdŒ; D ; ^ 9x.B1 ^ : : :^Bi�1 ^BiC1 ^ : : :^Bn/� = S

Smx D Snx is replaced by ; D ; and that variable-free conjunct moved to the
front. For the first move: Since m = n, by Sa we get S ` Smx D Snx; and again
by Sa, S ` ; D ;; so S ` Smx D Snx $ ; D ;. Then the second move is by
quantifier-placement rules. And similarly using Sb to replace Smx D Snx with
; ¤ ; when m = n. For a negated atomic �.Smx D Snx/, replace Smx D Snx,
and move the negation of it outside. Again, free variables remain the same.

Concentrating again on the second conjunct, consider 9x.C1 ^ : : : ^ Cn/ where
each Ci is Snx D ti or Snx ¤ ti and x does not appear in ti . Suppose first that each
Ci is of the sort Snx ¤ ti ; then,

(S)
MdŒ9x.S

ax ¤ t1 ^ : : :^ S
bx ¤ tn/ = S

iff

MdŒt1 D t1 ^ : : :^ tn D tn� = S

The quantifier is dropped and each Snx ¤ ti is replaced by ti = ti . Then free
variables remain the same. And consider the objects m1 : : :mn assigned to t1 : : : tn;
on an infinite domain there is sure to be an object different from each mi and so an
object to satisfy the existential quantification; and since there is such an object, the
upper existential quantification is satisfied on Md; and trivially the lower formula is
satisfied as well; so S entails the biconditional between the two.

Suppose then that some Ci is Sax D ti where x does not appear in ti . Then
beginning with that equality as the first conjunct,

(T)

MdŒ9x.S
ax = t1 ^ .S

bx = t2 ^ : : :^ S
cx = ti ^ S

dx = tiC1 ^ : : :^ S
ex = tj //� = S

iff

MdŒ9x.S
ax = t1^.S

bCax = Sat2^: : :^ScCax = Sati^SdCax = SatiC1^: : :^SeCax = Satj //� = S
iff

MdŒ9x.S
ax = t1 ^ .S

bt1 = Sat2 ^ : : :^ Sct1 = Sati ^ Sd t1 = SatiC1 ^ : : :^ Set1 = Satj //� = S

iff

MdŒ9x.S
ax = t1/^ .S

bt1 = Sat2 ^ : : :^ Sct1 = Sati ^ Sd t1 = SatiC1 ^ : : :^ Set1 = Satj /� = S
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Superscripts on terms not in the first conjunct are increased by the superscript from
the first; then t1 is substituted for Sax in conjuncts other than the first; thus x appears
just in the first term, and the quantifier is restricted just to it. The equivalences are by
Sc; then application of the equality from the first conjunct to the other members; and
finally by quantifier placement. Again, free variables remain the same.

Finally, concentrating on the first conjunct,

(U)
MdŒ9x.S

ax = t1/� = S

iff

MdŒt1 D t1 ^ t1 ¤ S
0; ^ t1 ¤ S

1; ^ : : :^ t1 ¤ S
a�1;� = S.

the quantification is reduced to quantifier-free form by Sd. Again, free variables
remain the same.

Thus the original P = 9x.A1 ^ : : : ^An/ is reduced to quantifier-free Q with
the same free variables such that S � P $ Q. So by T11.33, S admits quantifier
elimination. And now it is easy to see that S is c̃omplete.

T11.34. S is c̃omplete.

Since S admits quantifier elimination, for any P there is a quantifier-free Q with
the same free variables such that S � P $ Q; so by c̊ompleteness S ` P $ Q.
Suppose P is a sentence; then Q is a sentence. Atomic sentences in the language
of S are of the sort Sm; D Sn;; so by Sa and Sb, for any atomic sentence A,
S ` A or S ` �A; so by a simple induction on number of operator symbols, for
any quantifier-free sentence Q, S ` Q or S ` �Q; so by$E or NB, S ` P or
S ` �P ; so S is c̃omplete.

S is a particularly simple theory with a particularly simple language. Still, its universe
is infinite. And it is of considerable interest to have established c̃ompleteness for a
theory to which the Löwenheim-Skolem theorems apply.

For an example, consider the sentence P = 8y9x�.Sx D y ! SSx ¤ Sy/

and the box on the following page. Begin replacing 8yP with �9y�P to obtain
�9y�9x�.Sx D y ! SSx ¤ Sy/. Then given the usual tree as on the left of
(V), construct a parallel tree as on the right replacing each existential quantification
by its quantifier-free form—as worked out in the sequences immediately following.
You should be able to follow each step. Observe that we might have collapsed the
second-to-last step on the right-hand side of (V) to ; D ; once we identified ; D ;
as a disjunct, and similarly there may be natural simplifications in other cases.

Thus we obtain a quantifier-free Q = �.; ¤ ; _ ; D ; _ ; ¤ ;/ such that
S � P $ Q, and by c̊ompleteness S ` P $ Q. From S ` ; D ; with _I and DN,
S ` �Q, and so by NB, S ` �P . Thus our method tells us not only that there is a
proof of P or �P for each P , but constitutes a method to decide which of P or �P

is proved. Of course, in this case, we might have derived �P in fewer than ten lines
with S1 (try it). So our approach is not particularly efficient. Still, it is of considerable
interest to have found a general method to decide whether S ` P or S ` �P .
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Quantifier Elimination in Theory S:

S � 8y9x�.Sx D y ! SSx ¤ Sy/$ �.; ¤ ; _ ; D ; _ ; ¤ ;/

Begin replacing the universal quantifier to obtain,

�9y�9x�.Sx D y ! SSx ¤ Sy/

Then,

(V)

Sx D y SSx D Sy

L
L
L
L
L

SSx ¤ Sy

�
�

Sx D y! SSx ¤ Sy

�.Sx D y! SSx ¤ Sy/

9x�.Sx D y! SSx ¤ Sy/

�9x�.Sx D y! SSx ¤ Sy/

9y�9x�.Sx D y! SSx ¤ Sy/

�9y�9x�.Sx D y! SSx ¤ Sy/

Sx D y SSx D Sy

L
L
L
L
L

SSx ¤ Sy

�
�

Sx D y! SSx ¤ Sy

�.Sx D y! SSx ¤ Sy/

y D y ^ y ¤ ;^ SSy D SSy

�.y D y ^ y ¤ ;^ SSy D SSy/

; ¤ ; _ ; D ; _ ; ¤ ;

�.; ¤ ; _ ; D ; _ ; ¤ ;/

For the x-quantifier,
MdŒ9x�.Sx D y! S2x ¤ Sy/� = S

iff
MdŒ9x.Sx D y ^ S

2x D Sy/� = S disjunctive normal form

iff
MdŒ9x.Sx D y ^ S

2Sx D SSy/� = S (T)

iff
MdŒ9x.Sx D y ^ S

2y D SSy/� = S (T)

iff
MdŒ9x.Sx D y/^ SSy D SSy� = S (T)

iff
MdŒ.y D y ^ y ¤ ;/^ SSy D SSy� = S (U)

For the y-quantifier,
MdŒ9y�.y D y ^ y ¤ ;^ SSy D SSy/� = S

iff
MdŒ9y.y ¤ y _ y D ;_ SSy ¤ SSy/� = S disjunctive normal form

iff
MdŒ9y.y ¤ y/_ 9y.y D ;/_ 9y.SSy ¤ SSy/� = S QD

iff
MdŒ; ¤ ; _ ; D ; _ ; ¤ ;� = S (R), (U), (R)
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E11.29. Demonstrate theorems Sa–Sd.

Hints: (Sb): without loss of generality, suppose n m; then there is some d 0

such that n = m d ; then use S4. (Sc): Left to right: use DI and DE. Right to
left: suppose S ` Sas ¤ t; by induction on the value of n, S ` SnSas ¤ Snt

(with S2). (Sd): Left to right: Begin showing that for any n and m n, S `
Snj ¤ Sm;; this gives you S ` Snj ¤ S0; ^ : : : ^ Snj ¤ Sn�1;; with this
the derivation is easy. Right to left: By induction on the value of n; put cases for
both n = 0 and n = 1 in the basis; then assume for 1 i k.

*E11.30. Supposing that the only conjuncts are Sax D t1 ^ S
cCax D Sati ^

SeCax ¤ Satj , provide a detailed semantic argument for the equivalence in (T)
that is justified by “application of the equality from the first conjunct to the other
members.” You may take it that MhŒS

aq� = a MhŒq�.

E11.31. Let P = 8y9x.Sx D SSy ^ SSx D SSSy/. (i) Use our method to find
a quantifier-free Q such that S ` P $ Q. (ii) Use this result to decide whether
S ` P or S ` �P .

Theory L. Given its very simple language, S is a very simple theory. Let us turn
to a case that increases complexity a bit. Consider a language like LNT

< whose only
function symbol is S . Then terms are of the sort Snt where t is a variable or ;; and
atomic formulas are Sms D Snt or Sms < Snt again where s and t are a variable
or ;. Let L be a set whose members are as follows:

(L1) x ¤ ; ! 9y.x D Sy/ (and so S3)

(L2) x < Sy $ .x D y _ x < y/

(L3) x – ;

(L4) x < y _ x D y _ y < x

(L5) x < y ! y – x

(L6) x < y ! .y < z ! x < z/

So L has finitely many axioms. Again this theory is s̃ound on a standard interpretation
with universe N, 0 assigned to ;, interpretation of S the successor function, and
interpretation of < the less-than relation. From these axioms we have as theorems,

(La) If n 1 then L ` x < Snx

(Lb) L ` x – x

(Lc) L ` x – y $ .y D x _ y < x/

(Ld) L ` x ¤ y $ .x < y _ y < x/
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(Le) L ` x < y $ Sx < Sy

(Lf) If m n then L ` Smx < Snx

(Lg) If m n then L ` Smx – Snx

(Lh) L ` Sas < t $ SdCas < Sd t

(Li) L ` t < Sas$ Sd t < SdCas

(Lj) L ` Sx ¤ ; (and so S1)

(Lk) L ` Sx D Sy ! x D y (and so S2)

(Ll) L ` Snx ¤ x for n 1 (and so S4)

Given that we have each of S1–S4, we retain theorems from S. And with L4–L6 any
model of L is a linear order.

Now to show that L admits quantifier elimination, consider 9x.A1 ^ : : : ^An/,
where A1 : : :An are Sms D Snt, Sms ¤ Snt, Sms < Snt, or Sms – Snt, and
s and t are either the constant ; or a variable.

First we can eliminate negations. Thus where Ai is Sms ¤ Snt,

(W)

MdŒ9x.A1 ^ : : :^Ai�1 ^ S
ms ¤ Snt ^AiC1 ^ : : :^An/� = S

iff

MdŒ9x.A1 ^ : : :^Ai�1 ^ .S
ms < Snt _ Snt < Sms/^AiC1 ^ : : :^An/� = S

iff

MdŒ9x..A1^: : :^Ai�1^S
ms < Snt^AiC1^: : :^An/_.A1^: : :^Ai�1^S

nt < Sms^AiC1^: : :^An//� = S

iff

MdŒ9x.A1^: : :^Ai�1^S
ms < Snt^AiC1^: : :^An/_9x.A1^: : :^Ai�1^S

nt < Sms^AiC1^: : :^An/� = S

The negated equality is replaced by Ld, then distribution, and the quantifier is pushed
in by QD. And similarly for a negated inequality, beginning with Lc to replace
Sms – Snt by Snt D Sms _ Snt < Sms. So if we can reduce the disjuncts of the
resultant expression to quantifier-free form, we will have reduced the whole.

Consider then 9x.B1 ^ : : : ^Bn/ where each Bi is of the sort Sms D Snt or
Sms < Snt. Suppose x does not appear in some Bi ; then reasoning as before,

(X)
MdŒ9x.B1 ^ : : :^Bi ^ : : :^Bn/� = S

iff

MdŒBi ^ 9x.B1 ^ : : :^Bi�1 ^BiC1 ^ : : :^Bn/� = S

by quantifier placement rules.
Concentrating on the second conjunct, consider 9x.C1 ^ : : : ^ Cn/ where x is a

component of each Ci ; suppose Ci is of the sort Smx D Snx where m = n. Then
reasoning as before,

(Y)

MdŒ9x.C1 ^ : : :^ S
mx D Snx ^ : : :^Cn/� = S

iff

MdŒ9x.C1 ^ : : :^ ; D ;^ : : :^Cn/� = S

iff

MdŒ; D ; ^ 9x.C1 ^ : : :^Ci�1 ^CiC1 ^ : : :^Cn/� = S

by Sa and then quantifier-placement rules. And similarly by Sb replacing Smx D Snx
with ; ¤ ; when m = n; by Lf replacing Smx < Snx with ; D ; when m n; and
by Lg replacing Smx < Snx with ; ¤ ; when m n.
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Concentrating then on the second conjunct, consider 9x.D1 ^ : : : ^Dn/ where
each Di is Snx D ti , Snx < ti , or ti < S

nx and x does not appear in ti . Suppose
first that some Di is Sax D ti ; then reasoning as before,

(Z)

MdŒ9x.S
ax = t1 ^ .S

bx = ti ^ : : :^ tj < S
cx ^ : : :^ Sdx < tk ^ : : ://� = S

iff

MdŒ9x.S
ax = t1 ^ .S

bCax = Sati ^ : : :^ Satj < ScCax ^ : : :^ SdCax < Satk ^ : : ://� = S

iff

MdŒ9x.S
ax = t1 ^ .S

bt1 = Sati ^ : : :^ Satj < Sct1 ^ : : :^ S
d t1 < S

atk ^ : : ://� = S

iff

MdŒ9x.S
ax = t1/^ .S

bt1 = Sati ^ : : :^ Satj < Sct1 ^ : : :^ S
d t1 < Satk ^ : : :/� = S

Superscripts on terms not in the first conjunct are increased by the superscript from the
first; then t1 is substituted for Sax in conjuncts other than the first; and the quantifier
is restricted just to it. These are by Sc/Lh/Li; then application of the equality from
the first conjunct to the other members; and finally by quantifier placement. Then
9x.Sax = t1/ reduces to quantifier-free form just as in (U).

So suppose each Di is ti < Snx or Snx < ti and consider 9x..t1 < Sax ^

: : : ^ ti < S
bx/ ^ .Scx < tj ^ : : : ^ S

dx < tk//. Intuitively, the left conjunct sets
lower bounds for x and the right upper. Thus where Snx simply adds n to x, from
the left conjunct, t1 � a < x and . . . and ti � b < x, and from the right, x < tj � c

and . . . and x < tk � d (notice that these latter conditions cannot be met if tj � c or
. . . or tk � d ).

Suppose that the main right conjunct is empty. Then,

(AA)
MdŒ9x.t1 < S

ax ^ : : :^ ti < S
bx/� = S

iff

MdŒt1 D t1 ^ : : :^ tj D tj � = S

The quantifier is dropped and each conjunct is replaced by the corresponding identity.
Consider the objects m1 : : :mi assigned to t1 : : : ti . On an unending linear order,
there is sure to be an object greater than each of them, and so an object to satisfy the
existential quantification.

Now suppose the left main conjunct is empty. Then,

(AB)
MdŒ9x.S

cx < tj ^ : : :^ S
dx < tk/� = S

iff

MdŒS
c; < tj ^ : : :^ S

d; < tk � = S

The quantifier is dropped and each x replaced by ;. If there is some object under the
upper bounds, then 0 is under the upper bounds; and if 0 is under the upper bounds,
then some object is under the upper bounds.

So suppose the Di include both members ti < S
nx and Snx < ti and consider

9x..t1 < S
ax ^ : : : ^ ti < S

bx/ ^ .Scx < tj ^ : : : ^ S
dx < tk//. For simplicity

take a case with just two atomics of each type. Then,
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(AC)

MdŒ9x..t1 < S
ax ^ t2 < S

bx/^ .Scx < t3 ^ S
dx < t4//� = S

iff

MdŒ9x..t1 < S
ax ^ Scx < t3/^ .t1 < S

ax ^ Sdx < t4/^

.t2 < S
bx ^ Scx < t3/^ .t2 < S

bx ^ Sdx < t4//� = S

iff

MdŒ9x..S
ct1 < S

aCcx ^ SaCcx < Sat3/^ .S
d t1 < S

aCdx ^ SaCdx < Sat4/^

.Sct2 < S
bCcx ^ SbCcx < Sbt3/^ .S

d t2 < S
bCdx ^ SbCdx < Sbt4//� = S

iff

MdŒ.S
cC1t1 < S

at3 ^ S
dC1t1 < S

at4 ^ S
cC1t2 < S

bt3 ^ S
dC1t2 < S

bt4/^ .S
c; < t3 ^ S

d; < t4/� = S

Atomics from the left conjunct are conjoined with each of the ones from the right;
superscripts are adjusted so that “middle” terms with the variable x have the same
superscript; then the quantifier is dropped and, for the main left conjunct, middle
terms are eliminated and the superscript of the first term increased by one; the right
conjunct is like the right conjunct at the first stage, with x replaced by ;. These are
first by Idem with Com and Assoc; then by Lh and Li; then the last stage is the most
interesting; it is perhaps best understood visually:

(AD)

_

_

_

_

_

_

_

_

_

_

c

t1

a

c

x

-

�

�

a

t3

< <

d

t1

a

d

x

-

�

�

�

a

t4

< <

c

t2

b

c

x

-

-

�

b
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< <

d

t2

b

d

x

-

-

�

�

b

t4

< <

(AE)

_

_

_

_

_

_

_

_

_

_
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1
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a
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<
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1
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1
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.

.
c

t3

<
d

t4

<

Boxes represent values of terms. This example sets a = 1, b = 2, c = 1, d = 2, t1 = 2,
t2 = 4, t3 = 5, and t4 = 7. Then (AD) represents the third row of (AC) and (AE) the
last. From (AD), in each group of three, the sum of the leftmost boxes is less than the
sum of center boxes plus some value of x, which is in turn less than the sum of the
rightmost boxes. Dots indicate values of x in this range. The left-hand part of (AE)
relates outer columns from a group of three—requiring that the right be greater than
the left plus one. The right-hand part of (AE) relates columns from the center to ones
on the right, subtracting off common boxes.
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In each case, the conditions require “space” for some x over the lower bounds and
beneath the upper. In (AD) the left two groups require space for values of x over the
first lower bound and under both upper bounds; the right two groups require space
for values of x over the second lower bound but under both upper bounds.13 From
(AE), the left-hand pairs require space between the upper and lower bounds—adding
one to the leftmost columns to leave space for a center above the left and below the
right; and the right-hand pairs that the center leave room for some x to occupy those
spaces. If there is an x to satisfy the conditions from (AD), then clearly there are
the spaces from (AE). And if there are the spaces from (AE) then there is room for
an x to satisfy the conditions: put abstractly, consider some lower bounds q; r and
upper bounds s; t ; suppose there is space for i; j; k; l such that q i s, q j t ,
r k s, and r l t ; without loss of generality, suppose q r ; then m = q 1,
say, satisfies each of the conditions, and there is an x over each of the lower bounds
and beneath the upper.

Thus the original P = 9x.A1 ^ : : : ^An/ is reduced to quantifier-free Q with
the same free variables such that L � P $ Q. So by T11.33, L admits quantifier
elimination. And now it is easy to see that L is c̃omplete.

*T11.35. L is c̃omplete.

Homework.

By similar methods, it is possible to show that there is a s̃ound and c̃omplete
theory Pr (Presburger Arithmetic) for the standard interpretation of a language like
LNT but with just S and C; and there is a s̃ound and c̃omplete theory of real closed
fields (RCF) for the standard interpretation of a language with constants ; and 1,
function symbols C, �, �, and relation symbols D and < on a universe of the real
numbers.14 Given these theories, one might reasonably hope for a s̃ound and c̃omplete
theory for the standard interpretation of LNT. Unfortunately, this hope is not to be met.
As we see in the next part, there is no s̃ound and c̃omplete theory for the arithmetic of
LNT including S ,C, and �.

E11.32. Demonstrate theorems La–Ll.

Hints: (La): by induction on the value of n; you will be able to use L2. (Lb):
from L5. (Lc): from left to right with L4; from right to left with L5 and Lb. (Le):
from left to right apply Lc with NB and L2 with NB to reach y – Sx then you
can apply Lc and L2 again; this first subderivation is “reversible.” (Lf): suppose
m n; then there is some d 1 such that m d = n; by induction on the value

13In a group of three, the lower bound subtracts from the leftmost t the non-common center; the
upper bound subtracts from the rightmost t the non-common center. Then, to take just the first case,
from t1 c a c x t3 a, it follows that t1 a x t3 c—which is to say that x is greater than
the lower bound but less than the upper.

14See, for example, Chapter 3 of Marker, Model Theory. These results add considerable complication.
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of m, L ` Smx < SmCdx. (Lh): By induction on the value of d . (Lj): use L3
and La. (Lk): under the assumption for!I, you will be able to use Lb, Le, and
then L4.

E11.33. Write out the stages from (AC) but starting from 9x..t1 < Sax ^ t2 <

Sbx/ ^ .Scx < t3 ^ S
dx < t4 ^ S

ex < t5//.

*E11.34. Complete the demonstration of T11.35 to show that L is c̃omplete.

E11.35. Let P = 8x8zŒ.9y.Sx < y ^ y < z/ ! SSx < z�. (i) Use our method
to find a quantifier-free Q such that L ` P $ Q. (ii) Use this result to decide
whether S ` P or S ` �P .

E11.36. For each of the following concepts, explain in an essay of about two pages,
so that (college freshman) Hannah could understand. In your essay, you should
(i) identify the objects to which the concept applies, (ii) give and explain the
definition, and give and explicate examples (iii) where the concept applies, and
(iv) where it does not. Your essay should exhibit an understanding of methods
from the text.

a. Expressive completeness, and how our languages have it.

b. Unique readability, and how our languages have it.

c. Independence and how ADs has it.

d. The relations between relative soundness, s̊oundness, and s̃oundness, and
between relative completeness, c̊ompleteness, and c̃ompleteness.

e. The significance of the (full) Löwenheim-Skolem theorem for theory c̃omplete-
ness.

f. Quantifier elimination, and how it can be utilized to show c̃ompleteness.
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Final Theorems of Chapter 11

T11.17 If L � M then L � M.

T11.18 Suppose L v M and d is a variable assignment into UL. Then for any term t,
MdŒt� = LdŒt�.

T11.19 Suppose that L v M and that for any formula P and every variable assignment d
into UL such that MdŒ9xP � = S there is an m 2 UL such that Md.xjm/ŒP � = S; then
L � M.

T11.20 L
�
@
� M iff there is a K v M such that L

�
Š K.

T11.21 L
�- M iff there is a K � M such that L

�
Š K.

T11.22 If L - M, then L � M.

T11.23 A set of formulas † is satisfiable iff it is finitely satisfiable. Compactness.

T11.24 For I the class of all models with an infinite domain, there is no finite � such that
Md.�/ = I .

T11.25 If � has arbitrarily large finite models, then � has an infinite model.

Corollary: The class M of all finite models is not axiomatizable.

T11.26 The class W of all well-orderings is not axiomatizable.

T11.27 For N the class of models isomorphic to N, there is no † such that Md.†/ = N.

T11.28 For any set s, }.s/ is greater than s, s � }.s/ Cantor’s Theorem.

T11.29 If the members of † are in a language L whose constants are matched to ordinals
less than an infinite � and † has a model, then † has a model of cardinality �.
Downward Löwenheim-Skolem.

T11.30 If † has an infinite model, then for any infinite cardinal �, † has a model of
cardinality �. Upward Löwenheim-Skolem.

T11.31 If the members of † are in a language whose constants are matched to ordinals
less than an infinite � and † has an infinite model, then for any infinite cardinal
� � , † has a model of cardinality �. Full Löwenheim-Skolem.

T11.32 If D is a finite model and D is the class of all models isomorphic to it, then there
is a categorical † such that Md.†/ = D.

T11.33 If every P = 9x.A1 ^ : : : ^An/ with A1 : : :An atomic or negated atomic has
a quantifier-free Q with the same free variables such that † � P $ Q, then †
admits quantifier elimination.

T11.34 S is c̃omplete.

T11.35 L is c̃omplete.
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Introductory

A formal theory consists of a formal language with some proof system and theory
axioms. Q and PA are example theories. We have had a good bit to say about
languages and proof systems. In this part we encounter a cluster of issues associated
with theories.

Formal Theory

S̃oundness

Decidability

C̃ompleteness

Consistency

Formal Language

Proof System

Axioms of Theory

The theorems of a theory are all the formulas proved by its axioms. A theory is s̃ound
when all its theorems are true on an intended model; (negation) c̃omplete when it
proves one of P or �P for every sentence P ; consistent when there is no P such
that it proves both P and �P ; and decidable when there is an “effective” method to
decide whether any given formula is a theorem.

In Chapter 10 we showed that exactly the same arguments are semantically valid
as are provable. So,

(A) � ` P iff � � P

Thus our derivation systems are both s̊ound and c̊omplete. In Chapter 11 we encoun-
tered limitations about the ability to axiomatize certain models, but also exhibited
some simple consistent, s̃ound, c̃omplete, and decidable theories. These results for
s̊oundness and c̊ompleteness, and then for consistency, s̃oundness, c̃ompleteness,
and decidability are the good news. In this part, we encounter a series of limiting
results—with particular application to arithmetic and computing.

560
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As for the simple theories of Chapter 11, it is natural to think that mathematics
more generally is characterized by proofs and derivations. Thus one might anticipate
that there would be some system of premises � such that for any P in LNT we would
have,

(B) � ` P iff NŒP � = T

where N is the standard interpretation of number theory. Such a theory would be
consistent, s̃ound, c̃omplete and, as we shall see, supposing it is “nicely specified,”
decidable.1 Note the difference between (A) and (B). In (A) derivations are matched
to entailments; in (B) derivations (and so entailments) are matched to truths on
an interpretation. Perhaps inspired by suspicions about the existence or nature of
numbers, one might expect that derivations would even entirely replace the notion of
mathematical truth. And Q or PA may already seem to be deductive systems as in
(B). But we shall see that there can be no such deductive system: Consider any nicely
specified theory at least as strong as Q; from Gödel’s first ı̃ncompleteness theorem,
if that theory is consistent then it is ı̃ncomplete. But then any such theory must omit
some truths of arithmetic from among its theorems.2

Suppose there is no one-to-one map between truths of arithmetic and consequences
of our theories. Rather, we propose a theory R(eal) whose consequences are unprob-
lematically true, and another theory I (deal) whose consequences outrun those of R
and whose literal truth is therefore somehow suspect. Perhaps R is sufficient only for
something like basic arithmetic, whereas I seems to quantify over all members of a
far-flung infinite domain. Even though not itself a vehicle for truth, theory I may be
useful under certain circumstances. Suppose,

(a) For any P in the scope of R, if P is not true, then R ` �P

(b) I extends R: If R ` P then I ` P

(c) I is consistent: There is no P such that I ` P and I ` �P

Then theory I may be treated as a tool for achieving results in the scope ofR: Suppose
P is a result in the scope ofR, and I ` P ; then by consistency, I 6` �P ; and because
I extends R, R 6` �P ; so by (a), P is true. This is (a sketch of) the famous ‘Hilbert
program’ for mathematics, which aims to make sense of infinitary mathematics based
not on the truth but rather the consistency of theory I (this project is developed in a
number of places including Hilbert, “On the Infinite”).

Suppose the language of R permits universal generalizations as 8x8y.x � y D
y � x/. In Chapter 12 we shall show that Q proves particular results sufficient to

1In the following we identify the “nicely specified” formal theories with the (precisely defined)
recursively axiomatized formal theories.

2Gödel’s groundbreaking paper is “On the Formally Undecidable Propositions of Principia Mathe-
matica and Related Systems.”



PART IV. LOGIC AND ARITHMETIC 562

establish the negation of such generalizations whenever the generalizations are false.
In this way a theory R might be sufficient to prove �P whenever a P in its scope is
false, and so to satisfy (a). And just as PA extends Q, there will be many extensions
of R as in (b). And because consistency is a syntactical result about proof systems,
not itself about far-flung mathematical structures, one might have hoped for proofs of
consistency from real, rather than ideal, theories—and so for proof of (c). So there
is an intuitive plausibility to Hilbert’s proposal. But Gödel’s second ı̃ncompleteness
theorem tells us that derivation systems extending PA cannot prove even their own
consistency. So a weaker “real” theory will not be able to prove the consistency of PA
and its extensions. This seems to remove a demonstration of (c) and so to doom the
Hilbert strategy.3

Even though no one derivation system has as consequences every mathematical
truth, derivations remain useful, and mathematicians continue to do proofs! Given that
we care about them, there is a question about the automation of proofs. A property
or relation is effectively decidable iff there is an algorithm or program that for any
given case, decides in a finite number of steps whether the property or relation applies.
Abstracting from the limitations of particular computing devices, we shall identify
a class of relations which are decidable. A corollary to reasoning for Gödel’s first
ı̃ncompleteness theorem is that being provable in theories like Q and PA, as well as
validity in systems like ND and AD are not among the decidable relations. Thus there
are important limits on what computing devices can do.

Chapter 12 lays down background required for chapters that follow. It begins
with a discussion of recursive functions, and concludes with a few essential results,
including a demonstration of the ı̃ncompleteness of arithmetic. Chapters 13 and 14
deepen and extend those results in different ways. Chapter 13 shows ı̃ncompleteness
again by the construction of a sentence such that neither it nor its negation is provable,
and then turns to demonstration of the second ı̃ncompleteness theorem. Chapter 14
shows once more that there must exist a sentence such that neither it nor its negation
is provable, but this time in association with an account of computability. Chapter 12
is required for either Chapter 13 or Chapter 14; but those chapters may be taken in
either order.

3We are familiar with the Pythagorean Theorem according to which the hypotenuse and sides of a
right triangle are such that a2 = b2 c2. In the 1600s Pierre de Fermat famously proposed that there
are no integers a; b; c such that an = bn cn for n 2; so, for example, there are no a; b; c such that
a3 = b3 c3. In 1995 Andrew Wiles proved that this is so. But Wiles’s proof requires some fantastically
abstract (and difficult) mathematics. Even if Wiles’s abstract theory (I ) is not true Hilbert could still
accept the demonstration of Fermat’s (real) theorem so long as I is shown to be consistent. Gödel’s
result seems to block this strategy. There are alternative conceptions of the Hilbert program. And, of
course, one might simply accept Wiles’s proof on the ground that his advanced mathematics is s̃ound and
so its consequences true. But these are topics in philosophy of mathematics, not logic. See, for example,
Shapiro, Thinking About Mathematics for an introduction to options in the philosophy of mathematics
including Hilbert’s program. Our limiting results may very well stimulate interest in that field!



Chapter 12

Recursive Functions and Q

We have said that a formal theory consists of a language, with some axioms and proof
system. The theorems of a theory are all the formulas proved by its axioms. Q and
PA are example theories. A theory is sound with respect to a class of models iff its
theorems are true on every member of the class, and s̃ound iff it is sound with respect
to a class of intended models. From T11.9, a theory is s̃ound iff its intended models
are among the ones on which its axioms are true. A theory is complete with respect
to a class of models iff its theorems include every formula true on all the members
of that class. From T11.11, a theory is complete with respect to some models if they
include the models on which its axioms are true. A theory T is (negation) c̃omplete
iff for any sentence P either T ` P or T ` �P ; and models are elementarily
equivalent iff they make all the same formulas true. Then from T11.16, a theory is
c̃omplete iff it is complete with respect to some class of models whose members are
elementarily equivalent, and in particular iff models on which its axioms are true are
elementarily equivalent. A theory whose proof system is s̊ound and c̊omplete is sound
and complete with respect to the class of all models on which its axioms are true. But
s̊oundness and c̊ompleteness do not by themselves yield s̃oundness and c̃ompleteness.
S̃oundness requires also that intended models are among models on which the axioms
are true, and c̃ompleteness that models on which the axioms are true are elementarily
equivalent.

Let us pause to consider why s̃oundness and c̃ompleteness matter: Consider a
theory and some intended interpretation. Say we want to characterize by means of
the theory all and only sentences that are true on the interpretation. If the theory is
not s̃ound, then some theorem P is not true on the interpretation; but then with Gen
its universal closure P u is a theorem, and by by T7.6, is not true. So if a theory is
not s̃ound, its theorems include sentences that are not true. And from E8.29, as soon
as a language L has an interpretation I, for any sentence P in L, either IŒP � = T
or IŒ�P � = T. So if theorems are to include all the sentences that are true on some
interpretation, the theory must have among its consequences P or �P for every
P . Put the other way around, if a theory is not such that for any P , either T ` P

563
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or T ` �P (if it is ı̃ncomplete), then it is sure to omit some sentences true on the
interpretation. To the extent that we desire a characterization of all and only sentences
true on an interpretation, for arithmetic or whatever, a s̃ound and c̃omplete theory is a
desirable theory.

Demonstrating s̃oundness is a matter of showing that axioms are true on some
intended interpretation(s). As exhibited by controversies about the axioms of set
theory, this can be both difficult and controversial (see, for example, Feferman, “Does
Mathematics Need New Axioms?”). But some cases are clear enough: In particular,
by reasoning from E7.19, the axioms of Q are true on its intended model N; and so
with T11.9, Q is s̃ound.

So we focus on c̃ompleteness. C̃ompleteness is sometimes, but not always at-
tainable. In section 11.4.3 we saw that there are c̃omplete theories whose theorems
include all the sentences true on a finite model. Similarly there is a c̃omplete theory S
for the standard interpretation of a language like LNT but withoutC and � (and so with
;, S , andD), and a c̃omplete theory L for the standard interpretation of a language
like LNT

< without C and � (and so with ;, S , <, and D). By similar methods, it is
possible to show that there is a c̃omplete theory Pr (Presburger Arithmetic) for the
standard interpretation of a language like LNT but without �; and there is a c̃omplete
theory of real closed fields (RCF) for the standard interpretation of a language with
constants ; and 1, function symbols C, �, �, and relation symbols D and < on a
universe of the real numbers. From the existence of these c̃omplete theories, one
might reasonably hope for a c̃omplete theory for the standard interpretation of LNT.
But this hope is not to be realized. There is no nicely specified s̃ound and c̃omplete
theory for the arithmetic of LNT which includes ;, S ,C, �, andD.

It turns out that theories are something like superheros: In the ordinary case,
a c̃omplete, and so a “happy” life is at least within reach. However, as theories
acquire certain powers, they take on a “fatal flaw” just because of their powers—
where this flaw makes c̃ompleteness unattainable. On its face, theory Q does not
appear particularly heroic. We have seen already from T10.5 and E7.19 that Q °
8x8y.x � y D y � x/ and Q ° �8x8y.x � y D y � x/. So Q is negation
ı̃ncomplete. PA which does prove x � y D y � x along with other standard results in
arithmetic might seem a more likely candidate for heroism. But Q already includes
features sufficient to generate the fatal flaw—and a theory, like PA, which includes all
the powers of Q must have the flaw as well. Our task in this chapter and the beginning
of the next is to identify that flaw.1

As it happens, a system with the powers of Q including ;, S ,C, and � can express
and capture all the recursive functions, where this power is essential to having the
fatal flaw. Thus in this chapter we focus on the recursive functions (and recursive

1Interestingly, although RCF has many powers, it lacks certain of the powers of Q and so does
not possess the flaw. This is because no formula in the language of RCF is true just of the natural
numbers—and it is therefore not possible in this language to make general claims according to which
the natural numbers have this property or that.
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relations built upon them), associate them with powers of our formal systems, and
show how these powers result in the flaw. We begin in section 12.1 saying what
recursive functions are; then in 12.2 and 12.3 we show that LNT expresses and Q
captures the recursive functions; 12.4 assigns numbers to formulas and sequences
of formulas and extends the range of recursive functions and relations to include a
relation that identifies proofs. Finally, from these results, 12.5 concludes with some
applications, including the ı̃ncompleteness of arithmetic.

12.1 Recursive Functions

In chapters 3 and 6 for Q and PA we had axioms of the sort,

a: x C ; D x

b: x C Sy D S.x C y/
and

c: x � ; D ;

d: x � Sy D .x � y/C x

These enable us to derive x C y and x � y for arbitrary values of x and y. Thus,
by (a) 2C 0 D 2; so by (b) 2C 1 D 3; and by (b) again, 2C 2 D 4; and so forth.
From the values at any one stage, we are in a position to calculate values at the next.
And similarly for multiplication. From pages 303–304 of Chapter 6 all this should be
familiar.

While axioms thus supply effective means for calculating the values of these
functions, the functions themselves might be similarly identified or specified. So,
given a successor function suc.x/, we may identify the functions plus.x; y/:

a: plus.x; 0/ = x
b: plus.x; suc.y// = suc.plus.x; y//

and times.x; y/:

c: times.x; 0/ = 0
d: times.x; suc.y// = plus.times.x; y/; x/

For ease of reading, let us typically revert to the more ordinary notation S,C, and �
for these functions, though we stick with the sans serif font (emphasized forC and �).
We have been thinking of functions as certain complex sets. Thus the plus function
is a set with elements f: : : ; hh2; 0i; 2i; hh2; 1i; 3i; hh2; 2i; 4i; : : :g. Our specification
picks out this set. From (a), plus.x; y/ has hh2; 0i; 2i as a member; given this, from
(b), hh2; 1i; 3i is a member; and so forth. So the two clauses work together to specify
the plus function. And similarly for times. In each case, the first clause gives the
value for y = 0, and the second for Sy given the value for y.

But these are not the only sets which may be specified this way. Thus the standard
factorial fact.y/:
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e: fact.0/ = 1
f: fact.Sy/ = fact.y/ � Sy

Zero factorial is one. And the factorial of Sy multiplies 1 � 2 � � � � � y by Sy. Again,
we will often revert to the more typical xŠ notation. Similarly power.x; y/:

g: power.x; 0/ = 1
h: power.x;Sy/ = power.x; y/ � x

Any number to the power of zero is one (x0 = 1). And then xSy multiplies xy =
x � x � � � � � x (y times) by another x. Again, we revert to the more standard notation.

We shall be interested in a class of functions, the recursive functions, which may
be specified (in part) by this strategy. To make progress, we turn to a general account
in five stages.

12.1.1 Initial Functions

Our examples have simply taken suc.x/ as given. Similarly, we shall require a stock
of initial functions. Recursive functions operate on and take values in the natural
numbers. Thus we continue to allow variables and constants as x and 0, whose values
are natural numbers. Then there are initial functions of three different types.

(i) zero./ is the very simple function which “operates” on nothing to return the
value 0. It may be strange to think of a function without inputs, however it
will streamline things to come if we do. A one-place function has members
of the sort hx; vi and so is really a kind of restricted two-place relation; and,
generally, we can see an n-place function as a restricted .n 1/-place relation.
Then a 0-place function is a 1-place relation, whose restriction requires that it
has a single member—in this case, h0i. And it is hard to imagine a simpler
function—zero./ is the constant zero-place function that always returns the
number 0.2

(ii) For any j k 1, there is an identity function idntjk.x1 : : : xj/. Again, the identity
functions are very simple. Each idntjk has j places and returns the value from the
kth place; that is, for a k such that 1 k j, idntjk = fhhx1 : : : xji; xki j x1 : : : xj 2

Ng. So idnt32 = f: : : ; hh1; 2; 3i; 2i; : : : ; hh4; 5; 6i; 5i; : : :g and idnt32.4; 5; 6/ = 5.
In the simplest case, idnt11.x/ = x.

(iii) Finally, we shall continue to include suc.x/ among the initial functions. suc.x/
returns the number following x on the usual ordering of the natural numbers;
that is, suc.x/ = fhx; x 1i j x 2 Ng. So suc.x/ = fh0; 1i; h1; 2i; h2; 3i; : : :g and
suc.1/ = 2.

2This generalizes the usual account on which a function is a set of pairs (as from the Chapter 4
set theory reference). For a zero-place function the restriction Am1 : : : AmnAaAbŒ.hm1 : : :mn; ai 2
f M hm1 : : :mn; bi 2 f/) a = b� reduces to AaAbŒ.hai 2 f M hbi 2 f/) a = b�.
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These are very simple building blocks. However we shall be able to use them to
produce functions of amazing complexity!

12.1.2 Composition

In our examples, we have let one function be composed from others—as when
we consider suc.plus.x; y// or the like. Say Ex, Ey, and Ez represent possibly-empty
sequences of variables x1 : : : xa, y1 : : : yb, and z1 : : : zc (by an expression familiar
from geometry, we sometimes refer to such a sequence as a vector).

CM Let g.Ey/ and h.Ex;w; Ez/ be any functions. Then f.Ex; Ey; Ez/ is defined by composition
from g.Ey/ and h.Ex;w; Ez/ iff f.Ex; Ey; Ez/ = h.Ex; g.Ey/; Ez/.

So h.Ex;w; Ez/ gets its value in the w-place from g.Ey/. Here is a simple example:
f.y; z/ = times.suc.y/; z/ results by composition from substitution of suc.y/ into
times.w; z/; so times.w; z/ gets its value in the w-place from suc.y/. The result is
a set with members, f: : : ; hh2; 0i; 0i; hh2; 1i; 3i; hh2; 2i; 6i; : : :g. When the input to
f.y; z/ is, say, h2; 1i, suc.y/ receives the input 2 and supplies 3 to the first place of the
times.w; z/ function; then from times.w; z/ the result is the product of 3 and 1 which
is 3. And similarly in other cases. In contrast, suc.y�z/ has members f: : : ; hh2; 0i; 1i;
hh2; 1i; 3i; hh2; 2i; 5i; : : :g. You should see how this works.

Here are a couple of cases we shall have occasion to use just below: First, for any
n 0 and (possibly empty) Ex = x1 : : : xn,

zeron.x1 : : : xn/ = idntnC1
nC1.x1 : : : xn; zero.//

So zeron.x1 : : : xn/, has free variables x1 : : : xn but always returns 0. Observe that
zero0./ = idnt11.zero.// = zero./ = 0. In the ordinary case, we drop the superscript n
and take the number of places from context. Second,

yn =

n instances of suc‚ …„ ƒ
suc.suc.: : : suc.zero.//::://

yn is a zero-place function that returns the number n. So we have y1 = suc.zero.// = 1
and y0 = zero./ = 0.

12.1.3 Recursion

For each of our examples, plus.x; y/, times.x; y/, fact.y/, and power.x; y/, the value
of the function is set for y = 0 and then for suc.y/ given its value for y. These illustrate
the method of recursion. Put generally, where Ex is a possibly empty sequence x1 : : : xn,

RD Given some functions g.Ex/ and h.Ex; y; u/, f.Ex; y/ is defined by recursion when,

f.Ex; 0/ = g.Ex/
f.Ex;Sy/ = h.Ex; y; f.Ex; y//
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So there are functions g.Ex/ and h.Ex; y; u/. Then f.Ex; 0/ gets its value from g.Ex/; and
f.Ex;Sy/ gets its value from h with the value of f.Ex; y/ substituted for u. Thus as in the
examples above, we fix the value of f.Ex; 0/ and then set the value at any other stage
depending on the stage before.

We adopt the general scheme so that we can operate on recursive functions in a
consistent way. However the general scheme includes flexibility that is not always
required. So, for example, in the cases of plus, times, and power, Ex reduces to
a simple variable x, and for fact it disappears entirely. And, as we shall see, the
functions g.Ex/ and h.Ex; y; u/ need not depend on each of their variables Ex and Ex, y,
and u. However, by clever use of our initial functions, it is possible to see each
of our sample functions on this pattern. Thus for plus.x; y/, set gplus.x/ = idnt11.x/
and hplus.x; y; u/ = suc.idnt33.x; y; u//. Then by RD, plus.x; 0/ is set to gplus.x/ and
plus.x;Sy/ to hplus.x; y; plus.x; y//.

a0 plus.x; 0/ = idnt11.x/
b0 plus.x;Sy/ = suc.idnt33.x; y; plus.x; y///

And these work as they should: idnt11.x/ = x and suc.idnt33.x; y; plus.x; y/// is equiva-
lent to suc.plus.x; y//. So we recover the conditions (a) and (b) from above. Similarly,
for times.x; y/ let gtimes.x/ = zero.x/ and htimes.x; y; u/ = plus.idnt33.x; y; u/; x/.
Then,

c0 times.x; 0/ = zero.x/
d0 times.x;Sy/ = plus.idnt33.x; y; times.x; y//; x/

So times.x; 0/ = 0 and times.x;Sy/ = plus.times.x; y/; x/, and all is well. Observe
that we would obtain the same result with htimes.x; y; u/ = plus.u; idnt31.x; y; u// or
perhaps, plus.idnt33.x; y; u/; idnt31.x; y; u//.

By the identity functions we standardize the specification of recursive f.Ex; y/ so
that g is always a function of Ex, and h always a function of Ex, y, and u. This will
matter when it comes to reasoning generally about recursive functions. However, as
for multiplication, there may be different ways to produce a function with the desired
characteristics. We might require that variables appear immediately only in identity
functions applied to Ex, and then Ex; y; u. However, this would be needlessly tedious. So
we won’t worry about differences so long as specifications are in the standard form.

Recall that Ex is a possibly empty sequence of variables. For plus and times it has
just a single member. In the case of fact.y/, there are no places to the Ex vector. Then
gfact is reduced to a zero-place function, and hfact to a function of y and u. For fact.y/,
set gfact./ = y1 and hfact.y; u/ = times.u; suc.y//. This time identity functions do
not appear at all: All the variables of gfact./ and hfact.y; u/ appear in a natural way,
and identity functions are not required. It is left as an exercise to show that gfact and
hfact identify the same function as constraints (e), (f), and then to find gpower.x/ and
hpower.x; y; u/.
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The Recursion Theorem
One may wonder whether our specification f.x; y/ by recursion from g.Ex/ and h.Ex; y; u/
results in a unique function. However it is possible to show that it does.

RT Suppose g.Ex/ and h.Ex; y; u/ are total functions on N; then there exists a unique
function f.Ex; y/ such that,
(r) For any Ex and y 2 N,

a. f.Ex; 0/ = g.Ex/

b. f.Ex; suc.y// = h.Ex; y; f.Ex; y//

We identify this function as a union of functions which may be constructed by means of g
and h. The domain of a total function from rn to s is always rn; for a partial function, the
domain of the function is that subset of rn whose members are matched by the function
to members of s (for background see the Chapter 4 set theory reference). Say a (maybe
partial) function s.Ex; y/ is acceptable iff,

i. If hEx; 0i 2 dom.s/, then s.Ex; 0/ = g.Ex/

ii. If hEx; suc.n/i 2 dom.s/, then hEx; ni 2 dom.s/ and s.Ex; suc.n// = h.Ex; n; s.Ex; n//

If g.Ex/ = a and h.Ex; 0; a/ = b, then a partial function s = fhhEx; 0i; ai; hhEx; 1i; big, that
sets s.Ex; 0/ to g.Ex/ and s.Ex; 1/ to h.Ex; 0; s.Ex; 0//, would satisfy (i) and (ii). A function
which satisfies (r) is acceptable, though not every function which is acceptable satisfies (r);
we show that exactly one acceptable function satisfies (r). Let F be the collection of all
acceptable functions, and f be

S
F. Thus hhEx; ni; ai 2 f iff hhEx; ni; ai is a member of some

acceptable s. We sketch reasoning to show that f has the right features.

I. For any acceptable s and s0, if hhEx; ni; ai 2 s and hhEx; ni; bi 2 s0, then a = b. By
induction on n: Suppose hhEx; 0i; ai 2 s and hhEx; 0i; bi 2 s0; then by (i), a = b =
g.Ex/. Assume that if hhEx; ki; ai 2 s and hhEx; ki; bi 2 s0 then a = b. Show that if
hhEx; suc.k/i; ci 2 s and hhEx; suc.k/i; di 2 s0 then c = d. Suppose hhEx; suc.k/i; ci 2 s
and hhEx; suc.k/i; di 2 s0. Then by (ii), hEx; ki is in the domain of both s and s0, with
c = h.Ex; k; s.Ex; k// and d = h.Ex; k; s0.Ex; k//. But by assumption s.Ex; k/ = s0.Ex; k/; so
c = d.

II. dom.f/ includes every hEx; ni. By induction on n: For any Ex, fhhEx; 0i; g.Ex/ig is itself
an acceptable function. Assume that for any Ex, hEx; ki 2 dom.f/. Show that for
any Ex, hEx; suc.k/i 2 dom.f/. Suppose otherwise, and consider a function, s = f [
fhhEx; suc.k/i; h.Ex; k; f.Ex; k//ig. But we may show that s so defined is an acceptable
function; and since s is acceptable, it is a subset of f; so hEx; suc.k/i 2 dom.f/. Reject
the assumption.

III. Now by (I), if hhEx; ni; ai 2 f and hhEx; ni; bi 2 f, then a = b; so f is a function; and by
(II) the domain of f includes every hEx; ni; by construction it is easy to see that f is
itself acceptable. From these, f satisfies (r). Suppose some f0 also satisfies (r); then f0

is acceptable; so by construction, f0 is a subset of f; but since f0 satisfies (r), its domain
includes every hEx; ni; so f0 = f. So (r) is uniquely satisfied.

Intuitively, the acceptable functions are defined on initial segments of the natural numbers,
and the union of them all is a function defined on the entire domain.
*We employ weak induction from the Chapter 8 (page 367) induction schemes reference. Enderton,
Elements of Set Theory, and Drake and Singh, Intermediate Set Theory, include nice discussions of
this result.
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12.1.4 Regular Minimization

So far, the method of our examples is easily matched to the capacities of computing
devices. To find the value of a function defined by recursion, begin by finding the
value for y = 0, and then calculate other values, from one stage to the next. But this
is just what computing devices do well. So, for example, in the syntax of the Ruby
language,3 given some functions g(x) and h(x,y,u),

(A)

1. def recfunc(a,b)

2. f = g(a)

3. for y in 0..b-1

4. f = h(a,y,f)

5. end

6. return f

7. end

Here f tracks the value of the function for different values of y. First, the program
uses g(a) to set the value of f for input (a, 0). Lines (3)–(5) are a loop which begins
at y = 0 using h with a, y, and f to find the value of f for (a, 1); the program then
increments y to 1 and uses h with a and current values of y and f to find f for (a, Sy);
this continues until it uses h with a, y = b - 1, and f to find the value of the function
for (a, b). And it returns the final result. This strategy of moving from one value to
the next corresponds to the way we moved from one value to the next for addition and
multiplication in Chapter 6. Observe that the calculation of recfunc(a,b) requires
exactly b iterations before it completes.

But there is a different repetitive mechanism available for computing devices—
where this mechanism does not begin with a fixed number of iterations. Suppose we
have some function g(a,b) with values g(a,0), g(a,1), g(a,2), . . . where for each
value of a there are at least some values of b such that g(a,b) = 0. For any value of a,
suppose we want the least b such that g(a,b) = 0. Then we might reason as follows:

(B)

1. def minfunc(a)

2. y = 0

3. until g(a,y) == 0

4. y = y + 1

5. end

6. return y

7. end

This program begins with y = 0. Then lines (3)–(5) are a loop which tests tests to see
if g(a,y) = 0; if it is not, it increments the value of y and tries again. Once it finds a
y such that g(a,y) = 0, it exits the loop and returns the value of y. Supposing that for
any a there are some values of b such that g(a,b) = 0, then, this program returns a
value of y for any input value a.

3Ruby is convenient insofar as it is interpreted and so easy to run, and available at no cost on
multiple platforms (see http://www.ruby-lang.org/en/downloads/). We depend only on very
basic features familiar from most any exposure to computing. See E12.3 and related exercises.

http://www.ruby-lang.org/en/downloads/
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But, as before, we might reason similarly to specify functions so calculated. For
this, recall from the Chapter 4 set theory reference that a function is total iff it is
defined on all members of its domain. Say a function g.Ex; y/ is regular iff it is total
and for all values of Ex there is at least one y such that g.Ex; y/ = 0. Then,

RM If g.Ex; y/ is a regular function, the function f.Ex/ = �yŒg.Ex; y/ D y0� which for
each Ex takes as its value the least y such that g.Ex; y/ = 0 is defined by regular
minimization from g.Ex; y/.

For a simple example, consider a function g.x; y/ which takes nonempty subsets of N

for x and members of N for y; suppose g.x; y/ = 0 if y 2 x and otherwise g.x; y/ = 1.
So, for example,

g.f2; 4; 6g; 0/ g.f2; 4; 6g; 1/ g.f2; 4; 6g; 2/ g.f2; 4; 6g; 3/ g.f2; 4; 6g; 4/
+ + + + + � � �

1 1 0 1 0

This function is regular so long as sets in the x-place are nonempty; if x is empty
then g.x; y/ returns 1 for each value of y and the function is not regular. Supposing,
then, that the sets are nonempty f.x/ = �yŒg.x; y/ D y0� is always the least element of
x. Notice that a loop which checks whether numbers up to a fixed n are in the set will
not do—for the least element could always be larger than that. But, so long as the sets
have members, our open-ended search is sure to return a result. In our simple case,
�yŒg.f2; 4; 6g; y/ D y0� = 2.

12.1.5 Final Definition

Finally, our sample functions are cumulative. Thus plus.x; y/ depends on suc.x/,
times.x; y/ on plus.x; y/, and so forth. We are thus led to our final account.

RF A function fk is recursive iff there is a series of functions f0; f1; : : : ; fk such that
for any i k,

(i) fi is an initial function zero./, idntjk.x1 : : : xj/, or suc.x/.

(c) There are a; b i such that fi.Ex; Ey; Ez/ results by composition from fa.Ey/
and fb.Ex;w; Ez/.

(r) There are a; b i such that fi.Ex; y/ results by recursion from fa.Ex/ and
fb.Ex; y; u/.

(m) There is some a i such that fi.Ex/ results by regular minimization from
fa.Ex; y/.

If there is a series of functions f0, f1, . . . , fk such that for any i k, just (i), (c), or (r),
then (PR) fk is primitive recursive.
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So any recursive function results from a series of functions each of which satisfies
one of these conditions. And such a series demonstrates that its members are recursive.
For a simple example, plus is primitive recursive.

(C)

1. idnt11.x/ initial function
2. idnt33.x; y; u/ initial function
3. suc.w/ initial function
4. suc.idnt33.x; y; u// 2,3 composition
5. plus.x; y/ 1,4 recursion

And we might recast this list into a tree like ones from Part I, starting with initial
functions on the top, and others built from ones above. From the list by itself, one
might reasonably wonder whether plus.x; y/, so defined, is the addition function
we know and love. What follows, given primitive recursive functions idnt11.x/ and
suc.idnt33.x; y; u// is that a primitive recursive function results by recursion from
them. It turns out that this is the addition function. It is left as an exercise to exhibit
times.x; y/ as primitive recursive as well.

*E12.1. (i) Show that the proposed gfact and hfact.y; u/ result in conditions (e) and (f).
Then (ii) produce a defininition for power.x; y/ by finding functions gpower.x/,
and hpower.x; y; u/ and then show that they have the same result as conditions (g)
and (h).

E12.2. Generate a sequence of functions sufficient to show that times.x; y/ is primitive
recursive.

E12.3. Find the textbook website, https://tonyroyphilosophy.net/symbolic-
logic/, and install some convenient version of Ruby on your computing platform
(see the file “Running Ruby” for help). Open recursive1.rb and extend the
sequence of functions there to include fact(x) and power(x,y). Calculate some
values of these functions and print the results, along with your program (do not
worry if these latter functions run slowly for even moderate values of x and y).
This assignment does not require any particular computing expertise—especially,
there should be no appeal to functions except from earlier in the chain. This
exercise exhibits the recursive functions in action and suggests a point, to be
developed in Chapter 14, that recursive functions are computable.

12.2 Expressing Recursive Functions

Having identified the recursive functions, we turn now to the first of two powers to be
associated with theory ı̃ncompleteness. In this case, it is an expressive power. Recall
that a theory is s̃ound iff it is sound with respect to a class of intended models; let us

https://tonyroyphilosophy.net/symbolic-logic/
https://tonyroyphilosophy.net/symbolic-logic/
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consider theories whose single intended model is N. In section 12.5.2 (and again in
13.1.2 and 14.2.3) we show that if such a theory is s̃ound and its interpreted language
expresses all the recursive functions, it must be negation ı̃ncomplete. In this section
then, as a basis for that argument, we show that LNT, on its standard interpretation,
expresses the recursive functions.

12.2.1 Definition and First Results

For a language L and interpretation I, suppose that for each m 2 U, there is a variable-
free term m such that I.m/ = m—so for any variable assignment d, IdŒm� = m (see
definition AI in Chapter 8). The simplest way for this to happen is if for each m 2 U
there is a unique constant to which m is assigned; then for any m, m is just that constant.
But the standard interpretation for number theory N also has the special feature that
each member of U is assigned to a variable-free term. On this interpretation the same
object may be assigned to different variable-free terms (as SS; and S; C S; are
each assigned 2). Given this, as in section 8.4, we simply choose to let n be S : : : S;
with n repetitions of the successor operator. So 0 abbreviates the term ;, 1 the term
S;, and so forth.

With such variable-free terms, we shall say that a formula R.x/ expresses a
relation R.x/ on interpretation I, just in case if m 2 R then IŒR.m/� = T and if m … R

then IŒ�R.m/� = T. So the formula is true when the individual is a member of the
relation and false when it is not. To express a relation on an interpretation, a formula
must “say” which individuals fall under the relation. Expressing a relation is closely
related to translation. A formula R.x/ expresses a relation R.x/ when every sentence
R.m/ is a good translation of the sentence m 2 R on the single intended interpretation
I (compare section 5.1). Thus, generalizing,

EXr For any language L, interpretation I, and objects m1 : : :mn 2 U, relation
R.x1 : : : xn/ is expressed by formula R.x1 : : : xn/ iff,

(i) if hm1 : : :mni 2 R then IŒR.m1 : : :mn/� = T

(ii) if hm1 : : :mni … R then IŒ�R.m1 : : :mn/� = T

Say R.x1 : : : xn/ is expressed by R.x1 : : : xn/. By (i) if hm1 : : :mni 2 R then IŒR.m1

: : :mn/� = T. And from (ii) if hm1 : : :mni … R then IŒ�R.m1 : : :mn/� = T; then since
R.m1 : : :mn/ is a sentence, with T8.8, IŒR.m1 : : :mn/� = T. So hm1 : : :mni 2 R iff
IŒR.m1 : : :mn/� = T—with T8.7, iff IdŒR.m1 : : :mn/� = S for some assignment d.

Similarly, a one-place function f.x/ is a kind of two-place relation. Thus to express
a function f.x/, we require a formula F .x; v/ where if hm; ai 2 f, then IŒF .m; a/� = T.
It would be natural to go on to require that if hm; ai … f then IŒ�F .m; a/� = T.
However this is not necessary once we build in another feature of functions—that they
have a unique output for each input value. Thus we shall require,
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EXf For any language L, interpretation I, and objects m1 : : :mn; a 2 U, function
f.x1 : : : xn/ is expressed by formula F .x1 : : : xn; v/ iff,

if hhm1 : : :mni; ai 2 f then,

(i) IŒF .m1 : : :mn; a/� = T

(ii) IŒ8z.F .m1 : : :mn; z/! a D z/� = T

When hhm1 : : :mni; ai 2 f, from (i) F is true for a; and from (ii) any z for which it is
true is identical to a.4

Let us illustrate these definitions with some first applications. First, on any
interpretation with the required variable-free terms, the formula x D y expresses the
equality relation EQ.x; y/. For if hm; ni 2 EQ then IŒm� = IŒn� so that IŒm D n� = T; and
if hm; ni … EQ then IŒm� = IŒn� so that IŒm ¤ n� = T. This works because IŒD� just is
the equality relation EQ. Turning to some functions, on the standard interpretation N
for number theory, zero./ is expressed by the formula 0 D v. For if hai 2 zero./ then
a is just 0 so that NŒ0 D a� = T and NŒ8z.0 D z ! a D z/� = T; so both EXf(i) and
EXf(ii) are satisfied. Similarly, on the standard interpretation N for number theory,
suc.x/ is expressed by Sx D v, plus.x; y/ by xCy D v, and times.x; y/ by x�y D v.
Taking just the addition case, suppose hhm; ni; ai 2 plus; then NŒm C n D a� = T.
And because addition is a function, NŒ8z..mC n D z/! a D z/� = T. Again, this
works because NŒC� just is the plus function. And similarly in the other cases. Put
more generally,

T12.1. For an interpretation on which members of the universe are assigned to the
required variable-free terms: (a) If R is a relation, and IŒR� = R.x1 : : : xn/, then
R.x1 : : : xn/ is expressed by Rx1 : : : xn. And (b) if h is a function and IŒh� =
h.x1 : : : xn/ then h.x1 : : : xn/ is expressed by hx1 : : : xn D v.

It is possible to argue semantically for these claims. However, as for translation,
we take the project of demonstrating expression to be one of providing or supplying
relevant formulas. So, having supplied formulas to express the basic functions
and relations, we are done.

Notice that the case for zero./ generalizes to other 0-place functions, so that yn is
expressed by n D v. For if hai 2 yn, then a just is n and we have both NŒn D a� = T
and NŒ8z.n D z ! a D z/� = T.

Also, as we have suggested, EXf(ii) yields a condition like EXr(ii). Recall that a
function is total just in case it has an output for any input.

4There is a problem of terminology for ‘expression’. Different texts offer somewhat different
definitions and employ somewhat different vocabulary. The best advice is to pay close attention to details
in any particular work.
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T12.2. If total function f.x1 : : : xn/ is expressed by formula F .x1 : : : xn; y/, then if
hhm1 : : :mni; ai … f, IŒ�F .m1 : : :mn; a/� = T.

For simplicity, consider just a one-place total function f.x/. Suppose f.x/ is
expressed by F .x; y/ and hm; ai … f. Then since f is total, there is some b = a
such that hm; bi 2 f.

Suppose IŒ�F .m; a/� = T; then by TI, for some d, IdŒ�F .m; a/� = S; let h be a par-
ticular assignment of this sort; so IhŒ�F .m; a/� = S; so by SF(�), IhŒF .m; a/� = S.
But since hm; bi 2 f by EXf(ii), IŒ8z.F .m; z/ ! b D z/� = T; so by TI, for
any d, IdŒ8z.F .m; z/ ! b D z/� = S; so IhŒ8z.F .m; z/ ! b D z/� = S;
so by SF(8), Ih.zja/ŒF .m; z/ ! b D z� = S; so since IhŒa� = a, by T10.2,
IhŒF .m; a/ ! b D a� = S; so by SF(!), IhŒF .m; a/� = S or IhŒb D a� = S; so
IhŒb D a� = S; but IhŒa� = a and IhŒb� = b; so by SF(r), hb; ai 2 IŒD�; so b = a.
This is impossible; reject the assumption: If f.x/ is expressed by F .x; y/ and
hm; ai … f, then IŒ�F .m; a/� = T.

Suppose f.x1 : : : xn/ is expressed by formula F .x1 : : : xn; y/. From the definition, if
hhm1 : : :mni; ai 2 f then IŒF .m1 : : :mn; a/� = T. And by this theorem with T8.8,
if hhm1 : : :mni; ai … f then IŒF .m1 : : :mn; a/� = T. So hhm1 : : :mni; ai 2 f iff
IŒF .m1 : : :mn; a/� = T—with T8.7, iff IdŒF .m1 : : :mn; a/� = S for some assignment
d. For the most part, I appeal to definitions EXr and EXf, along with the resultant
biconditionals, just ‘by expression’.

E12.4. Provide semantic reasoning to demonstrate the first part of T12.1. So assume
IŒR.x1 : : : xn/� = R.x1 : : : xn/. Then show (i) if hm1 : : :mni 2 R then IŒR.m1 : : :

mn/� = T; and (ii) if hm1 : : :mni … R then IŒ�R.m1 : : :mn/� = T.

12.2.2 Core Result

So far, on interpretation N, we have been able to express the relation eq, and the
functions, zero./, suc, plus, and times. But our aim is to show that, on the standard
interpretation N of LNT, given some Ex = x1 : : : xn and Ex = x1 : : :xn, every recursive
function f.Ex/ is expressed by some formula F .Ex;v/.

However it is not obvious that this can be done. At least some functions must
remain inexpressible in any language that has a countable vocabulary, and so in LNT.
We shall see a concrete example later in the chapter. For now, consider a diagonal
argument: By reasoning as from T10.7 there is an enumeration of all the formulas
in a countable language. Isolate just formulas P0;P1;P2; : : : that express functions
of one variable, and consider the functions f0.x/; f1.x/; f2.x/; : : : so expressed. These
are all the expressible functions of one variable. Consider a grid with the functions
listed down the left-hand column, and their values for each natural number from left
to right:
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0 1 2 � � �

f0.x/ f0.0/ f0.1/ f0.2/
f1.x/ f1.0/ f1.1/ f1.2/
f2.x/ f2.0/ f2.1/ f2.2/
:::

Moving along the main diagonal, consider a function fd.x/ such that for any n, fd.n/ =
fn.n/ 1. So fd.x/ is fh0; f0.0/ 1i; h1; f1.1/ 1i; h2; f2.2/ 1i; : : :g. But this function
fd.x/ cannot be any of the expressible functions. It differs from f0.x/ insofar as
fd.0/ = f0.0/; it differs from f1.x/ insofar as fd.1/ = f1.1/; and so forth. So fd.x/
is an inexpressible function. Though it has a unique output for every input value,
there is no formula to express it. We have already seen that the recursive plus.x; y/
and times.x; y/ are expressible in LNT. But there is no obvious mechanism in LNT to
express, say, fact.x/. Given that not all functions are expressible, it is a significant
matter, then, to see that all the recursive functions are expressible with interpretation
N in LNT. It is to this task that we now turn.

We begin with some preliminary theorems to set up the main result. These are
not hard, but need to be wrapped up before we can attack the main problem. For
interpretation N, they work like derived clauses to SF for inequalities and bounded
quantifiers.

T12.3. On the standard interpretation N for LNT, (i) NdŒs � t� = S iff NdŒs� NdŒt�,
and (ii) NdŒs < t� = S iff NdŒs� NdŒt�.

(i) By abv NdŒs � t� = S iff NdŒ9u.u C s D t/� = S where u does not appear
in s or t; by SF0(9), iff there is some m 2 U such that Nd.ujm/Œu C s D t� =
S. But d.ujm/Œu� = m; so by TA(v), Nd.ujm/Œu� = m; let Nd.ujm/Œs� = a and
Nd.ujm/Œt� = b; then by TA(f), Nd.ujm/Œu C s� = NŒC�hm; ai = m a. So by
SF(r), Nd.ujm/Œu C s D t� = S iff hm a; bi 2 NŒD�; iff m a = b. But since
u is not in s or t, d and d.ujm/ make the same assignments to variables in s

and t; so by T8.4, NdŒs� = Nd.ujm/Œs� and NdŒt� = Nd.ujm/Œt�. So m a = b iff
m NdŒs� = NdŒt�; and there exists such an m just in case NdŒs� NdŒt�. So
NdŒs � t� = S iff NdŒs� NdŒt�.

(ii) Homework.

As an immediate corollary, NdŒs � t� = S just in case NdŒs� NdŒt�; and NdŒs < t� = S
just in case NdŒs� NdŒt�. Observe that, as distinguished by context and (slight)
typographical difference, ‘�’ is a symbol of the object language, where ‘ ’ is used to
convey the relation—and similarly in other cases.

T12.4. On the standard interpretation N for LNT,

(a) NdŒ.8x � t /P � = S iff for every o NdŒt�, Nd.xjo/ŒP � = S. And
NdŒ.8x < t/P � = S iff for every o NdŒt�, Nd.xjo/ŒP � = S.
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(b) NdŒ.9x � t /P � = S iff for some o NdŒt�, Nd.xjo/ŒP � = S. And
NdŒ.9x < t/P � = S iff for some o NdŒt�, Nd.xjo/ŒP � = S.

These are straightforward with T7.7 and T12.3. The case for .8x � t /P is
worked as an example. Recall that x does not appear in t.

(i) Suppose NdŒ.8x � t/P � = S but for some o NdŒt�, Nd.xjo/ŒP � = S. Let
m be a particular individual of this sort; then m NdŒt� and Nd.xjm/ŒP � = S.
Since NdŒ.8x � t/P � = S, by T7.7a, for all o 2 U, Nd.xjo/Œx � t� = S or
Nd.xjo/ŒP � = S; so Nd.xjm/Œx � t� = S or Nd.xjm/ŒP � = S; so Nd.xjm/Œx � t� = S;
so with T12.3 Nd.xjm/Œx� Nd.xjm/Œt�; but Nd.xjm/Œx� = m; and since x does not
appear in t, d and d.xjm/ agree on assignments to variables in t, so by T8.4
Nd.xjm/Œt� = NdŒt�; so m NdŒt�. This is impossible; reject the assumption: if
NdŒ.8x � t /P � = S then for all o NdŒt�, Nd.xjo/ŒP � = S.

(ii) Suppose that for every o NdŒt�, Nd.xjo/ŒP � = S but NdŒ.8x � t/P � = S.
From the latter, by T7.7a, for some m 2 U, Nd.xjm/Œx � t� = S but Nd.xjm/ŒP � = S.
With the first of these, by T12.3 Nd.xjm/Œx� Nd.xjm/Œt�; but Nd.xjm/Œx� = m; and
since x does not appear in t, d and d.xjm/ agree on assignments to variables in
t, so by T8.4 Nd.xjm/Œt� = NdŒt�; so m NdŒt�; but every o NdŒt� is such that
Nd.xjo/ŒP � = S, so Nd.xjm/ŒP � = S. This is impossible; reject the assumption: if
for every o NdŒt�, Nd.xjo/ŒP � = S then NdŒ.8x � t/P � = S.

Now we are ready for the main result. From definition RF recursive functions
arise in a sequence indexed by the natural numbers. This puts us in a position to
reason about the sequence by mathematical induction. Thus our main argument is an
induction on the sequence of recursive functions. We show that initial functions are
expressed, and then functions from composition, recursion, and regular minimization.
For one key case, we defer discussion into the next section.

T12.5. On the standard interpretation N of LNT, each recursive function f.Ex/ is ex-
pressed by some formula F .Ex;v/.

For any recursive function fa there is a sequence of functions f0; f1; : : : ; fa such
that each member is an initial function or arises from previous members by
composition, recursion, or regular minimization. By induction on functions in this
sequence:

Basis: f0 is an initial function zero./, suc.x/, or idntjk.x1 : : : xj/.

(z) f0 is zero./. Then as described on page 574, f0 is expressed by F .v/ =
0 D v.

(s) f0 is suc.x/. Then by T12.1, f0 is expressed by F .x; v/ = Sx D v.
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(i) f0 is idntjk.x1 : : : xj/. Then f0 is expressed by

F .x1 : : : xj ; v/ = .x1 D x1 ^ : : : ^ xj D xj / ^ xk D v

Suppose hhm1 : : :mji; ai 2 idntjk. Then since a = mk, NŒ.m1 D m1 ^

: : : ^ mj D mj/ ^ mk D a� = T. And any z = mk is equal to a—so that
NŒ8z..m1 D m1 ^ : : : ^mj D mj ^mk D z/! a D z/� = T.5

Assp: For any i , 0 i k, fi.Ex/ is expressed by some F .Ex;v/.

Show: fk.x/ is expressed by some F .Ex;v/.

fk is either an initial function or arises from previous members by compo-
sition, recursion, or regular minimization. If it is an initial function then
reason as in the basis. So suppose fk arises from previous members.

(c) fk.Ex; Ey; Ez/ arises by composition from g.Ey/ and h.Ex;w; Ez/. By assumption
g.Ey/ is expressed by some G . Ey;w/ and h.Ex;w; Ez/ by H .Ex;w; Ez; v/. Given
this, the composition f.Ex; Ey; Ez/ is expressed by F .Ex; Ey; Ez; v/ = 9wŒG . Ey;w/
^H .Ex;w; Ez; v/�.

For simplicity, consider a case where Ex and Ez drop out and Ey is a single
variable y; so F .y; v/ = 9wŒG .y; w/ ^H .w; v/�. Suppose hm; ai 2 fk;
then by composition there is some b such that hm; bi 2 g and hb; ai 2 h.
Because G and H express g and h, NŒG .m; b/� = T and NŒH .b; a/� = T; so
NŒG .m; b/ ^H .b; a/� = T, and NŒ9w.G .m; w/ ^H .w; a//� = T. Further,
by expression, NŒ8w.G .m; w/ ! b D w/� = T and NŒ8z.H .b; z/ !
a D z/� = T; so that for a given m, there is just one w = b and so one z = a
to satisfy G .m; w/^H .w; z/; and NŒ8z.9w.G .m; w/^H .w; z//! a D
z/� = T.

(r) fk.Ex; y/ arises by recursion from g.Ex/ and h.Ex; y; u/. By assumption g.Ex/
is expressed by some G .Ex; v/ and h.Ex; y; u/ is expressed by H .Ex; y; u; v/.
And the expression of fk.Ex; y/ in terms of G and H utilizes Gödel’s “-
function, as developed in the next section.

(m) fk.Ex/ arises by regular minimization from g.Ex; y/. By assumption, g.Ex; y/
is expressed by some G .Ex; y; z/. Then fk.Ex/ is expressed by F .Ex; v/ =
G .Ex; v; 0/ ^ .8y < v/9z.G .Ex; y; z/ ^ 0 ¤ z/.6

Suppose Ex reduces to a single variable and hm; ai 2 f; then hhm; ai; 0i 2 g
and for any n a, hhm; ni; 0i … g.

(a) Since hhm; ai; 0i 2 g, NŒG .m; a; 0/� = T. And since for n a,
hhm; ni; 0i is not in (total function) g, for n a, there is some b = 0 such

5Perhaps it has already occurred to you that idnt32.x; y; z/, say, is expressed by the somewhat cleaner
x D x ^ y D v^ z D z. This illustrates the point that different formulas may express the same function.
Our formulation permits an “economy” of reasoning we shall find convenient (see also note 6).

6We might appeal to the somewhat cleaner G .Ex; v; 0/ ^ .8y < v/�G .Ex; y; 0/. However, our
formulation smooths results down the line—especially, with the negation applied to the atomic equality,
fk.Ex/ is expressed by a †1 formula (as discussed below, page 588).
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that hhm; ni; bi 2 g; so for n a, there is a b such that NŒG .m; n; b/� = T
and NŒ0 ¤ b� = T; so NŒG .m; n; b/ ^ 0 ¤ b� = T; so with T10.2,
Nd.zjb/ŒG .m; n; z/ ^ 0 ¤ z� = S; so NdŒ9z.G .m; n; z/ ^ 0 ¤ z/� = S; so
with T10.2 again, Nd.yjn/Œ9z.G .m; y; z/^0 ¤ z/� = S; and since this is so
for any n a, with T12.4, NdŒ.8y < a/9z.G .m; y; z/ ^ 0 ¤ z/� = S; and
since there are no free variables, NŒ.8y < a/9z.G .m; y; z/ ^ 0 ¤ z/� = T.
So with T8.8, NŒG .m; a; 0/ ^ .8y < a/9z.G .m; y; z/ ^ 0 ¤ z/� = T; so
NŒF .m; a/� = T.

(b) We begin showing that for any n, NŒF .m; n/ ! a D n� = T. For
any n, n a or a = n or a n. (i) Suppose a = n; then NŒa D n� = T;
so NŒF .m; n/ ! a D n� = T. (ii) Suppose n a; then hhm; ni; 0i …
g; so NŒG .m; n; 0/� = T; and since G .m; n; 0/ is a conjunct of F .m; n/,
NŒF .m; n/� = T; so NŒF .m; n/ ! a D n� = T. (iii) Suppose a
n. First, for any b, NŒG .m; a; b/ ^ 0 ¤ b� = T: For any b, 0 = b or
0 = b. Say 0 = b; then NŒ0 ¤ b� = T; so NŒG .m; a; b/ ^ 0 ¤ b� =
T. Say 0 = b; then since hhm; ai; 0i is in (function) g, hhm; ai; bi … g;
so NŒG .m; a; b/� = T; so NŒG .m; a; b/ ^ 0 ¤ b� = T. So for any b,
NŒG .m; a; b/^0 ¤ b� = T; so with T10.2, Nd.zjb/ŒG .m; a; z/^0 ¤ z� = S;
and since this is so for any b, NdŒ9z.G .m; a; z/ ^ 0 ¤ z/� = S; so with
T10.2, Nd.yja/Œ9z.G .m; y; z/ ^ 0 ¤ z/� = S; and since a n, with T12.4,
NdŒ.8y < n/9z.G .m; y; z/ ^ 0 ¤ z/� = S; and since this is a conjunct
of F .m; n/, NŒF .m; n/� = T; so NŒF .m; n/ ! a D n� = T. From (i),
(ii), and (iii), for any n, NŒF .m; n/ ! a D n� = T; so with T10.2,
Nd.ujn/ŒF .m; u/! a D u� = S; so NdŒ8u.F .m; u/! a D u/� = S; and
since there are no free variables, NŒ8u.F .m; u/! a D u/� = T.

Indct: Any recursive f.Ex/ is expressed by some F .Ex; v/.

Some of the reasoning is merely sketched, however the general idea should be clear.7

There might be formulas other than the stated F .Ex; v/ to express a recursive f.Ex/: We
have seen examples already in notes; and similarly, if F .Ex; v/ expresses f.Ex/, then
so does F .Ex; v/ ^A for any tautology A. We shall see an important alternative to
F .Ex; v/ in the following. Let us say that the F .Ex; v/ here-described is the original
formula by which f.Ex/ is expressed. Of course, it remains to fill out the case for the
recursion clause. This is the task of the next section.

E12.5. Show (ii) of T12.3 and the case for .9x � t /P of T12.4. These should be
straightforward, given parts worked in the text.

7Note that we have dropped the (obvious) sub-conclusion for the “show” step of the induction—that
merely repeats the initial “show” line.
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*E12.6. From T12.5 there is some formula to express any recursive function: the
argument by induction works by showing how to construct a formula for each
recursive function. Following the method of our induction, write down formulas
to express the following recursive functions:

a. zero.x/

b. suc.zero.x//

Hint: As setup for the compositions, give each function a different output variable,
where the output to one is the input to the next.

*E12.7. For the (c) clause to T12.5, in the case where Ex and Ez drop out and Ey re-
duces to a single variable y, fill out semantic reasoning to demonstrate that pro-
posed (original) formula satisfies the uniqueness condition for expression—that
NŒ8z.9w.G .m; w/ ^ H .w; z// ! a D z/� = T. In places you may find that
T10.2 will smooth the result.

12.2.3 The “-Function

Suppose a function f.m; n/ is defined by recursion and f.m; n/ = a. Then for the given
value of m, there is a sequence k0; k1; : : : ; kn with kn = a, such that k0 takes some
initial value, and each of the other members is specially related to the one before.
Thus, in the simple case of times.m; n/, if m = 2 then k0 = 0, and each ki adds two to
the one before. So corresponding to 2 � 5 D 10 is the sequence,

0 2 4 6 8 10

whose first member is set by gtimes.2/, where subsequent members result from the
one before by times.2;Sy/ = htimes.2; y; times.2; y//, whose last member is 10. And,
generalizing, we shall be in a position to express functions defined by recursion if
we can express the existence of sequences of integers so defined. We shall be able to
say f.m; n/ = a if we can say “there is a sequence whose first member is g.m/, with
members related one to another by f.m;Sy/ = h.m; y; f.m; y//, whose nth member
(counting from zero) is a.” This is a mouthful. And LNT is not obviously equipped to
do it. In particular, LNT has straightforward mechanisms for asserting the existence
of natural numbers—but on its face, it is not clear how to assert the existence of the
arbitrary sequences which result from the recursion clause.

But Gödel shows a way out. We have already seen an instance of the general
strategy we shall require in our discussion of Gödel numbering from Chapter 10. In
that case, we took a sequence of integers (keyed to vocabulary), g0; g1; : : : ; gn and
collected them into a single Gödel numberG = 2g0 3g1 � � � p

gn
n where 2; 3; : : : ; pn

are the first n primes. By the fundamental theorem of arithmetic, any number has a
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unique prime factorization, so the original sequence is recovered from G by factoring
to find the power of 2, the power of 3, and so forth. So the single integer G represents
the original sequence. And LNT has no problem expressing the existence of a single
integer! Unfortunately, however, this particular way out is unavailable to us insofar as
it involves exponentiation, and the resources of LNT so-far include only S ,C, and �.8

All the same, within the resources of LNT, with the Chinese remainder theorem,
there must be pairs of integers sufficient to represent any finite sequence.9 Consider
the remainder function rem.x; y/ which returns the remainder after x is divided by
y. The remainder of x divided by y equals z just in case z y and for some w,
x = .y w/ z. Then let,

“.p; q; i/ = remŒp;S.q S.i//�

So for some fixed values of p and q the “ function yields different remainders for
different values of i. With the Chinese remainder theorem, for any sequence k0,
k1; : : : ; kn there are some p and q such that for i n, “.p; q; i/ = ki. So p and q
together code the sequence—given p and q to code the sequence, the “-function
returns each member ki as a function of i. Intuitively, when we divide p by S.q S.i//
for i n, the result is a series of n 1 remainders. The theorem tells us that any series
k0, k1; : : : ; kn may be so represented (see the beta function reference on the following
page).

Here is a simple example. Suppose k0, k1, and k2 are 5, 2, 3. We require p and
q such that “.p; q; 0/ D 5, “.p; q; 1/ D 2, and “.p; q; 2/ D 3. The last subscript n in
our series k0, k1, k2 equals 2. As developed in the beta function reference, let s be
the maximum of n; 5; 2; 3, and then set q = sŠ In this case, s = 5 and so sŠ = 120. So
“.p; q; i/ = remŒp;S.120 S.i//�. So as i ranges between 0 and n = 2, we are looking
at,

rem.p; 121/ rem.p; 241/ rem.p; 361/

But 121, 241, and 361 so constructed must have no common factor other than 1;
and under this condition as p varies between 0 and 121 241 361 1 = 10527120
the remainders must take on every possible sequence of remainder values. But the
remainders will be values up to 120, 240, and 360, which is to say, q = sŠ is large
enough that our simple sequence must therefore appear among the sequences of
remainders. In this case, p = 261728 gives rem.p; 121/ = 5, rem.p; 241/ = 2, and
rem.p; 361/ = 3. There may be easier ways to generate this sequence. But there is

8Some treatments begin with a language including exponentiation precisely in order to smooth the
exposition at this stage. But our results are all the more interesting insofar as even the relatively weak
LNT retains powers sufficient for the fatal flaw.

9The remainder theorem generalizes a problem posed in a third-century treatise, Sun Zi Suanjing.
Given finitely many remainder/denominator pairs whose denominators have no primes in common, the
remainder theorem finds a unique numerator to yield the remainder for each denominator.
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Arithmetic for the Beta Function
Say rem.c; d/ is the remainder of c=d. For a sequence, d0; d1; : : : ; dn, let jDj be the product
d0 d1 � � � dn. We say d0; d1; : : : ; dn are relatively prime if no two members have a
common factor other than 1. Then,

I. For any relatively prime sequence d0; d1; : : : ; dn, the sequences of remainders
hrem.c; d0/; rem.c; d1/; : : : ; rem.c; dn/i as c runs from 0 to jDj 1 are all different
from each other.

Suppose otherwise. Then there are c1 and c2, 0 c1 c2 jDj such that
hrem.c1; d0/; : : : ; rem.c1; dn/i is the same as hrem.c2; d0/; : : : ; rem.c2; dn/i. So for
each di, rem.c1; di/ = rem.c2; di/, and there are some a, b and r such that c1 = adi r
and c2 = bdi r; then since the remainders are equal, c2 c1 = bdi adi; so each di

divides c2 c1 evenly. So each di collects a distinct set of prime factors of c2 c1;
and since c2 c1 is divided by any product of its primes, c2 c1 is divided by jDj. So
jDj c2 c1. But 0 c1 c2 jDj so c2 c1 jDj. Reject the assumption: The
sequences of remainders as c runs from 0 to jDj 1 are distinct.

II. For any relatively prime sequence d0; d1; : : : ; dn, the sequences of remainders
hrem.c; d0/; rem.c; d1/; : : : ; rem.c; dn/i as c runs from 0 to jDj 1 are all the possible
sequences of remainders.

There are di possible remainders a number might have when divided by di,
(0; 1; : : : ; di 1). But if rem.c; d0/ takes d0 possible values, rem.c; d1/ may take
its d1 values for each value of rem.c; d0/; and so forth. So the there are jDj possible
sequences of remainders. But as c runs from 0 to jDj 1, by (I), there are jDj different
sequences. So there are all the possible sequences.

III. Let s be the maximum of n; k0; k1; : : : ; kn. Then for 0 i n, the numbers di =
sŠ.i 1/ 1—that is, S.sŠ S.i//—are greater than any kj and relatively prime.

Since s is the maximum of n; k0; k1; : : : ; kn, the first is obvious. To see that the di are
relatively prime, suppose otherwise. Then for some a; b, 0 a b n, sŠ.a 1/ 1
and sŠ.b 1/ 1 have a common factor p; so, absorbing the inner addition, for some
j = a 1 and k = b 1, 0 j k n 1, sŠj 1 and sŠk 1 have a common factor
p. Any number up to s leaves remainder 1 when dividing sŠj 1; so p s. But
since p divides sŠj 1 and sŠk 1 it divides their difference, sŠ.k j/; if p divides sŠ,
then it does not evenly divide sŠj 1; so p does not divide sŠ; so p divides k j. But
0 j k n 1; so k j n; so p n; and since by the construction n s, we get
p s. Reject the assumption: the di are relatively prime.

IV. For any k0; k1; : : : ; kn, there is a pair of numbers p; q such that for i n, “.p; q; i/ = ki.

With s as above, set q = sŠ, and let “.p; q; i/ = remŒp;S.q S.i//�. By (III), for
0 i n the numbers S.q S.i// are relatively prime. So by (II), there are all the
possible sequences of remainders as p ranges from 0 to jDj 1. And since by (III) each
di is greater than any kj, the sequence k0; k1; : : : ; kn is among the possible sequences
of remainders. So there is some p such that the ki are remŒp;S.q S.i//�.
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no shortage of integers (!) so there are no worries about using large ones, and by this
method Gödel gives a perfectly general way to represent the arbitrary finite sequence.

And we can express the “-function with the resources of LNT. Thus, for “.p; q; i/,

B.p; q; i; v/ = .9w � p/Œp = .S.q � Si/ � w/C v ^ v < S.q � Si/�

So v is the remainder after p is divided by S.q � Si/. And for appropriate choice of
p and q, the variable v takes on the values k0 through kn as i runs through the values
0 to n.

Now return to our claim that when a function defined by recursion f.m; n/ = a
there is a sequence k0; k1; : : : ; kn with kn = a such that k0 takes some initial value, and
each of the other members is recursively related to the one before. More officially,
f.Ex; y/ = z just in case there is a sequence k0; k1; : : : ; ky with,

(i) k0 = g.Ex/

(ii) if i y, then kSi = h.Ex; i; ki/

(iii) ky = z

Put in terms of the “-function, this requires f.Ex; y/ = z just in case there are some p, q
such that,

(i) “.p; q; 0/ = g.Ex/

(ii) if i y, then “.p; q;Si/ = h.Ex; i; “.p; q; i//

(iii) “.p; q; y/ = z

By assumption, g.Ex/ is expressed by some G .Ex; v/ and h.Ex; y; u/ by some H .Ex; y; u; v/.
So we can express the combination of these conditions as follows: f.Ex; y/ is expressed
by F .Ex; y; z/ =

9p9qf9vŒB.p; q;;; v/ ^ G .Ex; v/�^

.8i < y/9u9vŒB.p; q; i; u/ ^B.p; q; Si; v/ ^H .Ex; i; u; v/�^

B.p; q; y; z/g

So G is satisfied by the first member; then for any i y, H is satisfied by the i th

member and its successor; and the yth member of the series is z. Observe that we do
not find particular values for p and q—rather it is enough that there is a sequence
whose members meet the recursive conditions.

In the case of factorial, gfact./ = y1 is expressed by G .v/ = .1 D v/ and
hfact.y; u/ = times.u; suc.y// by H .y; u; v/ = .u � Sy D v/. Given this, by our
method, the factorial function is expressed by F .y; z/ =



CHAPTER 12. RECURSIVE FUNCTIONS AND Q 584

9p9qf9vŒB.p; q;;; v/ ^ 1 D v�^

.8i < y/9u9vŒB.p; q; i; u/ ^B.p; q; Si; v/ ^ u � Si D v�^

B.p; q; y; z/g

This expression is long—particularly if expanded to unabbreviate B.10 But the
result is what we want: if hn; ai 2 fac, then NŒF .n; a/� = T and NŒ8w.F .n; w/
! a D w/� = T. Thus we express functions defined by recursion, and complete the
demonstration of T12.5.

So far, our discussion exhibits a formula to express the recursion clause and,
ideally, explains how it works by the “-function. This is sufficient for the rest
of the text—and you may decide to skip directly to exercises. Even so, we can
demonstrate more explicitly that if hm; n; ai 2 f, then (i) NŒF .m; n; a/� = T, and
(ii) NŒ8w.F .m; n; w/ ! a D w/� = T. Suppose Ex reduces to a single variable and
hm; n; ai 2 f. Then there are k0 : : : kn such that g.m/ = k0; kn = a; and there are p; q
such that for 0 i n, “.p; q; i/ = ki, “.p; q;Si/ = kSi, and h.m; i; ki/ = kSi. To manage
long formulas let,

P .p; q; x/ = 9vŒB.p; q;;; v/ ^ G .x; v/�

Q.p; q; x; y/ = .8i < y/9u9vŒB.p; q; i; u/ ^B.p; q; Si; v/ ^H .x; i; u; v/�

Then F .x; y; z/ = 9p9qŒP .p; q; x/ ^ Q.p; q; x; y/ ^ B.p; q; y; z/�. Here is an
outline of reasoning for (i):

Consider an arbitrary variable assignment d. With expression for G and B,
NdŒG .m; k0/� = S and NdŒB.p; q; 0; k0/� = S; so NdŒB.p; q; 0; k0/ ^ G .m; k0/� =
S; so generalizing, NdŒP .p; q;m/� = S. Suppose i n; then with expres-
sion for B and H , NdŒB.p; q; i ; ki/� = S, and NdŒB.p; q; S i ; kSi/� = S, and
NdŒH .m; i ; ki; kSi/� = S; so NdŒB.p; q; i ; ki/^B.p; q; S i ; kSi/^H .m; i ; ki; kSi/�

= S; so NdŒ9u9v.B.p; q; i ; u/ ^ B.p; q; S i ; v/ ^ H .m; i ; u; v//� = S; since
this is so for all i n, with T12.4, NdŒQ.p; q;m; n/� = S. By expression
for B, NdŒB.p; q; n; kn/� = S; so NdŒB.p; q; n; a/� = S. So NdŒP .p; q;m/ ^
Q.p; q;m; n/^B.p; q; n; a/� = S; so generalizing, NdŒF .m; n; a/� = S; and since
d is arbitrary, NŒF .m; n; a/� = T.

Expression yields truth at the level of the parts, and we reason from truth at the level
of the parts to truth for the whole. To see (ii) that NŒ8w.F .m; n; w/! a D w/� = T,
we shall be able to show that uniqueness at the level of the parts yields uniqueness
for the whole. In this case, the result “propagates” from one stage to the next, and we
reason by induction on the value of n. For an outline of the argument, see the box on
the next page.

10Even more, although this G and H express gfact and hfact, they are not the same as the more
complex formulas that would result from composition and such by the method of T12.5.
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T12.5(r.ii)

To show NŒ8w.F .m; n; w/ ! a D w/� = T, it will be convenient to lapse into
induction scheme III from the Chapter 8 induction schemes reference—starting
with n = 0, making the assumption for a single member of the series n, and showing
that it holds for the next.

Basis: Suppose NŒ8w.F .m; 0; w/! k0 D w/� = T; then there is some assignment
h and object b such that NhŒF .m; 0; b/! k0 D b� = S; so NhŒF .m; 0; b/� =
S and NhŒk0 D b� = S. With the latter, k0 = b. With the former, there are
objects p and q such that NhŒP .p; q;m/^Q.p; q;m; 0/^B.p; q; 0; b/� = S;
so .a/ NhŒP .p; q;m/� = S and .b/ NhŒB.p; q; 0; b/� = S. With (a) there is
some v such that NhŒB.p; q; 0; v/^G .m; v/� = S; so .c/ NhŒB.p; q; 0; v/� =
S and .d/ NhŒG .m; v/� = S. By uniqueness, NŒ8z.G .m; z/! k0 D z/� = T;
so with (d ), k0 = v. But by (c) and expression, hp; q; 0; vi 2 “; so by
uniqueness, NŒ8z.B.p; q; 0; z/ ! v D z/� = T; so with (b), v = b; so
k0 = b. This is impossible; reject the assumption: NŒ8w.F .m; 0; w/ !
k0 D w/� = T.

Assp: NŒ8w.F .m; n; w/! kn D w/� = T.

Show: NŒ8w.F .m; Sn; w/ ! kSn D w/� = T. Suppose otherwise; then there is
some assignment h and object b such that NhŒF .m; Sn; b/! kSn D b� = S;
so NhŒF .m; Sn; b/� = S and NhŒkSn D b� = S. With the latter, kSn = b.
With the former, there are objects p and q such that NhŒP .p; q;m/ ^
Q.p; q;m; Sn/ ^ B.p; q; Sn; b/� = S; so .a/ NhŒP .p; q;m/� = S and
.b/ NhŒQ.p; q;m; Sn/� = S and .c/ NhŒB.p; q; Sn; b/� = S. From (b),
NhŒ.8i < Sn/9u9v.B.p; q; i; u/^B.p; q; Si; v/^H .m; i; u; v//� = S; so
with T12.4, .d/ for all i Sn, NhŒ9u9v.B.p; q; i ; u/ ^ B.p; q; S i ; v/ ^
H .m; i ; u; v//� = S; but n Sn, so NhŒ9u9v.B.p; q; n; u/ ^ B.p; q;
Sn; v/ ^ H .m; n; u; v//� = S; so for some u and v, NhŒB.p; q; n; u/ ^
B.p; q; Sn; v/ ^ H .m; n; u; v/� = S; so .e/ NhŒB.p; q; n; u/� = S and
.f / NhŒB.p; q; Sn; v/� = S and .g/ NhŒH .m; n; u; v/� = S; since any
i n is less than Sn, by (d ), for all i n, NhŒ9u9v.B.p; q; i ; u/ ^
B.p; q; S i ; v/^H .m; i ; u; v//� = S, so with T12.4 .h/ NhŒQ.p; q;m; n/� =
S; so with (a; h; e) NhŒP .p; q;m/ ^ Q.p; q;m; n/ ^ B.p; q; n; u/� = S;
generalizing, NhŒF .m; n; u/� = S; so with the assumption, kn = u; so
with (g), NhŒH .m; n; kn; v/� = S; but by uniqueness, NŒ8z.H .m; n; kn; z/

! kSn D z/� = T; so kSn = v; so with (f ), NhŒB.p; q; Sn; kSn/� = S; so
by expression hp; q;Sn; kSni 2 “; so by uniqueness, NŒ8z.B.p; q; Sn; z/
! kSn D z/� = T; and since from (c) NhŒB.p; q; Sn; b/� = S, kSn = b. This
is impossible.

Indct: For any n, NŒ8w.F .m; n; w/! kn D w/� = T.

So NŒ8w.F .m; n; w/! a D w/� = T.
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E12.8. Suppose k0, k1, k2, k3 are 3, 2, 0, 1. Find values of p and q so that “.i/ =
ki. Use your values of p and q to calculate “.p; q; 0/, “.p; q; 1/, “.p; q; 2/, and
“.p; q; 3/. From an introduction to modular arithmetic (such as would be part
of a course in number theory), it is possible to calculate p directly from the
remainder/denominator pairs. Otherwise you may employ some programmable
device to search for the value of p. In Ruby, a routine along the following
lines, with numerical values for the remainders r0...r3 and deominators d0...d3
should suffice.

1. r = [r0, r1, r2, r3]

2. d = [d0, d1, d2, d3]

3. p = 0

4. puts "p = #{p}"

5. until p % d[0] == r[0] and p % d[1] == r[1] and p % d[2] == r[2] and p % d[3] == r[3]

6. p = p + 1

7. puts "p = #{p}"

8. end

9. puts "rem(#{p},#{d[0]}) = #{p % d[0]}, rem(#{p},#{d[1]}) = #{p % d[1]}"

10. puts "rem(#{p},#{d[2]}) = #{p % d[2]}, rem(#{p},#{d[3]}) = #{p % d[3]}"

In Ruby x % y returns the remainder of x divided by y. So, for this routine, you
insert the remainder and denominator values, and then search (by brute force) for
the value of p to return the remainders.

E12.9. Produce a formula to show that LNT expresses the plus function by the initial
functions with the beta function. You need not reduce the beta form to its primitive
expression!

E12.10. Say a function fk is simple iff there is a series of functions f0; f1; : : : ; fk such
that for any i k,

(b) f0.x; y/ is plus.x; y/

(r) There are a; b i such that fi.x; y/ is plus.fa.x; y/; fb.x; y//

Show that on the standard interpretation N of LNT each simple f.x; y/ is expressed
by some formula F .x; y; v/. You may appeal to T10.2 as appropriate—and your
reasoning may have the “quick” character of T12.5. Hint: (r) works by a sort of
“double” composition.

12.3 Capturing Recursive Functions

The second of the powers to be associated with theory ı̃ncompleteness has to do with
the theory’s proof system. In section 12.5.2 (and again in 13.1.2 and 14.2.3) we
show that if a theory is consistent and captures recursive functions, then it is negation
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ı̃ncomplete. Thus we shall have separate paths to ı̃ncompleteness: drawing upon
the previous section, one through expression and s̃oundness; and drawing upon this
section, another through capture and consistency. In this section, then, as a ground for
that second argument, we show that Q, and so any theory that includes Q, captures the
recursive functions.

12.3.1 Definition and First Results

Where expression requires that if objects stand in a given relation, then a corresponding
formula be true, capture requires that when objects stand in a relation, a corresponding
formula be provable in the theory. In this section we define capture and then set up
the argument that Q captures the recursive functions by extending, to a wider range of
sentences, our T8.18 result that Q decides atomic sentences of LNT.11

CP For any language L, interpretation I, objects m1 : : :mn; a 2 U and theory T ,

(r) Relation R.x1 : : : xn/ is captured by formula R.x1 : : : xn/ in T just in case,

(i) if hm1 : : :mni 2 R then T ` R.m1 : : :mn/

(ii) if hm1 : : :mni … R then T ` �R.m1 : : :mn/

(f) Function f.x1 : : : xn/ is captured by formula F .x1 : : : xn; y/ in T just in case,

if hhm1 : : :mni; ai 2 f then,

(i) T ` F .m1 : : :mn; a/

(ii) T ` 8z.F .m1 : : :mn; z/! a D z/

Again, let us illustrate with some applications. First, in any T at least as strong as
Q, x D y captures EQ.x; y/. For if hm; ni 2 EQ, then m = n and by T8.14, T ` m D n;
and if hm; ni … EQ then m = n and by T8.16, T ` m ¤ n. Turning to a simple function,
yn is captured by n D v—for if hai 2 yn, then n = a and we have both T ` n D a and
T ` 8z.n D z ! a D z/. Similarly, in a theory at least as strong as Q, plus.x; y/ is
captured by x C y D v, for if m n = a, then by T8.12, T ` mC n D a; and given
T ` mC n D a, it is easy to see that T ` 8z.mC n D z ! a D z/.

In addition, we can show that for a theory at least as strong as Q, condition (f.ii)
yields a result like (r.ii).

T12.6. If T includes Q and total function f.x1 : : : xn/ is captured by formula F .x1 : : :

xn; y/, then if hhm1 : : :mni; ai … f, T ` �F .m1 : : :mn; a/.

Suppose a total f.x1 : : : xn/ is captured by F .x1 : : : xn; y/ and hhm1 : : :mni; ai … f.
Then since f is total, there is some b = a such that hhm1 : : :mni; bi 2 f; so by (f.ii),

11Again there is a problem of terminology for ‘capture’. Different texts offer somewhat different
definitions and employ somewhat different vocabulary. See note 4 on page 574.
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T ` 8z.F .m1 : : :mn; z/ ! b D z/; so instantiating to a, T ` F .m1 : : :mn;

a/! b D a. But since b = a and T includes Q, by T8.16, T ` b ¤ a; so by MT,
T ` �F .m1 : : :mn; a/.

Our aim is to show that recursive functions are captured in Q. In Chapter 8, we
showed that Q correctly decides atomic sentences of LNT—and supporting results
played a role in examples just above. As a preliminary to showing that Q captures all
the recursive functions, we extend the result from Chapter 8 to show that Q correctly
decides a broadened range of sentences, the �0 sentences.

To set up this result, we identify some important subclasses of formulas in LNT:
the �0, †1, and …1 formulas.

�0 (a) If P is of the form s D t, s < t, or s � t for terms s and t, then P is a
�0 formula.

(b) If P and Q are �0 formulas, then so are �P and .P ! Q/.

(c) If P is a �0 formula, then so are .8x � t/P and .8x < t/P .

(CL) Any �0 formula may be formed by repeated application of these rules.

Recall that, for the bounded quantifiers, variable x does not appear in the bound t.
We allow the usual abbreviations and so ^, _, $, and bounded existentials. �0
formulas take equalities and inequalities as basic—after that, all is as usual except
that quantifiers are bounded. Because of the restriction to bounded quantifiers, a �0
sentence is true or false by some (potentially complex) fact about a finite collection of
numbers. Then †1 and …1 formulas take �0 formulas as basic elements.

†1 (a) If P is a �0 formula, then P is a †1 formula.

(b) If P is a †1 formula, so is 9xP .

(c) If P and Q are †1 formulas, then so are .P ^Q/ and .P _Q/.

(d) If P is a †1 formula, then so are .9x � t/P and .9x < t/P .

(e) If P is a †1 formula, then so are .8x � t/P and .8x < t/P .

(CL) Any †1 formula may be formed by repeated application of these rules.

Given the �0 formulas, operators are ^, _, bounded quantifiers, and the unbounded
existential. From the sigma-1 and pi-1 reference on page 590, †1 formulas have
simplified equivalents of the sort 9EvQ, where Q is �0 and 9Ev is a block of zero or
more unbounded existential quantifiers. This helps to exhibit what †1 sentences say:
a †1 sentence is true when some assignment d satisfies the �0 condition.

…1 (a) If P is a �0 formula, then P is a …1 formula.

(b) If P is a …1 formula, so is 8xP .
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(c) If P and Q are …1 formulas, then so are .P ^Q/ and .P _Q/.

(d) If P is a …1 formula, then so are .9x � t/P and .9x < t/P .

(e) If P is a …1 formula, then so are .8x � t/P and .8x < t/P .

(CL) Any …1 formula may be formed by repeated application of these rules.

Given the �0 formulas, operators are ^, _, bounded quantifiers, and the unbounded
universal. From the sigma-1 and pi-1 reference, …1 formulas have simplified equiva-
lents of the sort 8EvQ, where Q is �0 and 8Ev is a block of zero or more unbounded
universal quantifiers. Again, this helps exhibit what …1 formulas say: a …1 sentence
is true when every assignment d satisfies the �0 condition.

Given their simplified equivalents, the negation of a †1 formula is equivalent to
some �9EvQ, and so by reasoning as for QN, to a …1 formula. And similarly, the
negation of a …1 formula is equivalent to a †1 formula. Thus, so long as they are not
themselves equivalent to �0 formulas, the negation of a †1 formula is not †1, and
the negation of a …1 formula is not …1.

We show that Q correctly decides �0 sentences: If P is �0 and NŒP � = T then
Q ` P , and if NŒP � = T then Q ` �P . Further, Q proves true †1 sentences: If P is
†1 and NŒP � = T, then Q ` P . As we have just seen, when P is †1, �P might not
be †1. So, though we show Q proves true †1 sentences, we will not have shown that
Q proves �P when NŒP � = T and so not have shown that Q decides all †1 sentences.
First, then, Q correctly decides �0 sentences of LNT. And then Q proves true †1
sentences.

T12.7. For any �0 sentence P , if NŒP � = T then Q ` P , and if NŒP � = T then
Q ` �P .

Suppose P is a �0 sentence. Treating equalities and inequalities as atomic, the
argument is by induction on the number of operators in P .

Basis: If P is atomic it is t D s, t � s, or t < s. So by T8.18, if NŒP � = T then
Q ` P , and if NŒP � = T then Q ` �P .

Assp: For any i; 0 i k, if a �0 sentence P has i operator symbols, then if
NŒP � = T then Q ` P , and if NŒP � = T then Q ` �P .

Show: If a �0 sentence P has k operator symbols, then if NŒP � = T then Q ` P ,
and if NŒP � = T then Q ` �P .
If a �0 sentence P has k operator symbols, then it is of the form �A,
A ! B, .8x � t/A, or .8x < t/A where A, B have k operator
symbols and x does not appear in t.

(�) P is �A. Since P is a �0 sentence, A is a �0 sentence. (i) Suppose
NŒP � = T; then NŒ�A� = T; so by T8.8, NŒA� = T; so by assumption,
Q ` �A; so Q ` P . (ii) Suppose NŒP � = T; then NŒ�A� = T; so by T8.8,
NŒA� = T; so by assumption Q ` A; so by DN, Q ` ��A; so Q ` �P .
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Sigma-1 and Pi-1 Formulas
The �0, †1, and …1 formulas are the first stages of a more general measure of
complexity for formulas of LNT (the arithmetical hierarchy). Given �0 formulas,
strict versions of †1 and …1 formulas are typically introduced as follows:

†1 A formula P is strictly †1 iff there are zero or more existential quantifiers
such that P = 9x19x2 : : : 9xnQ for �0 formula Q.

…1 A formula P is strictly …1 iff there are zero or more universal quantifiers
such that P = 8x18x2 : : :8xnQ for �0 formula Q.

From (a) and (b) of the original definitions, each strictly †1 formula is †1, and
each strictly …1 formula is …1. But further, where P and Q are equivalent just
in case on any d, NdŒP � = NdŒQ�, each †1 formula is equivalent to a strictly †1
formula, and each …1 formula to a strictly …1 formula.

To show that each†1 formula P is equivalent to a strictly†1 formula, reasoning is
by induction on the number of operators in P . With standard quantifier placement
rules, reasoning is straightforward except when P is .8x � t/A or (8x < t/A.
For the first, by assumption A is equivalent to some 9EvA0 for �0 formula A0, and
P to .8x � t/9EvA0. This time, standard quantifier placement rules do not suffice.

For a simplified case, consider .8x � y/9vA0.x; v/; this requires that for each
x y there is at least one v to satisfy A0.x; v/; for each x y consider the least
such v, and let a be the greatest member of this collection. Then .8x � y/.9v �
a/A0.x; v/ is equivalent to the original expression—for given an x y, if there
is a v to satisfy A0, then there is a v a to satisfy A0, and if there is a v a to
satisfy A0, then there is some v to satisfy A0. If the original expression is satisfied,
there is some such a; and if it is not satisfied, then for some x y there is no v that
satisfies A0.x; v/—and so no a under which such a v could appear. And therefore,
9z.8x � y/.9v � z/A0.x; v/ is satisfied iff the original expression is satisfied.
Thus the existential quantifier comes past the bounded universal, leaving behind a
bounded existential “shadow.”

In general, it is not proper to drag an existential quantifier out past a universal
quantifier; however, it is legitimate to drag an existential past a bounded universal,
leaving behind a bounded existential shadow. Observe that, corresponding to this
semantic equivalence, PA ` .8x � y/9vF xv $ 9z.8x � y/.9v � z/F xv; for
this see T13.11af.

Reasoning by induction is similar to show that each …1 formula is equiva-
lent to a strictly …1 formula. For the case .9x � y/8vA0.x; v/, begin with
NdŒ.8x � y/9v�A0.x; v/� = NdŒ9z.8x � y/.9v � z/�A0.x; v/� from above.
Then consider the negation of both sides. By considerations parallel to QN and
then DN, NdŒ.9x � y/8vA0.x; v/� = NdŒ8z.9x � y/.8v � z/A

0.x; v/�. So the
universal comes past the bounded existential leaving behind a bounded universal
shadow.
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(!) P is A! B. Since P is a �0 sentence, A and B are �0 sentences. (i)
Suppose NŒA ! B� = T; then by T8.8, NŒA� = T or NŒB� = T; so by
assumption, Q ` �A or Q ` B; in either case, by _I, Q ` �A _B; so
by Impl, Q ` A! B. Part (ii) is homework.

(8 �) P is .8x � t/A.x/. Since P is a �0 sentence, A is a �0 formula whose
only free variable is x. In addition, since x does not appear in t, t must be
variable-free; so NdŒt� = NŒt� and where NŒt� = n, by T8.17, Q ` t D n;
so byDE, Q ` P just in case Q ` .8x � n/A.x/.
(i) Suppose NŒP � = T; then NŒ.8x � t/A.x/� = T; so by TI, for any d,
NdŒ.8x � t/A.x/� = S; so by T12.4, for any m NdŒt�, Nd.xjm/ŒA.x/� =
S; so where NdŒt� = NŒt� = n, for any m n, Nd.xjm/ŒA.x/� = S;
but NdŒm� = m, so with T10.2, NdŒA.m/� = S; so since d is arbitrary,
NŒA.m/� = T; so NŒA.;/� = T and NŒA.1/� = T and . . . and NŒA.n/� = T;
so by assumption, Q ` A.;/ and Q ` A.1/ and . . . and Q ` A.n/; so by
T8.25, Q ` .8x � n/A.x/; so with our preliminary result, Q ` P .
(ii) Suppose NŒP � = T; then NŒ.8x � t/A.x/� = T; so by TI, for some d,
NdŒ.8x � t/A.x/� = S; so by T12.4, for some m NdŒt�, Nd.xjm/ŒA.x/� =
S; so where NdŒt� = NŒt� = n, for some m n, Nd.xjm/ŒA.x/� = S; but
NdŒm� = m, so with T10.2, NdŒA.m/� = S; so by TI, NŒA.m/� = T; so by
assumption, Q ` �A.m/; so by T8.24, Q ` .9x � n/�A.x/; so by RQN,
Q ` �.8x � n/A.x/; so with our preliminary result, Q ` �P .

(8 <) Homework.

Indct: For any �0 sentence P , if NŒP � = T then Q ` P , and if NŒP � = T then
Q ` �P .

T12.8. For any †1 sentence P if NŒP � = T, then Q ` P .

Suppose P is a †1 sentence. Treating �0 formulas as atomic, the argument is by
induction on the number of operator symbols in P .

Basis: If P has no operator symbols, then it is a �0 sentence. Suppose NŒP � = T;
then by T12.7, Q ` P .

Assp: For any i , 0 i k, if a †1 sentence P has i operator symbols and
NŒP � = T, then Q ` P .

Show: If a †1 sentence P has k operator symbols and NŒP � = T, then Q ` P .
If a †1 sentence P has k operator symbols, then it is of the form 9xA,
A ^ B, A _ B, .9x � t/A, .9x < t/A, .8x � t/A, or .8x < t/A

where A, B have k operator symbols and x does not appear in t.
As a preliminary to the bounded quantifier cases, consider say P = .9x �
t/A.x/; since P is a sentence and x does not appear in t, t is variable-
free; so NdŒt� = NŒt� and where NŒt� = n, by T8.17, Q ` t D n; so by
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DE, Q ` P just in case Q ` .9x � n/A.x/. And similarly for the other
bounded quantifiers.

(9) P is 9xA.x/. Since P is a †1 sentence, A is a †1 formula whose only
free variable is x. Suppose NŒP � = T; then NŒ9xA.x/� = T; so for any
d, NdŒ9xA.x/� = S; so there is some m such that Nd.xjm/ŒA.x/� = S;
but NdŒm� = m, so with T10.2, NdŒA.m/� = S; so since d is arbitrary,
NŒA.m/� = T; so by assumption Q ` A.m/; so by 9I, Q ` 9xA.x/, which
is to say Q ` P .

(^) P is A ^ B. Since P is a †1 sentence, A and B are †1 sentences.
Suppose NŒP � = T; then NŒA ^ B� = T; so with T8.8, NŒA� = T and
NŒB� = T, and by assumption, Q ` A and Q ` B; so with ^I, Q ` A^B,
which is to say Q ` P . And similarly for A _B.

(9 �) P is .9x � t/A.x/. Since P is a †1 sentence, A is a †1 formula whose
only free variable is x. Suppose NŒP � = T; then NŒ.9x � t/A.x/� = T;
so for any d, NdŒ.9x � t/A.x/� = S; so with T12.4, for some m
NdŒt� = NŒt� = n, Nd.xjm/ŒA.x/� = S; but NdŒm� = m, so with T10.2,
NdŒA.m/� = S; so since d is arbitrary, NŒA.m/� = T; so by assumption,
Q ` A.m/; so by T8.24, Q ` .9x � n/A.x/. So by our preliminary result,
Q ` P . And similarly for .9x < t/A.x/.

(8 �) P is .8x � t/A.x/. Since P is a †1 sentence, A is a †1 formula whose
only free variable is x. Suppose NŒP � = T; then NŒ.8x � t/A.x/� = T; so
for any d, NdŒ.8x � t/A.x/� = S; so by T12.4, for any m NdŒt� = NŒt� =
n, Nd.xjm/ŒA.x/� = S; but NdŒm� = m, so with T10.2, NdŒA.m/� = S; so
since d is arbitrary, NŒA.m/� = T; so by assumption, Q ` A.m/; so
Q ` A.0/ and . . . and Q ` A.n/; so by T8.25, Q ` .8x � n/A.x/. So by
our preliminary result, Q ` P . And similarly for .8x < t/A.x/.

Indct: For any †1 sentence P if NŒP � = T, then Q ` P .

These theorems complete what we set out to show in this subsection. And the results
should seem intuitive: Q proves results about particular numbers, 1 1 = 2 and the like.
But �0 sentences assert (potentially complex) particular facts about numbers—and
so Q proves any true �0 sentence. Similarly, a †1 sentence is true because of some
particular fact about numbers; since Q proves that particular fact, it is sufficient to
prove the †1 sentence.

*E12.11. Provide an argument to demonstrate (i) that each †1 formula is equivalent
to a strictly †1 formula, and (ii) that each …1 formula to a strictly …1 formula.
You may appeal to semantic versions of ND+ quantifier rules along with reasoning
from the sigma-1 and pi-1 reference as appropriate.
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*E12.12. (i) Complete the demonstration of T12.7 by finishing the remaining cases.
You should set up the entire argument, but may appeal to the text for parts already
completed, as the text appeals to homework. (ii) Show directly the case for (9 �).

E12.13. Provide an argument to fill in cases marked “and similarly” for T12.8. You
should set up the entire argument, but may refer to the text for parts worked there.

E12.14. Reconsider the Hilbert strategy from the introduction to Part IV, and consider
theory Q as it applies to …1 sentences. Show that Q satisfies condition (a) so
that if a …1 sentence is not true, then Q ` �P . Hint: As applied to strictly …1
sentences, this results immediately from T12.8 with (semantical and syntactical
versions of) QN. But Q is not sufficient to demonstrate the biconditional between
an arbitrary…1 formula and its strict equivalent—and the assignment is to produce
an argument parallel to that for T12.8.

12.3.2 Basic Result

We now set out to show that Q captures all the recursive functions. We shall get our
result in two forms. First a straightforward basic version. This version gets a result
slightly weaker than we would like. However it is easily strengthened to the final
form.

First the basic version. Here is the sense in which our result is weaker than we
might like: Rather than Q, let us suppose we are in a system Qs, strengthened Q,
which has as a(n axiom or) theorem uniqueness of remainder as follows:

8yŒ..9w � m/Œm D Sn � w C a ^ a < Sn� ^ .9w � m/Œm D Sn � w C y ^ y < Sn�/! a D y�

If a is the remainder of m=Sn and y is the remainder of m=Sn then a D y. Q does
not itself prove this result.12 One way to obtain Qs is simply to add uniqueness of
remainder to the axioms of Q; also, as we shall see (on page 660), PA has uniqueness
of remainder as a theorem. If the free variablesm and n from uniqueness of remainder
are instantiated to p and q � Si respectively, there immediately follows a parallel
uniqueness result for the original formula B.p; q; i; v/ = .9w � p/Œp D .S.q �

Si/ � w/C v ^ v < S.q � Si/� that expresses the “-function,

Qs ` 8yŒ.B.p; q; i; a/ ^B.p; q; i; y//! a D y�

12As we have seen, Q is good at proving particular results as 1 � 2 D 2 � 1. And given that for any
m; n, NŒm � n D n �m� = T, from T8.18 it follows that for any m and n, Q ` m � n D n �m—where
arguments by mathematical induction, and so the quantification, are in the metalanguage. In contrast,
PA ` 8m8n.m� n D n�m/—with its induction axiom and so the quantification in the theory (T6.66).
Uniqueness of remainder is a result of this latter sort not provable in Q.
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Further, if hhp; q; ii; ai 2 “ then since B expresses the “-function, NŒB.p; q; i ; a/� = T;
and since B is �0, by T12.7, Q ` B.p; q; i ; a/. From this, with uniqueness, it is
immediate that Qs ` 8yŒB.p; q; i ; y/! a D y�. So B captures “ in Qs.

Simple inspection reveals that original formulas from T12.5 to express recursive
functions are all †1: Formulas to express the initial functions and “-function are �0
and so†1; after that, if G and H are†1 then original formulas built from them are†1.
Given this, since Q proves true †1 formulas, Q (and so Qs) proves any true original
formula. With this, we are positioned to offer a straightforward argument for capture
of the recursive functions in Qs. Again our main argument is an induction on the
sequence of recursive functions. We show that Qs captures the initial functions, and
then that it captures functions from composition, recursion, and regular minimization.

*T12.9. On the standard interpretation N for LNT, any recursive function is captured
in Qs by the original formula by which it is expressed.

By induction on the sequence of recursive functions,

Basis: f0 is an initial function suc.x/, zero./, or idntjk.x1 : : : xj/.

(s) The original formula F .x; v/ by which suc.x/ is expressed is Sx D v.
Suppose hm; ai 2 suc.

(i) Since Sx D v expresses suc.x/, NŒSm D a� = T; so, since it is �0, by
T12.7, Q ` Sm D a; so Qs ` F .m; a/.

(ii) Reason as follows:

1. Sm D a from (i)

2. Sm D j A (g,!I)

3. a D j 2,1DE

4. Sm D j ! a D j 2-3!I
5. 8z.Sm D z ! a D z/ 4 8I

So Qs ` 8zŒF .m; z/! a D z�.

(oth) It is left as homework to show that zero./ is captured by 0 D v and
idntjk.x1 : : : xj/ by .x1 D x1 ^ : : : ^ xj D xj / ^ xk D v.

Assp: For any i , 0 i k, fi.Ex/ is captured in Qs by the original formula by
which it is expressed.

Show: fk.Ex/ is captured in Qs by the original formula by which it is expressed.

fk is either an initial function or arises from previous members by compo-
sition, recursion, or regular minimization. If it is an initial function, then
reason as in the basis. So suppose fk arises from previous members.

(c) fk.Ex; Ey; Ez/ arises by composition from g.Ey/ and h.Ex;w; Ez/. By assumption
g.Ey/ is captured by some G . Ey;w/ and h.Ex;w; Ez/ by H .Ex;w; Ez; v/; the orig-
inal formula F .Ex; Ey; Ez; v/ by which the composition f.Ex; Ey; Ez/ is expressed
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is 9wŒG . Ey;w/ ^H .Ex;w; Ez; v/�. For simplicity, consider a case where Ex
and Ez drop out and Ey is a single variable y. Suppose hm; ai 2 fk; then by
composition there is some b such that hm; bi 2 g and hb; ai 2 h.

(i) Since hm; ai 2 fk, and F .y; v/ expresses fk, NŒF .m; a/� = T; so, since
F .y; v/ is †1, by T12.8, Qs ` F .m; a/.

(ii) Since G .y; w/ captures g.y/ and H .w; v/ captures h.w/, by assumption
Qs ` 8z.G .m; z/ ! b D z/ and Qs ` 8z.H .b; z/ ! a D z/. It is
then a simple derivation for you to show that Qs ` 8z.9wŒG .m; w/ ^
H .w; z/�! a D z/.

(r) fk.Ex; y/ arises by recursion from g.Ex/ and h.Ex; y; u/. By assumption g.Ex/
is captured by some G .Ex; v/ and h.Ex; y; u/ by H .Ex; y; u; v/; the original
formula F .Ex; y; z/ by which fk.Ex; y/ is expressed is,
9p9qf9vŒB.p; q;;; v/ ^ G .Ex; v/� ^

.8i < y/9u9vŒB.p; q; i; u/ ^B.p; q; Si; v/ ^H .Ex; i; u; v/� ^B.p; q; y; z/g

Suppose Ex reduces to a single variable and hhm; ni; ai 2 fk. (i) Then
since F .x; y; z/ expresses fk, NŒF .m; n; a/� = T; so, since F .x; y; z/ is
†1, by T12.8, Qs ` F .m; n; a/. And (ii) by T12.10 just below, Qs `

8wŒF .m; n; w/! a D w�.

(m) fk.Ex/ arises by regular minimization from g.Ex; y/. By assumption, g.Ex; y/ is
captured by some G .Ex; y; z/; the original formula F .Ex; v/ by which fk.Ex/
is expressed is G .Ex; v; 0/ ^ .8y < v/9z.G .Ex; y; z/ ^ 0 ¤ z/. Suppose Ex
reduces to a single variable and hm; ai 2 fk.

(i) Since hm; ai 2 fk and F .x; v/ expresses fk, NŒF .m; a/� = T; so since
F .x; v/ is †1, by T12.8, Qs ` F .m; a/.

(ii) Since hm; ai 2 fk, we have hhm; ai; 0i 2 g, and for n a, hhm; ni; 0i …
g. With the first of these, Qs ` 8zŒG .m; a; z/ ! 0 D z�. From the
second with T12.6, for n a, Qs ` �G .m; n; 0/; so by T8.25, Qs `

.8z < a/�G .m; z; 0/. Then by the derivation in the box on the next page
Qs ` 8uŒF .m; u/! a D u�.

Indct: Any recursive f.Ex/ is captured in Qs by the original formula that expresses
it.

For this theorem, each part (i) simply relies on the ability of Qs to prove particular
truths, and so the original �0 and †1 sentences that express recursive functions. The
uniqueness clauses are not †1, so we have to show them directly. The uniqueness
result for recursion remains outstanding, and is addressed in the theorem immediately
following:



CHAPTER 12. RECURSIVE FUNCTIONS AND Q 596

*T12.10. Suppose f.Ex; y/ results by recursion from functions g.Ex/ and h.Ex; y; u/ where
g.Ex/ is captured by some G .Ex; v/ and h.Ex; y; u/ by H .Ex; y; u; v/. Then for the
original expression F .Ex; y; z/, if hhm1 : : :mb; ni; ai 2 f, Qs ` 8wŒF .m1 : : :mb;

n; w/! a D w�.

Suppose Ex reduces to a single variable and hm; n; ai 2 f. Then there are k0 : : : kn

such that g.m/ = k0; kn = a; and there are p; q such that for 0 i n, “.p; q; i/ = ki,
“.p; q;Si/ = kSi, and h.m; i; ki/ = kSi. The argument by induction on the value of
n is structurally parallel to semantic reasoning from page 585. Again to manage
long formulas let,

P .p; q; x/ = 9vŒB.p; q;;; v/ ^ G .x; v/�

Q.p; q; x; y/ = .8i < y/9u9vŒB.p; q; i; u/ ^B.p; q; Si; v/ ^H .x; i; u; v/�

Then F .x; y; z/ = 9p9qŒP .p; q; x/^Q.p; q; x; y/^B.p; q; y; z/�. And it will
be convenient to lapse into induction scheme III from the Chapter 8 induction

T12.9(m)
1. 8zŒG .m; a; z/! 0 D z� capture
2. .8z < a/�G .m; z; 0/ capture

3. F .m; j / A (g,!I)

4. G .m; j; 0/ ^ .8y < j /9z.G .m; y; z/ ^ 0 ¤ z/ 3 abv
5. G .m; j; 0/ 4 ^E
6. .8y < j /9z.G .m; y; z/ ^ 0 ¤ z/ 4 ^E
7. j < a _ a D j _ a < j T8.23
8. j < a A (c, �I)

9. �G .m; j; 0/ 2,8 (8E)
10. ? 5,9 ?I
11. j – a 8-10 �I
12. a < j A (c, �I)

13. 9z.G .m; a; z/ ^ 0 ¤ z/ 6,12 (8E)
14. G .m; a; k/ ^ 0 ¤ k A (c, 139E)

15. G .m; a; k/ 14 ^E
16. G .m; a; k/! 0 D k 1 8E
17. 0 D k 16,15!E
18. 0 ¤ k 14 ^E
19. ? 17,18 ?I
20. ? 13,14-19 9E
21. a – j 12-20 �I
22. a D j 7,11,21 DS
23. F .m; j /! a D j 3-22!I
24. 8uŒF .m; u/! a D u� 23 8I
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schemes reference—starting with n = 0, making the assumption for a single
member of the series n, and showing that it holds for the next.

Basis: Suppose n = 0. From capture, Qs ` 8zŒG .m; z/! k0 D z�. By unique-
ness of remainder (and generalizing on p and q), Qs ` 8p8q8yŒ.B.p;

q;;; k0/ ^ B.p; q;;; y// ! k0 D y�. Then it is easy to show Qs `

8wŒF .m;;; w/! k0 D w�.

Assp: Qs ` 8wŒF .m; n; w/! kn D w�

Show: Qs ` 8wŒF .m; Sn; w/! kSn D w�

From capture, Qs ` 8wŒH .m; n; kn; w/! kSn D w�. By uniqueness of
remainder, Qs ` 8p8q8yŒ.B.p; q; Sn; kSn/^B.p; q; Sn; y//! kSn D

y�. See the derivation on the following page.

Indct: For any n, Qs ` 8wŒF .m; n; w/! kn D w�.

Both the basis and show clauses require generalized uniqueness for B: this is because
uniqueness is being applied inside assumptions for 9E, where p and q are arbitrary
variables, rather than numerals p and q—as would appear in a uniqueness condition
for capture as 8y.B.p; q; Sn; y/! kSn D y/. So Qs ` 8wŒF .m; n; w/! a D w�.
So we satisfy the (r) case for T12.9. So the theorem is proved. And we have shown
that Qs has the resources to capture any recursive function.

This theorem has a number of attractive features: We show that recursive functions
are captured by the original formulas that express them. A byproduct is that recursive
functions are captured by †1 formulas. The argument is a straightforward induction
on the sequence of recursive functions, of a type we have seen before. On this
basis, we might proceed directly to showing that consistent theories extending Qs

are ı̃ncomplete. But we have not obtained the more interesting result that recursive
functions are captured in theory Q—and so that Q also has powers sufficient for the
fatal flaw. It is that to which we now turn.

*E12.15. Complete the demonstration of T12.9 by completing the remaining cases,
including the basis and part (ii) of the case for composition.

*E12.16. Produce a derivation to show the basis of T12.10.

E12.17. Return to the simple functions from E12.10. Show that on the standard
interpretation N of LNT each simple function f.Ex/ is captured in Qs by the formula
used to express it. Restrict appeal to external theorems just to your result from
E12.10 and T8.18 as appropriate.
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T12.10 (show)
1. 8wŒF .m; n; w/! kn D w� by assumption
2. 8wŒH .m; n; kn; w/! kSn D w� capture
3. 8p8q8yŒ.B.p; q; Sn; kSn/ ^B.p; q; Sn; y//! kSn D y� uniqueness

4. F .m; Sn; j / A (g,!I)

5. 9p9qŒP .p; q;m/ ^Q.p; q;m; Sn/ ^B.p; q; Sn; j /� 4 abv
6. 9qŒP .p; q;m/ ^Q.p; q;m; Sn/ ^B.p; q; Sn; j /� A (g, 59E)

7. P .p; q;m/ ^Q.p; q;m; Sn/ ^B.p; q; Sn; j / A (g, 69E)

8. 9vŒB.p; q;;; v/ ^ G .m; v/� 7 ^E (P )
9. .8i < Sn/9u9vŒB.p; q; i; u/ ^B.p; q; Si; v/ ^H .m; i; u; v/� 7 ^E (Q)

10. B.p; q; Sn; j / 7 ^E
11. n < Sn T8.14
12. 9u9vŒB.p; q; n; u/ ^B.p; q; Sn; v/ ^H .m; n; u; v/� 9,11 (8E)
13. 9vŒB.p; q; n; u/ ^B.p; q; Sn; v/ ^H .m; n; u; v/� A (g, 129E)

14. B.p; q; n; u/ ^B.p; q; Sn; v/ ^H .m; n; u; v/ A (g, 139E)

15. B.p; q; n; u/ 14 ^E
16. a < n A (g (8I))

17. ; ¤ ; _ a D 0 _ : : : _ a D n � 1 16 T8.20
18. ; ¤ ; _ a D 0 _ : : : _ a D n � 1 _ a D Sn � 1 17 _I
19. a < Sn 18 T8.21
20. 9u9vŒB.p; q; a; u/ ^B.p; q; Sa; v/ ^H .m; a; u; v/� 9,19 (8E)
21. .8i < n/9u9vŒB.p; q; i; u/ ^B.p; q; Si; v/ ^H .m; i; u; v/� 16-20 (8I)
22. F .m; n; u/ 8,21,15 with 9I
23. kn D u 1,22 with 8E
24. H .m; n; u; v/ 14 ^E
25. H .m; n; kn; v/ 24,23DE
26. kSn D v 2,25 with 8E
27. B.p; q; Sn; v/ 14 ^E
28. B.p; q; Sn; kSn/ 27,26DE
29. B.p; q; Sn; kSn/ ^B.p; q; Sn; j / 28,10 ^I
30. kSn D j 3,29 with 8E
31. kSn D j 13,14-30 9E
32. kSn D j 12,13-31 9E
33. kSn D j 6,7-32 9E
34. kSn D j 5,6-33 9E
35. F .m; Sn; j /! kSn D j 4-34!I
36. 8wŒF .m; Sn; w/! kSn D w� 35 8I

Once we show F .m; n; u/ at (22), the inductive assumption lets us “pin” u onto kn. Then
uniqueness conditions for H and B allow us to move to unique outputs for H and B and
so for F .
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12.3.3 The Result Strengthened

T12.9 shows that the recursive functions are captured in Qs by their †1 original
expressers. However, as we have suggested, the argument is easily strengthened to
show that the recursive functions are captured in Q. To do so, we give up capture by
the original expressers, though we retain the result that the recursive functions are
captured by †1 formulas.

In the previous section, we appealed to uniqueness of remainder for the “-function.
In Qs, the original formula B captures the “-function, and has the strengthened
uniqueness result important for T12.10. But we can simulate these effects in Q
by modifying the formula B. Then there are results for capture, uniqueness, and
expression. For the first, recall that B is �0 and expresses the (total) “-function.

T12.11. If a total function f.Ex/ is expressed by a�0 formula F .Ex; v/, then F 0.Ex; v/ =
F .Ex; v/ ^ .8z � v/ŒF .Ex; z/! v D z� is �0 and captures f in Q.

Suppose a total f.Ex/ is expressed by a �0 formula F .Ex; v/. Since F .Ex; v/ is
�0, F 0.Ex; v/ is �0. Suppose Ex reduces to a single variable and hm; ai 2 f.
As preliminaries: (a) By expression NŒF .m; a/� = T; and since F is �0, by
T12.7, Q ` F .m; a/. (b) Consider n = a; then hm; ni … f; so by expression
NŒF .m; n/� = T; so by T12.7, Q ` �F .m; n/.

(i) From (a), Q ` F .m; a/. Now suppose p a; then p = a or p a; in
the first case, ` a D p, so Q ` F .m; a/ ! a D p; and for p a, from
(b), Q ` �F .m; p/; so Q ` F .m; p/ ! a D p; so for any p a, Q `
F .m; p/! a D p; so by T8.25, Q ` .8z � a/.F .m; z/! a D z/. So with ^I,
Q ` F .m; a/ ^ .8z � a/.F .m; z/! a D z/; which is to say, Q ` F 0.m; a/.

(ii) Hint: You need to show,

Q ` 8w.ŒF .m; w/ ^ .8z � w/.F .m; z/! w D z/�! a D w/

Take as premises F .m; a/ ^ .8z � a/.F .m; z/! a D z/ from (i), along with
8x.x � a _ a � x/ from T8.23.

So F 0 captures f. And so, since our original formula B is �0 and expresses the
“-function, B0 captures “ in Q.

Intuitively, the second conjunct of F 0 requires that whenever z is less than v,
F .Ex; z/ is unsatisfied, and so that F 0 is satisfied by the least v that satisfies F . Then
at most one v satisfies F 0 and it is not surprising that formulas of the sort F 0 yield a
uniqueness result.

T12.12. For F 0.Ex; v/ = F .Ex; v/ ^ .8z � v/ŒF .Ex; z/ ! v D z� and for any a,
Q ` 8Ex8yŒ.F 0.Ex; a/ ^ F 0.Ex; y//! a D y�.

Supposing Ex reduces to a single variable reason as in the box on the next page.
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Finally, insofar as F 0.Ex; v/ is built on an F .Ex; v/ that expresses f.Ex/, F 0.Ex; v/

continues to express f.Ex/. Perhaps this is obvious given what F 0 says. However, we
can argue for the result directly.

T12.13. If F .Ex; v/ expresses a total f.Ex/, then F 0.Ex; v/ = F .Ex; v/^.8z � v/ŒF .Ex; z/

! v D z� expresses f.Ex/.

Suppose Ex reduces to a single variable and total f.x/ is expressed by F .x; v/.
Suppose hm; ai 2 f. (a) By expression, NŒF .m; a/� = T. (b) Suppose n = a; then
hm; ni … f; so with T12.2, NŒ�F .m; n/� = T.

(i) Suppose NŒF 0.m; a/� = T. By [homework] this is impossible. You will need
applications of T12.4 and T10.2; observe that for n a either n = a or n a (so
that n = a).

(ii) Suppose NŒ8w.F 0.m; w/ ! a D w/� = T—that is that NŒ8w.ŒF .m; w/ ^
.8z � w/.F .m; z/ ! w D z/� ! a D w/� = T. By [homework] this is
impossible.

From T12.13, B0 expresses the “-function. From T12.11, B0 captures the “-
function in Q. And from T12.12, Q ` 8yŒ.B0.p; q; i; a/ ^B0.p; q; i; y//! a D y�.
This is what we had before except applied to B0 and Q, rather than to B and Qs. And

T12.12
1. 8x.x � a _ a � x/ T8.23

2. F 0.j; a/ ^ F 0.j; k/ A (g,!I)

3. F .j; a/ ^ .8z � a/.F .j; z/! a D z/ 2 ^E (F 0.j; a/)
4. F .j; k/ ^ .8z � k/.F .j; z/! k D z/ 2 ^E (F 0.j; k/)
5. k � a _ a � k 1 8E
6. k � a A (g, 5_E)

7. .8z � a/.F .j; z/! a D z/ 3 ^E
8. F .j; k/! a D k 7,6 (8E)
9. F .j; k/ 4 ^E

10. a D k 8,9!E

11. a � k A (g, 5_E)

:::

12. a D k similarly
13. a D k 5,6-10,11-12 _E
14. .F 0.j; a/ ^ F 0.j; k//! a D k 2-13!I
15. 8yŒ.F 0.j; a/ ^ F 0.j; y//! a D y� 14 8I
16. 8x8yŒ.F 0.x; a/ ^ F 0.x; y//! a D y� 15 8I

Reasoning for the second subderivation is similar to the first.
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now we are in a position to recover the main result, except that the recursive functions
are captured in Q rather than Qs.

*T12.14. Any recursive function is captured by a †1 formula in Q.

The “-function is total and expressed by a �0 formula B.p; q; i; v/; so by T12.13
and T12.11 there is a �0 formula B0.p; q; i; v/ that expresses and captures it in
Q. For any f.Ex/ originally expressed by F .Ex; v/, let F � be like F except that
instances of B are replaced by B0. Since B0 is �0, F � remains †1.

The argument is now a matter of showing that demonstrations of T12.5, T12.9, and
T12.10 go through with application to these formulas and in Q. But the argument
is nearly trivial: everything is the same as before with formulas of the sort F �

replacing F and T12.12 for uniqueness of remainder.

Be clear that expressions of the sort F � might appear all along in the show part of
T12.5, T12.9, and T12.10. Expressions from the basis do not involve B0. It is included
by recursion; after that, composition and regular minimization might be applied to
expressions of any sort, and so to ones which involve B0 as well.

As before, formulas other than F �.Ex; v/ might capture the recursive functions—
for example, if F �.Ex; v/ captures f.Ex/, then so does F �.Ex; v/ ^A for any theorem A.
Let us say that F �.Ex; v/ is the canonical formula that captures f.Ex/ in Q. Of course,
the canonical formula which captures f.Ex/ need not be the same as the corresponding
original formula. Because the “-function is captured by a �0 formula we do, however,
retain the result that every recursive function is captured in Q by some †1 formula.
For the rest of this chapter, unless otherwise noted, when we assert the existence of
a formula to express or capture some recursive function, we shall have in mind the
canonical formula.

E12.18. Provide an argument to demonstrate (ii) of T12.11.

E12.19. Complete the demonstration of T12.13.

*E12.20. Work carefully through the demonstration of T12.14 by setting up revised
arguments T12.5�, T12.9�, and T12.10�. As feasible, you may simply explain how
parts differ from the originals.

12.4 More Recursive Functions

Now that we have seen what the recursive functions are, and the powers of our logical
systems to express and capture recursive functions, we turn to extending their range. In
fact, in this section, we shall generate a series of functions that are primitive recursive.
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So far, in addition to the initial functions, we have seen that plus, times, fact, and
power are primitive recursive. As we increase the range of (primitive) recursive
functions, it immediately follows that our logical systems have the power to express
and capture all the same functions. And, again, these powers are at the base of our
demonstrations of ı̃ncompleteness to come.

12.4.1 Preliminary Functions

We begin with some simple primitive recursive functions that will serve as a foundation
for things to follow.

Predecessor with cutoff. Set the predecessor of zero to zero itself, and for any other
value to the one before. Since pred.y/ is a one-place function, gpred./ is a 0-place
function, in this case, gpred./ = y0. And hpred.y; u/ = idnt21.y; u/. So, as we expect
for pred.y/,

pred.0/ = 0
pred.suc.y// = y

So predecessor is a primitive recursive function.

Subtraction with cutoff. When x y, subc.x; y/ = 0. Otherwise subc.x; y/ = x y.
For subc.x; y/, set gsubc.x/ = idnt11.x/. And hsubc.x; y; u/ = pred.idnt33.x; y; u//.
So,

subc.x; 0/ = x
subc.x; suc.y// = pred.subc.x; y//

So as y increases by one, the difference decreases by one. Informally, indicate
subc.x; y/ = .x :

� y/.

Absolute value. absval.x - y/ = .x :
� y/C .y :

� x/. We find the absolute value of
the difference between x and y by doing the subtraction with cutoff both ways. One
direction yields zero. The other yields the value we want. So the sum comes out to the
absolute value. This is a function with two input values (only separated by ‘-’ rather
than comma to remind us of the nature of the function). This function results entirely
by composition, without a recursion clause. Informally, we indicate absolute value in
the usual way, absval.x - y/ = jx - yj.

Sign. The function sg.y/ is zero when y is zero and otherwise one. For sg.y/, set
gsg./ = y0. And hsg.y; u/ = suc.zero.y; u//. So,

sg.0/ = 0
sg.suc.y// = suc.0/ = 1

So the sign of any successor is just the successor of zero, which is one.
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Converse sign. The function csg.y/ is one when y is zero and otherwise zero. So it
inverts sg. For csg.y/, set gcsg./ = y1. And hcsg.y; u/ = zero.y; u/. So,

csg.0/ = 1
csg.suc.y// = 0

So the converse sign of any successor is just zero. Informally, we indicate the converse
sign with a bar, sg.y/.

E12.21. Consider again your file recursive1.rb from E12.3. Extend your sequence
of functions to include pred(x), subc(x,y), absval(x,y), sg(x), and csg(x).
Calculate some values of these functions and print the results, along with your
program. Again, there should be no appeal to functions except from earlier in the
chain.

12.4.2 Characteristic Functions

We shall be able to extend our results for the expression and capture of recursive
functions to the expression and capture of (recursive) relations by the notion of a
characteristic function. The characteristic function chR.Ex/ of a relation R takes the
value 0 when Ex 2 R and 1 when Ex … R.

CF For any function p.Ex/, sg.p.Ex// is the characteristic function of that relation R

such that sg.p.Ex// = 0 iff Ex 2 R.

So the characteristic function chR.Ex/ for relation R takes the value 0 if R.Ex/ is true, and
1 if R.Ex/ is not true.13 A (primitive) recursive property or relation is one that has a
(primitive) recursive characteristic function. If the outputs of the function p are already
just 0 and 1 so that sg.p.Ex// = p.Ex/, we generally omit sg from our specifications.

These definitions immediately result in corollaries to T12.5 and T12.14. Recall
that expression (capture) for a relation requires that if m 2 R, then R.m/ is true
(proved), and if m … R, then �R.m/ is true (proved).

T12.5 (corollary). On the standard interpretation N of LNT, each recursive relation
R.Ex/ is expressed by some formula R.Ex/.

Suppose R.Ex/ is a recursive relation; then it has a recursive and so total character-
istic function chR.Ex/; so by T12.5 there is some formula R.Ex; y/ that expresses
chR.Ex/. So in the case where Ex reduces to a single variable, if m 2 R, then
hm; 0i 2 chR; and by expression, IŒR.m; 0/� = T; and if m … R, then hm; 0i … chR;
and since the function is total, by T12.2, IŒ�R.m; 0/� = T. So, generally, R.Ex; 0/
expresses R.Ex/.

13It is perhaps more common to reverse the values of zero and one for the characteristic function.
However, the choice is arbitrary, and this choice is technically convenient.
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T12.14 (corollary). Any recursive relation is captured by a †1 formula in Q.

Suppose R.Ex/ is a recursive relation; then it has a recursive and so total characteris-
tic function chR.Ex/; so by T12.14 there is some †1 formula R.Ex; y/ that captures
chR.Ex/ in Q. So in the case where Ex reduces to a single variable, if m 2 R, then
hm; 0i 2 chR; and by capture Q ` R.m; 0/; and if m … R, then hm; 0i … chR; and
since the function is total, by capture with T12.6, Q ` �R.m; 0/. So, generally
R.Ex; 0/ captures R.Ex/ in Q.

So our results for the expression and capture of recursive functions extend directly to
the expression and capture of recursive relations: A recursive relation has a recursive
characteristic function; as such, the function is expressed and captured; so, as we have
just seen, the corresponding relation is expressed and captured.

Equality. EQ.x; y/, typically rendered x D y, is a recursive relation with character-
istic function chEQ.x; y/ = sgjx - yj. When x is equal to y, the absolute value of the
difference is zero so the value of sg is zero. But when x is other than y, the absolute
value of the difference is other than zero, so the value of sg is one. And, generally,
if functions s.Ex/ and t.Ey/ are recursive, by composition sgjs.Ex/ - t.Ey/j is a recursive
function and so s.Ex/ D t.Ey/ a recursive relation.

A couple of observations: First, be clear that EQ is the standard relation we all
know and love. The trick is to show that it is recursive. We are not given that
EQ is a recursive relation—so we demonstrate that it is, by showing that it has a
recursive characteristic function. Second, one might think that we could express
f.Ex/ D g.Ey/ by some relatively simple expression that would compose expressions
for the functions with equality as, 9u9vŒF .Ex; u/ ^ G . Ey; v/ ^ u D v�. This would
be fine. However we have offered a general account which, as is often the case for
these things, need not be the most efficient. Where sgjf.Ex/ - g.Ey/j is expressed and
captured by some Sgabs.Ex; Ey; v/ our approach, which works by modification of the
characteristic function, generates the relatively complex, Eq.Ex; Ey/ = Sgabs.Ex; Ey;;/.

Inequality. The relation LEQ.x; y/ has characteristic function sg.x :
� y/. When

x y, x :
� y = 0; so sg = 0; Otherwise the value is 1. The relation LESS.x; y/ has

characteristic function sg.suc.x/ :
� y/. When x y, suc.x/ :

� y = 0; so sg = 0.
Otherwise the value is 1. These are typically represented x � y and x < y.

With equality and inequality, we have atomic recursive relations. And we set out
to exhibit ones that are more complex in the usual way.

Truth functions. Suppose P.Ex/ and Q.Ey/ are recursive relations. Then NEG.P.Ex// and
DSJ.P.Ex/; Q.Ey// are recursive relations. Suppose chP.Ex/ and chQ.Ey/ are the characteris-
tic functions of P.Ex/ and Q.Ey/.
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First Results of Chapter 12

T12.1 For an interpretation on which members of the universe are assigned to the required
variable-free terms: (a) If R is a relation, and IŒR� = R.x1 : : : xn/, then R.x1 : : : xn/

is expressed by Rx1 : : : xn. And (b) if h is a function and IŒh� = h.x1 : : : xn/ then
h.x1 : : : xn/ is expressed by hx1 : : : xn D v.

T12.2 If total function f.x1 : : : xn/ is expressed by formula F .x1 : : : xn; y/, then if
hhm1 : : :mni; ai … f, IŒ�F .m1 : : :mn; a/� = T.

T12.3 On the standard interpretation N for LNT, (i) NdŒs � t� = S iff NdŒs� NdŒt�, and
(ii) NdŒs < t� = S iff NdŒs� NdŒt�.

T12.4 On the standard interpretation N for LNT,

(a) NdŒ.8x � t /P � = S iff for every o NdŒt�, Nd.xjo/ŒP � = S. And
NdŒ.8x < t/P � = S iff for every o NdŒt�, Nd.xjo/ŒP � = S.

(b) NdŒ.9x � t /P � = S iff for some o NdŒt�, Nd.xjo/ŒP � = S. And
NdŒ.9x < t/P � = S iff for some o NdŒt�, Nd.xjo/ŒP � = S.

T12.5 On the standard interpretation N of LNT, each recursive function f.Ex/ is expressed
by some formula F .Ex;v/.

Corollary: On the standard interpretation N of LNT, each recursive relation R.Ex/ is
expressed by some formula R.Ex/.

T12.6 If T includes Q and total function f.x1 : : : xn/ is captured by formula F .x1 : : :

xn; y/, then if hhm1 : : :mni; ai … f, T ` �F .m1 : : :mn; a/.

T12.7 For any �0 sentence P , if NŒP � = T then Q ` P , and if NŒP � = T then Q ` �P .

T12.8 For any †1 sentence P if NŒP � = T, then Q ` P .

T12.9 On the standard interpretation N for LNT, any recursive function is captured in Qs
by the original formula by which it is expressed.

T12.10 Suppose f.Ex; y/ results by recursion from functions g.Ex/ and h.Ex; y; u/ where g.Ex/
is captured by some G .Ex; z/ and h.Ex; y; u/ by H .Ex; y; u; z/. Then for the original
expression F .Ex; y; z/, if hhm1 : : :mb; ni; ai 2 f, Qs ` 8wŒF .m1 : : :mb; n; w/!
a D w�.

T12.11 If a total function f.Ex/ is expressed by a �0 formula F .Ex; v/, then F 0.Ex; v/ =
F .Ex; v/ ^ .8z � v/ŒF .Ex; z/! v D z� is �0 and captures f in Q.

T12.12 For F 0.Ex; v/ = F .Ex; v/ ^ .8z � v/ŒF .Ex; z/ ! v D z� and for any n, Q `
8Ex8yŒ.F 0.Ex; n/ ^ F 0.Ex; y//! n D y�.

T12.13 If F .Ex; v/ expresses a total f.Ex/, then F 0.Ex; v/ = F .Ex; v/ ^ .8z � v/ŒF .Ex; z/

! v D z� expresses f.Ex/.

T12.14 Any recursive function is captured by a †1 formula in Q.

Corollary: Any recursive relation is captured by a †1 formula in Q.
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NEG.P.Ex// (typically �P.Ex/) has characteristic function sg.chP.Ex//. When P.Ex/
does not obtain, the characteristic function of P.Ex/ takes value one, so the converse
sign goes to zero. And when P.Ex/ does obtain, its characteristic function is zero, so
the converse sign is one—which is as it should be.

DSJ.P.Ex/; Q.Ey// (typically P.Ex/ _ Q.Ey/) has characteristic function chP.Ex/ � chQ.Ey/.
When one of P.Ex/ or Q.Ey/ is true, the disjunction is true; but in this case, at least one
characteristic function, and so the product of functions, equals zero. If neither P.Ex/
nor Q.Ey/ is true, the disjunction is not true; in this case, both characteristic functions,
and so the product of functions, take the value one.

Other truth functions are definable in terms of negation and disjunction. So, for
example, IMP.P.Ex/; Q.Ey// that is, P.Ex/! Q.Ey/ is �P.Ex/_ Q.Ey/; and CNJ.P.Ex/; Q.Ey// that
is, P.Ex/ ^ Q.Ey/ is �.�P.Ex/ _�Q.Ey//.

Bounded quantifiers. Consider a relation .9y � z/P.Ex; y/ which obtains when there
is a y less than or equal to z such that P.Ex; y/. As usual, y is distinct from the
bound z. Let v be a variable not in Ex and not y (and so other than z if z is in Ex).
Consider a function eleq.Ex; v/—intuitively this will be the characteristic function of
.9y � v/P.Ex; y/. So eleq.Ex; v/ lets the bound vary independently of the variables in P,
and we shall be able to define the function by recursion as v ranges from 0 to z. For
eleq.Ex; v/ set,

geleq.Ex/ = chP.Ex; y0/
heleq.Ex; v; u/ = u � chP.Ex;Sv/

In the simple case where Ex drops out, eleq.0/ = chP.y0/. And eleq.Sv/ = eleq.v/ �
chP.Sv/. So,

eleq.v/ = chP.0/ � chP.1/ � � � � � chP.v/

Think of these as grouped to the left. So the result has eleq.n/ = 1 unless and until
one of the members is zero, and then stays zero. Thus eleq.n/ goes to zero just in
case P.v/ is true for some value between 0 and n. So set the characteristic function of
the bounded quantification .9y � z/P.Ex; y/ to eleq.Ex; z/—the characteristic function
for the bounded quantifier runs the eleq function up to the bound z.

For .8y � z/P.Ex; y/ it is simplest just to take �.9y � z/�P.Ex; y/. Similarly,
.9y < z/P.Ex; y/ is .9y � z/.y ¤ z ^ P.Ex; y//; and for .8y < z/P.Ex; y/ we can take
�.9y < z/�P.Ex; y/. So we are done by previous results.

Bounded minimization. As we have seen, f.Ex/ = �yŒg.Ex; y/ D y0� defined by regular
minimization returns the least y such that g.Ex; y/ = 0. Observe that the minimization
operation is applied to a recursive relation in the square brackets—and that finding
the least y such that g.Ex; y/ = 0 is finding the least y such that the relation obtains.
But for an arbitrary recursive P.Ex; y/, P.Ex; y/ iff chP.Ex; y/ = y0. So we often encounter
f.Ex/ = �yŒchP.Ex; y/ D y0� in the equivalent form, f.Ex/ = �yŒP.Ex; y/�. Of course, for
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regular minimization, it remains that chP.Ex; y/ has to be regular—so that for any Ex,
there is some y for which P.Ex; y/ obtains.

But we can bypass the regularity requirement by a primitive recursive bounded
minimization. For this, let .�y � z/P.Ex; y/ be the least y z such that P.Ex; y/ if one
exists, and otherwise z. If P.Ex; y/ is a recursive relation, .�y � z/P.Ex; y/ is a recursive
function. Again, let v be a variable not in Ex and not y. First, take eleq.Ex; v/ as in the
bounded quantifier case; so eleq.Ex; v/ goes to 0 when P is true for some j v. Then,
second, introduce a function mleq.Ex; v/—intuitively this is to be .�y � v/P.Ex; y/. So
mleq.Ex; v/ lets the bound vary independently of the variables in P—and the desired
minimization results when the bound reaches z. For mleq.Ex; v/ set,

gmleq.Ex/ = zero.Ex/
hmleq.Ex; v; u/ = uC eleq.Ex; v/

So in the simple case where Ex drops out gmleq becomes a zero-place function and
mleq.0/ = zero./ = 0—for the least y 0 that satisfies any P.y/ can only be 0. And
then mleq.Sv/ = mleq.v/C eleq.v/. The result is,

mleq.Sn/ = 0C eleq.0/C � � �C eleq.n/

where eleq is 1 until it hits a member that is P and then goes to 0 and stays there. Set
the first member to the side. Then since this series starts with v = 0 and ends with
v = n it has Sn members. So if all the values are 1 it evaluates to Sn. If there is some
first a such that eleq.a/ is zero, then all the members prior to it are 1 and the sum is
a. So take the sum up to the limit z and set .�y � z/P.Ex; y/ = mleq.Ex; z/. Observe
that .�y � z/P.Ex; y/ = z does not require that P.Ex; z/—only that no a z is such that
P.Ex; a/.

Selection by cases. Selection by cases introduces a function which responds to
different classes of objects in different ways. So, for some reason, we might require
a function which squares even numbers and cubes odd so that, say, f.2/ = 4 and
f.3/ = 27. For this, suppose f0.Ex/ : : : fk.Ex/ are recursive functions and C0.Ex/ : : : Ck.Ex/
are mutually exclusive recursive relations. Then f.Ex/ defined as follows is recursive.

f.Ex/ =

8̂̂̂̂
<̂̂
ˆ̂̂̂:

f0.Ex/ if C0.Ex/
f1.Ex/ if C1.Ex/

:::

fk.Ex/ if Ck.Ex/
and otherwise ya

Observe that, f.Ex/ =

Œsg.chC0.Ex// � f0.Ex/�C Œsg.chC1.Ex// � f1.Ex/�C � � �C Œsg.chCk.Ex// � fk.Ex/�C

ŒchC0.Ex/ � chC1.Ex/ � � � � � chCk.Ex/ � ya�
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works as we want. Each term of the upper sum is 0 unless its Ci is met, in which
case sg.chCi.Ex// is 1 and the term goes to fi.Ex/—then, supposing the conditions are
mutually exclusive, the upper sum itself is just fi.Ex/. The lower product is 0 unless no
condition Ci is met, in which case it goes to a. So f.Ex/ is a composition of recursive
functions, and itself recursive.

We turn now to some applications that will be particularly useful for things to
come. In many ways, the project is like a cool translation exercise—pitched at the
level of functions and relations.

Factor. Let FCTR.m; n/ be the relation that obtains between m and n when m 1
evenly divides n (typically, m j n). Division is by m 1 to avoid worries about division
by zero.14 Then m j n is recursive. This relation is defined as follows:

.9y � n/.Sm � y D n/

Observe that this makes (the predecessor of) both 1 and n factors of n, and any number
a factor of zero. Since each part is recursive, the whole is recursive. The argument is
from the parts to the whole: Sm� y D n has a recursive characteristic function; so the
bounded quantification has a recursive characteristic function; so the factor relation is
recursive.

Prime number. Say PRIME.n/ is true just when n is a prime number. This property
is defined as follows:

y1 < n ^ .8j < n/Œj j n! .Sj D y1 _ Sj D n/�

So n is greater than 1 and the successor of any number that divides it is either 1 or n
itself.

Prime sequence. Say the primes are p0; p1; : : : : Let the value of the function pi.n/
(usually  .n/) be pn. Then  .n/ is defined by recursion as follows:

gpi./ = y2
hpi.y; u/ = idnt22Œy; .�z � S fact.u//.u < z ^ PRIME.z//�

So the first prime,  .0/ = 2. And .Sn/ = .�z � S fact. .n///. .n/ < z ^ PRIME.z//.
So at any stage, the next prime is the least prime which is greater than  .n/. This
depends on the point that the next prime after  .n/ is less than or equal to S fact. .n//.
Let p.n/ =  .0/  .1/ � � �  .n/. By a standard argument (see G2 in the arithmetic
for Gödel numbering reference), p.n/ 1 is not divisible by any of the primes up to

14In fact, this is a (minor) complication at this stage. It is usual to let m j n when m evenly divides n.
Still, it will be helpful down the road to have excluded division by zero. Compare page 660 note 10, and
comment (k) on page 669.
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 .n/; so either p.n/ 1 is itself prime, or there is some prime greater than  .n/ but
less than p.n/ 1. But since fact. .n// is a product including all the primes up to
 .n/, p.n/ fact. .n//; so either fact. .n//C y1 = S fact. .n// is prime or there is
a prime greater than  .n/ but less than S fact. .n//—and the next prime is sure to
appear in the specified range.

Prime exponent. Let exp.n; i/ be the (possibly 0) exponent of  .i/ in the unique
prime factorization of n. Then exp.n; i/ is recursive. This function may be defined as
follows:

.�x � n/Œpred. .i/Sx/ − n�

If Sx is the least power of  .i/ that does not divide into n, then x is the greatest power
that does—and so the exponent. Observe that no exponent in the prime factorization
of n is greater than n itself—for any p 2, pn n—so pn does not divide n, and the
bound is safe.

Prime length. Say a prime  .a/ is included in the factorization of n just in case
there is some b a and e 0 such that (the predecessor of)  .b/e is a factor of n. So
we think of a prime factorization as,

 .0/e0 �  .1/e1 � � � � �  .b/eb

where eb 0, but exponents for prior members of the series may be zero or not.
Then len.n/ is the number of primes included in the prime factorization of n; so
len.0/ = len.1/ = 0 and otherwise, since the series of primes begins with  .0/,
len.n/ = b 1. For this set,

len.n/ = .�y � n/.8z W y � z � n/exp.n; z/ D y0

Officially: .�y � n/.8z � n/Œy � z! exp.n; z/ D y0�. So we find the least y such
that none of the primes between  .y/ and  .n/ are part of the factorization of n; but
then all of the primes prior to it are members of the factorization so that y numbers
the length of the factorization. This depends on its being the case that n  .n/ so
that primes greater than or equal  .n/ are never included in the factorization of n.

E12.22. Returning to your file recursive1.rb from E12.3 and E12.21, extend the se-
quence of functions to include the characteristic function for FCTR.m; n/. You will
need to begin with cheq(a,b) for the characteristic function of a D b and then
the characteristic function of Sm�y D n. Then you will require eleqf.m; n; v/ that
is the characteristic function of .9y � v/.Sm � y D n/, and finally chfctr(m,n).
Calculate some values of these functions and print the results, along with your
program.
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E12.23. Continue in your file recursive1.rb to build the characteristic function
for PRIME.n/. You will have to build gradually to this result. You will need
chless(a,b) and then chneg(a), chdsj(a,b), chimp(a,b), and chand(a,b)

for the relevant truth functions. With these in hand, you can build a function
chpm(n,j) corresponding to j ¤ n ^ �.j j n ! .Sj D y1 _ Sj D n// to
which the bounded existential quantifier will apply; and with that, you can obtain
eleqp.n; j; v/ and so the characteristic function of the bounded existential. Then,
finally, build chprime(n). Calculate some values of these functions and print the
results, along with your program.

E12.24. Continue in your file recursive1.rb to generate lcm.m; n/ the least com-
mon multiple of Sm and Sn—that is, .�y � Sm � Sn/Œy0 < y ^ m j y ^ n j y�.
For this you will need the characteristic function of y0 < y ^ m j y ^ n j y; and
then eleql.m; n; v/ corresponding to .9y � v/Œy0 < y ^ m j y ^ n j y�. Then you
will be able to find the function mleql.m; n; v/ corresponding to .�y � v/Œy0 <

y ^ m j y ^ n j y� and finally the lcm. Calculate some values of these functions
and print the results, along with your program.

*E12.25. Provide definitions for the recursive functions rm.m; n/ and qt.m; n/ for the
remainder and quotient of m=n 1. Notice that this rm is a total function and so
distinct from rem as described in section 12.2.3. Hint: You can use rm in your
account of qt.

*E12.26. Functions f1.Ex; y/ and f2.Ex; y/ are defined by simultaneous (mutual) recur-
sion just in case,

(a) f1.Ex; 0/ = g1.Ex/

(b) f2.Ex; 0/ = g2.Ex/

(c) f1.Ex;Sy/ = h1.Ex; y; f1.Ex; y/; f2.Ex; y//

(d) f2.Ex;Sy/ = h2.Ex; y; f1.Ex; y/; f2.Ex; y//

Show that f1 and f2 so defined are recursive. Hint: Let F.Ex; y/ =  .0/f1.Ex;y/ �
 .1/f2.Ex;y/; then find G.Ex/ in terms of g1 and g2, and H.Ex; y; u/ in terms of h1 and
h2 so that F.Ex; 0/ = G.Ex/ and F.Ex;Sy/ = H.Ex; y;F.Ex; y//. So F.Ex; y/ is recursive.
Then f1.Ex; y/ = exp.F.Ex; y/; y0/ and f2.Ex; y/ = exp.F.Ex; y/; y1/; so f1 and f2 are
recursive. You will need to show that this specification satisfies conditions (a)–(d).
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12.4.3 Arithmetization

Our aim in this section and the next is to assign numbers to expressions and sequences
of expressions in LNT and build a (primitive) recursive relation PRFQ.m; n/ which is
true just in case m numbers a sequence of expressions that is a proof in Robinson
Arithmetic of the expression numbered by n. This requires a number of steps. In this
section, we develop at least the notion of a sentential proof which should be sufficient
for the general idea. The next section continues with details for quantifiers and theory
Q.

Gödel numbers. We begin with a strategy familiar from 10.2.2 and 10.3.2 (to which
you may find it helpful to refer), now adapted to LNT. The idea is to assign numbers to
symbols and expressions of LNT. Then we shall be able to operate on the associated
numbers by means of ordinary numerical functions. Insofar as the variable symbols
in any quantificational language are countable, they are capable of being sorted into
series, x0;x1; : : : : Supposing that this is done, begin by assigning to each symbol s

in LNT an integer gŒs� called its Gödel number.

a. gŒ.� = 3 f. gŒ8� = 13
b. gŒ/� = 5 g. gŒ;� = 15
c. gŒ�� = 7 h. gŒS� = 17
d. gŒ!� = 9 i. gŒC� = 19
e. gŒD� = 11 j. gŒ�� = 21

k. gŒxi � = 23C 2i

So, for example, gŒx5� = 23 2 5 = 33. Clearly each symbol gets a unique Gödel
number, and Gödel numbers for individual symbols are odd positive integers.

Now we are in a position to assign a Gödel number to each expression as follows:
Where s0;s1; : : : ;sn are the symbols, in order from left to right, in some expression
Q,

gŒQ� = 2gŒs0� 3gŒs1� 5gŒs2� � � � pn
gŒsn�

where 2; 3; 5; : : : ; pn are the first n prime numbers. So, for example, gŒx0 � x5� =
223 321 533. This is a big integer. But it is an integer, and different expressions
get different Gödel numbers. Given a Gödel number, we can find the corresponding
expression by finding its prime factorization; then if there are twenty-three 2s in the
factorization, the first symbol is x0; if there are twenty-one 3s, the second symbol is
�; and so forth. Notice that numbers for individual symbols are odd, where numbers
for expressions are even.

Now consider a sequence of expressions, Q0;Q1; : : : ;Qn (as in an axiomatic
derivation). These expressions have Gödel numbers g0; g1; : : : ; gn. Then,

2g0 3g1 5g2 � � � pn
gn
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is the super Gödel number for the sequence Q0;Q1; : : : ;Qn. Again, given a super
Gödel number, we can find the corresponding expressions by finding its prime fac-
torization; then, if there are g0 2s, we can proceed to the prime factorization of g0 to
discover the symbols of the first expression; and so forth. Observe that super Gödel
numbers are even, but are distinct from Gödel numbers for expressions, insofar as
the exponent of 2 in the factorization of any expression is odd (the first element of
any expression is a symbol and so has an odd number); and the exponent of 2 in the
factorization of any super Gödel number is even (the first element of a sequence is an
expression and so has an even number).15

Recall that exp.n; i/ returns the exponent of  .i/ in the prime factorization of n.
So for a Gödel number n, exp.n; i/ returns the code of si ; and for a super Gödel
number n, exp.n; i/ returns the code of Qi .

Indicate individual symbol codes with angle quotes h i around the symbol; then
for symbol s, xhsi is the corresponding numeral and yhsi the zero-place recursive
function. Where P is any expression, let pP q be its Gödel number, pP q the standard
numeral for its Gödel number, and bpP q the corresponding zero-place recursive
function. For a simple example, h.i = 3; xh.i is the LNT term SSS; whose standard
interpretation is 3, and yh.i is the recursive function suc.suc.suc.zero.//// that returns
the value 3. p.q = 2h.i = 23 = 8; p.q is the LNT term SSSSSSSS; whose standard
interpretation is 8; and cp.q is the recursive function suc.suc.suc.suc.suc.suc.suc.
suc.zero.///////// that returns the value 8. For a (slightly) more complex case,
px0 � x5q = 223 321 533 as described above.

Concatenation. Suppose m and n number expressions or sequences of expressions.
Then the function cncat.m; n/—ordinarily indicated m?n—returns the Gödel number
of the expression or sequence with Gödel number m followed by the expression or
sequence with Gödel number n. So for some numbered variables x, y, z, px � yq ?
pD zq = px � y D zq. This function is (primitive) recursive. Recall that len.n/ is
recursive and returns the number of distinct prime factors of n. Set m ? n to,

.�x � Bm;n/fy1 � x^ .8i < len.m//Œexp.x; i/ D exp.m; i/�^ .8i < len.n//Œexp.x; iC len.m// D exp.n; i/�g

We search for the least number x (greater than or equal to one) such that exponents of
initial primes in its factorization match the exponents of primes in m and exponents of
primes later match exponents of primes in n. The bounded quantifiers take i < len.m/
and i < len.n/ insofar as len returns the number of primes, but exp.x; i/ starts the
list of primes at 0; so if len.m/ = 3, its primes are  .0/,  .1/, and  .2/. So the
first len.m/ exponents of x are the same as the exponents in m, and the next len.n/
exponents of x are the same as the exponents in n.

15There are many ways to assign Gödel numbers. We pick just one. Our approach is like Gödel’s
original numbering strategy.
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To ensure that the function is recursive we use bounded minimization, where Bm;n

is the bound under which we search for x. Let  len.m/Clen.n/ be  .len.m/C len.n//;
then in this case it is sufficient to set,

Bm;n =
�
 mCn

len.m/Clen.n/

�len.m/Clen.n/

The idea is that all the primes in x will be  len.m/Clen.n/. And any exponent in the
factorization of m must be m and any exponent for n must be n; so that m n
is greater than any exponent in the factorization of x. So B results from multiplying
a prime larger than any prime in x to a power greater than that of any exponent in x
together as many times as there are primes in x; so x must be smaller than B.

Observe that ? associates as for addition and multiplication and .m ? n/ ? o =
m?.n?o/; given this we often drop parentheses for the concatenation operation. Also
the requirement that 1 m ? n does not usually matter since we will be interested
in cases with m; n 1; it does, however have the advantage that m ? n is always
equivalent to a product of primes—where this will smooth results down the road (if
all the exponents of some primes are zero then their product is 1).

Terms. TERM.n/ is true iff n is the Gödel number of a term. Think of the trees on
which we show that an expression is a term. Put formally, for any term tn, there is a
term sequence t0; t1; : : : ; tn such that each expression is either,

a. ;

b. a variable

c. Stj where tj occurs earlier in the sequence

d. Ctitj where ti and tj occur earlier in the sequence

e. �titj where ti and tj occur earlier in the sequence

where we represent terms in unabbreviated form. A term is the last element of such a
sequence. Let us try to say this.

First, VAR.n/ is true just in case n is the Gödel number of a variable—conceived as
an expression, rather than a symbol. Then VAR is (primitive) recursive. Set,

VAR.n/ = .9x � n/(n D y2 y23Cy2x)

If there is such an x, then n must be the Gödel number of a variable. And it is clear
that this x is less than n itself. So the result is recursive.

Now TERMSEQ.m; n/ is true when m is the super Gödel number of a sequence
of terms whose last member has Gödel number n. We use the exponents in the
factorization of m to number expressions in the sequence whose final member is
the resulting term. Recall that len.m/ returns the total number of primes in the
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factorization of m, and exp.m; i/ the exponent of prime i in the factorization. For
TERMSEQ.m; n/ set,

exp.m; len.m/ :
� y1/ D n ^ y1 < m ^ .8k < len.m//f

exp.m; k/ D cp;q _ VAR.exp.m; k//_

.9j < k/Œexp.m; k/ D cpSq ? exp.m; j/�_

.9i < k/.9j < k/Œexp.m; k/ DbpCq ? exp.m; i/ ? exp.m; j/�_

.9i < k/.9j < k/Œexp.m; k/ D cp�q ? exp.m; i/ ? exp.m; j/�g

So each term is zero, a variable, or put together from prior terms in the appropriate way.
len.m/ returns the number of primes in the prime factorization of m; if there is one
prime it is  .0/, if there are two primes they are  .0/ and  .1/, and so forth. So the
Gödel number n of the last member of the sequence is the exponent of  len.m/

:
�1. We

require that m 1 so that its length is other than 0 and the long quantified expression
is not vacuously satisfied.

Then set TERM.n/ as follows:

TERM.n/ = .9x � Bn/TERMSEQ.x; n/

If some x numbers a term sequence for n, then n is a term. In this case, Gödel
numbers of all prior members in a standard sequence ending in n are less than
n. Further, the number of members in the sequence is the same as the number of
variables and constants together with the number of function symbols in the term (one
member for each variable and constant, and another corresponding to each function
symbol); so the number of members in the sequence is the same as len.n/; so all
the primes in the sequence are  len.n/. So multiply  n

len.n/ together len.n/ times

and set Bn =
�
 n

len.n/
�len.n/. We take a prime  len.n/ greater than all the primes in the

sequence, to a power n greater than or equal to all the powers in the sequence, and
multiply it together as many times as there are members of the sequence. The result
must be greater than x, the number of the term sequence.16

Formulas. WFF.n/ is to be true iff n is the number of a (well-formed) formula. For
this, begin with some simple definitions. First, ATOMIC.n/ is true iff n is the number of
an atomic formula. The only atomic formulas of LNT are of the formDt1t2. So it is
sufficient to set,

ATOMIC.n/ = .9x � n/.9y � n/ŒTERM.x/ ^ TERM.y/ ^ n DbpDq ? x ? y�

16There are many term sequences for a given term numbered n—for members of a sequence might
appear in different orders, and a sequence might include extraneous members not required for the final
result. Reasoning above shows there is a (standard) sequence under the bound, not that all sequences for
that term are under the bound.
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Clearly the numbers of t1 and t2 are n itself. For complex expressions, set cnd.n; o/
= m when n = pP q, o = pQq and m = p.P ! Q/q—and similarly for til.n/ and
unv.v; n/.

cnd.n; o/ = cp.q ? n ? bp!q ? o ?cp/q
til.n/ = bp�q ? n

unv.v; n/ = cp8q ? v ? n

Now think of the tree by which a formula is formed. There is a sequence of which
each member is,

a. an atomic

b. �P for some previous member of the sequence P

c. .P ! Q/ for previous members of the sequence P and Q

d. 8xP for some previous member of the sequence P and variable x

So, on the model of what has gone before, we let FORMSEQ.m; n/ be true when m is
the super Gödel number of a sequence of formulas whose last member has Gödel
number n. We use the exponents in the factorization of m to number expressions in
the sequence whose final member is the resulting formula. For FORMSEQ.m; n/ set,

exp.m; len.m/ :
� y1/ D n ^ y1 < m ^ .8k < len.m//f

ATOMIC.exp.m; k//_

.9j < k/Œexp.m; k/ D til.exp.m; j//�_

.9i < k/.9j < k/Œexp.m; k/ D cnd.exp.m; i/; exp.m; j//�_

.9i < k/.9j � n/ŒVAR.j/ ^ exp.m; k/ D unv.j; exp.m; i//�g

So a formula is the last member of a sequence each member of which is an atomic, or
formed from previous members in the usual way. Clearly the number of a variable in
an expression with number n is itself n.

Then set WFF.n/ as follows,

WFF.n/ = .9x � Bn/FORMSEQ.x; n/

An expression is a formula iff there is a formula sequence of which it is the last
member. Again, Gödel numbers of formulas in a standard sequence are n. And there
are as many members of the sequence as there are atomics and operator symbols in
the formula numbered n; so all the primes are  len.n/.17 So multiply  n

len.n/ together

len.n/ times and set Bn =
�
 n

len.n/
�len.n/.

17A formula may include more symbols than it has operators and atomics—consider, say, an atomic
consisting of a relation symbol and terms. This makes len.n/ greater than the length of the formula
sequence and, again, primes in the sequence  len.n/.
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Sentential proof. PRFADS.m; n/ is to be true iff m is the super Gödel number of a
sequence of formulas that is an ADs derivation of the theorem with Gödel number n.
So we revert to the relatively simple axiomatic system of Chapter 3. Thus the only
rule is MP and, for example, A1 is of the sort P ! .Q ! P /. For the sentential
case, we need AXIOMADS.n/ true when n is the number of an axiom. For this,

AXIOMAD1.n/ = .9p � n/.9q � n/ŒWFF.p/ ^ WFF.q/ ^ n D cnd.p; cnd.q; p//�

AXIOMAD2.n/ = Homework.

AXIOMAD3.n/ = Homework.

Then,

AXIOMADS.n/ = AXIOMAD1.n/ _ AXIOMAD2.n/ _ AXIOMAD3.n/

In the next section, we will add all the logical axioms plus the axioms for Q. But
these are all the axioms required for proofs of theorems in sentential logic. The rule is
straightforward too. MP.m; n; o/ when m numbers a conditional whose antecedent is
numbered n and consequent is numbered o.

MP.m; n; o/ = cnd.n; o/ D m

Finally PRFADS.m; n/ when m is the super Gödel number of a sequence that is a
proof whose last member has Gödel number n. An ADs derivation is a sequence of
formulas where each member is an axiom or follows from previous members by MP.
This time we use the exponents in the factorization of m to number expressions in
the proof—in the sequence of formulas whose final member is the one proved. This
works like TERMSEQ and FORMSEQ. For PRFADS.m; n/ set,

exp.m; len.m/ :
� y1/ D n ^ y1 < m ^ .8k < len.m//f

AXIOMADS.exp.m; k//_

.9i < k/.9j < k/MP.exp.m; i/; exp.m; j/; exp.m; k//g

So every formula is either an axiom or follows from previous members by MP.
It is a significant matter to have found this recursive relation! Again, in the next

section, we will extend this notion to include other logical axioms, axioms of Q, and
the rule Gen. Still, our construction for PRFADS exhibits the essential steps required for
the parallel relation PRFQ.m; n/ true when m is the super Gödel number of a sequence
that is a proof from the axioms of Q whose last member has Gödel number n. That
discussion adds considerable detail. It is not clear that the detail is required for
understanding the rest of this chapter—though of course, to the extent that results rely
on the recursive PRFQ relation, the detail underlies proof of the results!
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E12.27. Find Gödel numbers for each of the following. Treat the first as an expression,
rather than as simple symbol; the last is a sequence of expressions. For the latter
two, you need not do the calculation!

(a) x2 (b) x0 D x1 (c) x0 D x1;; D x0;; D x1

E12.28. Complete the cases for AXIOMAD2.n/ and AXIOMAD3.n/.

E12.29. In Chapter 8 (page 371) we define the notion of a normal sentential form. Let
wedge.m; n/ = cnd.til.m/; n/ and caret.m; n/ = til.cnd.m; til.n///. Using these
functions with ATOMIC and til from above, define a recursive relation NORM.n/whose
application is to normal sentential forms of LNT. Hint: You will need a formula
sequence to do this.

12.4.4 Completing the Construction

In this section we complete the construction of PRFQ.m; n/. In addition to A1–A3 and
MP from ADs, Q includes the other logical axioms, axioms of Q, and the rule Gen.
For the logical axioms, there are conditions as for A4, 8vP ! P v

s where term s is
substituted for variable v and s is free for v in P . This is easy enough to apply in
practice. But it takes some work to represent. We tackle the problem piece by piece.

Substitution in terms. Say t = ptq, v = pvq, and s = psq for some terms s, t, and
variable v . Then TERMSUB.t; v; s; u/ is true when u is the Gödel number of tv

s . For this,
we begin with a term sequence (with super Gödel number m) for t, and consider a
parallel sequence (with super Gödel number n) that ends with u. The parallel sequence
is not necessarily a term sequence, but rather includes modified versions of the terms
in the sequence numbered m. For TSUBSEQ.m; n; t; v; s; u/ set,

TERMSEQ.m; t/ ^ len.m/ D len.n/ ^ exp.n; len.n/ :
� y1/ D u ^ .8k < len.m//f

Œexp.m; k/ D cp;q ^ exp.n; k/ D cp;q�_
ŒVAR.exp.m; k// ^ exp.m; k/ ¤ v ^ exp.n; k/ D exp.m; k/�_

ŒVAR.exp.m; k// ^ exp.m; k/ D v ^ exp.n; k/ D s�_

.9i < k/Œexp.m; k/ D cpSq ? exp.m; i/ ^ exp.n; k/ D cpSq ? exp.n; i/�_

.9i < k/.9j < k/Œexp.m; k/ DbpCq ? exp.m; i/ ? exp.m; j/^

exp.n; k/ DbpCq ? exp.n; i/ ? exp.n; j/�_

.9i < k/.9j < k/Œexp.m; k/ D cp�q ? exp.m; i/ ? exp.m; j/^
exp.n; k/ D cp�q ? exp.n; i/ ? exp.n; j/�g

So the sequence for tv
s (numbered by n) is like one of our “unabbreviating trees” from

Chapter 2. In any place where the sequence for t (numbered by m) numbers ;, the
sequence for tv

s numbers ;. Where the sequence for t numbers a variable other than



CHAPTER 12. RECURSIVE FUNCTIONS AND Q 618

v , the sequence for tv
s numbers the same variable. But where the sequence for t

numbers variable v , the sequence for tv
s numbers s. Then later parts are built out of

prior in parallel. The second sequence may not itself be a term sequence, insofar as
it need not include all the antecedents to s (just as an unabbreviating tree would not
include all the parts of a resultant term or formula).

Now set TERMSUB.t; v; s; u/ as follows:

TERMSUB.t; v; s; u/ = .9x � Xt/.9y � Yt;u/TSUBSEQ.x; y; t; v; s; u/

In this case, reasoning as for WFF, the Gödel numbers in a standard sequence with
number m are less than or equal to t and numbers in the sequence with number n less
than or equal to u. And primes in the sequence are less than  len.t/. So it is sufficient

to set Xt =
�
 t

len.t/

�len.t/
and Yt;u =

�
 u

len.t/
�len.t/.

Substitution in formulas. First, substitution into atomics. Say p = pP q, v =
pvq, and s = psq for some atomic formula P , variable v , and term s. Then
ATOMSUB.p; v; s; q/ is true when q is the Gödel number of P v

s . The condition is
straightforward given TERMSUB. For ATOMSUB.p; v; s; q/,

.9a � p/.9b � p/.9a0 � q/.9b0 � q/ŒTERM.a/ ^ TERM.b/ ^ p DbpDq ? a ? b^

TERMSUB.a; v; s; a0/ ^ TERMSUB.b; v; s; b0/ ^ q DbpDq ? a0 ? b0�

So P v
s simply substitutes into the terms to which the equality applies.

Now, where p = pP q, v = pvq, and s = psq for an arbitrary formula P , variable
v , and term s, FORMSUB.p; v; s; q/ is true when q is the Gödel number of P v

s . In the
general case, P v

s is complicated insofar as s replaces only free instances of v . Again,
we build a parallel sequence with number n. When v is not free, we do not want to
replace v with s—thus substitutions are made in atomics and then carried forward in
all but subformulas that begin with a v-quantifier. For FSUBSEQ.m; n; p; v; s; q/ set,

FORMSEQ.m; p/ ^ len.m/ D len.n/ ^ exp.n; len.n/ :
� y1/ D q ^ .8k < len.m//f

ŒATOMIC.exp.m; k// ^ ATOMSUB.exp.m; k/; v; s; exp.n; k//�_

.9i < k/Œexp.m; k/ D til.exp.m; i// ^ exp.n; k/ D til.exp.n; i//�_

.9i < k/.9j < k/Œexp.m; k/ D cnd.exp.m; i/; exp.m; j// ^ exp.n; k/ D cnd.exp.n; i/; exp.n; j//�_

.9i < k/.9j � p/ŒVAR.j/ ^ j ¤ v ^ exp.m; k/ D unv.j; exp.m; i// ^ exp.n; k/ D unv.j; exp.n; i//�_

.9i < k/.9j � p/ŒVAR.j/ ^ j D v ^ exp.m; k/ D unv.j; exp.m; i// ^ exp.n; k/ D exp.m; k/�g

So substitutions are made in atomics, and carried forward in the parallel sequence—so
long as no quantifier binds variable v , at which stage the sequence reverts to the form
without substitution. And for FORMSUB.p; v; s; q/,

FORMSUB.p; v; s; q/ = .9x � Xp/.9y � Yp;q/FSUBSEQ.x; y; p; v; s; q/

Again, set Xp =
�
 

p
len.p/

�len.p/
and Yp;q =

�
 

q
len.p/

�len.p/
.
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Where FORMSUB.p; v; s; q/ is a relation which applies to the number q given p, v,
and s, we may use the relation to define a function formsub.p; v; s/ which returns
q given p, v, and s. Set formusb.p; v; s/ = .�q � Zp;s/FORMSUB.p; v; s; q/. In case
there is no q that makes FORMSUB.p; v; s; q/ true (as would happen if, say, p is not the
number of a formula), this function reverts to the bound; otherwise formsub.p; v; s/
is the number q of P v

s . In this case, the number of symbols in P v
s is sure to be no

greater than the number of symbols in P times the number of symbols in s (as though
every symbol in P were replaced by s). And any symbol is either s or an element of
P ; so the Gödel number of each symbol is no greater than the maximum of p and s

and thus p s. So q is sure to be under the bound, Zp;s =
�
 

pCs
len.p/�len.s/

�len.p/�len.s/
.

Again, we take a prime greater than that of any symbol, to a power greater than that
of any exponent, and multiply it (at least) as many times as there are symbols.

Free and bound variables. FREEt.t; v/ and FREEf.p; v/ are true when v is the Gödel
number of a variable that is free in a term or formula that has Gödel number t or p.
The idea for these relations is that substitution applies just to free variables. So if an
expression changes upon a substitution of some term other than v for the variable
v , v must have been free in the original expression. For a given variable xi initially
assigned number 23 2i, pxiq = 223 2i so that 223 2i 2 is the number of the next
variable. In particular then, for v the number of a variable, v 22 (that is v 4) numbers
a different variable. We use this to identify variables free in expressions numbered t
and p. For terms and formulas respectively,

FREEt.t; v/ = �TERMSUB.t; v; v � y4; t/

FREEf.p; v/ = �FORMSUB.p; v; v � y4; p/

So v is free if the result upon substitution is other than the original expression.
Observe that in Chapter 2 free and bound variables were introduced in relation to
formulas. Now the notion is extended, in the obvious way, to terms—since terms lack
quantifiers, a variable is free in a term iff it is present in the term.

Given FREEf.p; v/, it is a simple matter to specify SENT.n/ true when n numbers a
sentence.

SENT.n/ = WFF.n/ ^ .8x � n/ŒVAR.x/! �FREEf.n; x/�

So n numbers a sentence if it numbers a formula and nothing is the number of a
variable free in the formula numbered by n.

Finally, suppose s = psq and v = pvq; then FREEFOR.s; v; u/ is true iff s is free
for v in the formula numbered by u. For this, we set up a sequence of formulas (not
an ordinary formula sequence) including just formulas with s free for v—a sequence
such that s is free for v in each member, whose last member has number u. For
FFSEQ.m; s; v; u/ set,
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exp.m; len.m/ :
� y1/ D u ^ y1 < m ^ .8k < len.m//f

ATOMIC.exp.m; k//_

.9j < k/Œexp.m; k/ D til.exp.m; j//�_

.9i < k/.9j < k/Œexp.m; k/ D cnd.exp.m; i/; exp.m; j//�_

.9p � u/.9j � u/ŒVAR.j/ ^ j D v ^ WFF.p/ ^ exp.m; k/ D unv.j; p/�_

.9i < k/.9j � u/ŒVAR.j/ ^ j ¤ v ^ .�FREEt.s; j/ _�FREEf.exp.m; i/; v//^
exp.m; k/ D unv.j; exp.m; i//�g

For the last two clauses: First, within any subformula of the sort8vP , no variable in s

is bound upon substitution, for there are no free instances of v and so no substitutions.
Observe that this P need not appear earlier in the sequence, as any formula with
the v-quantifier satisfies the condition. Alternatively, if the main operator binds a
different variable (and is not buried inside some P from the previous clause), we
require either that the variable is not free in s (so that no instances are bound upon
substitution) or that v is not free in the subformula (so that there are no substitutions).
Given this,

FREEFOR.s; v; u/ = .9x � Bu/FFSEQ.x; s; v; u/

Even though this x need not number a formula sequence, whenever FFSEQ.x; s; v; u/,
then u is the number of a formula and every member of a standard FFSEQ is a member
of a FORMSEQ; so Bu may be set as before.

Proof in Q. After all this work, we are finally ready for Gen, the other axioms of
AD, and the axioms of Q.

The most challenging of these, AXIOMAD4.n/ obtains when n is the Gödel number
of an instance of A4. Intuitively, AXIOMAD4.n/ just in case there is an s such that,

.9p � n/.9v � n/ŒWFF.p/ ^ VAR.v/ ^ TERM.s/ ^ FREEFOR.s; v; p/^

n D cnd.unv.v; p/; formsub.p; v; s//�

So there is a formula P , variable v , and term s where s is free for v in P ; and
the axiom is of the form, 8vP ! P v

s . Unfortunately, our statement is inadequate
insofar as s is left free. We cannot simply supply a prefix 9s as the result would not
be recursively specified. It is tempting to add a bounded .9s � n/ with the idea that
the number of s must be smaller than the number of P v

s . This almost works. The
difficulty is the (rarely encountered) situation where the quantified variable v is not
free in P (as when P is already a sentence); in this case, P v

s is just P , and there is
nothing to say that s is less than n. Here is a way to do the job. Set AXIOMAD4.n/ as,

.9p � n/.9v � n/fWFF.p/ ^ VAR.v/ ^ Œ

.�FREEf.p; v/ ^ n D cnd.unv.v; p/; p//_

.FREEf.p; v/ ^ .9s � n/.TERM.s/ ^ FREEFOR.s; v; p/ ^ n D cnd.unv.v; p/; formsub.p; v; s////�g
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When �FREEf.p; v/, formsub.p; v; s/ = p, so that cnd.unv.v; p/; p/ is the same as
cnd.unv.v; p/; formsub.p; v; s//; and when FREEf.p; v/, then s is smaller than the re-
sultant formula. Either way, n is set to cnd.unv.v; p/; formsub.p; v; s//. The result,
then, is primitive recursive and equivalent to our original intuitive specification.

Now, mostly from homework, GEN and the other axioms follow in short order.
GEN.m; n/ is true when the formula numbered n results by an application of Gen to the
one numbered m; and AXIOMAD5.n/ is true when n numbers an instance of A5; these
are straightforward and left as exercises. Axiom six is of the sort v D v.

AXIOMAD6.n/ = .9v � n/ŒVAR.v/ ^ n DbpDq ? v ? v�

Axiom seven is of the sort, .xi D y/! .hnx1 : : :xi : : :xn D hnx1 : : :y : : :xn/ for
function symbol h and variables x1 : : :xn and y. Because just a single replacement
is made, we do not want to use TERMSUB. However, we are in a position simply to list
all the combinations in which one variable is replaced. In LNT the function symbol
is S , C, or �. So the axiom is of the sortDxy!Dst where s is Sx, Cx:, C:x,
�x:, or �:x and t replaces x in s with y. So for AXIOMAD7.n/,

.9s � n/.9t � n/.9x � n/.9y � n/fVAR.x/ ^ VAR.y/ ^ n D cnd.bpDq ? x ? y;bpDq ? s ? t/^

.Œs D cpSq ? x ^ t D cpSq ? y�_

.9z � n/ŒVAR.z/ ^ ..s DbpCq ? x ? z ^ t DbpCq ? y ? z/_

.s DbpCq ? z ? x ^ t DbpCq ? z ? y//�_

.9z � n/ŒVAR.z/ ^ ..s D cp�q ? x ? z ^ t D cp�q ? y ? z/_
.s D cp�q ? z ? x ^ t D cp�q ? z ? y//�/g

Axiom eight is similar. It is stated in terms of atomics of the sort Rnx1 : : :xn for
relation symbol R and variables x1 : : :xn. In LNT the relation symbol is the equal
sign, so these atomics are of the form,Dxy. Again, because just a single replacement
is made, we do not want to use FORMSUB. However, we may proceed by analogy with
AXIOMAD7. This is left as an exercise. Thus we have compiled all the axioms of AD,
and obtain AXIOMAD on the model of AXIOMADS from before.

For PRFAD it is convenient to introduce a relation ICON.m; n; o/ true when the
formula with Gödel number o is an immediate consequence of ones numbered m and
n.

ICON.m; n; o/ = MP.m; n; o/ _ .m D n ^ GEN.n; o//

Then PRFAD.m; n/ is straightforward on the model of PRFADS.
The axioms of Q are particular formulas. So, for example, axiom Q2 is of the sort,

.Sx D Sy/! .x D y/. Let x and y be x0 and x1 respectively. Then,

AXIOMQ2.n/ = n D2p.Sx D Sy/! .x D y/q

For ease of reading I do not reduce to unabbreviated form. Other axioms of Q may be
treated in the same way. And now it is straightforward to produce AXIOMQ.n/ that adds
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Q1–Q7 to the axioms of AD. Then PRFQ.m; n/,

exp.m; len.m/ :
� y1/ D n ^ y1 < m ^ .8k < len.m//f

AXIOMQ.exp.m; k//_

.9i < k/.9j < k/ICON.exp.m; i/; exp.m; j/; exp.m; k//g

works on the model of PRFADS from before.
It has been our primary end in this section to find PRFQ.m; n/. And we have it.

However, it is worth noting that with AXIOMPA7.n/,

.9p � n/.9v � n/fWFF.p/ ^ VAR.v/ ^ n D

cndŒcaret.formsub.p; v;cp;q/; unv.v; cnd.p; formsub.p; v;cpSq ? v////; unv.v; p/�g

we have also AXIOMPA.n/ and PRFPA.m; n/ for PA (for caret see E12.29). It is a signifi-
cant matter to have found these recursive relations! Now we put them to work.

*E12.30. (i) Complete the construction with recursive relations for GEN.m; n/, then
for AXIOMAD5.n/, AXIOMAD8.n/, and so AXIOMAD.n/ and PRFAD.m; n/. (ii) Complete
the remaining axioms for Robinson arithmetic, and then AXIOMQ.n/. (iii) Construct
also AXIOMPA.n/ and PRFPA.m; n/.

E12.31. Suppose our numbering system is modified to include p_q, p^q, p9q, and
in addition to til, cnd and unv we are given functions pwedge.m; n/, pcaret.m; n/,
and pexs.v; n/ for expressions that treat those operators as primitive. Augment
FORMSEQ to accommodate the new operators, and construct an UNABBSEQ.m; n; p; q/
such that m numbers a formula sequence for p (which may contain the new opera-
tors) and n numbers a sequence whose last member is the unabbreviated version
of p. Then construct UNABB.p; q/ where q is the number of the unabbreviation of
p.

12.5 Essential Results

In this section, we develop some first fruits of our labor. We shall need some initial
theorems, important in their own right. With these theorems in hand, our results
follow in short order. The results are developed and extended in later chapters. But it
is worth putting them on the table at the start. (And some results at this stage provide
a fitting cap to our labors.) We have expended a great deal of energy showing that,
under appropriate conditions, recursive functions can be expressed and captured, and
then that there exist recursive functions and relations including PRFQ. Now we put
these results to work.
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12.5.1 Diagonalization

Consider a formula P .x/ with free variable x. The diagonalization of P is the
formula 9x.x D pP q ^ P .x//. So the diagonalization of P is true just when P

applies to its own Gödel number. To understand this nomenclature, consider a grid
with formulas indexed by their Gödel numbers down the left and the integer Gödel
numbers across the top.

a b c � � �

Pa.x/ P a.a/ Pa.b/ Pa.c/
Pb.x/ Pb.a/ P b.b/ Pb.c/
Pc.x/ Pc.a/ Pc.b/ P c.c/
:::

So, going down the main diagonal, formulas are of the sort Pn.n/ where the formula
numbered n is applied to its Gödel number n. Similarly, the diagonalization of P is
true when P applies to pPq.

It is easy to see that there is a recursive function diag.n/ which takes the number
of P and returns the number of its diagonalization. For this, let num.n/ be the Gödel
number of the standard numeral for n. So,

num.0/ = cp;q
num.Sy/ = cpSq ? num.y/

So num is (primitive) recursive. Now diag.n/ is the Gödel number of the diagonaliza-
tion of the formula with Gödel number n.

diag.n/ = 3p9x.x Dq ? num.n/ ? cp^q ? n ?cp/q
It should be clear enough how to unabbreviate p9q and p^q. Since diag.n/ is recursive,
it is expressed and captured by some Diag.x; y/. Now we are ready for a pair of
results which assert that for any formula F .y/ there is an H with a sort of equivalence
between H and F .pHq/. The results come in semantical and syntactical versions.

First the semantical version. Consider a language including LNT and the standard
interpretation N.18 Since diag.n/ is recursive, there is a canonical formula Diag.x; y/
that expresses diag. Let A.x/ = 9yŒDiag.x; y/ ^ F .y/� and a = pAq, the Gödel
number of A. Intuitively, A says F applies to the diagonalization of x. Then set
H = 9x.x D a ^ 9yŒDiag.x; y/ ^ F .y/�/ and h = pHq, the Gödel number of H .
H is the diagonalization of A; so diag.a/ = h. Intuitively, H says that F applies to
the diagonalization of A, which is just to say that according to H , F .pHq/.

18Rather, for a language L0NT including LNT take an interpretation N0 like N except that it makes some
assignments to symbols in L0NT but not in LNT. But we shall be interested just in assignments to the
symbols of LNT, and so to assignments the same as N (compare T10.14).



CHAPTER 12. RECURSIVE FUNCTIONS AND Q 624

T12.15. For any language including LNT and formula F .y/ containing just the vari-
able y free, there is a sentence H such that NŒH � = NŒF .pHq/�. Carnap’s
Equivalence.19

For L including LNT and any formula F .y/, let H be constructed as above.

(i) Suppose NŒH � = T; then for any d, NdŒH � = S; so NdŒ9x.x D a ^
9yŒDiag.x; y/ ^ F .y/�/� = S; so for some m, Nd.xjm/Œx D a ^ 9y.Diag.x; y/ ^
F .y//� = S; from the first conjunct, this happens for d.xja/; so with T10.2,
NdŒ9y.Diag.a; y/ ^ F .y//� = S; so with SF0(9) and T10.2 again, there is some
m such that NdŒDiag.a;m/� = S and NdŒF .m/� = S; from the first of these and
expression ha;mi 2 diag; but diag.a/ = h; so m = h; so NdŒF .h/� = S, and since
d is arbitrary, NŒF .h/� = T which is to say NŒF .pHq/� = T.

(ii) Suppose NŒH � = T; then for some d, NdŒH � = S; so NdŒ9x.x D a ^
9yŒDiag.x; y/ ^ F .y/�/� = S; so for any m and in particular m = a, Nd.xjm/Œx D

a^9y.Diag.x; y/^F .y//� = S; so with T10.2, NdŒ9y.Diag.a; y/^F .y//� = S;
so for any m and in particular m = h, Nd.yjm/ŒDiag.a; y/ ^ F .y/� = S; so with
T10.2, NdŒDiag.a; h/� = S or NdŒF .h/� = S; so NŒDiag.a; h/� = T or NŒF .h/� = T;
but diag.a/ = h; so by expression, NŒDiag.a; h/� = T; so NŒF .h/� = T; which is to
say NŒF .pHq/� = T.

The reasoning skips some steps, however it is not a difficult exercise to fill in the
details. Intuitively, this result should seem right: since H says that F .pHq/, H is
true just in case F .pHq/ is true.

Now the syntactical version. Suppose T extends Q; since diag.n/ is recursive,
there is a canonical formula Diag.x; y/ that captures diag. Let A.x/ = 9yŒDiag.x; y/^
F .y/� and a = pAq, the Gödel number of A. Then set H = 9x.x D a ^
9yŒDiag.x; y/ ^ F .y/�/ and h = pHq, the Gödel number of H . H is the diag-
onalization of A; so diag.a/ = h. All this is the same as before, except that Diag
captures rather than expresses diag. Intuitively, then, H says that F applies to the
diagonalization of A, which is just to say that according to H , F .pHq/. This time
we want to derive it.

T12.16. Let T be any theory that extends Q. Then for any formula F .y/ containing
just the variable y free, there is a sentence H such that T ` H $ F .pHq/.
Diagonal Lemma.

For T extending Q and any formula F .y/, let H be constructed as above. Since
diag.n/ is recursive, there is a formula Diag.x; y/ that captures diag; but diag.a/ =
h; so T ` Diag.a; h/ and T ` 8z.Diag.a; z/! h D z/. See the derivation on
the following page.

19This identification is from Smith (An Introduction to Gödel’s Theorems, page 180), who traces the
theorem’s first appearance to Carnap (while in unfamiliar notation, compare Carnap, Logical Syntax of
Language §35).
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If a function f is such that f.n/ = n, then n is a fixed point for f. And by (a possibly
strained) analogy, from this theorem H is said to be a “fixed point” for F .y/.

*E12.32. Let T be any theory that extends Q. For any formulas F1.z/ and F2.z/,
generalize the diagonal lemma to find sentences H1 and H2 such that,

T ` H1 $ F1.pH2q/

T ` H2 $ F2.pH1q/

Demonstrate your result. Hint: Generalize to the notion of a joint diagonaliza-
tion where the first joint diagonalization of formulas P .x; y/ and Q.x; y/ is
9x9yŒx D pPq^y D pQq^P .x; y/� and the second is 9x9yŒx D pP q^y D
pQq ^ Q.x; y/�. Then given p = pP q and q = pQq, there are recursive func-
tions diag1.p; q/ and diag2.p; q/ that return numbers of the joint diagonaliza-
tions, captured by some Diag1.x; y; z/ and Diag2.x; y; z/. Let A1.x; y/ =

T12.16
1. Diag.a; h/ from capture
2. 8z.Diag.a; z/! h D z/ from capture

3. H A (g,$I)

4. 9x.x D a ^ 9yŒDiag.x; y/ ^ F .y/�/ 3 abv
5. j D a ^ 9yŒDiag.j; y/ ^ F .y/� A (g, 49E)

6. j D a 5 ^E
7. 9yŒDiag.j; y/ ^ F .y/� 5 ^E
8. Diag.j; k/ ^ F .k/ A (g, 79E)

9. F .k/ 8 ^E
10. Diag.j; k/ 8 ^E
11. Diag.a; k/ 10,6DE
12. Diag.a; k/! h D k 2 8E
13. h D k 12,11!E
14. F .h/ 9,13DE
15. F .h/ 7,8-14 9E
16. F .h/ 4,5-15 9E

17. F .h/ A (g,$I)

18. Diag.a; h/ ^ F .h/ 1,17 ^I
19. 9yŒDiag.a; y/ ^ F .y/� 18 9I
20. a D a DI
21. a D a ^ 9yŒDiag.a; y/ ^ F .y/� 20,19 ^I
22. 9x.x D a ^ 9yŒDiag.x; y/ ^ F .y/�/ 21 9I
23. H 22 abv
24. H $ F .h/ 3-16,17-23$I
25. H $ F .pHq/ 24 abv
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9zŒDiag2.x; y; z/ ^ F1.z/� and A2.x; y/ = 9zŒDiag1.x; y; z/ ^ F2.z/�. You
will be able to construct a sentence H1 that is the first joint diagonalization of A1

and A2, saying that F1 applies to the second; and then an H2 that is the second
joint diagonalization of A1 and A2 that says F2 applies to the first.

12.5.2 The Ĩncompleteness of Arithmetic

Now we are ready for the result at which we have been aiming this whole chapter, the
ı̃ncompleteness of arithmetic. Corresponding to Carnap’s equivalence and then the
diagonal lemma, the result comes in two forms. Say T is a recursively axiomatized
formal theory if there is a recursive relation PRFT.m; n/ which holds of m and n just in
case m is the super Gödel number of a proof in T of the formula with Gödel number
n . We have seen that Q is recursively axiomatized; but so is PA and any reasonable
theory whose axioms and rules are recursively described (this is the content of ‘nicely
specified’ in the introduction to this part).

Semantic Version

Corresponding to Carnap’s equivalence, the semantic version of our argument depends
on expression and then the s̃oundness of theory T .

T12.17. If T is a recursively axiomatized s̃ound theory whose language includes LNT,
then there is a sentence H such that T ° H and T ° �H .

Consider a recursively axiomatized s̃ound theory T whose language includes LNT.
Since T is recursively axiomatized there is a recursive PRFT.m; n/ and so Prft.v; y/
to express it. Then, where F .y/ is �9vPrft.v; y/, by Carnap’s equivalence, there
is some H numbered h such that NŒH � = NŒ�9vPrft.v; pHq/�.
(i) Suppose T ` H ; then since T is s̃ound, NŒH � = T; so by Carnap’s equiv-
alence, NŒ�9vPrft.v; pHq/� = T; so for any d, NdŒ�9vPrft.v; pHq/� = S; so
NdŒ9vPrft.v; pHq/� = S, and every m is such that Nd.vjm/ŒPrft.v; pHq/� = S; so
with T10.2, NdŒPrft.m; pHq/� = S and NŒPrft.m; pHq/� = T; so by expression,
hm; hi … PRFT; and since this is so for every m, T ° H . Reject the assumption:
T ° H .

(ii) Suppose T ` �H ; then since T is s̃ound, NŒ�H � = T; so NŒH � = T; so by
Carnap’s equivalence, NŒ�9vPrft.v; pHq/� = T; so for some d, NdŒ�9vPrft.v;
pHq/� = S; so NdŒ9vPrft.v; pHq/� = S; so for some m, Nd.vjm/ŒPrft.v; pHq/� =
S; and with T10.2, NdŒPrft.m; pHq/� = S; so by expression, hm; hi 2 PRFT;
so T ` H ; and since T is s̃ound, NŒH � = T. This is impossible; reject the
assumption: T ° �H .

By Carnap’s equivalence, H is true iff it is not provable; with s̃oundness, this has the
consequence that neither H nor �H is provable. So if T is a recursively axiomatized
s̃ound theory whose language includes LNT, then T is ı̃ncomplete.
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Syntactical Version

Corresponding to the diagonal lemma, the syntactical version of our argument depends
on capture and then the consistency of theory T . This time we get the result in two
versions. The first, simpler version is somewhat weaker than we would like—but
important nonetheless. For this, we need a new concept: Say a theory T is !-
incomplete iff for some P .x/, T can prove P .m/ for each m in LNT but T cannot go
on to prove 8xP .x/. Equivalently, T is !-incomplete iff T can prove �P .m/ for
each m in LNT but T ° �9xP .x/. And we might generalize to more than one place.
Then we have already seen that Q is !-incomplete: we can prove say, every sentence
n �m D m � n, but cannot go on to prove the corresponding universal generalization
8x8y.x � y D y � x/. Say T is !-inconsistent iff for some P .x/, T proves P .m/
for every m in LNT but also proves �8xP .x/. Equivalently, T is !-inconsistent iff
T ` �P .m/ for each m in LNT and T ` 9xP .x/. On the standard interpretation N
for LNT, !-incompleteness is a theoretical weakness—there are some things true but
not provable. But !-inconsistency is a theoretical disaster: It is not possible for the
theorems of an !-inconsistent theory to be true on N. !-inconsistency is not itself
inconsistency—for we do not have any sentence such that T ` P and T ` �P . But
we do have sentences that cannot all be true on N.20 Observe that inconsistent theories
are automatically !-inconsistent—for from contradiction all consequences follow
(including each P .m/ and also �8xP .x/); transposing, !-consistent theories are
consistent. Now we show,

T12.18. If T is a recursively axiomatized theory extending Q, then there is a sentence
H such that (i) if T is consistent, T ° H and (ii) if T is !-consistent, T ° �H .

Consider a recursively axiomatized theory T extending Q. Since T is recursively
axiomatized there is a recursive PRFT.m; n/ and so Prft.v; y/ to capture it. Then,
where F .y/ is�9vPrft.v; y/, by the diagonal lemma, there is some H numbered
h such that T ` H $ �9vPrft.v; pHq/.

(i) Suppose T is consistent and T ` H . Then since T is recursively axiomatized,
for some m, PRFT.m; h/; and since T extends Q, by capture, T ` Prft.m; pHq/;
so by (9I), T ` 9vPrft.v; pHq/; so with the diagonal lemma and NB, T ` �H ;
and since T is consistent, T ° H . Reject the assumption: T ° H .

(ii) Suppose T is !-consistent and T ` �H . Then by the diagonal lemma and
NB, T ` 9vPrft.v; pHq/. Since T is !-consistent, it is consistent; so T ° H ; so
since T is recursively axiomatized, for all m, hm; hi … PRFT; and since T extends
Q, by capture, T ` �Prft.m; h/; so since T is !-consistent, T ° 9vPrft.v; h/;
which is to say T ° 9vPrft.v; pHq/. This is impossible: T ° �H .

20From T10.16 any consistent theory has a model. So a theory that is consistent but not !-consistent
has a model. But the universe of a model for a theory that is consistent but not !-consistent must include
some member(s) to which no m from LNT is assigned.
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So any recursively axiomatized !-consistent theory extending Q is ı̃ncomplete. But
it is possible to strengthen this result by dropping the special assumption of !-
consistency.

Enhanced Syntactical Version

Again we depend upon the diagonal lemma. Without the special assumption of !-
consistency we show that no consistent, recursively axiomatized theory extending Q is
negation c̃omplete. For this, we develop a few (independently interesting) preliminary
theorems.

Say that if f is a function from (an initial segment of) N onto some set—so that
the objects in the set are f.0/; f.1/; : : :—then f enumerates the members of the set. A
set is recursively enumerable if there is a recursive function that enumerates it.

T12.19. If T is a recursively axiomatized formal theory then the set of theorems of T
is recursively enumerable.

Consider pairs hp; ti where p numbers a proof of the theorem numbered t, each
such pair itself associated with a number, 2p 3t. Then there is a recursive function
from the natural numbers to these codes as follows:

code.0/ = �z.9p < z/.9t < z/Œz D y2p � y3t ^ PRFT.p; t/�

code.Sn/ = �z.9p < z/.9t < z/Œcode.n/ < z ^ z D y2p � y3t ^ PRFT.p; t/�

So 0 is associated with the least integer that codes a proof of a theorem, 1 with the
next, and so forth. Then,

ethrmt.n/ = exp.code.n/; y1/

returns the Gödel number of theorem n in this ordering: code.n/ returns the code
matched to n, and exp the number of the coded theorem. For every theorem there
is a proof of it, and so some code of which it is a member, and some n such that
ethrmt.n/ returns its Gödel number. So the theorems are recursively enumerable.

A given theorem might appear more than once in this enumeration, corresponding
to codes with different proofs of it, but this is no problem, as we require only that
each theorem appears in some position(s) of the list (and if it were important to
eliminate duplicates, we might have added a conjunct �.9x < p/PRFT.x; t/ to the
condition for code.Sn/). And we might have added a conjunct SENT.t/ to produce an
enumeration of just sentences. Observe that we have, for the first time, made use of
regular minimization—so that this function is recursive but not primitive recursive.
Supposing that T has an infinite number of theorems, there is always some z at which
the characteristic function upon which the minimization operates returns zero—so
that the function is well-defined. So the theorems of a recursively axiomatized formal
theory T are recursively enumerable.
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Suppose we add that T is consistent and negation c̃omplete. Then the relation
PRVT.p/ true just for numbers of formulas provable in T (for theorems of T ) is
recursive. Intuitively, we can enumerate the theorems; then if T is consistent and
negation c̃omplete, for any sentence P , exactly one of P or �P must show up in the
enumeration. So we can search through the list until we find either P or �P —and
if the one we find is P , then P is a theorem. In particular, we find P or �P at
the position, �nŒethrmt.n/ D bpP q _ ethrmt.n/ D 1p�Pq�. A complication is that
negation completeness applies to sentences, while not all theorems are sentences. We
overcome it by considering the universal closure uclose.p/ of theorem p (see E12.33
at the end of this section): given A4 and Gen any formula P is provably equivalent
to its universal closure and, given negation c̃ompleteness, either the closure or its
negation must show up in the enumeration. Thus,

T12.20. For any recursively axiomatized, consistent, negation c̃omplete formal theory
T the relation PRVT.p/ true just in case p numbers a theorem of T is recursive. Let
pos.p/ be,

�n.Œ�WFF.p/ ^ n D 0� _ ŒWFF.p/ ^ .ethrmt.n/ D uclose.p/ _ ethrmt.n/ D til.uclose.p///�/

Then let PRVT.p/ be,
ethrmt.pos.p// D uclose.p/

So pos.p/ takes one of three values: if p does not number a formula it is just 0;
for any p whose closure appears in the enumeration of theorems it is the position
of the closure; and if the negation of its closure appears in the enumeration, it
is the position of the negation. Then PRVT.p/ is true just in case pos takes the
second option—just in case p numbers a formula and the number of the formula
at pos.p/ is uclose.p/ rather than til.uclose.p//. So PRVT.p/ is recursive and true
just in case the closure, and so p itself, is a theorem of T .

Observe that pos.p/ returns 0 when p does not number a formula, and when the
number for the closure of p (or its negation) is the number of the first theorem in
the enumeration. But when pos.p/ = 0, ethrmt.pos.p// always numbers the first
theorem of the enumeration—so that if p (and so uclose.p/) is not the number of
a formula PRVT.p/ is false, and when uclose.p/ is the number of the first theorem
it is true (as it should be). Again, we appeal to regular minimization. In this case,
the function to which the minimization operator applies is regular just because T is
negation c̃omplete. So long as p numbers a formula, the characteristic function for the
second square brackets is sure to go to zero for one disjunct or the other, and when p
does not number a formula the function for the first square brackets goes to zero. So
pos.p/ and thus PRVT.p/ are recursively defined.

As we have just seen, for a recursively axiomatized, consistent, negation c̃omplete
theory PRVT.p/ is recursive. Also, for any recursively axiomatized theory there is
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a recursive PRFT.x; y/. But the existence of a recursive PRFT for some theory does
not by itself imply that PRVT for that theory is recursive—in particular, prefixing
PRFT.x; y/ with an existential quantifier does not result in a recursive relation insofar
as unbounded quantifications are not recursive. In fact, for a consistent theory T
extending Q, PRVT is not recursive. This results as a corollary to the following theorem.

T12.21. For any consistent theory T extending Q the relation PRVT.n/, true when n
numbers a theorem of T , is not captured by any formula Prvt.y/.

Consider a consistent theory T extending Q; and suppose the relation PRVT.n/,
true just in case n numbers a theorem of T , is captured by some Prvt.y/. Then
there is a formula �Prvt.y/; and again since T extends Q, by the diagonal lemma
there is a formula H with Gödel number pHq = h such that,

T ` H $ �Prvt.pHq/

Suppose T ` H ; then h 2 PRVT; so by capture, T ` Prvt.pHq/; so by NB,
T ` �H ; and since T is consistent T ° H ; this is impossible; reject the
assumption: T ° H . But then H is not a theorem of T so that h … PRVT; so by
capture, T ` �Prvt.pHq/; so by$E, T ` H . This is impossible; reject the
original assumption: PRVT is not captured by any Prvt.

Corollary: For any consistent theory T extending Q the relation PRVT.n/, true just
in case n is a Gödel number of a theorem of T , is not recursive. Suppose otherwise,
that PRVT.n/ is recursive; then with T12.14 there is some formula Prvt.y/ that
captures PRVT.n/; but by the main result, this is impossible.

From T12.20 for any recursively axiomatized, consistent, negation c̃omplete
formal theory the relation PRVT.n/ is recursive. But by the corollary to T12.21 for
any consistent theory extending Q the relation PRVT.n/ is not recursive. This already
suggests the ı̃ncompleteness result.

T12.22. No consistent, recursively axiomatized theory extending Q is negation c̃om-
plete.

Consider a theory T that is a consistent, recursively axiomatized extension of Q.
Then since T is consistent and extends Q, by the corollary to T12.21, the relation
PRVT.n/, true iff n is the Gödel number of a theorem, is not recursive. Suppose T
is negation c̃omplete; then since T is also consistent and recursively axiomatized,
by T12.20, PRVT.n/ is recursive. This is impossible; reject the assumption: T is
not negation c̃omplete.

And this time we have the syntactical ı̃ncompleteness result without the special
assumption of !-consistency.
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A theory whose axioms are true on N is s̃ound, and by E7.19 the axioms of Q
are true on N; it follows that Q is s̃ound. Similarly, a theory whose axioms are true
on N is both consistent and !-consistent and, again, the axioms of Q are true on N;
it follows that Q is consistent and !-consistent. Given that it is s̃ound, consistent,
and !-consistent, from our theorems it immediately follows that Q is not negation
c̃omplete. But similarly for any s̃ound recursively axiomatized theory whose language
includes LNT, and for any consistent recursively axiomatized theory that extends Q. We
already knew that there were sentences P such that Q ° P and Q ° �P . One might
have supposed that extensions of Q (such as PA) would remedy this problem. But our
ı̃ncompleteness results apply generally to recursively axiomatized theories extending
Q—and so to any such theory. There are other ways to demonstrate ı̃ncompletness.
We explore some in chapters that follow. However, these first arguments are sufficient
to establish the point.

*E12.33. Define uclose.p/ that returns the number of the universal closure of the
formula numbered p. In order to add quantifiers in order of ascending subscripts it
will be convenient to recursively define a series of expressions qser.p; n/ number-
ing (up to) the n outermost quantifiers to be concatenated with p. So qser.p; 0/ = y1
and qser.p;Sn/ appends to qser.p; n/ a quantifier for the next variable free in
qser.p; n/ ? p—remaining unchanged when there are no more free variables.

E12.34. Let T be any consistent theory extending Q and suppose SBTHRMT.n/ is a
recursive relation such that if SBTHRMT.n/ then n numbers a theorem of T . So
SBTHRMT.n/ applies to numbers for a subset of the theorems of T . Use the diagonal
lemma to show that there is a sentence H such that T ` H but pHq … SBTHRMT.
So a recursive relation which applies only to theorems cannot apply to all the
theorems.

E12.35. Use the version of the diagonal lemma from E12.32 to provide an alternate
demonstration of T12.18. Hint: You will be able to set up sentences such that the
first says the second is not provable, while the second says the first is provable.

E12.36. Use the version of the diagonal lemma from E12.32 to provide an alternate
demonstration of T12.21, that for any consistent theory T extending Q the relation
PRVT.n/, is not captured by any formula Prvt.z/.

E12.37. Consider a recursively axiomatized s̃ound theory whose language includes
LNT. Show that reasoning parallel to that of T12.21 but using Carnap’s equivalence
fails to show that PRVT.n/ is not expressed by some Prvt.y/—all you get is some
H such that T ° H and NŒH � = T. (Indeed, for a recursively axiomatized theory,
PRVT.n/ is expressed by 9vPrft.v; y/.)
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12.5.3 The Decision Problem

It is a short step from the result that if Q is consistent, then no recursive relation
identifies the theorems of Q, to the result that if Q is consistent, then no recursive
relation identifies the theorems of predicate logic.

T12.23. Suppose Q is consistent and L extends LNT; then the relation PRVPL.n/ true
iff n numbers an L-theorem of predicate logic is not recursive.

Suppose otherwise, that Q is consistent and for L extending LNT the relation
PRVPL.n/ true iff n numbers an L-theorem of predicate logic is recursive. The
axioms of Q are equivalent to their universal closures; with the axioms in this
form, let Q be the conjunction of Q1–Q7; since Q1–Q7 in this form are particular
sentences, Q is a particular sentence. Then Q ` P iff Q ` P ; by DT iff
` Q! P . Let q = pQq; then since PRVPL is recursive,

PRVQ.n/ = PRVPL.cnd.yq; n//

defines a recursive relation true iff n numbers a theorem of Q. But, given the
consistency of Q, by the corollary to T12.21, PRVQ.n/ is not recursive. Reject the
assumption: if Q is consistent, then the relation PRVPL.n/ true iff n numbers an
L-theorem of predicate logic is not recursive.

Further, as we observed at the close of the previous section (page 631), Q is consistent;
it follows that no recursive relation numbers the L-theorems of predicate logic. With
T12.21 no recursive relation numbers the theorems of Q. Now we see that this result
extends to logical theorems. At this stage, these results may seem to be a sort of
curiosity about what recursive functions do. They gain significance when, as we have
already hinted can be done, we identify the recursive functions with the computable
functions in Chapter 14.21

12.5.4 Tarski’s Theorem

Say LTRUE.n/ is true iff n numbers a sentence of language L true on the standard
interpretation N. We do not assume that LTRUE.n/ is recursive—only that, by definition,
it applies to numbers of true sentences.

21This result applies to theorems in a language including LNT, and shows that there is no generally
applicable recursive function to identify logical theorems. However in particular contexts theorems may
be decidable. So for example the theorems of any sentential language are decidable; also theorems of
monadic predicate logic which includes only one-place relation symbols are decidable. See also page
766, note 4.
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T12.24. If language L includes LNT, then no formula Ltrue of L expresses LTRUE.

Suppose otherwise, that L extends LNT and some Ltrue.x/ expresses LTRUE.n/ in
L. Then for any P in L,

(A) NŒLtrue.pP q/� = T iff pP q 2 LTRUE iff NŒP � = T

And by Carnap’s equivalence there is a sentence F (a false or liar sentence) in L

such that,

(B) NŒF � = T iff NŒ�Ltrue.pF q/� = T iff NŒLtrue.pF q/� = T

But then by (A), NŒLtrue.pF q/� = T iff NŒF � = T; by (B) iff NŒLtrue.pF q/� = T.
This is impossible; reject the original assumption: no formula Ltrue.x/ in L

expresses LTRUE.n/.

And since every recursive relation is expressed in LNT, neither is LTRUE recursive. This
theorem explains our standard jump to the metalanguage when we give conditions like
SF and TI. Nothing prevents stating truth conditions. Trouble results when a theory
purports to give conditions for all the sentences in its own language—if Ltrue is a
formula of L, Carnap’s equivalence applies to it, and trouble ensues.

Observe that capture implies expression: So long as we use the same formulas for
capture and expression, it is perhaps obvious that capture in a s̃ound theory implies
expression. Further, from T14.10 (to which you may find it interesting to refer) if a
total function can be captured by a consistent recursively axiomatized theory extending
Q then it is recursive; so by T12.5 it is expressed on the standard interpretation N for
LNT. Thus, for some representative examples, the situation is as follows:

relation recursive captured expressed
PRFQ.m; n/ X X X

PRVQ.n/ X X X
LTRUE.n/ X X X

Recursive relations and functions are both captured and expressed. Captured relations
and functions are recursive and expressed. But expression does not imply capture.
So, 9vPrfq.v; n/ expresses PRVQ.n/. However, as we have just observed, if PRVQ.n/
is captured (in a consistent recursively axiomatized theory extending Q) then it is
recursive; but by the corollary to T12.21 PRVQ.n/ is not recursive; so PRVQ.n/ is not
captured. And now we have seen a relation LTRUE.n/ not even expressed in LNT. But
then we already knew from page 575 that some functions (and so relations) cannot be
expressed in LNT. LTRUE.n/ is a specific, significant, example.

This is a decent start into the results of Part IV of the text. In the following, we
turn to deepening and extending them in different directions.
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E12.38. For a language L that includes LNT, suppose SBTRUE.n/ is a recursive relation
such that if SBTRUE.n/ then n numbers a sentence true on N. So SBTRUE.n/ applies
to numbers for a subset of the truths on N. Use Carnap’s equivalence to show
that there is a sentence H such that NŒH � D T but pHq … SBTRUE. So a recursive
function which applies only to truths cannot apply to all the truths.

E12.39. Say T is a theory of truth for its language L just in case there is a formula
Ltrue.y/ such that T ` P $ Ltrue.pP q/ for every P . Use the diagonal lemma
to show that no recursively axiomatized consistent theory extending Q is a theory
of truth for its own language L.

E12.40. For each of the following concepts, explain in an essay of about two pages,
so that (college freshman) Hannah could understand. In your essay, you should
(i) identify the objects to which the concept applies, (ii) give and explain the
definition, and give and explicate examples (iii) where the concept applies, and
(iv) where it does not. Your essay should exhibit an understanding of methods
from the text.

a. The recursive functions and the role of the beta function in their expression
and capture.

b. The essential elements from this chapter contributing to the proof of the
ı̃ncompleteness of arithmetic.

c. The essential elements from this chapter contributing to the proof of that no
recursive relation identifies the theorems of predicate logic

d. The essential elements from this chapter contributing to the proof of Tarski’s
theorem.
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Final Results of Chapter 12

T12.15 For any language including LNT and formula F .y/ containing just the variable y
free, there is a sentence H such that NŒH � = NŒF .pHq/�. Carnap’s Equivalence.

T12.16 Let T be any theory that extends Q. Then for any formula F .y/ containing just
the variable y free, there is a sentence H such that T ` H $ F .pHq/. Diagonal
Lemma.

T12.17 If T is a recursively axiomatized s̃ound theory whose language includes LNT, then
there is a sentence H such that T ° H and T ° �H .

T12.18 If T is a recursively axiomatized theory extending Q, then there is a sentence H

such that (i) if T is consistent, T ° H and (ii) if T is !-consistent, T ° �H .

T12.19 If T is a recursively axiomatized formal theory then the set of theorems of T is
recursively enumerable.

T12.20 For any recursively axiomatized, consistent, negation c̃omplete formal theory T
the relation PRVT.p/ true just in case p numbers a theorem of T is recursive.

T12.21 For any consistent theory T extending Q the relation PRVT.n/, true when n numbers
a theorem of T , is not captured by any formula Prvt.y/.

Corollary: For any consistent theory T extending Q the relation PRVT.n/, true just
in case n is a Gödel number of a theorem of T , is not recursive.

T12.22 No consistent, recursively axiomatized theory extending Q is negation c̃omplete.

T12.23 Suppose Q is consistent and L extends LNT; then the relation PRVPL.n/ true iff n
numbers an L-theorem of predicate logic is not recursive.

T12.24 If language L includes LNT, then no formula Ltrue of L expresses LTRUE. Tarski’s
Theorem.



Chapter 13

Gödel’s Theorems

We have seen a demonstration of the ı̃ncompleteness of arithmetic. In this chapter,
we take another run at that result, this time by Gödel’s original strategy of producing
particular sentences that are true iff not provable. This enables us to extend and
deepen the ı̃ncompleteness result, and puts us in a position to take up Gödel’s second
ı̃ncompleteness theorem, according to which theories (of a certain sort) are not
sufficient for demonstrations of consistency. We begin with a section (13.1) devoted
to Gödel’s first theorem. After that, sections 13.2–13.6 take up the second theorem.

13.1 Gödel’s First Theorem

The arguments for ı̃ncompleteness from Chapter 12 depended upon Carnap’s equiva-
lence and the diagonal lemma. These are existential results: Under certain conditions,
for a formula F , there is an H such that H is equivalent to F .pHq/. Correspondingly,
our demonstrations of ı̃ncompleteness were demonstrations that there is a formula
such that neither it nor its negation is provable. But we do not thereby exhibit any
particular formula such that neither it nor its negation is provable. Still, our reasoning
for the existential results was constructive. This suggests the possibility of finding
a particular sentence G such that T ° G and T ° �G . This is what we do. Again,
the arguments come in semantical and syntactical versions and depend upon diagonal
results.

13.1.1 Diagonalization

Recall that the diagonalization of P .x/ is the formula 9x.x D pPq ^P .x//. From
section 12.5.1, there is a recursive function diag.n/ that returns the number of the
diagonalization of the formula with number n. We begin with semantical and syntacti-
cal results parallel to Carnap’s equivalence and the diagonal lemma. Our reasoning is
very much like that from section 12.5.1—to which you may find it helpful to refer.

636
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First the semantic version. Consider some recursively axiomatized theory T whose
language includes LNT. Since PRFT.m; n/ and diag.n/ are recursive, they are expressed
by canonical formulas Prft.v; y/ and Diag.x; y/. Let A.x/ = 9y.Diag.x; y/ ^
�9vPrft.v; y//, and a = pAq. So A says nothing numbers a proof of the diagonaliza-
tion of a formula with number x. This construction is as from section 12.5.1, except
with the particular formula �9vPrft.v; y/ in place of the variable F . Then,

G = 9x.x D a ^ 9y.Diag.x; y/ ^�9vPrft.v; y///

So G is the diagonalization of A, and intuitively G “says” that nothing numbers a
proof of it. Observe that G is defined relative to Prft for T ; so each T yields its own
Gödel sentence (if it were not ugly, we might sensibly introduce subscripts GT ). Now
as before,

T13.1. For any recursively axiomatized theory T whose language includes LNT,
NŒG � = NŒ�9vPrft.v; pGq/�. Carnap’s result for G .

Consider a recursively axiomatized theory T whose language includes LNT and
the formula G as described above. Then by reasoning as from T12.15, NŒG � =
NŒ�9vPrft.v; pGq/�. Homework.

And now the syntactical theorem. Since PRFT.m; n/ and diag.n/ are recursive,
in theories extending Q they are captured by canonical formulas Prft.v; y/ and
Diag.x; y/. As above, let A.x/ = 9y.Diag.x; y/^�9vPrft.v; y//, and a = pAq. So
A says nothing numbers a proof of the diagonalization of a formula with number x.
Then, G = 9x.x D a^9y.Diag.x; y/^�9vPrft.v; y///. So G is the diagonalization
of A; let g be the Gödel number of G .

*T13.2. Let T be any recursively axiomatized theory extending Q; then T ` G $

�9vPrft.v; pGq/. Diagonal result for G .

Since T is recursively axiomatized, there is a recursive PRFT and since T extends Q
there are Prft and Diag that capture PRFT and diag. From capture T ` Diag.a; g/,
and T ` 8z.Diag.a; z/ ! g D z/. It follows that T ` G $ �9vPrft.v; g/;
which is to say, T ` G $ �9vPrft.v; pGq/. Homework.

So we have results parallel to Carnap’s equivalence and the diagonal lemma—only
this time applied to sentence G .

E13.1. Let Odd.y/ = 9w.y D 2 � w C 1/. Find a sentence that is true iff its own
number is odd. Motivate the stages of your construction as for the construction of
G .

E13.2. Provide reasoning for T13.1 which does not skip any steps.
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*E13.3. Complete the demonstration of T13.2 by providing a derivation to show
T ` G $ �9vPrft.v; pGq/.

13.1.2 The Ĩncompleteness of Arithmetic

Again we have a semantic result which requires expression and s̃oundness, and a
syntactical one which requires capture and consistency—where this latter result comes
in two forms.

Simple Versions

Given the theorems from above, we begin with reasoning entirely parallel to that for
T12.17 and T12.18.

T13.3. If T is a recursively axiomatized s̃ound theory whose language includes LNT,
then T ° G and T ° �G .

Suppose T is a recursively axiomatized s̃ound theory whose language includes
LNT. Reasoning as for T12.17, T ° G and T ° �G . Homework.

T13.4. If T is a recursively axiomatized theory extending Q, then if T is consistent
T ° G , and if T is !-consistent, T ° �G .

Suppose T is a recursively axiomatized theory extending Q. Reasoning as for
T12.18, if T is consistent, T ° G , and if T is !-consistent, T ° �G . Homework.

So we have the results from before only applied to the particular sentence G . Further,
it is a short step (which you have the opportunity to take in homework) from T13.1
according to which NŒG � = T iff NŒ�9vPrft.v; pGq/� = T to the result that G is true
iff T ° G . Since T ° G , we have that G is both unprovable and true.

T13.4 is roughly the form in which Gödel proved the ı̃ncompleteness of arithmetic
in 1931: If T is a consistent, recursively axiomatized theory extending Q, then
T ° G ; and if T is an !-consistent, recursively axiomatized theory extending Q, then
T ° �G . Gödel himself did not show the result for Q, but rather for the significantly
stronger theory of Russell and Whitehead’s 1910–13 Principia Mathematica—but
his argument does not require all the power of that theory and, as we have seen,
the reasoning goes through for theories extending Q. Insofar as standard theories
including Q and PA are consistent and !-consistent, the results are sufficient for the
ı̃ncompleteness of arithmetic (compare note 2 on page 641).
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Rosser’s Sentence

But again it is possible to drop the special assumption of !-consistency. This time
we proceed by means of a sentence somewhat different from G .1 Let PRFT.m; n/ =
PRFT.m; til.n//; so PRFT.m; n/ obtains when m numbers a proof of the negation of the
formula numbered n. Since it is recursive, it is captured by some Prft.w; y/. Set,

RPrft.v; y/ = Prft.v; y/ ^ .8w � v/�Prft.w; y/

So RPrft.v; y/ just in case v numbers a proof of the formula numbered y, and no w
less than or equal to v numbers a proof of the negation of that formula. Now, working
as before, set A0.x/ = 9y.Diag.x; y/ ^�9vRPrft.v; y//, and a = pA0q. So A0 says
nothing numbers an R-proof of the diagonalization of a formula with number x. Then,

R = 9x.x D a ^ 9y.Diag.x; y/ ^�9vRPrft.v; y///

So R is the diagonalization of A0. And R has the key syntactic property just like G .
Again, reasoning as for the diagonal lemma,

T13.5. Let T be any recursively axiomatized theory extending Q; then T ` R $

�9vRPrft.v; pRq/. Diagonal result for R.

You can show this just as for T13.2.

And now we can show that a consistent, recursively axiomatized theory extending Q
proves neither R nor �R. Reasoning is somewhat more involved than before, but
still straightforward.

T13.6. If T is a consistent, recursively axiomatized theory extending Q, then T ° R

and T ° �R.

Suppose T is a consistent recursively axiomatized theory extending Q, and let
r = pRq.

(i) Suppose T ` R. Then by T13.5, T ` �9vRPrft.v; pRq/. Since T is
recursively axiomatized, for some m, PRFT.m; r/; and since T extends Q, by
capture, T ` Prft.m; r/. But by consistency, T ° �R; so there is no n such that
PRFT.n; til.r//; so for all n, and in particular all n m, hn; ri … PRFT; so by capture,
T ` �Prft.n; r/; so by T8.25, T ` .8w � m/�Prft.w; r/; so T ` Prft.m; r/ ^
.8w � m/�Prft.w; r/; so T ` RPrft.m; r/; so T ` 9vRPrft.v; r/; and since T is
consistent, T ° �9vRPrft.v; r/, which is to say, T ° �9vRPrft.v; pRq/. This
is impossible; reject the assumption: T ° R.

(ii) Suppose T ` �R. Then since T is recursively axiomatized, for some m,
hm; ri 2 PRFT; and since T extends Q, by capture, T ` Prft.m; r/. By consistency,

1Barkley Rosser, “Extensions of Some Theorems of Gödel and Church.”
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T ° R; so for any n, and in particular, any n m, hn; ri … PRFT; so by capture,
T ` �Prft.n; r/; and by T8.25, T ` .8w � m/�Prft.w; r/. Now reason as
follows:

1. �R from T

2. Prft.m; r/ capture
3. .8w � m/�Prft.w; r/ capture and T8.25
4. R$ �9vRPrft.v; r/ T13.5

5. 9vRPrft.v; r/ 1,4 NB
6. RPrft.j; r/ A (c, 59E)

7. Prft.j; r/ ^ .8w � j /�Prft.w; r/� 6 abv
8. j � m _m � j T8.23
9. j � m A (c, 8_E)

10. Prft.j; r/ 7 ^E
11. �Prft.j; r/ 3,9 (8E)
12. ? 10,11 ?I

13. m � j A (c, 8_E)

14. .8w � j /�Prft.w; r/� 7 ^E
15. �Prft.m; r/ 14,13 (8E)
16. ? 2,15 ?I

17. ? 8,9-12,13-16 _E

18. ? 5,6-17 9E

So T is inconsistent. Reject the assumption: T ° �R.

In reasoning for T13.4, from T ` �G and the diagonal result we had 9vPrft.v; g/, but
no way to convert it to a contradiction with �Prft.0; g/;�Prft.1; g/; : : : without the
appeal to !-consistency. We can, however, move from �Prft.0; r/;�Prft.1; r/; : : : ;
�Prft.m; r/ to a bounded quantification .8w � m/�Prft.w; r/. Then the special
nature of R aids the argument: Suppose j � m; from RPrft.j; r/ it follows that
Prft.j; r/, and we contradict the bounded quantification in the usual way. Suppose
m � j ; from RPrft.j; r/ it follows that nothing less than or equal to j (including m)
numbers a proof of til.r/; but from the assumption that T ` �R we have Prft.m; r/
and we contradict again. So T ° R and T ° �R.

Let us close this section with some reflections on what we have shown: First,
from the semantic argument a s̃ound recursively axiomatized theory whose language
includes LNT is ı̃ncomplete; from the syntactic argument a consistent recursively
axiomatized theory extending Q is ı̃ncomplete. Both apply to recursively axiomatized
theories. The arguments work because a theory whose language includes LNT expresses
the recursive functions; and a theory extending Q captures the recursive functions.
So the semantic result requires s̃oundness and expression, and the syntactic requires
consistency with capture. For s̃oundness and consistency we have,
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T is s̃ound� T is !-consistent� T is consistent

So our results are progressively stronger as the assumptions have become correspond-
ingly weaker. But for expression and capture,

capture� expression

So the requirement is increased as we move from expression to capture. These
relations serve to locate the theories to which our results apply: If a recursively
axiomatized theory is s̃ound and it’s language expresses the (primitive) recursive
functions then it is ı̃ncomplete, and if a recursively axiomatized theory is consistent
and captures the recursive functions then it is ı̃ncomplete. But when a theory does not
meet these conditions, we will not have shown that it is ı̃ncomplete.2

Second, we have not shown that there are truths of LNT not provable in any
recursively axiomatized consistent theory extending Q. Rather, what we have shown
is that for any recursively axiomatized consistent theory extending Q, there are some
truths of LNT not provable in that theory. For a given recursively axiomatized theory,
there will be a given relation PRFT.m; n/ and Prft.v; y/ depending on the particular
axioms of that theory—and so unique sentences G and R constructed as above. In
particular, given that a theory cannot prove, say, R, we might simply add R to its
axioms; then of course there is a derivation of R from the axioms of the revised
theory! But then the new theory T 0 will generate a new relation PRFT0.m; n/ and a new
Prft0.v; y/ and so a new unprovable sentence R0. So any consistent theory extending
Q is negation ı̃ncomplete.

But it is worth a word about what are theories extending Q. Any such theory
should build in equivalents of the LNT vocabulary ;, S ,C, and �—and should have a
predicate Nat.x/ to identify a class of objects to count as the natural numbers. For
Q and PA this predicate Nat may just be x D x, since the axioms apply to all the
members of the intended universe. But there may be cases where the natural numbers
are a subset of the domain. Then if the theory makes the axioms of Q true on those
objects, it is ı̃ncomplete. Straightforward extensions of Q are ones like PA which
simply add to its axioms. But ordinary ZFC set theory also falls into this category—for
it is possible to define a class of sets, say, ¿; f¿g; f¿; f¿gg; f¿; f¿g; f¿; f¿ggg; : : : ;
where 0 is the empty set ¿ and any successor is the set of all the numbers prior to
it, along with operations on sets which obey the axioms of Q.3 It follows that ZFC
is negation ı̃ncomplete. In contrast, the domain for the theory of real closed fields

2The historical order of Q and PA is the reverse of the order in which we have developed them. PA
emerged in the late 1800s, and Q only in 1950 (after the 1931 publication of Gödel’s result). Q was
never supposed to be c̃omplete; rather it was an explicit weakening of PA (and Principia Mathematica),
sufficient to capture the recursive functions and so to support Gödel’s theorem. Thus, again, we locate the
theories to which our results apply: the syntactical result applies to recursively axiomatized consistent
theories extending Q, but not to ones weaker than Q. (In fact, there are ı̃ncompletenesss results for
systems weaker than Q—but that is is a topic beyond the scope of our discussion.)

3For discussion, see any introduction to set theory, for example, Enderton, Elements of Set Theory,
Chapter 4. See also page 649.
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(RCF) includes all the entities required to do arithmetic; however the language of this
theory does not have a predicate Nat.x/ to pick out the natural numbers, and RCF
cannot recapitulate the theory of natural numbers on any subclass of its domain; so
our ı̃ncompleteness theorem does not get a grip—and, in fact, this theory is c̃omplete
(compare pages 556 and 564). Observe, though, that it is a weakness of RCF, its
inability to specify a certain class, that makes room for its c̃ompleteness.

E13.4. Provide the reasoning to show T13.3 and T13.4.

E13.5. For T a recursively axiomatized sound theory whose language includes LNT,
fill out the reasoning mentioned on page 638 to show that NŒG � = T iff T ° G ,
and so that G is both unprovable and true.

E13.6. Demonstrate T13.5.

13.2 Gödel’s Second Theorem: Overview

We turn now to Gödel’s second ı̃ncompleteness theorem on the unprovability of
consistency. The discussion is divided into five main sections. First, in this section,
Gödel’s second theorem is proved subject to three derivability conditions. Then we
turn to the derivability conditions themselves. The first is easy. But the second and
third require extended discussion. There is some background (section 13.3). Then
discussion of the second condition (section 13.4), and the third condition (section 13.5).
This completes the proof. We conclude with some reflections and consequences from
our results (section 13.6). Textbooks ordinarily end their discussion of the second
theorem with the demonstration from the derivability conditions, offering just some
general perspective on how the conditions are to be obtained.4 However, even if you
decide to bypass details, this general perspective will be enhanced by survey of a
particular instance that exhibits what is involved.

The main argument developed in this section applies generally to recursively
axiomatized theories extending Q that satisfy the derivability conditions, to show that
such a theory cannot prove its own consistency. From the sections that follow, PA
is one such theory. The result is that PA and its extensions cannot prove their own

4So, for example, Boolos, Burgess, and Jeffrey omit demonstrations with a remark that, “the
proofs of the [second and third derivability conditions] are omitted from virtually all books on the
level of this one, not because they involve any terribly difficult new ideas, but because the innumerable
routine verifications they—and especially the last—require would take up too much time and patience”
(Computability and Logic, page 234). Smith devotes about three pages (An Introduction to Gödel’s
Theorems, pages 258–60). Gödel himself outlines but does not give a proof of the second theorem in his
1931, “On the Formally Undecidable Propositions of Principia Mathematica and Related Systems.” The
proof was first carried out in 1939 by Hilbert and Bernays, Grundlagen der Mathematik, Vol II.



CHAPTER 13. GÖDEL’S THEOREMS 643

consistency. The reason for the switch to PA will become vivid in demonstration of
the derivability conditions.5

Main argument. We have seen that for recursively axiomatized theories there is
a recursive relation PRFT.m; n/. Since it is recursive, in theories extending Q, this
relation is captured by a corresponding Prft.v; y/. Let,

Prvt.y/ = 9vPrft.v; y/

So Prvt.y/ just when something numbers a proof of the formula numbered y—when
the formula numbered by y is provable.6 Insofar as the quantifier is unbounded, there
is no suggestion that there is a corresponding recursive relation—in fact, we have seen
from T12.21 that no recursive relation is true just of numbers for the theorems of Q.
Let,

Cont = �Prvt.p; D S;q/

So Cont is true just in case there is no proof of 0 D 1. There are different ways
to express consistency, but for theories extending Q this does as well as any other.
Let T extend Q. (i) Suppose T ` 0 D 1; since T extends Q, T ` 0 ¤ 1; so
T ` 0 D 1 and T ` 0 ¤ 1; so T is inconsistent. (ii) Suppose T is inconsistent;
then it proves anything; so T ` 0 D 1. So T ` 0 D 1 iff T is inconsistent; and,
transposing, T is consistent iff T ° 0 D 1. So T is consistent iff Cont is true (for
further discussion, see section 13.6.1). Notice that consistency sentences vary with
the provability predicate—so instances of Cont are Conq for Q and Conpa for PA.

Gödel’s second ı̃ncompleteness theorem is this simple result: Under certain
conditions, if T is consistent, then T ° Cont. If it is consistent, then T cannot prove
its own consistency. Suppose the first incompleteness theorem (T13.4) applies to T ,
and suppose we could show,

.��/ T ` Cont! �Prvt.pGq/

Then, given what has gone before, we could make the following very simple argument.
Suppose T is a recursively axiomatized theory extending Q.

By T13.2, T ` G $ �9vPrft.v; pGq/, which is to say, T ` G $ �Prvt.pGq/;
from this and (��), T ` Cont! G ; so if T ` Cont then T ` G ; but from the first
theorem (T13.4), if T is consistent, then T ° G ; so if T is consistent, T ° Cont.

5But the argument goes through for certain theories weaker than PA. Of relevance to Hilbert, it goes
through for primitive recursive arithmetic (PRA)—whose theorems are like those of a system which
adds to the axioms of Q the induction schema but restricted to …1 formulas. Though he is not entirely
clear, arguably, PRA is Hilbert’s real theory R (see page 561). We set aside such concerns.

6Following Gödel, formula Prvt is often labeled ‘Bew’—short for the German word “provable.”
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So the argument reduces to showing (��). Observe that in reasoning for T13.4 we
have already shown,

T is consistent� T ° G

So the argument reduces to showing that T proves what we have already seen is so.
There is nothing mysterious about this: Cont, Prvt, and the like are formulas, and so
just the sort of thing to which our proof apparatus applies. Given the parallel between
what has gone before and what we require, it is not surprising that much of what we
shall do is (roughly) parallel to what has gone before: Corresponding to the recursive
functions of Chapter 12, our idea is to define “coordinate” functions into the theory T
and then, within T , demonstrate matching results about them. So we “push” reasoning
from the metalanguage into the theory. It is this that motivates the switch from Q to
PA—as many of the arguments that would have been by induction are forced into the
theory and so are by IN.

Let us abbreviate Prvt.pPq/ by �P . Observe that this obscures the corner quotes.
Still, we shall find it useful. So we need T ` Cont ! ��G , which is just to say,
T ` ��.0 D 1/! ��G . Suppose T satisfies the following derivability conditions:

D1. If T ` P then T ` �P

D2. T ` �.P ! Q/! .�P ! �Q/

D3. T ` �P ! ��P

Then we shall be able to show T ` Cont! ��G .
The utility of � in this context is that D1–D3 characterize a standard modal logic,

K4—and it is not surprising that provability should correspond to a kind of necessity.
There is an elegant natural derivation system for this modal logic. For this you might
check out Roy, “Natural Derivations for Priest” §2 (but in the nomenclature there
borrowed from Priest, the system is NK� ). However rather than introduce and explain
a new derivation system, we obtain a version of K4 simply by adding D1–D3 to
A1–A3 and MP from ADs. So K4 has D1 as a new rule, and D2 and D3 as new
axioms.7 Since A1–A3 and MP remain, we have all the theorems from before. Our
demonstration of DT does not, however, extend to include the new rule D1; DT is
fine for derivations with just A1–A3 and MP; but in any place where the new rule is
involved, we set DT to the side. As a simple K4 example, K̀4 ��P ! �.P ! Q/.

(A)

1. �P ! .P ! Q/ T3.9
2. �Œ�P ! .P ! Q/� 1 D1
3. �Œ�P ! .P ! Q/�! Œ��P ! �.P ! Q/� D2
4. ��P ! �.P ! Q/ 3,2 MP

7While K4 correctly represents the derivability conditions, it is not a c̊omplete logic of provability.
We get a c̊omplete system if we add to K4 a rule according to which from �P ! P we may infer P .
For discussion see section 13.6.2 and Boolos, The Logic of Provability.
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Now, given that T ` G ! �9vPrft.v; pGq/ from T13.2, we shall be able to show
that T ` Cont! �Prvt.pGq/.

T13.7. Let T be a recursively axiomatized theory extending Q. Then supposing
T satisfies the derivability conditions and so the K4 logic for provability, T `
Cont! �Prvt.pGq/.

1. G ! ��G from T13.2
2. �.G ! ��G / 1 D1
3. �.G ! ��G /! .�G ! ���G / D2
4. �G ! ���G 3,2 MP
5. ���G ! �.�G ! 0 D 1/ (A)
6. �G ! �.�G ! 0 D 1/ 4,5 T3.2
7. �.�G ! 0 D 1/! .��G ! �.0 D 1// D2
8. �G ! .��G ! �.0 D 1// 6,7 T3.2
9. Œ�G ! .��G ! �.0 D 1//�! Œ.�G ! ��G /! .�G ! �.0 D 1//� A2

10. .�G ! ��G /! .�G ! �.0 D 1// 9,8 MP
11. �G ! ��G D3
12. �G ! �.0 D 1/ 10,11 MP
13. Œ�G ! �.0 D 1/�! Œ��.0 D 1/! ��G � T3.13
14. ��.0 D 1/! ��G 13,12 MP

So T ` ��.0 D 1/! ��G which is to say, T ` Cont! �Prvt.pGq/.

As usual, reasoning from the axiomatic derivation is not especially intuitive. Still,
with the derivability conditions, T ` Cont ! �Prvt.pGq/. Given this, reason as
before:

T13.8. Let T be a recursively axiomatized theory extending Q. Then supposing T
satisfies the derivability conditions, if T is consistent, T ° Cont.

Suppose T is a recursively axiomatized theory extending Q that satisfies the
derivability conditions. Then by T13.7, T ` Cont! �Prvt.pGq/; and by T13.2,
T ` G $ �Prvt.pGq/; so T ` Cont ! G ; so if T ` Cont then T ` G ; but
from the first ı̃ncompleteness theorem T13.4, if T is consistent, then T ° G ; so if
T is consistent, T ° Cont.

One might wonder about the significance of this theorem: If T were inconsistent,
it would prove Cont. Further, suppose T is a recursively axiomatized theory extending
Q that satisfies the derivability conditions: From the theorem, if T is consistent then
T ° Cont—so, transposing, if T ` Cont then T is inconsistent! So a failure to
prove Cont is no reason to think that T is inconsistent. The interesting point here
results from using one theory to prove the consistency of another. Recall the main
Hilbert strategy as outlined in the introduction to Part IV; a key component is the
demonstration by means of some real theory R that an ideal theory I is consistent.
But supposing that PA (say) cannot prove its own consistency, we can be sure that
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no weaker theory can prove the consistency of PA. And if PA cannot prove even the
consistency of PA, then PA and theories weaker than PA cannot be used to prove the
consistency of theories stronger than PA.8 So a leg of the Hilbert strategy seems to
be removed. Observe, however, that the theorem does not show that the consistency
of PA is unprovable: A theory stronger than PA at least in some respects might still
prove the consistency of PA. So for example, we might consider a theory PA� like
PA but with the addition of Conpa as an axiom. Then trivially PA� proves Conpa. Of
course, as a means of demonstrating the consistency of PA such an argument assumes
that which is to be shown. More seriously, G. Gentzen proves the consistency of PA
by a theory that is not a simple extension of PA (Gentzen, “Consistency of Number
Theory” and “New Version of the Consistency Proof”). But related concerns apply.
A non-question-begging demonstration of the consistency of PA by a strengthened
theory requires some reason for accepting the s̃oundness of the stronger theory that is
not already a reason to think that PA is consistent.9

Another theorem is easy to show, and left as an exercise.

T13.9. Let T be a recursively axiomatized theory extending Q. Then supposing
T satisfies the derivability conditions and so the K4 logic for provability, T `
Cont$ �Prvt.pContq/.

Hints: (i) Show that T ` Cont ! ��Cont; you can do this starting with
Cont ! ��G from T13.7 and ��G ! G from T13.2. Then (ii) show T `

��Cont ! Cont; for this, use T6.45 with T3.9 to show T ` 0 D 1 ! Cont;
then you should be able to obtain ��Cont ! ��.0 D 1/ which is to say
��Cont! Cont.

From this theorem, supposing the derivability conditions, Cont is another P which,
like G , is such that T ` P $ �Prvt.pP q/; so Cont is another fixed point for
�Prvt.x/. It follows that Cont is another sentence such that both it and its negation
are unprovable. Interestingly, Cont uses the notion of provability, but is not constructed
so as to say anything about its own provability—and so this instance of ı̃ncompleteness
does not depend on self-reference for the unprovable sentence.

Proving the conditions. We have shown that the second theorem holds for a theory
if it meets the derivability conditions. But this is not to show that the theorem holds
for any theories! In order to tie the result to something concrete, we turn now to
showing that PA meets the derivability conditions, and so that PA satisfies the theorem.
It will be clear how to extend the result to recursively axiomatized theories extending
PA. Coinciding with the move to PA we revert to considering original rather than

8And the same goes for Hilbert’s PRA (see note 5 on page 643).
9But this is not the end of the matter. See for example Detlefsen, “Interpreting Gödel’s Second

Theorem” and Hilbert’s Program. Again, this is a topic in philosophy of mathmatics (compare page 562
note 3).
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canonical formulas: this avoids some complication, and insofar as PA is a theory
extending Qs (as from section 12.3.2), it remains that our results for capture and then
for the first ı̃ncompleteness theorem are preserved.

Demonstration of the first derivability condition is simple.

T13.10. Suppose T is a recursively axiomatized theory extending Qs. Then if T ` P ,
then T ` �P .

Suppose T is a recursively axiomatized theory extending Qs and T ` P ; since T
is recursively axiomatized, for some m, PRFT.m; pP q/; and since T extends Qs,
by T12.9 there is a(n original) Prft that captures PRFT; so T ` Prft.m; pPq/; so
by 9I, T ` 9xPrft.x; pPq/; so T ` Prvt.pP q/; so T ` �P .

Qs strengthens Q insofar as it proves uniqueness of remainder. But, as for Def [rm] on
page 660, PA is a theory that proves uniqueness of remainder—so PA qualifies as a
recursively axiomatized theory extending Qs. So (D1), if PA ` P then PA ` �P .

Proving the second and third conditions is considerably more difficult. As re-
marked above, much of what we shall do is (roughly) parallel to reasoning applied to
recursive functions: we define coordinate functions into PA and demonstrate parallel
results about them. Thus reasoning includes the following stages:

Definition of functions and
relations “coordinate” to ones

from Chapter 12

Accumulation of results about
defined functions and

relations

Proof of the derivability
conditions

- -

We begin with definitions. Then we accumulate a series of results about the defined
notions that finally put us in a position to demonstrate the derivability conditions
themselves. Section 13.3 develops the first box. Then section 13.4 develops boxes
two and three with respect to the second condition and, building on that, section 13.5
with respect to the third condition.

E13.7. Using corner quotes and overlines, unabbreviate �P ! ��P .

E13.8. Show that K̀4 �.P ^Q/! .�P ^ �Q/. Hint: As a preliminary result, use
T9.4 to show A! B;A! C

ÀDs
A! .B ^ C/.

E13.9. (a) Produce derivations to show both directions of the biconditional in T13.9.
(b) Use your result to demonstrate that T is negation ı̃ncomplete—that if T is re-
cursively axiomatized theory extending Q that satisfies the derivability conditions,
then if T is consistent, T ° Cont, and if T is !-consistent, T ° �Cont.
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Additional Theorems of PA
*T13.11. The following are theorems of PA.

(a) PA ` .r � s ^ s � t/! r � t

(b) PA ` .r < s ^ s < t/! r < t

(c) PA ` .r � s ^ s < t/! r < t

(d) PA ` ; � t

(e) PA ` ; < St

(f) PA ` ; ¤ t $ ; < t

(g) PA ` 1 ¤ St $ ; < t

(h) PA ` ; < t ! 9:.t D S:/ : not in t.

(i) PA ` t < St

(j) PA ` s � t $ Ss � St

(k) PA ` s < t $ Ss < St

(l) PA ` s < t $ Ss � t

(m) PA ` s � t $ s < t _ s D t

(n) PA ` s < St $ s < t _ s D t

(o) PA ` s < St $ s � t

(p) PA ` s � St $ s � t _ s D St

(q) PA ` s < t _ s D t _ t < s

(r) PA ` s � t _ t < s

(s) PA ` t < s! t ¤ s

(t) PA ` s � t $ t – s

(u) PA ` .s � t ^ t � s/! s D t

(v) PA ` s � sC t

(w) PA ` r � s$ rC t � sC t

(x) PA ` r < s$ rC t < sC t

(y) PA ` .r � s ^ t � u/! rC t � sC u

(z) PA ` .r < s ^ t � u/! rC t < sC u

(aa) PA ` ; < t ! s � s � t

(ab) PA ` r � s! r � t � s � t

(ac) PA ` ; < r � s! ; < s

(ad) PA ` .1 < r ^ ; < s/! s < r � s

(ae) PA ` .; < t ^ r < s/! r � t < s � t

(af) PA ` .8x � y/9vF xv $ 9z.8x � y/.9v � z/F xv

(ag) PA ` 8xŒ.8: < x/P x
: ! P �! 8xP strong induction (a)

(ah) PA ` .P x
;
^ 8xŒ.8: � x/P x

: ! P x
Sx
�/! 8xP strong induction (b)

(ai) PA ` 9xP ! 9xŒP ^ .8: < x/�P x
: � least number principle

Demonstrations are left for homework. Except for (q) and a couple at the end, these are simple

arguments that draw upon definitions and prior theorems, without separate application of PA7 or IN.
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*E13.10. For T13.11ag, ah, ai: Without separate appeal to PA7 (or IN) show that PA
proves conditionals (i) from PA7 (applied to .8z < x/P .z/) to ag; (ii) from ag
(applied to �P .x/) to ai; (iii) from ai (applied to �P .x/) to ah; and (iv) from ah
to PA7. You may appeal to prior theorems from Chapter 6 and T13.11. Thus, in
the context of prior results to which you appeal, these principles are connected in
a “loop” so that each follows from the others. And, of course, this proves each of
T13.11ag, ah, ai in PA. Hard-core: demonstrate each of the results in T13.11.

13.3 The Derivability Conditions: Definition

Our aim in this section is to show that PA defines function and relation symbols
corresponding to functions and relations from Chapter 12. We begin with some
remarks on what is required to introduce function and relation symbols into PA. Then
we turn to showing that PA in fact defines functions and relations corresponding to
the recursive functions and relations of Chapter 12.

13.3.1 Remarks on Definition

In theories extending Qs, a recursive function rec.Ex/ is captured by an original formula
Rec.Ex; y/. Now we shall want a defined function symbol rec.Ex/ that is matched to
Rec.Ex; y/ so that PA ` y D rec.Ex/$ Rec.Ex; y/. Then we shall be able to operate
on the term rec.Ex/ very much as upon the recursive rec.Ex/. Up to this point, we have
taken a language, as Lq or LNT, as basic and introduced any additional symbols, for
example 9 or �, as means of abbreviation for expressions in the original language.
But in the present context it will be convenient to extend the language by the definition
of new symbols.

So, for example, given a theory T in language L, we might introduce symbols
and corresponding axioms to obtain T 0 and L0 as follows:

Symbol Axiom Condition

� x � y $ 9z.z C x D y/

¿ y D ¿$ 8x.x … y/ T ` 9Šy8x.x … y/

S y D Sx $ 8zŒz 2 y $ .z 2 x _ z D x/� T ` 9Šy8zŒz 2 y $ .z 2 x _ z D x/�

We are familiar with the first case. So far, we have thought of this as an abbreviation—
and as such the listed axiom is of the sort Q0 $ Q with the abbreviated form on one
side, and the unabbreviated on the other. A theory is not extended by the addition
of an “axiom” of this sort. But it is possible to see the symbol as new vocabulary.
In all three cases T 0 includes an axiom to define the symbol. The last two require
also a uniqueness condition in the original T . For these, let 9ŠyP .y/ abbreviate
9yŒP .y/^8z.P .z/! z D y/� or equivalently 9yP .y/^8y8zŒ.P .y/^P .z//!
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y D z� so that exactly one thing is P . Then the cases for a constant and function
symbol are standard examples from set theory, where zero and successor are defined
(taken together, these work as described on page 641). Details of the examples are
not important; examples are meant only to illustrate the idea of definition. We begin
with conditions under which new vocabulary is introduced, and turn to some basic
applications.

Conditions for Definition

Consider some theory T and language L. We will consider a language L0 extended
with some new symbol and theory T 0 extended with a corresponding axiom. There
are separate cases for a relation symbol, constant symbol, and function symbol.

Relation symbol. To introduce a new relation symbol REx we require an axiom in
the extended theory such that,

T 0 ` R.Ex/$ Q.Ex/

where Q.Ex/ is in L. So R is defined by formula Q. Then for a formula F 0 including
the new symbol, there should be a conversion C such that CŒF 0� = F for F in the
original L and,

T 0 ` F 0 iff T ` CŒF 0�

So CŒF 0� is like our unabbreviated formula, always available in the original T when
F 0 is a theorem of T 0. The conversion for a relation R.Es/ is straightforward. For
arbitrary A, B, C , say AB

C
replaces each instance of B in A with C . Then make sure

the bound variables of Q do not overlap the variables of Es—so that from the axiom
T 0 ` R.Es/$ Q.Es/—and set CŒF 0� = F 0

R.Es/

Q.Es/
. Thus, from the example above,

T 0 ` x � y $ 9z.z C x D y/

Suppose F 0 = 8z.a � z/. Then we want to instantiate x and y from the axiom
to a and z. But z is not free for y in the axiom. We solve the problem by revising
bound variables; so T 0 ` x � y $ 9w.w C x D y/ and then T 0 ` a � z $

9w.w C a D z/. So CŒF 0� replaces .a � z/ in F 0 with 9w.w C a D z/ to obtain
8z9w.w C a D z/.

Constant symbol. To introduce a new constant symbol we require an axiom in the
extended theory, along with a condition in the original theory such that,

T 0 ` y D c$ Q.y/ and T ` 9ŠyQ.y/

where Q.y/ is in L. Again for a formula F 0 including the new symbol, we expect a
conversion C such that CŒF 0� is a formula of L, and T 0 ` F 0 iff T ` CŒF 0�. Let z be
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a variable that does not appear in F 0 or Q. Then from the axiom, T 0 ` z D c $ Q.z/

and,

CŒF 0� = 9z.Q.z/ ^ F 0
c
z/

So, from the example above, we are given T 0 ` y D ¿$ 8x.x … y/; suppose F 0 =
9y.¿ 2 y/. Then z is a variable that does not appear in F 0 or in Q.y/ = 8x.x … y/.
So T 0 ` z D ¿$ 8x.x … z/ and CŒF 0� = 9zŒ8x.x … z/ ^ 9y.z 2 y/�.

Function symbol. To introduce a function symbol, there is an axiom and condition,

T 0 ` y D hEx $ Q.Ex; y/ and T ` 9ŠyQ.Ex; y/

Begin with an atomic R0. When a single instance of hEs appears in R0, the conversion
for a function symbol works like that for constants: Again, make sure the bound
variables of Q do not overlap the variables of Es and let z be a variable that does not
appear in R0 or in Q. Then it is sufficient to set CŒR0� = 9z.Q.Es; z/ ^R0

hEs
z /, and

for arbitrary F 0, CŒF 0� = F 0
R0

CŒR0�. In general, however, R0 may include multiple
instances of h, including one in the scope of another. In this case, we replace
instances of the function symbol beginning with ones that have widest scope. Begin
where R0 = Rt1 : : : tn and t1 : : : tn may involve instances of hEs. Order instances
of hEs in R0 from the left (or, on a Chapter 2 tree, from the bottom) into a list
hEs1;hEs2; : : : ;hEsm, so that when i j , no hEsi appears in the scope of hEsj . Then
set R0 = R0, and for i 1 and some new variable z, Ri = 9z.Q.Esi ; z/^ .Ri 1/

hEsi
z /.

Then CŒR0� = Rm and for arbitrary F 0, CŒF 0� = F 0
R0

Rm
.

In case a single replacement is made, this is no different than before. For a case
with more than one replacement, consider R0 = R0 = Rh2h2xyh2yz; then the tree
is as follows:

(B)

x

@
@
@

y

�
�
�

y

@
@
@

z

�
�
�

h2xy
HH

HHHH

h2yz
��

����
h2h2xyh2yz

. . . . . . . . . . . . . . . . . . . . .

Rh2h2xyh2yz

So instances of hqr are ordered hh2h2xyh2yz; h2xy; h2yzi. Make sure the bound
variables of Q.Ex; y/ do not overlap the variables of R0. In this example h is a two-
place function symbol so that Ex consists of some variables m; n and the axiom is
of the sort y D h.m; n/ $ Q.m; n; y/. And we use Q to replace instances of h,
working our way up through the tree. So,
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R0 = Rh2h2xyh2yz

R1 = 9uŒQh2xyh2yzu ^Ru�

R2 = 9v.Qxyv ^ 9uŒQvh2yzu ^Ru�/

R3 = 9wŒQyzw ^ 9v.Qxyv ^ 9uŒQvwu ^Ru�/�

R1 uses Q to replace all of h2h2xyh2yz, operating on the terms h2xy and h2yz;
R2 uses Q to replace h2xy in R1 operating on the terms x and y; and R3 uses Q to
replace h2yz in R2 operating on the terms y and z. Observe that free variables of the
result are the same as in R0.

To show that our definitions work, that T 0 ` F 0 iff T ` CŒF 0� we need a couple
of theorems. The first establishes a connection between F 0 and CŒF 0� within T 0.

T13.12. For some defined symbol, with its associated axiom and conversion procedure,
T 0 ` F 0 $ CŒF 0�.

(r) For a relation symbol, CŒF 0� = F 0
R.Es/

Q.Es/
; and we are given T 0 ` R.Ex/$ Q.Ex/.

Revise bound variables of Q so that they do not overlap the variables of Es;
then Es is free for Ex in Q, so T 0 ` R.Es/$ Q.Es/; so with T9.9, T 0 ` F 0 $

F 0
R.Es/

Q.Es/
; so T 0 ` F 0 $ CŒF 0�.

(c) The case for constants is left as an exercise. In this case, CŒF 0� = 9z.Q.z/ ^
F 0

c
z/; and we are given T 0 ` y D c $ Q.y/. Reasoning simplifies that for

the case (f) that follows.

(f) For an atomic R0 = R0, function symbol h, and sequence R0 : : :Rm that
replaces instances of h from R0, CŒF 0� = F 0

R0

Rm
; and we are given that

T 0 ` y D hEx $ Q.Ex; y/. Where RŒh.Es/� has some term hEs and RŒz�

replaces that instance of hEs with z, begin showing equivalence between each
member of the sequence and the next—that T 0 ` Ri 1Œh.Es/� $ Ri .Es/,
where Ri .Es/ = 9z.Q.Es; z/ ^Ri 1Œz�/. For this, see the derivation in the box
on the next page. Thus for members of the sequence, T 0 ` Ri 1 $ Ri ;
and by repeated applications of this result, T 0 ` R0 $ Rm; so with T9.9,
T 0 ` F 0 $ F 0

R0

Rm
; so T 0 ` F 0 $ CŒF 0�.

So far, so good, but this only says what the extended T 0 proves—that the richer
T 0 proves CŒF 0� iff it proves F 0. But we want to see that the original T proves CŒF 0�

iff T 0 proves F 0. We bridge between T 0 and T by a semantic theorem that, together
with s̊oundness and c̊ompleteness, yields the desired result. Recall that CŒF 0� is a
formula in language L.
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T13.13. Consider T in language L and T 0 with some defined symbol, axiom, and
condition; then for any formula F in L, T 0 � F iff T � F .

Since the entailments of T 0 include all the entailments of T , the direction from
right to left is obvious. So suppose T 0 � F . To show T � F , consider an
arbitrary model M such that MŒT � = T; our aim is to show MŒF � = T, and so that
T � F .

(r) Relation symbol. Extend M to a model M0 like M except that for arbitrary d,
hdŒx1� : : : dŒxn�i 2 M0ŒR� iff MdŒQ.x1 : : : xn/� = S; iff M0dŒQ.x1 : : : xn/� = S
(the latter by T10.14 since M and M0 agree on assignments to symbols in Q).
Since M0 and M agree on assignments to symbols other than R, by T10.14
M0ŒT � = T. And M0ŒREx $ Q.Ex/� = T: suppose otherwise; then by TI there
is some d such that M0dŒRx1 : : : xn $ Q.x1 : : : xn/� = S; so by SF0($),
M0dŒRx1 : : : xn� = S and M0dŒQ.x1 : : : xn/� = S (or the other way around);
from the former by SF(r), hM0dŒx1� : : :M

0
dŒxn�i … M0ŒR�; so hdŒx1� : : : dŒxn�i …

M0ŒR�; so by construction, M0dŒQ.x1 : : : xn/� = S; this is impossible, and
similarly in the other case; reject the assumption: M0ŒREx $ Q.Ex/� = T. So
M0ŒT 0� = T; so since T 0 � F , M0ŒF � = T; and by T10.14 again, MŒF � = T.

T13.12(f)

1. y D hEx $ Q.Ex; y/ from T 0

2. Ri 1Œh.Es/� A (g,$I)

3. h.Es/ D h.Es/$ Q.Es;h.Es// from 1
4. hEs D hEs DI
5. Q.Es;h.Es// 3,4$E
6. Q.Es;h.Es// ^Ri 1Œh.Es/� 5,2 ^I
7. 9z.Q.Es; z/ ^Ri 1Œz�/ 6 9I
8. Ri .Es/ 7 abv

9. Ri .Es/ A (g,$I)

10. 9z.Q.Es; z/ ^Ri 1Œz�/ 9 abv
11. Q.Es; j / ^Ri 1Œj � A (g, 109E)

12. Q.Es; j / 11 ^E
13. j D h.Es/$ Q.Es; j / from 1
14. j D h.Es/ 13,12$E
15. Ri 1Œj � 11 ^E
16. Ri 1Œh.Es/� 15,14DE
17. Ri 1Œh.Es/� 10,11-16 9E
18. Ri 1Œh.Es/�$ Ri .Es/ 2-8,9-17$I

Lines (3) and (13) are from (1) by 8I and then 8E. Things are arranged so that the variables
of Es are not bound upon substitution into Q. So instances of the axiom at (3) and (13)
along with 9I andDE at (7) and (16) satisfy constraints.
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(c) The case for constants is left as an exercise.

(f) Function symbol. Extend M to a model M0 like M except that for arbitrary
d, hhdŒx1� : : : dŒxn�i;mi 2 M0Œh� iff Md.yjm/ŒQ.x1 : : : xn; y/� = S; by T10.14
iff M0d.yjm/ŒQ.x1 : : : xn; y/� = S. Since M0 and M agree on assignments to
symbols other than h, by T10.14 M0ŒT � = T. And M0Œy D hEx $ Q.Ex; y/� =
T: suppose otherwise; then by TI there is some h such that M0hŒy D hEx $

Q.Ex; y/� = S; so by SF0($), M0hŒy D hEx� = S and M0hŒQ.Ex; y/� = S (or the
other way around). Say hŒy� = a; then M0hŒy� = a and h = h.yja/; with the
latter, M0h.yja/ŒQ.x1 : : : xn; y/� = S; so by construction hhhŒx1� : : : hŒxn�i; ai 2
M0Œh�; so hhM0hŒx1� : : :M

0
hŒxn�i; ai 2 M0Œh�, and by TA(f), M0hŒhx1 : : : xn�

= a; so M0hŒy� = a = M0hŒhEx�; so hM0hŒy�;M
0
hŒhEx�i 2 M0ŒD�; so by SF(r),

M0hŒy D hEx� = S; this is impossible, and similarly in the other case; reject the
assumption: M0Œy D hEx $ Q.Ex; y/� = T. So M0ŒT 0� = T; so since T 0 � F ,
M0ŒF � = T; and by T10.14 again, MŒF � = T.

This argument repeatedly constructs from M an M0 on which all the axioms of T 0 are
true; then since T 0 entails F , M0ŒF � = T; and since M0 and M agree on assignments
to all the symbols in F , MŒF � = T. The reasoning is interesting insofar as it exhibits
how an interpretation M for T in L extends to an M0 for T 0 with the symbols of L0.

For T13.13 it is, in fact, important to show our specifications result in legitimate
interpretations (compare pages 482–483). This is the point at which the uniqueness
conditions matter. Here the most interesting case.

(f) Since T ` 9ŠyQ.Ex; y/, by s̊oundness T � 9ŠyQ.Ex; y/; so since MŒT � = T,
MŒ9ŠyQ.Ex; y/� = T; so by TI, for any d, MdŒ9ŠyQ.Ex; y/� = S, and (�) for any d
there is exactly one m 2 U such that Md.yjm/ŒQ.Ex; y/� = S. Given this:

(i) Each function has at least one output object: Consider some objects o1 : : : on

and an assignment d such that dŒx1� = o1 and . . . and dŒxn� = on; then from
(�) there is an m such that Md.yjm/ŒQ.Ex; y/� = S; so by construction hhdŒx1� : : :
dŒxn�i;mi 2 M0Œh�; so hho1 : : : oni;mi 2 M0Œh�, and M0Œh� has an output object
for input ho1 : : : oni.

(ii) Each function has at most one output object: Suppose there there are some
objects o1 : : : on;m; n such that hho1 : : : oni;mi 2 M0Œh� and hho1 : : : oni; ni 2
M0Œh�; then by construction, there are assignments d and h, dŒx1� = hŒx1� = o1

and . . . and dŒxn� = hŒxn� = on such that both Md.yjm/ŒQ.Ex; y/� = S and
Mh.yjn/ŒQ.Ex; y/� = S. But dŒyjn� and hŒyjn� assign all the same objects to vari-
ables free in Q.Ex; y/; so from Mh.yjn/ŒQ.Ex; y/� = S and T8.5, Md.yjn/ŒQ.Ex; y/� =
S; so both Md.yjm/ŒQ.Ex; y/� = S and Md.yjn/ŒQ.Ex; y/� = S; so by (�), m = n. So
M0Œh� has at most one output object for input, ho1 : : : oni.

And now our desired result combines T13.12 and T13.13 with s̊oundness and
c̊ompleteness.
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T13.14. For some defined symbol, with its associated axiom and conversion procedure,
T 0 ` F 0 iff T ` CŒF 0�.

From T13.12, T 0 ` F 0 iff T 0 ` CŒF 0�; by s̊oundness and c̊ompleteness iff
T 0 � CŒF 0�; by T13.13 iff T � CŒF 0�; by s̊oundness and c̊ompleteness iff
T ` CŒF 0�.

And there may be a sequence of theories with new symbols such that our results
apply to each member of the series. In the following, we will be clear about when
new symbols and associated axioms are introduced, and about the conditions under
which this may be done. In light of the results we have achieved however, we will not
generally distinguish between a theory and its definitional extensions.

E13.11. Supposing that T 0 ` y D h2uv $ Q.u; v; y/ use the method of the text to
find CŒA ^ Bh2ch2xy�.

E13.12. Complete the unfinished cases for constants in T13.12 and T13.13 (including
legitimacy of the specification).

First Applications

Here are some quick results that will be helpful as we move forward. We specify
conditions under which PA defines functions by composition, and then by regular and
bounded minimization.

First, if PA defines some functions h.Ex;w; Ez/ and g. Ey/, then PA defines their
composition f .Ex; Ey; Ez/ = h.Ex; g. Ey/; Ez/. We are introducing a function symbol, so we
introduce an axiom and then show that the condition is met. This pattern will repeat
many times.

T13.15. If PA defines h.Ex;w; Ez/ and g. Ey/, then PA defines f .Ex; Ey; Ez/ = h.Ex; g. Ey/; Ez/.
Suppose PA defines h.Ex;w; Ez/ and g. Ey/.

Def [cmp.g; h/] Let PA ` v D f .Ex; Ey; Ez/$ v D h.Ex; g. Ey/; Ez/. Then,

(i) PA ` 9vŒv D h.Ex; g. Ey/; Ez/�

1. h.Ex; g. Ey/; Ez/ D h.Ex; g. Ey/; Ez/ DI
2. 9vŒv D h.Ex; g. Ey/; Ez/� 1 9I

(ii) PA ` 8u8vŒ.u D h.Ex; g. Ey/; Ez/ ^ v D h.Ex; g. Ey/; Ez//! u D v�.

1. j D h.Ex; g. Ey/; Ez/ ^ k D h.Ex; g. Ey/; Ez/ A (g,!I)

2. j D h.Ex; g. Ey/; Ez/ 1 ^E
3. k D h.Ex; g. Ey/; Ez/ 1 ^E
4. j D k 2,3DE

5. .j D h.Ex; g. Ey/; Ez/ ^ k D h.Ex; g. Ey/; Ez//! j D k 1-4!I
6. 8vŒ.j D h.Ex; g. Ey/; Ez/ ^ v D h.Ex; g. Ey/; Ez//! j D v� 5 8I
7. 8u8vŒ.u D h.Ex; g. Ey/; Ez/ ^ v D h.Ex; g. Ey/; Ez//! u D v� 6 8I
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So PA ` 9ŠvŒv D h.Ex; g. Ey/; Ez/�. And PA defines f .Ex; Ey; Ez/.

In addition, we can introduce functions for minimization. First, for unbounded
minimization, the idea is to set v = �yQ.Ex; y/ just in case Q.Ex; v/, and no z < v is
such that Q.Ex; z/. In the ordinary case, a new function symbol h is introduced with
an axiom of the sort v = hEx $ P .Ex; v/ under the condition T ` 9ŠvP .Ex; v/. But, in
this case, the situation is simplified by the following theorem:

T13.16. If PA ` 9vQ.Ex; v/, then PA defines �yQ.Ex; y/. Suppose PA ` 9vQ.Ex; v/.

Def [�yQ.Ex; y/] Let PA ` v D �yQ.Ex; y/$ ŒQ.Ex; v/ ^ .8z < v/�Q.Ex; z/�.

(i) PA ` 9vŒQ.Ex; v/ ^ .8z < v/�Q.Ex; z/�. Since PA ` 9vQ.Ex; v/, by the least
number principle T13.11ai, PA ` 9vŒQ.Ex; v/ ^ .8z < v/�Q.Ex; z/�.

(ii) PA ` 8u8vŒ.Q.Ex; u/^ .8z < u/�Q.Ex; z/^Q.Ex; v/^ .8z < v/�Q.Ex; z//

! u D v�.

1. Q.Ex; j / ^ .8z < j /�Q.Ex; z/ ^Q.Ex; k/ ^ .8z < k/�Q.Ex; z/ A (g,!I)

2. j < k _ j D k _ k < j T13.11q
3. j < k A (c, �I)

4. .8z < k/�Q.Ex; z/ 1 ^E
5. �Q.Ex; j / 4,3 (8E)
6. Q.Ex; j / 1 ^E
7. ? 6,5 ?I

8. j – k 3-7 �I
9. k < j A (c, �I)

10. .8z < j /�Q.Ex; z/ 1 ^E
11. �Q.Ex; k/ 10,9 (8E)
12. Q.Ex; k/ 1 ^E
13. ? 12,11, ?I

14. k – j 9-13 �I
15. j D k 2,8,14 DS

16. .Q.Ex; j / ^ .8z < j /�Q.Ex; z/ ^Q.Ex; k/ ^ .8z < k/�Q.Ex; z//! j D k 1-15!I
17. 8u8vŒ.Q.Ex; u/ ^ .8z < u/�Q.Ex; z/ ^Q.Ex; v/ ^ .8z < v/�Q.Ex; z// !

u D v� 17 8I

So both (i) and (ii) follow with PA ` 9vQ.Ex; v/. (i) results with the least number
principle. And, as with the uniqueness result for the canonical B0 (T12.12), (ii) results
because the bounded quantifier of Q.Ex; v/^ .8z < v/�Q.Ex; z/ already builds in that
at most one thing satisfies the conjunction.

For bounded minimization, we want the least y � z such that Q.Ex; y/ if one exists
and otherwise z—where z may or may not appear in Ex and so among the variables of
Q. Again, the situation is simplified as follows:
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T13.17. For any formula Q.Ex; y/, PA defines .�y � z/Q.Ex; y/.

Def [.�y � z/Q.Ex; y/] Let PA ` v D .�y � z/Q.Ex; y/ $
v D �yŒy D z _Q.Ex; y/�.

Let m.Ex; z/ = �yŒy D z _Q.Ex; y/�; then we require,

(i) PA ` 9v.v D m.Ex; z//

(ii) PA ` 8u8v.Œu D m.Ex; z/ ^ v D m.Ex; z/�! u D v/

These conditions are trivially met so long as m.Ex; z/ is defined. And by T13.16
m.Ex; z/ is defined given just the existential condition PA ` 9vŒv D z _Q.Ex; v/�,
which follows immediately from PA ` z D z; so the conditions for bounded
minimization are always satisfied.

Given these notions, we may obtain some immediate results.

*T13.18. Let m.Ex/ = �yQ.Ex; y/; then,

(a) PA ` Q.Ex;m.Ex//

(b) PA ` .8z < m.Ex//�Q.Ex; z/

*(c) PA ` Q.Ex; v/!m.Ex/ � v

(d) PA ` .�y � ;/Q.Ex; y/ D ;

(e) If PA ` .9v � t/Q.Ex; v/ then PA ` .�y � t/Q.Ex; y/ Dm.Ex/.

Because it is always possible to switch bound variables so that Q is converted
to an equivalent Q0 whose bound variables do not overlap with variables free in
m.Ex/, we simply assume m.Ex/ is free for v in Q.Ex; v/—and we will generally
make this move. Given this, (a)–(d) are straightforward. For (e) see the derivation
on the following page.

Of these, (a) and (b) simply observe that the definition applies to the function defined.
From (c), the least y such that Q.Ex; y/ is always � an arbitrary v such that Q.Ex; v/.
From (d) it does not matter about Q, the least y under the bound ; is always ;. Given
a bounded existential, (e) converts between bounded and unbounded minimization:
Intuitively, either (�y � t/Q.Ex; y/ reverts to the bound or it does not; if it does not,
then the bounded minimization returns the same value as the unbounded; if it does,
then no y under the bound is such that Q.Ex; y/, and the bounded minimization returns
t—but then with the premise Q.Ex; t/ so that, again, the bounded minimization returns
the same value as the unbounded.

*E13.13. Show (c) and (d) of T13.18. Hard-core: Show all the unfinished parts of
T13.18.
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T13.18e

Suppose PA ` .9v � t/Q.Ex; v/; then trivially, PA ` 9vQ.Ex; v/. So by T13.16, PA defines
�yQ.Ex; y/ and PA ` v D �yQ.Ex; y/$ ŒQ.Ex; v/ ^ .8w < v/�Q.Ex;w/�.

1. .9v � t/Q.Ex; v/ given
2. v D �yQ.Ex; y/$ ŒQ.Ex; v/ ^ .8w < v/�Q.Ex;w/� as above

3. n.Ex; t/ D .�y � t/Q.Ex; y/ def
4. n.Ex; t/ D �yŒy D t _Q.Ex; y/� 3 Def [�y �]
5. n.Ex; t/ D t _Q.Ex;n.Ex; t// 4 T13.18a
6. Q.Ex; j / A (g, 1(9E))
7. j � t

8. j < t _ j D t 7 T13.11m
9. j D t A (g, 8_E)

10. t D n.Ex; t/ _ t ¤ n.Ex; t/ T3.1
11. t D n.Ex; t/ A (g, 10_E)

12. Q.Ex; t/ 6,9DE
13. Q.Ex;n.Ex; t// 12,11DE

14. t ¤ n.Ex; t/ A (g, 10_E)

15. Q.Ex;n.Ex; t// 5,14 DS
16. Q.Ex;n.Ex; t// 10,11-13,14-15 _E

17. j < t A (g, 8_E)

18. j D t _Q.Ex; j / 6 _I
19. n.Ex; t/ � j 4,18 T13.18c
20. n.Ex; t/ < t 19,17 T13.11c
21. n.Ex; t/ ¤ t 20 T13.11s
22. Q.Ex;n.Ex; t// 5,21 DS
23. Q.Ex;n.Ex; t// 8,9-16,17-22 _E
24. .8w < n.Ex; t//�Œw D t _Q.Ex;w/� 4 T13.18b
25. l < n.Ex; t/ A (g, (8I))

26. �Œl D t _Q.Ex; l/� 24,25 (8E)
27. l ¤ t ^�Q.Ex; l/ 26 DeM
28. �Q.Ex; l/ 27 ^E
29. .8w < n.Ex; t//�Q.Ex;w/ 25-28 (8I)
30. Q.Ex;n.Ex; t// ^ .8w < n.Ex; t//�Q.Ex;w/ 23,29 ^I
31. n.Ex; t/ D �yQ.Ex; y/ $

ŒQ.Ex;n.Ex; t// ^ .8w < n.Ex; t//�Q.Ex;w/� from 2
32. n.Ex; t/ D �yQ.Ex; y/ 31,30$E
33. n.Ex; t/ D �yQ.Ex; y/ 1,6-32 (9E)
34. .�y � t/Q.Ex; y/ D �yQ.Ex; y/ 33,3DE

The key to this derivation is to obtain Q.Ex;n.Ex; t// at (23) and .8w < n.Ex; t//�Q.Ex;w/

at (29). Then result comes from the definition (2). Observe that we permit a step (def) at
(3), very much as in Chapter 7.
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First Theorems of Chapter 13

T13.1 For any recursively axiomatized theory T whose language includes LNT, NŒG � =
NŒ�9vPrft.v; pGq/�. Carnap’s result for G .

T13.2 Let T be any recursively axiomatized theory extending Q; then T ` G $

�9vPrft.v; pGq/. Diagonal result for G .

T13.3 If T is a recursively axiomatized s̃ound theory whose language includes LNT, then
T ° G and T ° �G .

T13.4 If T is a recursively axiomatized theory extending Q, then if T is consistent T ° G ,
and if T is !-consistent, T ° �G .

T13.5 Let T be any recursively axiomatized theory extending Q; then T ` R $

�9vRPrft.v; pRq/. Diagonal result for R.

T13.6 If T is a consistent, recursively axiomatized theory extending Q, then T ° R and
T ° �R.

T13.7 Let T be a recursively axiomatized theory extending Q. Then supposing T satisfies
the derivability conditions and so the K4 logic for provability, T ` Cont !
�Prvt.pGq/.

T13.8 Let T be a recursively axiomatized theory extending Q. Then supposing T satisfies
the derivability conditions, if T is consistent, T ° Cont.

T13.9 Let T be a recursively axiomatized theory extending Q. Then supposing T satisfies
the derivability conditions and so the K4 logic for provability, T ` Cont $
�Prvt.pContq/.

T13.10 Suppose T is a recursively axiomatized theory extending Qs. Then if T ` P , then
T ` �P .

Corollary (D1): If PA ` P then PA ` �P .

T13.11 Some theorems of PA including for inequality and strong induction.

T13.12 For some defined symbol, with its associated axiom and conversion procedure,
T 0 ` F 0 $ CŒF 0�.

T13.13 Consider T in language L and T 0 with some defined symbol, axiom, and condition;
then for any formula F in L, T 0 � F iff T � F .

T13.14 For some defined symbol, with its associated axiom and conversion procedure,
T 0 ` F 0 iff T ` CŒF 0�.

T13.15 If PA defines h.Ex;w; Ez/ and g. Ey/, then PA defines f .Ex; Ey; Ez/ = h.Ex; g. Ey/; Ez/.

T13.16 If PA ` 9vQ.Ex; v/, then PA defines �yQ.Ex; y/.

T13.17 For any formula Q.Ex; y/, PA defines .�y � z/Q.Ex; y/.

T13.18 Some preliminary results for bounded and unbounded minimization.
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13.3.2 Definitions for Recursive Functions

Our aim is to define and manipulate functions and relations corresponding to the
recursive functions and relations of Chapter 12. Having said something about the
conditions under which functions and relations are defined, in this section we set out
to show that PA in fact defines such functions and relations. We begin with the core
argument to show that PA defines functions corresponding to recursive functions of
Chapter 12. Then a series of results to show that this argument goes through for the
case when functions arise by recursion. Finally, the main theorem is extended to show
that PA defines functions and relations coordinate to ones in Chapter 12.

Insofar as we understand what a theorem of PA is, not all of the demonstrations
of the theorems are required to understand the argument—and some may obscure the
overall flow. Thus, for our main argument, we often list results, shifting hints and
demonstrations into exercises and answers to exercises. To retain demonstration of
results, a great many exercises are in fact included in the answers.

The Core Result

To define functions and relations corresponding to the recursive functions and relations
of Chapter 12, the main argument is an induction on the sequence of recursive
functions. However, with an eye to the “-function, we begin showing that PA defines
remainder rm.m; n/ and quotient qt.m; n/ functions corresponding to m=.n 1/.
Division is by n 1 to avoid the possibility of division by zero.10

*Def [rm] Let PA ` v D rm.m; n/$ .9w � m/Œm D Sn � w C v ^ v < Sn�.

(i) PA ` 9x.9w � m/Œm D Sn � w C x ^ x < Sn�

(ii) PA ` 8x8yŒ..9w � m/Œm D Sn � w C x ^ x < Sn� ^
.9w � m/Œm D Sn � w C y ^ y < Sn�/! x D y�

Def [qt] Let PA ` v D qt.m; n/$ m D Sn � v C rm.m; n/.

(i) PA ` 9xŒm D Sn � x C rm.m; n/�

(ii) PA ` 8x8yŒ.m D Sn�xCrm.m; n/^m D Sn�yCrm.m; n//! x D y�

Def [ˇ] Let PA ` v D ˇ.p; q; i/$ v D rm.p; q � Si/.

Since this is a composition of functions, immediate from T13.15. In this simple
case we might as well have asserted, PA ` ˇ.p; q; i/ D rm.p; q � Si/.

10A choice is made: Another option is define the functions so that an arbitrary value is assigned
for division by zero (as for example Boolos, The Logic of Provability, page 27). Our selection makes
for somewhat unintuitive statements of that which is intuitively true—rather than (relatively) intuitive
statements including that which is intuitively undefined or false.
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For hints on the first two see the associated exercise E13.14. Substituting p and q�Si
from ˇ into rm, PA ` v D ˇ.p; q; i/$ .9w � p/Œp D S.q � Si/ � w C v ^ v <

S.q � Si/�, which is to say PA ` v D ˇ.p; q; i/ $ B.p; q; i; v/, where B is the
original formula to express the beta function.11

And now our main argument that PA defines functions corresponding to recursive
functions. The main result is for functions—it will extend to relations as an easy
corollary. However we shall not be able to show that PA defines functions corre-
sponding to all the recursive functions: When a recursive function g.x; y/ captured by
some original G .x; y; z/ is regular, 9yG .x; y; 0/ is true. Say an application of regular
minimization to generate f.Ex/ from g.Ex; y/ is (PA) friendly iff we can prove it—iff
PA ` 9yG .Ex; y; 0/. Then an arbitrary recursive function is (PA) friendly just in case
it is an initial function or arises by applications of composition, recursion, or friendly
regular minimization. Observe that all primitive recursive functions are automatically
friendly insofar as they involve no applications of minimization at all.

*T13.19. For any friendly recursive function r.Ex/ and original formula R.Ex; v/ by
which it is expressed and captured, PA defines a function r.Ex/ such that PA `
v D r.Ex/$ R.Ex; v/.

Suppose r.Ex/ is a friendly recursive function. By induction on the sequence of
recursive functions,

Basis: r0.Ex/ is an initial function suc.x/, zero./, or idntjk.x1 : : : xj/.
(s) r0.Ex/ is suc.x/. Let PA ` v D suc.x/ $ Sx D v. But Sx D v is the

original formula Suc.x; v/ by which suc.x/ is expressed and captured; so
PA ` v D suc.x/$ Suc.x; v/. And by reasoning as follows,
1. Sx D Sx DI
2. 9y.Sx D y/ 1 9I

1. Sx D j ^ Sx D k A (g,!I)

2. Sx D j 1 ^E
3. Sx D k 1 ^E
4. j D k 3,2DE

5. .Sx D j ^ Sx D k/! j D k 1-4!I
6. 8zŒ.Sx D j ^ Sx D z/! j D z� 5 8I
7. 8y8zŒ.Sx D y ^ Sx D z/! y D z� 6 8I

PA ` 9Šy.Sx D y/. So PA defines suc.x/.
(z) r0.Ex/ is zero./. Let PA ` v D zero./$ 0 D v. Then PA ` v D zero./$

Zero.v/. And by [homework] PA defines zero./.
(i) r0.Ex/ is idntjk.x1 : : : xj/. Let PA ` v D idntj

k.x1 : : : xj / $ Œ.x1 D

x1 ^ : : : ^ xj D xj / ^ xk D v�. Then PA ` v D idntj
k.x1 : : : xj / $

Idntj
k
.x1 : : : xj ; v/. And by [homework] PA defines idntj

k.x1 : : : xj /.
11In section 12.2.3 we considered an intuitive rem.p; q/ and said “.p; q; i/ = remŒp;S.q S.i//�. That

rem is partial insofar as it returns no value when q D 0, though “ remains total insofar division is by
successors. Here, rm corresponds to an rm.p; q/ = rem.p;S.q//. So rm is total and rem.p;S.q � S.i//� =
rm.p; q � Si/ so that the “-function comes out the same either way.
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Assp: For any i , 0 i k, and ri.Ex/ with Ri .Ex; v/, PA defines ri.Ex/ such that
PA ` v D ri.Ex/$ Ri .Ex; v/.

Show: PA defines rk.Ex/ such that PA ` v D rk.Ex/$ Rk.Ex; v/.
rk.Ex/ is either an initial function or arises by composition, recursion, or
friendly regular minimization. If rk.Ex/ is an initial function, then reason as
in the basis. So suppose one of the other cases.

(c) rk.Ex; Ey; Ez/ is h.Ex; g.Ey/; Ez/ for some hi.Ex;w; Ez/ and gj.Ey/ where i; j k. By
assumption PA defines h.Ex;w; Ez/ such that PA ` v D h.Ex;w; Ez/ $

H .Ex;w; Ez; v/ and PA defines g. Ey/ such that PA ` w D g. Ey/$ G . Ey;w/.
Let PA ` rk.Ex; Ey; Ez/ D h.Ex;g. Ey/; Ez/. Then by T13.15 PA defines rk.
And, where the original Rk is of the sort 9wŒG . Ey;w/ ^H .Ex;w; Ez; v/�,
PA ` v D rk.Ex; Ey; Ez/$ Rk.Ex; Ey; Ez; v/. Dropping Ex and Ez and reducing
Ey to a single variable, the derivation is as on the next page.

(r) rk.Ex; y/ arises by recursion from some gi.Ex/ and hj.Ex; y; u/ where i; j k.
By assumption PA defines g.Ex/ such that PA ` v D g.Ex/$ G .Ex; v/ and
PA defines h.Ex; y; u/ such that PA ` v D h.Ex; y; u/$ H .Ex; y; u; v/. Let
PA ` z D rk.Ex; y/$

9p9qŒˇ.p; q;;/ D g.Ex/ ^ .8i < y/h.Ex; i; ˇ.p; q; i// D ˇ.p; q; Si/ ^ ˇ.p; q; y/ D z�

By the argument of the next section, PA defines r.Ex; y/. And where the
original Rk.Ex; y; z/ =
9p9qf9vŒB.p; q;;; v/ ^ G .Ex; v/� ^

.8i < y/9u9vŒB.p; q; i; u/ ^B.p; q; Si; v/ ^H .Ex; i; u; v/� ^B.p; q; y; z/g

we need PA ` z D rk.Ex; y/$ Rk.Ex; y; z/. To manage long formulas let,
P .p; q; Ex/ = ˇ.p; q;;/ D g.Ex/

Q.p; q; Ex; y/ = .8i < y/h.Ex; i; ˇ.p; q; i// D ˇ.p; q; Si/

Then PA ` z D rk.Ex; y/$ 9p9qŒP .p; q; Ex/^Q.p; q; Ex; y/^ˇ.p; q; y/

D z�. A derivation to show PA ` z D rk.Ex; y/ ! Rk.Ex; y; z/ is on
page 664. The other direction is homework.

(m) rk.Ex/ arises by friendly regular minimization from g.Ex; y/. By assumption
PA defines g.Ex; y/ such that (�) PA ` v D g.Ex; y/ $ G .Ex; y; v/ where
G is the original formula to express and capture g. Let PA ` rk.Ex/ D
�yŒg.Ex; y/ D 0�. Since the minimization is friendly, PA ` 9yG .Ex; y; 0/;
so with (�) PA ` 9y.g.Ex; y/ D 0/; and by T13.16, PA defines rk.Ex/. By
Def [�y], PA ` v D rk.Ex/ $ Œg.Ex; v/ D 0 ^ .8z < v/.g.Ex; z/ ¤ 0/�.
And PA ` Rk.Ex; v/ $ ŒG .Ex; v; 0/ ^ .8y < v/9z.G .Ex; y; z/ ^ 0 ¤ z/�.
Then with (�) it is easy to show PA ` v D rk.Ex/$ Rk.Ex; v/. Homework.

Indct: For any friendly recursive function r.Ex/ and the original formula R.Ex; v/

by which it is expressed and captured, PA defines a function r.Ex/ such that
PA ` v D r.Ex/$ R.Ex; v/.
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Of course it remains to show that PA defines r.Ex; y/ in the case when r.Ex; y/ arises by
recursion.

*E13.14. Complete the justifications for Def [rm] and Def [qt].

Hints for remainder. (i): This is an argument by IN on m. The zero case is
easy from ; D Sn � ; C ; ^ ; < Sn. Then under the assumption 9x.9w �
j /Œj D Sn � w C x ^ x < Sn� for !I, you need the result for Sj . Given
j D Sn � q C r ^ r < Sn by assumptions for 9E and (9E), r < n _ r D n. In
the first case Sj is divided by leaving the quotient q the same, and incrementing
r ; in the second case Sj is divided by Sq with remainder zero. (ii): This does

T13.19(c)

1. r.y/ D h.g.y// def r
2. v D h.w/$ H .w; v/ by assp
3. w D g.y/$ G .y; w/ by assp

4. v D r.y/ A (g,$I)

5. v D h.g.y// 1,4DE
6. g.y/ D g.y/ DI
7. g.y/ D g.y/$ G .y;g.y// from 3
8. G .y;g.y// 7,6$E
9. h.g.y// D h.g.y// DI

10. h.g.y// D h.g.y//$ H .g.y/;h.g.y/// from 2
11. H .g.y/;h.g.y/// 10,9$E
12. H .g.y/; v/ 11,5DE
13. G .y;g.y// ^H .g.y/; v/ 8,12 ^I
14. 9wŒG .y; w/ ^H .w; v/� 13 9I

15. 9wŒG .y; w/ ^H .w; v/� A (g,$I)

16. G .y; j / ^H .j; v/ A (g, 159E)

17. j D g.y/$ G .y; j / from 3
18. G .y; j / 16 ^E
19. j D g.y/ 17,18$E
20. v D h.j /$ H .j; v/ from 2
21. H .j; v/ 16 ^E
22. v D h.j / 20,21$E
23. v D h.g.y// 22,19DE
24. v D r.y/ 1,23DE
25. v D r.y/ 15,16-24 9E
26. v D r.y/$ 9wŒG .y; w/ ^H .w; v/� 4-14,15-25$I
27. v D r.y/$ R.y; v/ 26 abv

With the use of (2) and (3) by 8I and 8E as on lines (7), (10), (17), and (20) this derivation
is straightforward. As usual, we suppose that quantifiers are arranged so that substitutions
are allowed—and so, for example, that g.y/ is free for w in H .w; v/ and G .y; w/.
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not require IN, but is an involved derivation all the same. Once you instantiate
the bounded existential quantifiers to quotients p with remainder j and q with
remainder k, you have p < q _ p D q _ q < p. When p D q, j D k follows
easily with cancellation for addition. And the other cases contradict.

T13.19(r)

1. v D ˇ.p; q; i/$ B.p; q; i; v/ Def [ˇ]
2. v D g.Ex/$ G .Ex; v/ by assp
3. v D h.Ex; y; u/$ H .Ex; y; u; v/ by assp

4. z D r.Ex; y/ A (g,!I)

5. 9p9qŒP .p; q; Ex/ ^Q.p; q; Ex; y/ ^ ˇ.p; q; y/ D z� 4 def r
6. P .a; b; Ex/ ^Q.a; b; Ex; y/ ^ ˇ.a; b; y/ D z A (g, 59E)

7. ˇ.a; b;;/ D g.Ex/ 6 ^E (P )
8. G .Ex;g.Ex// from 2
9. B.a; b;;; ˇ.a; b;;// from 1

10. B.a; b;;;g.Ex// 9,7DE
11. B.a; b;;;g.Ex// ^ G .Ex;g.Ex// 10,8 ^I
12. 9vŒB.a; b;;; v/ ^ G .Ex; v/� 11 9I
13. .8i < y/h.Ex; i; ˇ.a; b; i// D ˇ.a; b; Si/ 6 ^E (Q)
14. l < y A (g, (8I))

15. h.Ex; l; ˇ.a; b; l// D ˇ.a; b; Sl/ 13,14 (8E)
16. B.a; b; l; ˇ.a; b; l// from 1
17. B.a; b; Sl; ˇ.a; b; Sl// from 1
18. H .Ex; l; ˇ.a; b; l/;h.Ex; l; ˇ.a; b; l/// from 3
19. H .Ex; l; ˇ.a; b; l/; ˇ.a; b; Sl// 18,15DE
20. B.a; b; l; ˇ.a; b; l// ^B.a; b; Sl; ˇ.a; b; Sl//^

H .Ex; l; ˇ.a; b; l/; ˇ.a; b; Sl// 16,17,19 ^I
21. 9u9vŒB.a; b; l; u/ ^B.a; b; Sl; v/ ^H .Ex; l; u; v/� 20 9I
22. .8i < y/9u9vŒB.a; b; i; u/ ^B.a; b; Si; v/ ^H .Ex; i; u; v/� 14-21 (8I)
23. ˇ.a; b; y/ D z 6 ^E
24. B.a; b; y; ˇ.a; b; y// from 1
25. B.a; b; y; z/ 24,23DE
26. 9vŒB.a; b;;; v/ ^ G .Ex; v/�^

.8i < y/9u9vŒB.a; b; i; u/ ^B.a; b; Si; v/ ^H .Ex; i; u; v/�^

B.a; b; y; z/ 12,22,25 ^I
27. 9p9qf9vŒB.p; q;;; v/ ^ G .Ex; v/�^

.8i < y/9u9vŒB.p; q; i; u/ ^B.p; q; Si; v/ ^H .Ex; i; u; v/�^

B.p; q; y; z/g 26 9I
28. R.Ex; y; z/ 27 def R

29. R.Ex; y; z/ 5,6-28 9E
30. z D r.Ex; y/! R.Ex; y; z/ 4-29!I

P and Q are as described on page 662. Again, with the use of (1), (2), and (3) by 8I, 8E,
and thenDI and$E as on lines (8), (9), and so forth, this derivation is straightforward.
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Hints for quotient. (i) With Def [rm], PA ` .9w � m/Œm D Sn�wC rm.m; n/^
rm.m; n/ < Sn�; and the result follows easily. (ii) This is easy with cancellation
laws for addition and multiplication.

*E13.15. Complete the cases left to homework from T13.19. You should set up the
entire induction, but may refer to the text as the text refers unfinished cases to
homework.

The Recursion Clause

We turn now to a series of definitions and results with the aim of showing that PA
defines r in the case when r arises by recursion. Some of the functions so-defined
are equivalent to ones that will result by T13.19. However, insofar as we have not
yet proved T13.19, we cannot use it! So we are showing directly that PA gives the
required results.

Uniqueness. It will be easiest to begin with the uniqueness clause. Where F .Ex; y; z/

is our formula,

9p9qŒˇ.p; q;;/ D g.Ex/ ^ .8i < y/h.Ex; i; ˇ.p; q; i// D ˇ.p; q; Si/ ^ ˇ.p; q; y/ D z�

*T13.20. PA ` 8m8nŒ.F .Ex; y;m/ ^ F .Ex; y; n//! m D n�

By IN on the value of y. For the zero case you need PA ` 8m8nŒ.F .Ex;;; m/ ^
F .Ex;;; n//! m D n�. This is simple enough and left as homework. Given the
zero case, see the main argument by IN on the following page.

*E13.16. Complete the demonstration for T13.20 by completing the demonstration of
the zero case.

Existence. Considerably more difficult is the existential condition. To show that
PA ` 9zF .Ex; y; z/,

PA ` 9z9p9qŒˇ.p; q;;/ D g.Ex/ ^ .8i < y/h.Ex; i; ˇ.p; q; i// D ˇ.p; q; Si/ ^ ˇ.p; q; y/ D z�

we shall have to show there are p and q that yield the right result for the ˇ-function.
And for this we require the Chinese remainder theorem in PA. Though we have
resources to state the ˇ-function, we do not yet have all that is required to duplicate
reasoning as from the page 582 beta function reference (for example, factorial). Thus
we shall have to proceed in a different way. In particular, we specially depend on
least common multiple—which we shall be able to define directly, apart from T13.19.
Again, we build by a series of results.
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T13.20
1. 8m8nŒ.F .Ex;;;m/^F .Ex;;; n//! m D n� zero case

2. 8m8nŒ.F .Ex; j;m/^F .Ex; j; n//! m D n� A (g ,!I)

3. F .Ex;Sj; u/^F .Ex;Sj; v/ A (g ,!I)

4. 9p9qŒP .p; q; Ex/^Q.p; q; Ex;Sj /^ ˇ.p; q; Sj / D u� 3 ^E
5. 9p9qŒP .p; q; Ex/^Q.p; q; Ex;Sj /^ ˇ.p; q; Sj / D v� 3 ^E
6. P .a; b; Ex/^Q.a; b; Ex;Sj /^ ˇ.a; b; Sj / D u A (g , 49E)

7. P .a; b; Ex/ 6 ^E
8. .8i < Sj /h.Ex; i; ˇ.a; b; i// D ˇ.a; b; Si/ 6 ^E (Q)
9. ˇ.a; b; Sj / D u 6 ^E

10. P .c; d; Ex/^Q.c; d; Ex;Sj /^ ˇ.c; d; Sj / D v A (g , 59E)

11. P .c; d; Ex/ 10 ^E
12. .8i < Sj /h.Ex; i; ˇ.c; d; i// D ˇ.c; d; Si/ 10 ^E (Q)
13. ˇ.c; d; Sj / D v 10 ^E
14. j < Sj T13.11i
15. h.Ex; j; ˇ.a; b; j // D ˇ.a; b; Sj / 8,14 (8E)
16. h.Ex; j; ˇ.c; d; j // D ˇ.c; d; Sj / 12,14 (8E)
17. k < j A (g , (8I))

18. k < Sj 17 T13.11n
19. h.Ex; k; ˇ.a; b; k// D ˇ.a; b; Sk/ 8,18 (8E)

20. .8i < j /h.Ex; i; ˇ.a; b; i// D ˇ.a; b; Si/ 17-19 (8I)
21. ˇ.a; b; j / D ˇ.a; b; j / DI
22. P .a; b; Ex/^Q.a; b; Ex; j /^ ˇ.a; b; j / D ˇ.a; b; j / 7,20,21 ^I
23. 9p9qŒP .p; q; Ex/^Q.p; q; Ex; j /^ ˇ.p; q; j / D ˇ.a; b; j /� 22 9I
24. F .Ex; j; ˇ.a; b; j // 23 abv
25. k < j A (g , (8I))

26. k < Sj 25 T13.11n
27. h.Ex; k; ˇ.c; d; k// D ˇ.c; d; Sk/ 12,26 (8E)

28. .8i < j /h.Ex; i; ˇ.c; d; i// D ˇ.c; d; Si/ 25-27 (8I)
29. ˇ.c; d; j / D ˇ.c; d; j / DI
30. P .c; d; Ex/^Q.c; d; Ex; j /^ ˇ.c; d; j / D ˇ.c; d; j / 11,28,29 ^I
31. 9p9qŒP .p; q; Ex/^Q.p; q; Ex; j /^ ˇ.p; q; j / D ˇ.c; d; j /� 30 9I
32. F .Ex; j; ˇ.c; d; j // 31 abv
33. ˇ.a; b; j / D ˇ.c; d; j / 2,24,32 8E
34. h.Ex; j; ˇ.c; d; j // D ˇ.a; b; Sj / 15,33DE
35. ˇ.a; b; Sj / D ˇ.c; d; Sj / 34,16DE
36. u D v 35,9,13DE

37. u D v 5,10-36 9E

38. u D v 4,6-37 9E

39. .F .Ex;Sj; u/^F .Ex;Sj; v//! u D v 3-38!I
40. 8m8nŒ.F .Ex;Sj;m/^F .Ex;Sj; n//! m D n� 39 8I

41. 8m8nŒ.F .Ex; j;m/^F .Ex; j; n//! m D n� !

8m8nŒ.F .Ex;Sj;m/^F .Ex;Sj; n//! m D n� 2-40!I
42. 8yf8m8nŒ.F .Ex; y;m/^F .Ex; y; n//! m D n� !

8m8nŒ.F .Ex;Sy;m/^F .Ex;Sy; n//! m D n�g 41 8I
43. 8y8m8nŒ.F .Ex; y;m/^F .Ex; y; n//! m D n� 1,42 IN
44. 8m8nŒ.F .Ex; y;m/^F .Ex; y; n//! m D n� 43 8E

Again, P and Q are as on page 662. The key to this argument is attaining
F .Ex; j; ˇ.a; b; j // and F .Ex; j; ˇ.c; d; j // on lines (24) and (32). From these the as-
sumption on (2) comes into play, and the result follows with other equalities.
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First, subtraction with cutoff. The definition is not by recursion as before. However
the effect is the same: x :

� y works like subtraction when x � y, and otherwise goes
to ;.

*Def [ :�] Let PA ` v D x :
� y $ Œx D y C v _ .x < y ^ v D ;/�.

(i) PA ` 9vŒx D y C v _ .x < y ^ v D ;/�

(ii) PA ` 8m8nŒ.Œx D yCm_ .x < y^m D ;/�^ Œx D yCn_ .x < y^n D ;/�/! m D n�

The proof of (i) and (ii) is left as an exercise. So PA defines ( :�). And it proves a
series of intuitive results.

*T13.21. The following are theorems of PA.

(a) PA ` b � a! a D b C .a
:
� b/

*(b) PA ` a � b ! a
:
� b D ;

(c) PA ` a :
� b � a

*(d) PA ` .a � r ^ r � s/! r
:
� a � s

:
� a

(e) PA ` .a � r ^ r < s/! r
:
� a < s

:
� a

*(f) PA ` b < a$ ; < a :
� b

(g) PA ` ; < a! a
:
� 1 < a

(h) PA ` a :
� ; D a

(i) PA ` Sa :
� a D 1

(j) PA ` a D Sa :
� 1

(k) PA ` ; < a! a D S.a
:
� 1/

*(l) PA ` Sb � a! a
:
� b D S.a

:
� Sb/

*(m) PA ` c � a! .a
:
� c/C b D .aC b/

:
� c

*(n) PA ` .b � a ^ c � b/! a
:
� .b

:
� c/ D .a

:
� b/C c

*(o) PA ` .a :
� b/

:
� c D a

:
� .b C c/

(p) PA ` .aC c/ :� .b C c/ D a :
� b

*(q) PA ` a � .b :� c/ D .a � b/ :� .a � c/
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(a) and (b) are from the definition and the basis upon which the rest depend. (c)–(l)
are simple subtraction facts—except where the inequalities are required to protect
against cases when a :

� b goes to ;. And (m)–(q) are some results for association and
distribution. For hints see E13.17 along with answers to the exercise.

Next factor. As for the recursive relation of Chapter 12, we say mjn when m 1

divides n.

Def [j] Let PA ` mjn$ 9q.Sm � q D n/.

Since factor is a relation, no condition is required over and above the axiom so that
the definition is good as it stands. And, again, PA proves a series of results. These are
reasonably intuitive. Observe however that our choice to divide by m 1 means that,
as in T13.22a below, ;ja.

*T13.22. The following are theorems of PA.

(a) PA ` ;ja

(b) PA ` ajSa

(c) PA ` aj;

(d) PA ` ajb ! aj.b � c/

*(e) PA ` Œ.a :
� 1/jc ^ .b :� 1/jd�! .ab

:
� 1/jcd

(f) PA ` .ajSb ^ bjc/! ajc

*(g) PA ` ajb ! Œaj.b C c/$ ajc�

(h) PA ` .c � b ^ ajb/! Œaj.b
:
� c/$ ajc�

(i) PA ` a < b ! b − Sa

(j) PA ` a � b ! rm.a; b/ D a

*(k) PA ` ajb $ rm.b; a/ D ;

*(l) PA ` rmŒaC .y � Sd/; d � D rm.a; d/

*(m) PA ` Sd � z � a! z � qt.a; d/

*(n) PA ` y � Sd � a! rmŒa :
� .y � Sd/; d � D rm.a; d/
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So (a) (the successor of) ; divides any number; (b) (the successor of) a divides Sa;
and (c) any number divides into ; zero times. (d) if a divides b then it divides b � c;
(e) where subtraction compensates for successor, if a divides c and b divides d , ab
divides cd ; and (f) if a divides Sb and (the successor of) b divides c, then a divides c.
(g) is like .b C c/=a D b=aC c=a so that dividing the sum breaks into dividing the
members; (h) is the comparable principle for subtraction. From (i) if a < b, then (the
successor of) b is not a factor of Sa; and (j) if a � b, then (the successor of) b divides
into a zero times with remainder a. Then (k) makes the obvious connection between
remainder and factor—given that remainder and factor (along with quotient and the
recursive factor relation) divide by successor and so are consistently defined. In (l)
the remainder of the second part y � Sd is ; so that the remainder of the sum is just
whatever there is from the first part; (n) is the comparable principle for subtraction.
The intervening (m) is required for (n) and tells us that if z multiples of (the successor
of) d come to � a, then z � qt.a; d/—since the quotient maximizes the multiples of
(the successor of) d that are � a.

And now PA defines relations prime and relatively prime. Prime has its usual
sense. And numbers are relatively prime when they have no common divisor other
than one—though they may not therefore individually be prime. Though division is
by successor, these notions are given their usual sense by adjusting the numbers that
are said to “divide.”

Def [Pr] Let PA ` Pr.n/$ Œ1 < n ^ 8x.xjn! .Sx D 1 _ Sx D n//�.

Def [Rp] Let PA ` Rp.a; b/$ 8xŒ.xja ^ xjb/! Sx D 1�.

Since these are relations, no condition is required over and above the axioms. At
the limits, for any b we get Rp.1; b/ since the only number that divides both 1 and
b is (the successor of) ;. By this reasoning, Rp.1;;/. But for a = ; and so Sa = 1,
�Rp.Sa;;/, for when a ¤ ;, both Sa and ; are divided by (the successor of) a and
so by a number other than (the successor of) ;.

To make progress with Pr and Rp, it will be helpful to introduce a couple of
subsidiary notions. When G.a; b; i/ we say that i is good. Then supposing a and b
are greater than zero, d.a; b/ is the least v such that its successor is good.

Def [G] Let PA ` G.a; b; i/$ 9x9y.ax C i D by/.

Def [d ] Let PA ` d.a; b/ D �vŒ.; < a ^ ; < b/! G.a; b; Sv/�.

(i) PA ` 9vŒ.; < a ^ ; < b/! G.a; b; Sv/�
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Because d is defined by minimization, only the existence condition is required.
Although we shall not prove the general result (showing it only for the special case
when a and b are relatively prime), G.a; b; i/ when i is some multiple of the greatest
common divisor of a and b (this is Bézout’s lemma). If a or b is not greater than ;
then vacuously d.a; b/ is just ;. Otherwise d.a; b/ is the least i such that G.a; b; Si/
and so (in our sense of “division”) the greatest common divisor itself.

And PA proves a series of results for these notions. Observe again that if we are
interested in whether a prime divides some b we are interested in whether Pr.Sa/^ajb
since it is the successor that is divided into b.

*T13.23. The following are theorems of PA.

(a) PA ` �Pr.;/

(b) PA ` �Pr.1/

(c) PA ` Pr.2/

*(d) PA ` 1 < a! 9z.Pr.Sz/ ^ zja/

*(e) PA ` Rp.a; b/$ �9xŒPr.Sx/ ^ xja ^ xjb�

(f) PA ` G.a; b;m/! G.a; b;m � n/

*(g) PA ` .; < a ^ ; < b/ !
8m8nŒ.G.a; b;m/ ^G.a; b; n/ ^ n � m/! G.a; b;m

:
� n/�

*(h) PA ` ŒRp.a; b/ ^ ; < a ^ ; < b�! G.a; b; 1/

*(i) PA ` ŒPr.Sa/ ^ aj.b � c/�! .ajb _ ajc/

The argument for (h) is relatively complex; its main stages are as in the box on
the following page.

T13.23(a)–(c) are simple particular facts. From (d) every number greater than one
is divided by some prime (which may or may not be itself). From (e), a and b are
relatively prime iff there is no prime that divides them both; in one direction this is
obvious—if a prime divides them both, then they are divided by a number other than
(the successor of) zero; in the other direction, if some number other than (the successor
of) zero divides them both, then some prime of it divides them both. (f), (g), and (h)
are motivated insofar asG.a; b; i/ when i is a multiple of the greatest common divisor
of a and b: (f) is so motivated directly; (g) if a and b have greatest common divisor
g, then m is some gi and n is some gj and so m � n = g.i � j / remains a multiple
of g; then (h), if a and b are relatively prime, their greatest common divisor is one.
(f) and (g) are required for (h), which is in turn required for (i). Then (i) is Euclid’s
lemma according to which if Sa is prime and Sa divides b � c then Sa divides b or
divides c; if Sa is prime and divides b � c then it must appear in the factorization of
b or the factorization of c—so that it divides one or the other.



CHAPTER 13. GÖDEL’S THEOREMS 671

Now least common multiple. Given a functionm.i/, lcmfm.i/ j i < kg is the least
v > ; such that for any i < k, (the successor of) m.i/ divides v. We avoid worries
about the case when m.i/ D ; by our usual account of factor.

*Def [lcm] Let PA ` lcmfm.i/ j i < kg D �vŒ; < v ^ .8i < k/m.i/jv�.

(i) PA ` 9xŒ; < x ^ .8i < k/m.i/jx�

As a matter of notation, let l Œm�k = lcmfm.i/ j i < kg and, where m is clear from
context, let lk = lcmfm.i/ j i < kg. Also, it will be convenient (and easy) to define a
predecessor to the least common multiple pk , such that PA ` Spk D lk .

*T13.24. The following are theorems of PA.

(a) PA ` l; D 1

(b) PA ` j < k ! m.j /jlk

*(c) PA ` .8i < k/m.i/jx ! pkjx

*(d) PA ` 8nŒ.Pr.Sn/ ^ njlk/! .9i < k/njSm.i/�

So (a) for any function m.i/, the least common multiple under the (impossible)
condition i < ; defaults to 1. (b) applies the definition for the result that when j < k,

T13.23h

1. .; < a ^ ; < b/! G.a; b; Sd.a; b// Def [d ] T13.18a

2. Rp.a; b/ ^ ; < a ^ ; < b A (g,!I)

3. Rp.a; b/ 2 ^E
4. 8xŒ.xja ^ xjb/! Sx D 1� 3 Def [Rp]
5. ; < a ^ ; < b 2 ^E
6. G.a; b; Sd.a; b// 1,5!E
7. G.a; b; a/ [a]
8. G.a; b; b/ [b]
9. 8xŒG.a; b; x/! d.a; b/jx� [c]

10. d.a; b/ja 9,7 8E
11. d.a; b/jb 9,8 8E
12. d.a; b/ja ^ d.a; b/jb 10,11 ^I
13. Sd.a; b/ D 1 4,12 8E
14. G.a; b; 1/ 6,13DE
15. ŒRp.a; b/ ^ ; < a ^ ; < b�! G.a; b; 1/ 2-14!I

So the argument reduces to [a]–[c]. For these, intuitively, a and b are automatically
multiples of the greatest common divisor of a and b; and their greatest common divisor
divides any multiple of the greatest common divisor. For hints, see the associated E13.19.
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m.j / divides lcmfm.i/ j i < kg. (c) is perhaps best conceived by prime factorization:
the least common multiple of some collection has all the primes of each member and
no more; but any number into which all the members of the collection divide must
include all those primes; so the least common multiple divides it as well. (d) is the
related result that if a prime divides the least common multiple of some collection,
then it divides some member of the collection.

Finally we arrive at the Chinese remainder theorem. Say h.Ex; i/ and m.Ex; i/
are functions with at least variable i free (but, for simplicity, we omit Ex from our
specifications when it will do no harm). Then the theorem tells us that if for all i < k,
h.i/ is less than or equal to m.i/, and if for all i < j < k, Sm.i/ and Sm.j / are
relatively prime, then 9p.8i < k/rm.p;m.i// D h.i/. So there is a p such that the
remainder of p and m.i/ matches the value of h.i/.

*T13.25. PA ` Œ.8i < k/h.i/ � m.i/ ^ 8i8j..i < j ^ j < k/! Rp.Sm.i/; Sm.j ///� !
9p.8i < k/rm.p;m.i// D h.i/.

Let,

A.k/ = .8i < k/h.i/ � m.i/ ^ 8i8j..i < j ^ j < k/! Rp.Sm.i/; Sm.j ///

B.k/ = 9p.8i < k/rm.p;m.i// D h.i/.

So we want PA ` A.k/! B.k/. The argument is to show 8n.A.n/! B.n//

by induction on the value of n. See its overall structure on the next page.

Having obtained this important result, we are almost done! It remains to show that
(i) in the case where m.i/ = q � Si and so rm.p;m.i// = rm.p; q � Si/ = ˇ.p; q; i/,
we can obtain the antecedent to T13.25 and so detach its consequent; and (ii) the values
h.i/ to which remainders are matched may be derived from the original recursive
conditions for the function r—and so that there are p and q that satisfy the recursive
conditions.

As preliminaries to showing that we can detach the consequent of T13.25, we
require a couple notions for maximum value: First maxp for the greatest of a pair of
values, and then maxs for the maximum from a set.

Def [maxp] Let PA ` maxp.x; y/ D �vŒx � v ^ y � v�.

(i) PA ` 9vŒx � v ^ y � v�

Hint: By T13.11r, PA ` y � x _ x < y; in either case the result is easy.

Def [maxs] Let PA ` maxsfm.i/ j i < kg D �vŒ.8i < k/m.i/ � v�.

(i) PA ` 9vŒ.8i < k/m.i/ � v�

For hints see the associated exercise E13.22.
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T13.25

1. A.;/! B.;/ [a]

2. A.a/! B.a/ A (g ,!I)

3. A.Sa/ A (g ,!I)

4. Œ.8i < a/h.i/ � m.i/^8i8j..i < j ^ j < a/! Rp.Sm.i/; Sm.j ///�
! 9p.8i < a/rm.p;m.i// D h.i/ 2 abv

5. .8i < Sa/h.i/ � m.i/^8i8j..i < j ^ j < Sa/! Rp.Sm.i/; Sm.j /// 3 abv
6. .8i < Sa/h.i/ � m.i/ 5 ^E
7. 8i8j..i < j ^ j < Sa/! Rp.Sm.i/; Sm.j /// 5 ^E
8. 9p.8i < a/rm.p;m.i// D h.i/ [b]
9. .8i < a/rm.r;m.i// D h.i/ A (g , 89E)

10. Rp.lŒm�a; Sm.a// [c]
11. ; < Sm.a/ T13.11e
12. ; < la Def [lcm]
13. Rp.lŒm�a; Sm.a//^ ; < la ^ ; < Sm.a/ 10,12,11 ^I
14. G.la; Sm.a/; 1/ 13 T13.23h
15. G.la; Sm.a/; r C .la

:
� 1/� h.a// 14 T13.23f

16. 9x9y.la � xC Œr C .la
:
� 1/� h.a/� D Sm.a/� y/ 15 Def [G]

17. la � bC Œr C .la
:
� 1/� h.a/� D Sm.a/� c A (g , 169E)

18. s D la � .bC h.a//C r def
19. s D Sm.a/� c C h.a/ [d]
20. .8i < Sa/rm.s;m.i// D h.i/ [e]
21. 9p.8i < Sa/rm.p;m.i// D h.i/ 20 9I
22. B.Sa/ 21 abv

23. B.Sa/ 16,17-22 9E

24. B.Sa/ 8,9-23 9E

25. A.Sa/! B.Sa/ 3-24!I

26. .A.a/! B.a//! .A.Sa/! B.Sa// 2-25!I
27. 8nŒ.A.n/! B.n//! .A.Sn/! B.Sn//� 26 8I
28. 8n.A.n/! B.n// 1,27 IN
29. A.k/! B.k/ 28 8E

[b,c] First lines (8) and so (9) use (6) and (7) to obtain the antecedent of (4) and so to
detach its consequent. Then from (7) we get (10) according to which l Œm�a, and Sm.a/ are
relatively prime: intuitively if, as from (7), some d : : : e and f are relatively prime, they
have no primes in common; but the least common multiple of d : : : e has just the primes of
d : : : e; so their least common multiple has no primes in common with f . Then from (10),
we obtain (16) and so (17).

[d,e] Term s is constructed so that for any i < Sa the remainder of s and m.i/ is h.i/: For
i < a and any z,m.i/ divides la�z evenly; som.i/ divides the first term from (18) evenly;
so the remainder of s and m.i/ is the same as the remainder of r with m.i/—and with (9)
this is just h.i/. But by (17), (18), and simple arithmetic we get (19); so when i D a, m.i/
divides the first term evenly, and since with (6), h.a/ � m.a/, again the remainder of s and
m.i/ is h.i/. And from these, for any i < Sa, the remainder of s and m.i/ is h.i/.

The “trick” to this is the construction of s so that remainders for i < a stay the same, but
the remainder at a is h.a/. For this construction see Boolos, The Logic of Provability,
pages 30–31. Hints and derivations for [a]–[e] are associated with E13.21.
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So maxp.x; y/ is the maximum of x and y, and maxsfm.i/ j i < kg is the maximum
from m.i/ with i < k. As a matter of notation, let maxsŒm�k = maxsfm.i/ j i < kg
and where m is understood, maxsk = maxsfm.i/ j i < kg. A couple of results are
immediate with T13.18a.

T13.26. The following are theorems of PA.

(a) PA ` x � maxp.x; y/ ^ y � maxp.x; y/

(b) PA ` .8i < k/m.i/ � maxsk

These simply state the obvious: that the maximum is greater than or equal to the rest.
Now with values of q andm.i/ as below, we demonstrate the antecedent to T13.25,

and so obtain its consequent—where this is a result for ˇ.

*T13.27. PA ` 9p9q.8i < k/ˇ.p; q; i/ D h.i/. Let,

r = maxp.k;maxsŒh�k/

q = lcmfi j i < Srg

m.i/ = q � Si

Recall from Def [beta] that PA ` ˇ.p; q; i/ D rm.p; q � Si/. Then we may
reason,

1. m.i/ D q � Si def m
2. ˇ.p; q; i/ D rm.p; q � Si/ Def [beta]
3. .8i < k/h.i/ � m.i/ [i]
4. 8i8j Œ.i < j ^ j < k/! Rp.Sm.i/; Sm.j //� [ii]
5. 9p.8i < k/rm.p;m.i// D h.i/ 3,4 T13.25
6. .8i < k/rm.p;m.i// D h.i/ A (g 59E)

7. i < k A (g, (8I))

8. rm.p;m.i// D h.i/ 6,7 (8E)
9. rm.p; q � Si/ D h.i/ 8,1DE

10. ˇ.p; q; i/ D h.i/ 9,2DE

11. .8i < k/ˇ.p; q; i/ D h.i/ 7-10 (8I)
12. 9q.8i < k/ˇ.p; q; i/ D h.i/ 11 9I
13. 9p9q.8i < k/ˇ.p; q; i/ D h.i/ 12 9I

14. 9p9q.8i < k/ˇ.p; q; i/ D h.i/ 5,6-13 9E

So the demonstration reduces to that of [i] and [ii], the two conjuncts to the
antecedent of T13.25. For the main structure of [ii], see the derivation on page 676.

Now, moving toward the result that values for h.i/ may derive from the recursive
conditions, a theorem that uses the above result to show that a ˇ-function for values
< k can always be extended to another like it but with an arbitrary kth value. We
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show that given ˇ.a; b; i/ there are sure to be p and q such that ˇ.p; q; i/ is like
ˇ.a; b; i/ for i < k and for arbitrary n, ˇ.p; q; k/ D n. This is because we may
define a function h which is like ˇ.a; b; i/ for i < k and otherwise n—and find p; q
such that ˇ.p; q; i/ matches it. Thus,

*Def [h.i/] Let PA ` v D h.i/$ Œ.i < k ^ v D ˇ.a; b; i// _ .k � i ^ v D n/�.

(i) PA ` 9vŒ.i < k ^ v D ˇ.a; b; i// _ .k � i ^ v D n/�

(ii) PA ` 8x8yŒ.Œ.i < k ^ x D ˇ.a; b; i// _ .k � i ^ x D n/�^
Œ.i < k ^ y D ˇ.a; b; i// _ .k � i ^ y D n/�/! x D y�

Observe that our notation h.i/ andm.i/ obscures the point that, in addition to variable
i , function h has k, n, a, b free (and from definitions for T13.27, free variables of m
take over all the free variables from h). Through T13.27, the the extra variables play
no role; now they matter.

*T13.28. PA ` 9p9qŒ.8i < k/ˇ.p; q; i/ D ˇ.a; b; i/ ^ ˇ.p; q; k/ D n�

From T13.27—for hints see the associated exercise E13.24.

For application of this theorem it is important that the free variables k, n, a, b, may
be instantiated in the usual way—in particular, we shall be interested in a case with k
instantiated to Sj and n to h.Ex; j; ˇ.a; b; j //. This theorem already suggests that we
can take an arbitrary sequence and extend it according to recursive conditions.

Finally, then, the result we have been after in this section: As before, let F .Ex; y; v/

be our formula,

9p9qŒˇ.p; q;;/ D g.Ex/ ^ .8i < y/h.Ex; i; ˇ.p; q; i// D ˇ.p; q; Si/ ^ ˇ.p; q; y/ D v�

*T13.29. For F as above, PA ` 9vF .Ex; y; v/.

Let F .Ex; y; v/ be as above; the argument is by IN on y. The zero case is left as
an exercise. See the derivation on page 677 for the main argument.

This completes the demonstration of T13.19! So for any friendly recursive function
r.Ex/ and original formula R.Ex; v/ by which it is expressed and captured, PA defines
a function r.Ex/ such that PA ` v D r.Ex/$ R.Ex; v/. In particular, then, PA defines
functions corresponding to all the primitive recursive functions from Chapter 12.

Exercises that follow include some (quite) extended derivations. For this, a
good strategy is to set up a main page for overall structure, with subparts shifted to
auxiliary sheets, as we have done in our examples. Alternatively, you might work in
an electronic context without size limits.12

12Again, one such option is LATEX; for this see https://tonyroyphilosophy.net/symbolic-

logic/.

https://tonyroyphilosophy.net/symbolic-logic/
https://tonyroyphilosophy.net/symbolic-logic/
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T13.27[ii]
1. i < j ^ j < k A (g!I)

2. i < j 1 ^E
3. j < k 1 ^E
4. �Rp.Sm.i/; Sm.j // A (c, �E)

5. 9xŒPr.Sx/ ^ xjSm.i/ ^ xjSm.j /� 4 T13.23e
6. Pr.Sa/ ^ ajSm.i/ ^ ajSm.j / A (c, 59E)

7. Pr.Sa/ ^ ajS.q � Si/ ^ ajS.q � Sj / 6 def m.i/
8. Pr.Sa/ 7 ^E
9. ajS.q � Si/ 7 ^E

10. ajS.q � Sj / 7 ^E
11. ajq.j

:
� i/ [a]

12. ajq _ aj.j
:
� i/ 8,11 T13.23i

13. ajq A (g, 12_E)

14. ajq 13 R

15. aj.j
:
� i/ A (g, 12_E)

16. ajq [b]
17. ajq 12,13-14,15-16 _E
18. aj.q � Si/ 17 T13.22d
19. q � Si < S.q � Si/ T13.11i
20. q � Si � S.q � Si/ 19 T13.11m
21. aj.S.q � Si/

:
� .q � Si//$ aj.q � Si/ 20,9 T13.22h

22. aj.S.q � Si/
:
� .q � Si// 21,18$E

23. aj1 22 T13.21i
24. S; < Sa 8 Def [Pr]
25. ; < a 24 T13.11k
26. a − 1 25 T13.22i
27. ? 23,26 ?I
28. ? 5,6-27 9E
29. Rp.Sm.i/; Sm.j // 4-28 �E
30. .i < j ^ j < k/! Rp.Sm.i/; Sm.j //� 1-29!I
31. 8i8j Œ.i < j ^ j < k/! Rp.Sm.i/; Sm.j //� 30 8I

Hints. [a]: With i < j you will be able to show aj.S.q�Sj / :� S.q�Si//; and with some
work that S.q � Sj / :� S.q � Si/ D q.j :

� i/. [b]: With i < j , you have ; < j :
� i ; so

there is an l such that j :
� i D Sl ; then ajSl and with T13.24b, l jq so with T13.22f, ajq.
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T13.29
1. 9vF .Ex;;; v/ zero case

2. 9vF .Ex; j; v/ A (g ,!I)

3. 9v9p9qŒP .p; q; Ex/^Q.p; q; Ex; j /^ ˇ.p; q; j / D v� 2 abv
4. P .a; b; Ex/^Q.a; b; Ex; j /^ ˇ.a; b; j / D z A (g , 39E)

5. ˇ.a; b;;/ D g.Ex/ 4 ^E (P )
6. .8i < j /h.Ex; i; ˇ.a; b; i// D ˇ.a; b; Si/ 4 ^E (Q)
7. 9p9qŒ.8i < Sj /ˇ.p; q; i/ D ˇ.a; b; i/^ ˇ.p; q; Sj / D h.Ex; j; ˇ.a; b; j //� T13.28
8. .8i < Sj /ˇ.c; d; i/ D ˇ.a; b; i/^ ˇ.c; d; Sj / D h.Ex; j; ˇ.a; b; j // A (g , 79E)

9. .8i < Sj /ˇ.c; d; i/ D ˇ.a; b; i/ 8 ^E
10. ˇ.c; d; Sj / D h.Ex; j; ˇ.a; b; j // 8 ^E
11. ; < Sj T13.11e
12. ˇ.c; d;;/ D ˇ.a; b;;/ 9,11 (8E)
13. ˇ.c; d;;/ D g.Ex/ 5,12DE
14. l < Sj A (g , (8I))

15. ˇ.c; d; l/ D ˇ.a; b; l/ 9,14 (8E)
16. l < j _ l D j 14 T13.11n
17. l < j A (g , 16_E)

18. h.Ex; l; ˇ.a; b; l// D ˇ.a; b; Sl/ 6,17 (8E)
19. Sl < Sj 17 T13.11k
20. ˇ.c; d; Sl/ D ˇ.a; b; Sl/ 9,19 (8E)
21. h.Ex; l; ˇ.a; b; l// D ˇ.c; d; Sl/ 18,20DE

22. l D j A (g , 16_E)

23. h.Ex; l; ˇ.a; b; l// D ˇ.c; d; Sl/ 10,22DE

24. h.Ex; l; ˇ.a; b; l// D ˇ.c; d; Sl/ 16,17-23 _E
25. h.Ex; l; ˇ.c; d; l// D ˇ.c; d; Sl/ 24,15DE

26. .8i < Sj /h.Ex; i; ˇ.c; d; i// D ˇ.c; d; Si/ 14-25 (8I)
27. ˇ.c; d; Sj / D ˇ.c; d; Sj / DI
28. P .c; d; Ex/^Q.c; d; Ex;Sj /^ ˇ.c; d; Sj / D ˇ.c; d; Sj / 13,26,27 ^I
29. 9v9p9qŒP .p; q; Ex/^Q.p; q; Ex;Sj /^ ˇ.p; q; Sj / D v� 28 9I
30. 9vF .Ex;Sj; v/ 29 abv

31. 9vF .Ex;Sj; v/ 7,8-30 9E

32. 9vF .Ex;Sj; v/ 3,4-31 9E

33. 9vF .Ex; j; v/! 9vF .Ex;Sj; v/ 2-32!I
34. 8yŒ9vF .Ex; y; v/! 9vF .Ex;Sy; v/� 33 8I
35. 9vF .Ex; y; v/ 1,34 IN

P and Q are as on page 662. From the assumption (2), there are a, b such that the ˇ-
function has the right features for every i < j . With T13.28 there are c, d such that the
ˇ-function has the right features for i < Sj . The derivation establishes that this is so and
generalizes.



CHAPTER 13. GÖDEL’S THEOREMS 678

*E13.17. Show (i) and (ii) for Def [ :�]. Then show T13.21 (a) and (p). Hard-core:
show all of the results in T13.21.

Hints for T13.21. (f): From left to right, with the assumption for$I and then
Sj C b D a for 9E, you can obtain a D b C .a

:
� b/; then you have what

you need with T6.73; in the other direction, a < b or b � a one is impossible,
the other gives what you want. (m): With the assumption c � a, you have also
c � aC b; so that both a D c C .a :

� c/ and aC b D c C Œ.aC b/ :� c�; then
DE and T6.73 do the work. (n): You can get this with a couple applications of
(m). (o): Begin with b C c � a _ a < b C c; in the first case, you will be able to
show that .b C c/C Œ.a :

� b/
:
� c� D .b C c/C Œa

:
� .b C c/� and apply T6.73;

for the other, b � a _ a < b. (q): Begin with ; D a _ ; < a; in the first case,
both sides equal ;; for in the second, c � b _ b < c; in the first of these cases,
you will be able to show ac C a.b

:
� c/ D ac C .ab

:
� ac/ and apply T6.73; for

the second, again both sides equal ;.

*E13.18. Show T13.22d and T13.22i. Hard-core: show all of the results in T13.22.

Hints for T13.22. (g): Under assumptions for!I and then Sa � j D b for 9E,
set up for$I; the argument from right to left is not hard; in the other direction,
with aj.b C c/ and then Sa � k D b C c for 9E, you will be able to show
j � k, so that for some l , l C j D k; ajc follows. (l): Let r = rm.a; d/;
then from the definition and 9E you have a D .Sd � j / C r ^ r < Sd ; if
you assert a C .y � Sd/ D a C .y � Sd/ by DI you should be able to show
a C .y � Sd/ D Sd � .j C y/ C r ^ r < Sd , and the result from this.
(m): Let r D rm.a; d/ and q D qt.a; d/; then by the definitions you have
a D Sd � q C r and r < Sd ; assume Sd � z � a for!I and q < z for �I;
then you should be able to show a < Sd � z to contradict the assumption for
!I. (n): Again let r D rm.a; d/ and q D qt.a; d/; then by the definitions you
have a D Sd � q C r and r < Sd ; assume y � Sd � a for!I; you should
be able to show a

:
� .y � Sd/ D Sd.q

:
� y/ C r ^ r < Sd ; then you need

.9w < a
:
� .y�Sd//Œa

:
� .y�Sd/ D Sd �wC r ^ r < Sd� to apply Def [rm].

*E13.19. Provide a demonstration of the condition for Def [d ] along with a complete
demonstration of T13.23h. Hard-core: Show all of the results from T13.23.

Hint for Def [d ]. Begin with ; – b _; < b and go for the existentially quantified
goal. In the second case, there is some j such that b D Sj and it is easy to show
a � ; C Sj D b � 1 and generalize.

Hints for T13.23h. [a]: Show a � .b
:
� 1/ C a D b � a and generalize. [b]:

Show a � ; C b D b � 1 and generalize. [c]: Go for G.a; b; i/ ! d.a; b/ji

toward an application of 8I; then under the assumption G.a; b; i/ for !I, let
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q D qt.i; d.a; b// and r D rm.i; d.a; b//; then from the definitions you have
i D .Sd.a; b/ � q/C r , and r < Sd.a; b/, and .8y < d.a; b//�Œ.; < a ^ ; <
b/! G.a; b; Sy/�; and you should be able to show G.a; b; i

:
� .Sd.a; b/ � q//

using (6) with T13.23f and T13.23g; but also i :� .Sd.a; b/ � q/ D r so that
G.a; b; r/; now an assumption that r is a successor leads to contradiction; so
r D ; and d.a; b/ji .

Hints for the rest of T13.23. (c): This is straightforward with T13.22i. (d): You
can do this by the second form of strong induction T13.11ah; the zero case is
trivial; to reach 8xf.8y � x/Œ1 < y ! 9z.Pr.Sz/ ^ zjy/� ! Œ1 < Sx !

9z.Pr.Sz/^zjSx/�g assume .8y � k/Œ1 < y ! 9z.Pr.Sz/^zjy/� and 1 < Sk;
then Sk is prime or not; if it is prime, the result is immediate; if it is not, for
some j you will be able to show Sj � k and apply the assumption. (e): From
left to right, under the assumption for$I assume 9xŒPr.Sx/ ^ xja ^ xjb� and
Pr.Sj /^j ja^j jb for�I and 9E; then you should be able to show that 1 < Sj and
1 – Sj ; in the other direction, under the assumption for$I and then j ja^j jb for
!I, suppose ; < j ; this is impossible, which gives the result you want. (g): Under
the assumptions ; < a ^ ; < b and then G.a; b; i/ ^G.a; b; j / ^ j � i for!I
and then apCi D bq and arCj D bs for 9E, starting with .bqCbar/C.bsa :

�

bs/ D .bqCbar/C.bsa
:
� bs/ byDI, with some effort, you will be able to show

aŒ.pC bs/C .br
:
� r/�C .i

:
� j / D bŒ.qC ar/C .sa

:
� s/� and generalize. (i):

Under the assumption Pr.Sa/^aj.b� c/ assume a − b with the idea of obtaining
a − b ! ajc for Impl; set out to show Rp.b; Sa/ for an application of T13.23h
to get 9x9yŒbx C 1 D Sa � y�; with this, you will have bp C 1 D Sa � q by
9E; and you should be able to show ajcbp and aj.cbp C c/ for an application of
T13.22g.

*E13.20. Show the condition for Def [lcm] and provide a demonstration for T13.24d.
Hard-core: show the rest of the results T13.24.

Hint for Def [lcm]. This is an argument by IN on k. For the basis, show ; <
1^.8i < ;/m.i/j1 and generalize. For the main argument, under the assumptions
9xŒ; < x ^ .8i < j /m.i/jx� for!I and ; < a ^ .8i < j /m.i/ja for 9E, set
out to show ; < a � Sm.j / ^ .8i < Sj /m.i/j.a � Sm.j // and generalize.

Hints for T13.24. For (c) and (d) define predecessor to the least common multiple;
for this, let PA ` v D plcmfm.i/ j i < kg $ Sv D lcmfm.i/ j i < kg;
then pŒm�k = plcmfm.i/ j i < kg and, where m is clear from context, pk =
plcmfm.i/ j i < kg; show that PA defines plcm. Then (c): Under the assumption
.8i < k/m.i/jx for !I, let r D rm.x; pk/ and q D qt.x; pk/; you have
.8y < lk/�Œ; < y ^ .8i < k/m.i/jy� from Def [lcm] with T13.18b; you should
be able to apply this to show that r D ; and so that pkjx. (d): This is an
induction on k; for the show, you have .8i < j /m.i/jlj from Def [lcm]; then
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under assumptions 8nŒ.Pr.Sn/^njlj /! .9i < j /njSm.i/� and Pr.Sa/^ajlSj
for!I, you should be able to use T13.24c to show pSj j.lj � Sm.j //; and from
this ajlj _ ajSm.j /; in either case, you have your result.

*E13.21. Provide derivations to show parts [c] and [e] to the derivation for T13.25.
Hard-core: complete the entire derivation.

Hints. With line umbers from the text outline, [a]: Trivially .8i < ;/rm.;; m.i//
D h.i/; this gives you B.;/ and so the result. [b]: You will be able to use
(6) and (7) to generate the antecedent to (4). [c]: Suppose otherwise; with
T13.23e there is a u such that Pr.Su/ ^ ujla ^ ujSm.a/; then with T13.24d
there is a v < a such that ujSm.v/ so that with (7) Rp.Sm.v/; Sm.a//. But
this is impossible with ujSm.a/, ujSm.v/ and T13.23e. [d]: By Def [lcm],
; < la so that h.a/ < h.a/la. Then with T13.21a and T13.21q you can show
s D .la � b C Œr C .la

:
� 1/ � h.a/�/C h.a/ and apply (17). [e]: Suppose for

(8I) u < Sa; then u < a _ u D a. In the first case, with T13.24b and T13.22d
m.u/jla.b C h.a//; so that there is a v such that Sm.u/v D la.b C h.a//; then
using (18) and T13.22l, rm.s;m.u// D rm.r;m.u//; so that you can apply (9). In
the second case, with (19) and T13.22l rm.s;m.u// D rm.h.u/;m.u//; but from
(6), h.u/ � m.u/ and with T13.22j rm.h.u/;m.u// D h.u/.

E13.22. Given maxp and T13.26a provide a derivation to show the condition of
Def [maxs]. Hard-core: Provide justification Def [maxp]; and show the results in
T13.26 as well.

Hint for Def [maxs]. First obtain maxp and T13.26a. Then the argument is by
IN on k. For the show you will have assumptions of the sort .8i < j /m.i/ � l
and a < Sj ; then a < j _ a D j ; in either case you will be able to show that
m.a/ � maxp.l; m.j //.

*E13.23. Provide a demonstration for [i] of T13.27. Hard-core: Provide a complete
demonstration for T13.27.

Hints for [i]. Under the assumption j < k for (8I) you will be able to show
h.j / < Sr , and with T13.24b r jq; from this, Sr � q so that Sr � q � Sj which
gives the result you want. For [ii] see page 676.

*E13.24. Show T13.28. Hard-core: show also the conditions for Def [h.i/].

Hint for Def [h.i/]. (i) is straightforward under i < k _ k � i from T13.11r.

Hints for T13.28. From T13.27 applied to Sk, 9p9q.8i < Sk/ˇ.p; q; i/ D h.i/;
then with .8i < Sk/ˇ.c; d; i/ D h.i/ for 9E, you will be able to obtain both
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.8i < k/ˇ.c; d; i/ D ˇ.a; b; i/ and ˇ.c; d; k/ D n. For the second of these,
you have .k < k ^ h.k/ D ˇ.a; b; k// _ .k � k ^ h.k/ D n/ from Def [h.i/];
for the first, under l < k for (8I) you can apply Def [h.i/] again to show that
ˇ.c; d; l/ D ˇ.a; b; l/.

*E13.25. Complete the demonstration of T13.29 by showing the zero case.

Hint: From Def [beta] and T13.22j, you have ˇ.g.Ex/; g.Ex/;;/ D g.Ex/; so g.Ex/
is an a such that ˇ.a; a;;/ D g.Ex/. Then the result is easy.

Coordinate Functions and Relations

We conclude this section showing first that the functions we have defined in PA are
coordinate to friendly recursive functions. Then, turning to relations, we show that
PA defines relations coordinate to the recursive relations of Chapter 12.

To show that functions defined in PA are coordinate to the friendly recursive
functions, we begin with a couple of preliminaries: First, as sort of addendum to
T13.19, if some recursive function f.Ex/ just is some previously defined g.Ex/, let
PA ` f.Ex/ D g.Ex/. Then PA defines f.Ex/. Second, a result fundamental to every
case where a function is defined by recursion. As above let F .Ex; y; v/ be,

9p9qŒˇ.p; q;;/ D g.Ex/ ^ .8i < y/h.Ex; i; ˇ.p; q; i// D ˇ.p; q; Si/ ^ ˇ.p; q; y/ D v�

and suppose PA ` v D f.Ex; y/$ F .Ex; y; v/ so that f.Ex; y/ is defined by recursion.
Then the standard recursive conditions apply. That is,

T13.30. Suppose f.Ex; y/ is defined by g.Ex/ and h.Ex; y; u/ so that PA ` v D

f.Ex; y/$ F .Ex; y; v/. Then,

(a) PA ` f.Ex;;/ D g.Ex/

(b) PA ` f.Ex; Sy/ D h.Ex; y;f.Ex; y//

Hint: (a) follows easily in just a few lines with PA ` F .Ex;;;f.Ex;;// from the
definition for f.Ex; y/. For (b), see the derivation on the next page.

From this theorem, our functions defined by recursion behave like ones we have seen
before, with clauses for the basis and successor. This lets us manipulate the functions
very much as before. The importance of this point emerges immediately below.

Now we can show that definitions of functions from Chapter 12 are coordinate
with definitions in PA. Coordinate definitions result in a sort of structural similarity:



CHAPTER 13. GÖDEL’S THEOREMS 682

Cf The definition of a recursive function (except a function defined by bounded
minimization) is coordinate with its definition in PA iff,

(i) f.Ex/ is an initial function zero, suc, or idntjk and f.Ex/ is zero, suc, or idntj
k,

and PA ` v D zero./ $ ; D v, PA ` v D suc.x/ $ Sx D v, and
PA ` v D idntj

k.x1 : : : xj /$ Œ.x1 D x1 ^ : : : ^ xj D xj / ^ xk D v�.

(c) f.Ex; Ey; Ez/ is defined from g.Ey/ and h.Ex;w; Ez/ by composition so that f.Ex; Ey; Ez/
= h.Ex; g.Ey/; Ez/, and for coordinate g.Ex/ and h.Ex;w; Ez/, PA ` f.Ex; Ey; Ez/
D h.Ex;g. Ey/; Ez/.

(r) f.Ex; y/ is defined from g.Ex/ and h.Ex; y; u/ by recursion so that f.Ex; 0/ = g.Ex/
and f.Ex;Sy/ = h.Ex; y; f.Ex; y// and for coordinate g.Ex/ and h.Ex; y; u/, PA `
f.Ex;;/ D g.Ex/ and PA ` f.Ex; Sy/ D h.Ex; y;f.Ex; y//.

(m) f.Ex/ is defined from g.Ex; y/ by friendly regular minimization so that f.Ex/ =
�yŒg.Ex; y/ D zero./� and for coordinate g.Ex; y/, PA ` f.Ex/ D �yŒg.Ex; y/
D zero./�.

(e) f.Ex/ just is some g.Ex/ so that f.Ex/ = g.Ex/, and for coordinate g.Ex/, PA `
f.Ex/ D g.Ex/.

T13.30(b)
1. F .Ex; Sy;f.Ex; Sy// def f.Ex; y/

2. 9p9qŒP .p; q; Ex/ ^Q.p; q; Ex; Sy/ ^ ˇ.p; q; Sy/ D f.Ex; Sy/� 1 abv
3. P .a; b; Ex/ ^Q.a; b; Ex; Sy/ ^ ˇ.a; b; Sy/ D f.Ex; Sy/ A (g, 29E)

4. P .a; b; Ex/ 3 ^E
5. .8i < Sy/h.Ex; i; ˇ.a; b; i// D ˇ.a; b; Si/ 3 ^E (Q)
6. y < Sy T13.11i
7. h.Ex; y; ˇ.a; b; y// D ˇ.a; b; Sy/ 5,6 (8E)
8. ˇ.a; b; Sy/ D f.Ex; Sy/ 3 ^E
9. f.Ex; Sy/ D h.Ex; y; ˇ.a; b; y// 7,8DE

10. j < y A (g, (8I))

11. j < Sy 10,6 T13.11b
12. h.Ex; j; ˇ.a; b; j // D ˇ.a; b; Sj / 5,11 (8E)
13. .8i < y/h.Ex; i; ˇ.a; b; i// D ˇ.a; b; Si/ 10-12 (8I)
14. ˇ.a; b; y/ D ˇ.a; b; y/ DI
15. P .a; b; Ex/ ^Q.a; b; Ex; y/ ^ ˇ.a; b; y/ D ˇ.a; b; y/ 4,13,14 ^I
16. 9p9qŒP .p; q; Ex/ ^Q.p; q; Ex; y/ ^ ˇ.p; q; y/ D ˇ.a; b; y/� 15 9I
17. f.Ex; y/ D ˇ.a; b; y/ 16 def f.Ex; y/
18. f.Ex; Sy/ D h.Ex; y;f.Ex; y// 9,17DE
19. f.Ex; Sy/ D h.Ex; y;f.Ex; y// 2,3-18 9E

Again, P and Q are as on page 662. The key stages of this argument are at (9) which has
the result with ˇ.a; b; y/ where we want f.Ex; y/ and then (17) which shows they are one
and the same.
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The definition of a recursive function is coordinate with its definition in PA just in
case PA proves theorems syntactically “congruent” to the recursive definitions. And
now we simply observe that PA in fact defines functions coordinate to the friendly
recursive functions.

T13.31. For any friendly recursive function, r.Ex/, PA defines a coordinate function
r.Ex/.

By review of Cf together with T13.19 and T13.30. To connect case (m) with
definition RM and T13.19(m), observe that y0 = zero./ and PA ` 0 D zero./. For
a more formal demonstration of this theorem, see E13.30.

This works because PA proves theorems entirely parallel to the recursive definitions.
So, for example, from Chapter 12, plus.x; y/ is defined by recursion from gplus.x/
= idnt11.x/ and hplus.x; y; u/ = suc.idnt33.x; y; u//. Now from T13.31: with Cf(i),
PA defines coordinate identity and successor functions, idnt11.x/, idnt33.x; y; u/, and
suc.w/; with Cf(e), PA ` gplus.x/ D idnt11.x/; with Cf(c), PA ` hplus.x; y; u/ D
suc.idnt3

3.x; y; u//; and then with Cf(r), PA ` plus.x;;/ D gplus.x/ and PA `
plus.x; Sy/ D hplus.x; y;plus.x; y//. Given T13.31, from recursive definitions we
are positioned simply to “write down” the structurally parallel theorems for the defined
functions. For some additional examples,

T13.32. The following are theorems of PA.

(a) PA ` gtimes.x/ D zero.x/

(b) PA ` htimes.x; y; u/ D plus.idnt33.x; y; u/; x/

(c) PA ` times.x;;/ D gtimes.x/

(d) PA ` times.x; Sy/ D htimes.x; y; times.x; y//

(e) PA ` gpower.x/ D suc.zero.x//

(f) PA ` hpower.x; y; u/ D times.idnt33.x; y; u/; x/

(g) PA ` power.x;;/ D gpower.x/

(h) PA ` power.x; Sy/ D hpower.x; y;power.x; y//

(a)–(d) are like the definition for times.x; y/ on page 568; (e)–(h) are like defini-
tions for power.x; y/ from E12.1.

And the range of theorems we allow ourselves to “write down” is extended by
some additional simple results. Observe that plus.x; y/, say, is defined by a complex
expression through T13.31, and so is not the same expression as our old friend x C y.
Thus it is not obvious that our standard means for manipulation of C apply to plus.
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We could recover our ordinary results if we could show PA ` plus.x; y/ D x C y.
And similar comments apply to other ordinary functions. Thus initially we seek to
show that defined functions are equivalent to ones with which we are familiar. As
a preliminary, distinguish Dn = suc.: : : suc.zero.//:::/ in addition to n = S : : : S; and
yn = suc.: : : suc.zero.//:::/. By Cf(i), zero./ is coordinate with zero./ and suc.w/
with suc.w/; then by multiple applications of Cf(c), Dn is coordinate with yn.

*T13.33. The following are theorems of PA.

(a) PA ` suc.x/ D Sx

(b) PA ` idntj
k
.x1 : : : xj / D xk

(c) PA ` zero./ D ;

(d) PA ` zeron.x1 : : : xn/ D ;

*(e) PA ` Dn D n

(f) PA ` pred.;/ D ;

(g) PA ` pred.Sy/ D y

*(h) PA ` pred.y/ D y :
� 1

corollary: PA ` ; < y ! Spred.y/ D y

corollary: PA ` .pred.x/ja ^ pred.y/jb/! pred.xy/jab

(i) PA ` plus.x; y/ D x C y

(j) PA ` times.x; y/ D x � y

*(k) PA ` subc.x; y/ D x :
� y

(l) PA ` absval.x - y/ D .x :
� y/C .y

:
� x/

(e) is by an easy induction in the metalanguage; otherwise arguments for (a)–(g)
are very much the same and nearly trivial. (h) is from (f) and (g), and its corollaries
with T13.21k and T13.22e. Arguments for (i)–(k) are by IN. As examples, (a)
and (i) are worked on page 688. For additional hints see the associated exercise,
E13.27.

So this theorem establishes the equivalences we expect for the defined symbols suc,
idnt, zero, Dn, pred, plus, times, subc, and absval. Again, C, �, and the like are
primitive symbols of LNT where plus and times result by T13.19. And this theorem
extends the range of results we write down from recursive definitions. Thus if some
f.x; y; z/ = times.plus.x; y/; z/ = .xC y/ � z, then with T13.31, PA ` f.x; y; z/ D
times.plus.x; y/; z/ and now, PA ` f.x; y; z/ D .x C y/ � z.
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Now say a recursive relation is friendly iff it has a friendly characteristic function.
Then PA defines relations corresponding to each friendly recursive relation. At one
level, this is easy: Suppose R is a friendly recursive relation. Since R is friendly, its
characteristic function chR is friendly and so PA defines chR. Set,

PA ` R.Ex/$ chR.Ex/ D ;

Then PA defines R.Ex/. In fact, however, for relations coordinate to ones from Chap-
ter 12 we shall require specifications in PA that “track” with the recursive definitions.
For this, it will be helpful to show that PA defines relations by a short induction. As
developed in Chapter 12, recursive relations are either atomic EQ, LEQ, LESS, or arise
by operations NEG, DSJ, .9y � z/. Then,

T13.34. For any recursive R defined in Chapter 12, PA defines R such that PA `
R.Ex/$ chR.Ex/ D ;.

Suppose R is one of the recursive relations defined in Chapter 12. By induction on
the number of recursive operators in the definition of R.Ex/,

Basis: R is defined without recursive operators. Then R is EQ.x; y/, LEQ.x; y/,
or LESS.x; y/. Let PA ` Eq.x; y/ $ sg.absval.x - y// D ;; and PA `
Leq.x; y/$ sg.subc.x; y// D ;; and PA ` Less.x; y/$ sg.subc.suc.x/;
y// D ;. Then PA defines Eq, Leq, and Less. And, in each case,
PA ` R.x; y/$ chR.x; y/ D ;.

Assp: For any i , 0 i k, if R is defined by i recursive operators, then PA
defines R such that PA ` R.Ex/$ chR.Ex/ D ;.

Show: If R is defined by k recursive operators, then PA defines R such that
PA ` R.Ex/$ chR.Ex/ D ;.
If R is defined by k recursive operators, then it is NEG.P.Ex//, DSJ.P.Ex/; Q.Ey//,
or .9y � z/P.Ex; y/, for P and Q with k recursive operators.

(NEG) R.Ex/ is NEG.P.Ex//, and so has characteristic function, csg.chP.Ex//. By
assumption, PA defines P.Ex/ such that PA ` P.Ex/ $ chP.Ex/ D ;. Let
PA ` Neg.P.Ex// $ csg.chP.Ex// D ;. Then PA defines R.Ex/ and PA `
R.Ex/$ chR.Ex/ D ;.

(DSJ) R.Ex; Ey/ is DSJ.P.Ex/; Q.Ey//, and so has characteristic function, times.chP.Ex/;
chQ.Ey//. By assumption, PA defines P.Ex/ and Q. Ey/ such that PA `
P.Ex/ $ chP.Ex/ D ; and PA ` Q. Ey/ $ chQ. Ey/ D ;. Let PA `
Dsj.P.Ex/;Q. Ey//$ times.chP.Ex/; chQ. Ey// D ;. Then PA defines R.Ex; Ey/
and PA ` R.Ex; Ey/$ chR.Ex; Ey/ D ;.

(9 �) R.Ex; z/ is .9y � z/P.Ex; y/. Then given chP.Ex; y/, for some v not in Ex and not
y there is an eleq.Ex; v/ such that geleq.Ex/ = chP.Ex; y0/ and heleq.Ex; v; u/
= u � chP.Ex;Sv/; and the characteristic function of .9y � z/P.Ex; y/ is
eleq.Ex; z/. By assumption, PA defines P.Ex/ such that PA ` P.Ex/ $
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chP.Ex/ D ;; then with T13.31 PA defines eleq.x; v/. Let PA ` .9 y �
z/P.Ex; y/$ eleq.Ex; z/ D ;. Then PA defines R.Ex; z/ and PA ` R.Ex; z/
$ chR.Ex; z/ D ;.

Indct: For any recursive R as defined in Chapter 12, PA defines R such that
PA ` R.Ex/$ chR.Ex/ D ;.

As a quick corollary: From T13.19, function chR.Ex/ is originally captured by an
R.Ex; v/ such that PA ` chR.Ex/ D v $ R.Ex; v/; so PA ` chR.Ex/ D ; $ R.Ex;;/;
and with this theorem, PA ` R.Ex/$ R.Ex;;/. Also, as addenda to this theorem: If a
relation R.Ex/ just is some previously defined Q.Ex/, let PA ` R.Ex/$ Q.Ex/; then PA
definesR. And for a function .�y � z/P.Ex; y/with its chP.Ex; y/, for some v not in Ex and
not y there is an eleq.Ex; v/ as above, and then mleq.Ex; v/ such that gmleq.Ex/ = zero.Ex/
and hmleq.Ex; v; u/ = u C eleq.Ex; v/; and then .�y � z/P.Ex; y/ = mleq.Ex; z/. But
PA defines mleq.Ex; v/; let PA ` .�y � z/P.Ex; y/ = mleq.Ex; z/; so PA defines
.�y � z/P.Ex; y/.

Now as a preliminary to showing that recursive relations defined in Chapter 12 are
coordinate with their definitions in PA, a couple of theorems: First, some easy results
for functions sg.y/ and csg.y/—these are not equivalences (because no equivalents
have previously been defined), but result directly for the defined functions. Then some
equivalences for basic defined relations.

*T13.35. The following are theorems of PA.

*(a) PA ` sg.;/ D ;

*(b) PA ` sg.Sy/ D 1

(c) PA ` y D ; $ sg.y/ D ;

*(d) PA ` ; < y $ sg.y/ D 1

(e) PA ` csg.;/ D 1

(f) PA ` csg.Sy/ D ;

*(g) PA ` y D ; $ csg.y/ D 1

*(h) PA ` ; < y $ csg.y/ D ;

(i) PA ` chR.Ex/ D ; _ chR.Ex/ D 1.

(a), (b), (e), (f) are from the definitions; then (c), (d), (g), (h) result easily from
them. For (i), recall from (CF) that a characteristic function is (officially) of the
sort sg.p.Ex// so that from T13.31, PA ` chR.Ex/ D sg.p.Ex//.
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*T13.36. The following are theorems of PA.

*(a) PA ` Eq.x; y/$ x D y

(b) PA ` Leq.x; y/$ x � y

*(c) PA ` Less.x; y/$ x < y

*(d) PA ` Neg.P.Ex//$ �P.Ex/

(e) PA ` Dsj.P.Ex/;Q. Ey//$ .P.Ex/ _Q. Ey//

*(f) PA ` .9 y � z/P.Ex; y/$ .9y � z/P.Ex; y/

*(g) PA ` .�y � z/P.Ex; y/ D .�y � z/P.Ex; y/

The argument for (g) is particularly involved; see the box on page 689 for the
main outlines of that argument. For hints see the associated exercise E13.29.

So this theorem delivers the equivalences we expect for Eq, Leq, Less, Neg, Dsj,
.9 y � z/, and .�y � z/.

Now we can show that definitions of recursive relations from Chapter 12 are
coordinate with definitions in PA (and similarlily for bounded minimization). Again,
coordinate definitions result in a sort of structural similarity.

Cr The definition of a recursive relation is coordinate with its definition in PA iff,

(a) R.Ex/ is an atomic function EQ.x; y/, or LEQ.x; y/, or LESS.x; y/, and PA `
Eq.x; y/$ x D y, and PA ` Leq.x; y/$ x � y, and PA ` Less.x; y/
$ x < y.

(n) R.Ex/ is NEG.P.Ex// and for coordinate P.Ex/, PA ` Neg.P.Ex//$ �P.Ex/.

(d) R.Ex; Ey/ is DSJ.P.Ex/; Q.Ey//, and for coordinate P.Ex/ andQ. Ey/, we have PA `
Dsj.P.Ex/;Q. Ey//$ .P.Ex/ _Q. Ey//.

(q) R.Ex/ is a bounded quantification .9y � z/P.Ex; y/ and for coordinate P.Ex; y/,
PA ` .9 y � z/P.Ex; y/$ .9y � z/P.Ex; y/.

(e) R.Ex/ just is some Q.Ex/ and for coordinateQ.Ex/, PA ` R.Ex/$ Q.Ex/.

Cm The definition of a recursive function f.Ex/ = .�y � z/P.Ex; y/ defined by bounded
minimization is coordinate with its definition in PA iff for coordinate P, PA `
.�y � z/P.Ex; y/ = .�y � z/P.Ex; y/.

Again, the defination of a recursive relation is coordinate with its definition in PA just
in case PA proves theorems syntactically “congruent” to the recursive definitions. And
now we simply observe that PA in fact defines relations coordinate to the recursive
relations.
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T13.33a
1. v D suc.x/$ Sx D v T13.31
2. suc.x/ D suc.x/$ Sx D suc.x/ from 1
3. suc.x/ D suc.x/ DI
4. suc.x/ D Sx 2,3$E

Once we write down the expression on (1) with T13.31, the condition for suc is like that for
S .

T13.33i
1. gplus.x/ D idnt11.x/ T13.31
2. gplus.x/ D x 1 T13.33b
3. plus.x;;/ D gplus.x/ T13.31
4. plus.x;;/ D x 3,2DE
5. x C ; D x T6.47
6. plus.x;;/ D x C ; 4,5DE
7. plus.x; j / D x C j A (g,!I)

8. plus.x; Sj / D hplus.x; j;plus.x; j // T13.31
9. hplus.x; j; u/ D suc.idnt33.x; j; u// T13.31

10. hplus.x; j; u/ D suc.u/ 9 T13.33b
11. hplus.x; j; u/ D Su 10 T13.33a
12. hplus.x; j;plus.x; j // D Splus.x; j / from 11
13. plus.x; Sj / D Splus.x; j / 8,12DE
14. plus.x; Sj / D S.x C j / 13,7DE
15. S.x C j / D x C Sj T6.48
16. plus.x; Sj / D x C Sj 14,15DE
17. Œplus.x; j / D x C j �! Œplus.x; Sj / D x C Sj � 7-16!I
18. 8y.Œplus.x; y/ D x C y�! Œplus.x; Sy/ D x C Sy�/ 17 8I
19. plus.x; y/ D x C y 6,18 IN

Again, once we write down the expressions on (1) and (9) with T13.31 and then on (3) and
(8), the conditions for plus.x; y/ work like the ones for x C y—so that the equivalence
results by IN.
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T13.36g
1. mleq.Ex;;/ D .�y � ;/P.Ex; y/ [a]
2. eleq.Ex; j / D ; $ .9 y � j /P.x; y/ T13.34
3. mleq.Ex; Sj / D hmleq.Ex; j;mleq.Ex; j // T13.31
4. hmleq.Ex; j; u/ D plus.u; eleq.Ex; j // T13.31
5. .�y � z/P.Ex; y/ D mleq.Ex; z/ T13.34

6. eleq.Ex; j / D ; $ .9y � j /P.x; y/ 2 T13.36f
7. hmleq.Ex; j; u/ D uC eleq.Ex; j / 4 T13.33i
8. hmleq.Ex; j;mleq.Ex; j // D mleq.Ex; j /C eleq.Ex; j / from 7
9. mleq.Ex; Sj / D mleq.Ex; j /C eleq.Ex; j / 3,8DE

10. mleq.Ex; j / D .�y � j /P.Ex; y/ A (g,!I)

11. a D mleq.Ex; j / def
12. b D mleq.Ex; Sj / def
13. b D aC eleq.Ex; j / 9,11,12DE
14. a D .�y � j /P.Ex; y/ 10,11DE
15. a D �yŒy D j _P.Ex; y/� 14 Def [�y �]
16. .8w < a/Œw ¤ j ^�P.Ex;w/� 15 T13.18b
17. a D j _P.Ex; a/ 15 T13.18a
18. a D j A (g, 17_E)

19. �P.Ex; j / _P.Ex; j / T3.1
20. �P.Ex; j / A (g, 19_E)

21. Œb D Sj _P.Ex; b/� ^ .8w < b/.w ¤ Sj ^�P.Ex;w// [b]

22. P.Ex; j / A (g 19_E)

23. Œb D Sj _P.Ex; b/� ^ .8w < b/.w ¤ Sj ^�P.Ex;w// [c]
24. Œb D Sj _P.Ex; b/� ^ .8w < b/.w ¤ Sj ^�P.Ex;w// 19,20-21,22-23 _E

25. P.Ex; a/ A (g, 17_E)

26. Œb D Sj _P.Ex; b/� ^ .8w < b/.w ¤ Sj ^�P.Ex;w// [d]
27. Œb D Sj _P.Ex; b/� ^ .8w < b/.w ¤ Sj ^�P.Ex;w// 17,18-24,25-26 _E
28. Œb D Sj _P.Ex; b/� ^ .8w < b/�.w D Sj _P.Ex;w// 27 DeM
29. b D �yŒy D Sj _P.Ex; y/� 28 Def [�y]
30. b D .�y � Sj /P.Ex; y/ 29 Def [�y �]
31. mleq.Ex; Sj / D .�y � Sj /P.Ex; y/ 30,12DE
32. Œmleq.Ex; j / D .�y � j /P.Ex; y/� !

Œmleq.Ex; Sj / D .�y � Sj /P.Ex; y/� 10-31!I
33. 8n.Œmleq.Ex; n/ D .�y � n/P.Ex; y/� !

Œmleq.Ex; Sn/ D .�y � Sn/P.Ex; y/�/ 32 8I
34. mleq.Ex; z/ D .�y � z/P.Ex; y/ 1,33 IN
35. .�y � z/P.Ex; y/ D .�y � z/P.Ex; y/ 5,34DE

Hints: The zero case [a] is straightforward with T13.18d. For the show, the main argument
is to obtain Œb D Sj _ P.Ex; b/� ^ .8w < b/�.w D Sj _ P.Ex;w// at (28) toward the
application of Def [�y] at (29). For the left conjunct, at [b] you will be able to show that
b D Sj ; and for that conjunct at [c] and [d] you will be able to show b D j and b D a

respectively, and so with the assumptions, P.Ex; b/.
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T13.37. For any friendly recursive function f.x/ PA defines a coordinate function
f.Ex/. And for any recursive relation R.Ex/ as defined in Chapter 12, PA defines a
coordinate relation R.Ex/.

By T13.31, and then review of Cr and Cm together with T13.34 and T13.36. For
a more formal demonstration, see E13.30.

So, for example, from Chapter 12, FCTR.m; n/ = .9y � n/EQ.times.suc.m/; y/; n/ =
.9y � n/.Sm � y D n/. By T13.31, PA defines times.suc.m/; y/; and with T13.33,
PA ` times.suc.m/; y/ D Sm�y. So by T13.34, PA definesEq.times.suc.m/; y/; n/;
and by T13.36, PA ` Eq.times.suc.m/; y/; n/$ Sm�y D n. And again, PA defines
.9 y � n/Eq.times.suc.m/; y/; n/ so that PA ` .9 y � n/Eq.times.suc.m/; y/; n/$
.9y � n/.Sm�y D n/. And since this just isFctr.m; n/, by the addendum to T13.34,
PA ` Fctr.m; n/$ .9y � n/.Sm � y D n/.

At this stage, we have defined in PA functions and relations corresponding to all
the recursive functions and relations defined in Chapter 12. Again, then, we are in a
position to “write down” results in PA directly from the recursive definitions. And
again we expand the range of relations that we “write down” by demonstrating some
final equivalents.

*T13.38. The following are theorems of PA.

(a) PA ` Imp.P.Ex/;Q. Ey//$ .P.Ex/! Q. Ey//

(b) PA ` Cnj.P.Ex/;Q. Ey//$ .P.Ex/ ^Q. Ey//

(c) PA ` .9 y < z/P.Ex; y/$ .9y < z/P.Ex; y/

*(d) PA ` .8y � z/P.Ex; y/$ .8y � z/P.Ex; y/

(e) PA ` .8y < z/P.Ex; y/$ .8y < z/P.Ex; y/

(f) PA ` Fctr.m; n/$ mjn

*(g) PA ` Prime.n/$ Pr.n/

With T13.37, (a), (b), (d), and (e) are nearly trivial (and the others are not hard).
As examples, (a) and (c) are worked on on page 692.

Given these results, here are some last examples to illustrate theorems we simply
write down. By T13.37, relations and functions including Var.v/,W ff .n/, exp.n; i/,
len.n/, and cncat.m; n/ have coordinate definitions in PA; let cncat.m; n/ = m � n.
Given this,
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*T13.39. The following are theorems of PA.

(a) PA ` til.n/ D p�q � n

(b) PA ` cnd.n; o/ D p.q � n � p!q � o � p/q

(c) PA ` unv.v; n/ D p8q � v � n

(d) PA ` caret.m; n/ D til.cnd.m; til.n///

(e) PA `Mp.m; n; o/$ cnd.n; o/ D m

(f) PA ` Gen.m; n/$ .9v � n/ŒVar.v/ ^ n D unv.v;m/�

(g) PA ` Icon.m; n; o/$ ŒMp.m; n; o/ _ .m D n ^Gen.n; o//�

*(h) PA ` Axiomad1.n/$ .9p � n/.9q � n/ŒW ff .p/ ^W ff .q/ ^ n D cnd.p; cnd.q; p/�

and similarly for the other axioms

(i) PA ` Axiompa.n/$ ŒAxiomad1.n/_: : :_Axiomad8.n/_Axiompa1.n/_: : :_Axiompa7.n/�

(j) PA ` Prfpa.m; n/$ fexp.m; len.m/ :� 1/ D n ^ 1 < m ^

.8k < len.m//ŒAxiompa.exp.m; k//_.9i < k/.9j < k/Icon.exp.m; i/; exp.m; j /; exp.m; k//�g

This theorem suggests the range of notions we shall be able to reason about in PA.
Officially the instances of concatenation should be grouped in pairs; however T13.46g
below is an association result which tells us that the grouping does not matter. Given
that PA defines Var, cncat, and the like, it is important that ‘D’ and the operators in
expressions above are ordinary expressions of LNT. Thus we shall be able to manipulate
the expressions in the usual ways. In general, from the recursive definitions we simply
assert such results, citing just T13.37 as justification.

E13.26. Produce the derivation to show T13.30a.

*E13.27. Produce a derivation to show T13.33j. Hard-core: show all the unworked
cases from T13.33.

Hints: For (h) it will be helpful to assert y D ; _ ; < y. (k) works in the usual
way up to the point in the show stage where you get subc.x; Sj / D pred.x :

� j /;
then it will take some work to show x

:
� Sj D pred.x :

� j /; for this begin with
x � j _ j < x by T13.11r; the first case is straightforward; for the second, you
will be able to show S.x

:
� Sj / D Spred.x :

� j / and apply T6.46.

*E13.28. Show T13.35 (e)–(g), Hard-core: Show each of the results in T13.35.
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T13.38a

1. Imp.P.Ex/;Q. Ey//$ .�P.Ex/ _Q. Ey// T13.37
2. Imp.P.Ex/;Q. Ey//$ .P.Ex/! Q. Ey// 1 Impl

From page 606, IMP.P.Ex/; Q.Ey// is�P.Ex/_Q.Ey/. Then (1) is the structurally parallel theorem
of PA.

T13.38c

1. .9 y < z/P.Ex; y/$ .9y � z/.y ¤ z ^P.Ex; y// T13.37
2. .9 y < z/P.Ex; y/ A (g,$I)

3. .9y � z/.y ¤ z ^P.Ex; y// 1,2$E
4. j ¤ z ^P.Ex; j / A (g, 3(9E))
5. j � z

6. j ¤ z 4 ^E
7. j < z 5,6 T13.11m
8. P.Ex; j / 4 ^E
9. .9y < z/P.Ex; y/ 8,7 (9I)

10. .9y < z/P.Ex; y/ 3,4-9 (9E)

11. .9y < z/P.Ex; y/ A (g,$I)

12. P.Ex; j / A (g, 11(9E))
13. j < z

14. j ¤ z 13 T13.11s
15. j ¤ z ^P.Ex; j / 14,12 ^I
16. j � z 13 T13.11m
17. .9y � z/.y ¤ z ^P.Ex; y// 15,16 (9I)
18. .9 y < z/P.Ex; y/ 1,17$E
19. .9 y < z/P.Ex; y/ 11,12-18 (9E)
20. .9 y < z/P.Ex; y/$ .9y < z/P.Ex; y/ 2-10,11-19$I

From page 606, .9y < z/P.Ex; y/ is .9y � z/.y ¤ z ^ P.Ex; y//. Then (1) results by T13.37
(and T13.38b).
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Font Conventions
At different stages, we employ different fonts for items of different sorts. For the
most part, this is straightforward. Here we collect some conventions together.

1. Expressions of symbolic object languages are given in italics; these include
the function (lowercase) and relation (first letter uppercase) symbols abbrevi-
ated or defined in Q and PA.

A, a, ˇ, function, Relation

2. Objects from the semantic account are indicated by upright and sans serif
fonts; these include recursive functions (lowercase) and relations (small
capitals)—and bold when special symbols are used.

J, d, o, “, function, RELATION,

3. ‘D’, ‘<’, ‘C’, and ‘�’ are symbols in symbolic languages, and in the meta-
language names for themselves; when bold they pick out recursively defined
relations and functions. Narrowed versions are used to express the relations
in the metalanguage.

D,D, =, <, <, ,C,C, , �, �,

4. Expressions may be indicated by quotation as, ‘Bob is happy’, and ‘8x’; but
often and where confusion will not arise, distinguished just by vocabulary and
font and indicated by simple display, 8x.Ax ! Bx/. The (meta-)language
for description of object expressions includes script variables.

P ;p

5. Variables in the Fraktur font range over metalinguistic expressions and over
classes (whose members are themselves identified in the metalanguage).
Metalinguistic operators have versions),,, :, M, O, , A, and S .

A; a;M;m

6. Function and relation symbols introduced into PA by T13.37 have their
first character in a “hollow” blackboard font—these are not automatically
equivalent to ones that may be described in (1), though we may set out to
demonstrate equivalence.

function, Relation

7. Object expressions for computer languages are given in a typewriter font,

Expression

8. n is a natural number and yn the recursive function suc.: : : suc.zero.//:::/ that
returns n. In LNT, Dn is suc.: : : suc.zero.//:::/, and n is S : : : S;.
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*E13.29. Show (b), (e), and (f) from T13.36. Hard-core: Demonstrate each of the
results in T13.36.

Hints for T13.36. (a): For this relation, you haveEq.x; y/$ sg.absval.x -y// D
; from T13.34; this gives Eq.x; y/ $ Œ.x

:
� y/C .y

:
� x/� D ;; now for$I,

the case from x D y is easy; from Eq.x; y/, you have y � x _ x < y from
T13.11r; the cases are not hard and similar (since x < y gives x � y). (d): This
is straightforward with P.Ex/$ chP.Ex/ D ; and Neg.P.Ex//$ csg.chP.Ex// D ;

from T13.34. (f): Recall from Chapter 12 that .9y � z/P.Ex; y/ is defined by means
of an eleq.Ex; v/ corresponding to .9y � v/P.Ex; y/; the main argument is to show
by IN that PA ` 8vŒeleq.Ex; v/ D ; $ .9y � v/P.Ex; y/�. You have P.Ex; y/$
chP.Ex; y/ D ; by T13.34; for the zero case, you have eleq.Ex;;/ D geleq.Ex/,
and geleq.Ex/ D chP.Ex;;/; for the main reasoning, you have eleq.Ex; Sj / D
heleq.Ex; j; eleq.Ex; j //, and heleq.Ex; j; u/ D timesŒu; chP.Ex; suc.j //�; once you
have finished the induction, it is a simple matter of applying .9 y � z/P.Ex; y/$
eleq.Ex; z/ D ; to get .9 y � z/P.Ex; y/$ .9y � z/P.Ex; y/.

*E13.30. We have justified T13.31 and T13.37 by “review” of relevant definitions and
theorems. This review is really by induction. (i) For T13.31, by induction on the
sequence of recursive functions produce the review of Cf with T13.19 and T13.30
to show that PA defines functions coordinate to friendly recursive functions. (ii)
For T13.37, by induction on the number of recursive operators in the definition
of a recursive relation produce the review of Cr with T13.34 and T13.36 to show
that PA defines relations coordinate to recursive relations defined in Chapter 12.

*E13.31. Prove T13.38f and then, from the next theorem, finish T13.39h. Hard-core:
Work the remaining results in T13.38. For T13.39h you may take it that included
relations and functions such as Term, Freefor, formsub are defined.

Hints: The left and right sides of T13.38f,g have nearly matching definitions
except that the recursive side includes a bounded quantifier—so that in each case
you have to work for one direction of the biconditional.

13.4 The Second Condition: �.P ! Q/! .�P ! �Q/

Given functions and relations defined in PA, we turn now to demonstration of the
second derivability condition. Again there is some background—after which demon-
stration of the condition itself is straightforward. The overall idea is simple: Suppose
that PA ` �.P ! Q/ and then that PA ` �P . Then there are j and k such that

PRFPA.j;4pP ! Qq/ and PRFPA.k; bpPq/. Intuitively, then, l = j ? k ? y2bpQq numbers a
proof of Q—for we prove P ! Q and P , so that Q follows immediately as the last
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line by MP. So if PA ` �.P ! Q/, then if PA ` �P then PA ` �Q. The task is to
prove all of this in PA. Thus, having shown that PA defines recursive functions and
relations, we set out to obtain some further results about them.

13.4.1 Further Results

We have seen that PA defines functions and relations coordinate to ones from Chap-
ter 12. Some of the elementary functions and relations so defined are equivalent to
those already in PA. Now we require results for defined functions and relations beyond
the elementary ones. Thus, proceeding roughly in the order from Chapter 12, we
begin with results for exponentiation, factorial, and the like, and continue through to
complex notions includingW ff and formsub. At this stage, we are acquiring results,
not by demonstrating equivalence to expressions already defined (since there are no
such expressions already defined), but by showing them directly for the coordinate
functions and relations.

Let power.x; y/ = xy ; so we revert to the standard notation. Then,

*T13.40. The following are theorems of PA.

(a) (i) PA ` m; D 1

(ii) PA ` mSn D mn �m

(b) PA ` m1 D m

(c) PA ` ; < a! ;a D ;

(d) PA ` ma �mb D maCb

*(e) PA ` m � n! ma � na

(f) PA ` pred.mb/jmaCb

(g) PA ` ; < m! ; < ma

*(h) PA ` .; < m ^ b � a/! mb � ma

(i) PA ` .1 < m ^ b < a/! mb < ma

(j) PA ` ; < a! m � ma

*(k) PA ` .; < a ^ 1 < m/! pred.maCb/ − mb

*(l) PA ` 1 < m! a < ma

*(m) PA ` 1 < m! .ma D mb ! a D b/

The first result (a) is immediate from the recursive definition and T13.37; it forms
the basis for the rest. Then (b)–(m) are basic results that should be accessible from
ordinary arithmetic.
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*T13.41. The following are theorems of PA.

(a) (i) PA ` fact.;/ D 1

(ii) PA ` fact.Sn/ D fact.n/ � Sn

*(b) PA ` ; < fact.n/

(c) PA ` .8y < n/yjfact.n/

*(d) .9v � Sfact.n//Œn < v ^ Pr.v/�

These are some basic results for factorial. Again (a) gives the recursive conditions
from which the rest follow. (b) is obvious. (c) is a consequence of the way the factorial
includes successors of all the numbers less than it. (d) is like a result we have seen
before according to which the successor of a product of primes is not divisible by
any of those primes; so there is a prime not among them and less than or equal to the
successor of the product (see G2 in the arithmetic for Gödel numbering reference).
Take all the primes up to n—so other primes are greater than n; since nŠ includes the
product of all the primes up to n, there is a prime greater than n but less than or equal
to S.nŠ/.

Observe that it is easy to obtain, say, PA ` fact.1/ D 1 from (a). But also fact.n/
is captured by some Fact.n; v/, and since h1; 1i 2 fact, PA ` Fact.1; 1/; but by
T13.19 PA ` 1 D fact.1/$ Fact.1; 1/; so again, PA ` fact.1/ D 1. For sentences
of this sort, we often assert the relevant fact with justification, ‘cap(ture)’.

*T13.42. The following are theorems of PA.

(a) (i) PA ` pi.;/ D 2

(ii) PA ` pi.Sn/ D .�z � Sfact.pi.n///Œpi.n/ < z ^ Pr.z/�

(b) PA ` .9v � Sfact.pi.n///Œpi.n/ < v ^ Pr.v/�

*(c) PA ` pi.Sn/ D �zŒpi.n/ < z ^ Pr.z/�

(d) PA ` pi.n/ < pi.Sn/ ^ Pr.pi.Sn//

(e) PA ` .8w < pi.Sn//�Œpi.n/ < w ^ Pr.w/�

*(f) PA ` Pr.pi.n//

(g) PA ` 1 < pi.n/

(h) PA ` ; < pi.n/a

(i) PA ` ; < a! 1 < pi.n/a

corollary: PA ` ; < a! 1 < 2
a

(j) PA ` Spred.pi.n/a/ D pi.n/a
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(k) PA ` .8m < n/pi.m/ < pi.n/

(l) PA ` .8m � n/Sm < pi.n/

*(m) PA ` 8yŒPr.y/! 9jpi.j / D y�

*(n) PA ` m ¤ n! pred.pi.m// − pi.n/a

*(o) PA ` m ¤ n! pred.pi.m/Sb/ − pi.n/a

*(p) PA ` Œm ¤ n ^ pred.pi.m/b/j.s � pi.n/a/�! pred.pi.m/b/js

These are some basic results for prime sequences. (a) gives the basic recursive
conditions. (b) is an existential result that simply instantiates T14.41d; (c) uses it to
extract the successor condition from bounded to unbounded minimization; this allows
application of the definition in (d) and (e). (f)–(j) are some simple consequences of the
fact that pi.n/ is prime. Then (k) m < n implies pi.m/ < pi.n/. And (l) each prime
is greater than the successor of its index. (m) every prime appears as some pi.j /. And
(n)–(p) echo results for factor except combined with primes and exponentiation.

In this theorem (b) and then (c)–(e) are a first instance of a pattern we shall
see repeatedly: Given a bounded condition aD .�x � t /P .x/ from some primitive
recursive definition, we show there exists an x less than or equal to the bound such that
P .x/; this allows application of T13.18e to “extract” the bounded to an unbounded
minimization, and then T13.18 (a) and (b) to obtain P .a/ and that for z < a, �P .z/;
this forms the basis for further results.

*T13.43. The following are theorems of PA.

(a) PA ` exp.n; i/ D .�x � n/Œpred.pi.i/Sx/ − n�

(b) PA ` exp.;; i/ D ;

*(c) PA ` exp.Sn; i/ D �xŒpred.pi.i/Sx/ − Sn�

(d) PA ` pred.pi.i/Sexp.Sn;i// − Sn

(e) PA ` .8w < exp.Sn; i//pred.pi.i/Sw/jSn�

*(f) PA ` pred.pi.i/exp.Sn;i//jSn

(g) PA ` Œpred.pi.i/a/jSn ^ pred.pi.i/Sa/ − Sn�! exp.Sn; i/ D a

*(h) PA ` exp.m; j / � m

(i) PA ` n � j ! exp.Sn; j / D ;

(j) PA ` exp.pi.i/p; i/ D p

*(k) PA ` i ¤ j ! exp.pi.i/p; j / D ;



CHAPTER 13. GÖDEL’S THEOREMS 698

*(l) PA ` pred.pi.i//jSm$ 1 � exp.Sm; i/

*(m) PA ` 9qŒpi.i/exp.Sn;i/ � q D Sn ^ pred.pi.i// − q ^
8y.y ¤ i ! exp.q; y/ D exp.Sn; y//�

*(n) PA ` exp.Sm � Sn; i/ D exp.Sm; i/C exp.Sn; i/

(a) is from the definition. (b) is the standard result for minimization with bound ;.
(c) extracts the successor case from the bounded to an unbounded minimization; this
allows application of the definition in (d) and (e). From (f) a prime to the power of
its exponent in the factorization of Sn divides Sn. From (g) if some a has features
of the exponent as in both (f) and (d) then a is the exponent. Then (h) the exponent
of some prime in the factorization of m cannot be greater than m; and (i) a prime
whose index is greater than or equal to n does not divide into Sn. (j) and (k) make an
obvious connection for the exponent of a prime, and (l) between exponent and factor.
According (m) once you divide Sn by pi.i/exp.Sn;i/, you are left with a q such that
pi.i/ does not divide into it any more, and such that the exponents of all the other
primes remain the same as in Sn. From (n) the i th exponent of a product sums the i th

exponents of its factors.

*T13.44. The following are theorems of PA.

(a) PA ` len.n/ D .�y � n/.8z � n/Œy � z ! exp.n; z/ D ;�

*(b) PA ` len.Sn/ D �y.8z � Sn/Œy � z ! exp.Sn; z/ D ;�

(c) PA ` .8z � Sn/Œlen.Sn/ � z ! exp.Sn; z/ D ;�

(d) PA ` .8w < len.Sn//�.8z � Sn/Œw � z ! exp.Sn; z/ D ;�

(e) PA ` ; < len.m/! 1 < m

*(f) PA ` ; < exp.m; i/! i < len.m/

*(g) PA ` .8k W l < k/exp.Sm; k/ D ; ! len.Sm/ � Sl

*(h) PA ` 1 < m! ; < len.m/

*(i) PA ` ; < p ! len.pi.i/p/ D Si

corollary: PA ` ; < p ! len.2
p
/ D 1

(j) PA ` .8z W len.n/ � z/exp.n; z/ D ;

*(k) PA ` len.n/ D Sl ! 1 � exp.n; l/

Again (a) is from the definition. (b) extracts the successor case from bounded to
unbounded minimization; (c) and (d) then apply the definition. (e) is immediate
from len.;/ D ; and len.1/ D ;. From (f) if an exponent of some prime in the
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factorization of m is greater than zero, that prime is involved in the factorization of m;
(g) length is set up so that it finds the first prime such that it and all the ones after have
exponent zero; so if all the primes after some l have exponent zero, then the length
is no greater than Sl ; (h) gives the biconditional from (e); (i) gives the length for a
prime to any power; and from (j) primes � the length of n must all have exponent ;;
(k) the prime prior to the length has exponent � 1.

For the rest of this section including results for concatenation to follow, it will be
helpful to introduce a pair of auxiliary notions. First exc.m; n; i/ takes the value of
the i th exponent in the concatenation of m and n. Let PA ` exc.m; n; i/ D

�y.Œi < len.m/ ^ y D exp.m; i/� _ Œlen.m/ � i ^ y D exp.n; i :� len.m//�/

It is left as an exercise to show that PA proves the existential condition, and so defines
exc. The idea is simply to set y to one or the other of exp.m; i/ or exp.n; i :� len.m//
so that y takes the value of the i th exponent in the concatenation. Next, val.n; i/
returns the product of the first i members of the prime factorization of n. val is defined
by recursion so that,

PA ` val.n;;/ D 1
PA ` val.n; Sy/ D val.n; y/ � pi.y/exp.n;y/

Similarly val�.m; n; i/ is defined by recursion and,

PA ` val�.m; n;;/ D 1
PA ` val�.m; n; Sy/ D val�.m; n; y/ � pi.y/exc.m;n;y/

So val�.m; n; i/ returns the product of the first i primes in the factorization of the
concatenation of m and n. Here are some results for these notions. Let l D len.m/C
len.n/.

*T13.45. The following are theorems of PA.

(a) PA ` i < len.m/! exc.m; n; i/ D exp.m; i/

(b) PA ` len.m/ � i ! exc.m; n; i/ D exp.n; i :� len.m//

(c) PA ` ; < val�.m; n; i/

*(d) PA ` .8i W a � i/pred.pi.i// − val�.m; n; a/

*(e) PA ` .8j < i/exp.val�.m; n; i/; j / D exc.m; n; j /

*(f) PA ` .8i < len.m//Œexp.val�.m; n; l/; i/ D exp.m; i/�^
.8i < len.n//Œexp.val�.m; n; l/; i C len.m// D exp.n; i/�

*(g) PA ` val�.m; n; l/ � Œpi.l/mCn�l

(h) PA ` ; < val.m; i/

*(i) .8i W a � i/pred.pi.i// − val.m; a/
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*(j) PA ` .8j < i/exp.val.m; i/; j / D exp.m; j /

(k) PA ` len.val.a; j // � j

*(l) PA ` len.val.a; j // � len.a/

(m) PA ` .8i < k/exp.a; i/ D exp.b; i/! val.a; k/ D val.b; k/

*(n) PA ` len.Sn/ � x ! val.Sn; x/ D Sn
corollary: PA ` val.Sn; len.Sn// D Sn

*(o) PA ` Œlen.n/ � q ^ .8k < len.n//exp.n; k/ � r� !
val.n; len.n// � Œpi.q/r �q

(a) and (b) apply the definition for exc. (c) is obvious. (d) results because val�.m; n; a/
is a product of primes prior to pi.a/ so that greater primes do not divide it. Then
(e) the exponents in val� are like the exponents in exc. This gives us (f) that the
exponents in val� are like the exponents in m and n. But (g) val� is constructed so
that val�.m; n; l/ is always less than or equal to Œpi.l/mCn�l . Then (h)–(o) are related
results for val. In cases to follow, (g) and the closely related (o) will be crucial for
finding bounds and so extracting results from bounded minimization.

We are now ready for some results about concatenation. Again let m � n be the
defined correlate to m ? n; and as above let l D len.m/C len.n/.

*T13.46. The following are theorems of PA.

(a) (i) PA ` m � n D .�x � Bm;n/f1 � x ^
.8i < len.m//Œexp.x; i/ D exp.m; i/�^
.8i < len.n//Œexp.x; i C len.m// D exp.n; i/�g

(ii) PA ` Bm;n D Œpi.l/mCn�l

(b) PA ` m � n D �xf1 � x ^ .8i < len.m//Œexp.x; i/ D exp.m; i/�^
.8i < len.n//Œexp.x; i C len.m// D exp.n; i/�g

(c) PA ` 1 � m � n ^ .8i < len.m//Œexp.m � n; i/ D exp.m; i/�^
.8i < len.n//Œexp.m � n; i C len.m// D exp.n; i/�

(d) PA ` .8w < m � n/�f1 � w ^ .8i < len.m//Œexp.w; i/ D exp.m; i/�^
.8i < len.n//Œexp.w; i C len.m// D exp.n; i/�g

*(e) PA ` len.m � n/ D l

(f) PA ` exp.m � n; i C len.m// D exp.n; i/

*(g) PA ` .a � b/ � c D a � .b � c/

(h) PA ` n � 1! Sm � n D Sm

(i) PA ` n � 1! n � Sm D Sm
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*(j) PA ` .len.c/ D len.d/ ^ Sa � c D Sb � d/! Sa D Sb

corollary: PA ` Sa � c D Sb � c ! Sa D Sb

corollary: PA ` .len.Sa/ D len.Sb/ ^ Sa � c D Sb � d/! Sa D Sb

(k) PA ` .len.c/ D len.d/ ^ c � Sa D d � Sb/! Sa D Sb

corollary: PA ` c � Sa D c � Sb ! Sa D Sb

corollary: PA ` .len.Sa/ D len.Sb/ ^ c � Sa D d � Sb/! Sa D Sb

*(l) PA ` val.Sm � Sn; a/ D val.Sm; a/ � val.Sn; a :
� len.Sm//

*(m) PA ` val.m; len.m// � val.m � n; aC len.m//
corollary: PA ` m � m � n

(n) PA ` val.n; a/ � val.m � n; aC len.m//
corollary: PA ` n � m � n

(a) is from the definition. T13.45g enables us to extract m � n from bounded to
unbounded minimization to get (b) and then (c) and (d). From (e) the length of
m � n sums the lengths of m and n. (f) generalizes the last conjunct of (c). (g) is an
association result—and with this, we typically drop parentheses for concatenations (of
course, although it associates, � does not commute). From (h) and (i) concatenation
with a number less than or equal to one results in no change. (j) and (k) enable a
sort of cancellation law for concatenation. (l) distributes val over concatenation; then
(m) and (n) tell us that the number of a concatenation is greater than or equal to the
numbers of its parts.

The idea for application of T13.45g to get (b) is the same as behind the intu-
itive account of the bound from Chapter 12: pi.l/mCn is greater than every term in
the factorization of m � n; so Œpi.l/mCn�i remains greater than val�.m; n; i/; and
val�.m; n; l/ is therefore both under the bound and, with T13.45f, satisfies the defini-
tion T13.46a for m � n—so the existential condition is satisfied, and we may extract
the bounded to an unbounded minimization. Once this is accomplished, we are most
of the way home.

To manipulate Termseq it will be convenient to let,

A.m; k/ = exp.m; k/ D p;q _ Var.exp.m; k//
B.m; k/ = .9j < k/exp.m; k/ D pSq � exp.m; j /
C.m; k/ = .9i < k/.9j < k/exp.m; k/ D pCq � exp.m; i/ � exp.m; j /
D.m; k/ = .9i < k/.9j < k/exp.m; k/ D p�q � exp.m; i/ � exp.m; j /

*T13.47. The following are theorems of PA.

(a) PA ` Var.v/$ .9x � v/(v D 2
23C2x)

(b) PA ` Termseq.m; t/$ fexp.m; len.m/ :� 1/ D t ^ 1 < m^
.8k < len.m//ŒA.m; k/ _ B.m; k/ _ C.m; k/ _D.m; k/�g



CHAPTER 13. GÖDEL’S THEOREMS 702

(c) (i) PA ` Term.t/$ .9x � Bt /Termseq.x; t/
(ii) PA ` Bt D Œpi.len.t//t �len.t/

(d) PA ` Var.v/! len.v/ D 1

(e) PA ` Var.v/! .Var.v � 4/ ^ v � 4 ¤ v/

*(f) PA ` Termseq.m; t/! .8k < len.m//.1 < exp.m; k//

(g) PA ` Term.t/! 1 < t

*(h) PA ` t D p;q! Termseq.2
t
; t /

(i) PA ` Var.t/! Termseq.2
t
; t /

*(j) PA ` Termseq.m; t/! Termseq.m � 2
pSq�t

; pSq � t /

*(k) PA ` ŒTermseq.m; t/ ^ Termseq.n; q/� !

Termseq.m � n � 2
pCq�t�q

; pCq � t � q/

(l) PA ` ŒTermseq.m; t/ ^ Termseq.n; q/� !

Termseq.m � n � 2
p�q�t�q

; p�q � t � q/

*(m) PA ` Termseq.m; t/! .8k < len.m//9nŒTermseq.n; exp.m; k//^
len.n/ � len.exp.m; k// ^ .8i < len.n//exp.n; i/ � exp.m; k/�

(n) PA ` Termseq.m; t/! .8i < len.m//Term.exp.m; i//
corollary: PA ` Termseq.m; t/! Term.t/

(o) PA ` Var.v/! Term.v/

*(p) PA ` Term.t/! Term.pSq � t /

(q) PA ` .Term.s/ ^ Term.t//! Term.pCq � s � t /

(r) PA ` .Term.s/ ^ Term.t//! Term.p�q � s � t /

(a), (b), and (c) are from the definitions variable, term sequence, and term. (d)–(g) are
simple results. (h)–(l) generate term sequences; they are important for (m) according
to which each member of a term sequence has a term sequence constrained by bounds
realted to Bt . (m) yields (n), that anything with a term sequence is a term; the rest
follow from that.

From its definition, Term.t/ does not immediately follow from Termseq.m; t/
insofar as a sequence might build in extraneous terms not required for t—with the
result that m is not less than Bt (compare page 614, note 16). The general idea
for these theorems is that given a term sequence, there is a standard term sequence
containing just the elements you would have included in a Chapter 2 tree, adequate
to yield Term.t/. Thus we move from the existence of a term sequence through (m)
to a term sequence of the right sort, and so to (n). Something new happens in (m)
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insofar as the induction is not on the length of m but on the length of its exponents.
Reasoning, as it were, “down” through the tree and using (h)–(l), we show that for
each member of the original sequence there is a “standard” sequence that comes in
under its bound (and so a sequence under the bound for t ).

We continue with some results for Formseq and W ff that are closely related to
T13.47. Let,

E.m; k/ = Atomic.exp.m; k//
F.m; k/ = .9j < k/Œexp.m; k/ D til.exp.m; j //�
G.m; k/ = .9i < k/.9j < k/Œexp.m; k/ D cnd.exp.m; i/; exp.m; j //�
H.p;m; k/ = .9i < k/.9j � p/ŒVar.j / ^ exp.m; k/ D unv.j; exp.m; i//�

*T13.48. The following are theorems of PA.

(a) PA ` Atomic.p/ $
.9x � p/.9y � p/ŒTerm.x/ ^ Term.y/ ^ p D pDq � x � y�

(b) PA ` Formseq.m; p/$ fexp.m; len.m/ :� 1/ D p ^ 1 < m^
.8k < len.m//ŒE.m; k/ _ F.m; k/ _G.m; k/ _H.p;m; k/�g

(c) (i) PA ` W ff .p/$ .9x � Bp/Formseq.x; p/
(ii) PA ` Bp D Œpi.len.p//p�len.p/

(d) PA ` Formseq.m; p/! .8k < len.m//.1 < exp.m; k//

(e) PA ` W ff .p/! 1 < p

*(f) PA ` Atomic.p/! Formseq.2
p
; p/

(g) PA ` Formseq.m; p/! Formseq.m � 2
til.p/

; til.p//

(h) PA ` ŒFormseq.m; p/ ^ Formseq.n; q/� !
Formseq.m � n � 2

cnd.p;q/
; cnd.p; q//

*(i) PA ` ŒFormseq.m; p/ ^ Var.v/�! Formseq.m � 2
unv.v;p/

;unv.v; p//

*(j) PA ` Formseq.m; p/! .8k < len.m//9nŒFormseq.n; exp.m; k//^
len.n/ � len.exp.m; k// ^ .8i < len.n//exp.n; i/ � exp.m; k/�

(k) PA ` Formseq.m; p/! .8i < len.m//W ff .exp.m; i//
corollary: PA ` Formseq.m; p/! W ff .p/

(l) PA ` Atomic.p/! W ff .p/

(m) PA ` W ff .p/! W ff .til.p//

*(n) PA ` ŒW ff .p/ ^W ff .q/�! W ff .cnd.p; q//

(o) PA ` ŒW ff .p/ ^ Var.v/�! W ff .unv.v; p//

(p) PA ` ŒW ff .p/ ^W ff .q/�! W ff .caret.p; q//
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Again, from its definition,W ff .p/ does not immediately follow from Formseq.m; p/
insofar as the sequence might build in extraneous elements not required for p—with
the result thatm is not less than Bp . And again the general idea is that given a formula
sequence, there is a standard formula sequence containing just the elements you
would have included in a Chapter 2 tree, adequate to yield W ff .p/. Thus we move
from the existence of a formula sequence through (j) to a formula sequence of the
required sort.

Continuing roughly in the order of Chapter 12, we move on to some substitution
results for terms. For Tsubseq let,

I.m; n; k/ = exp.m; k/ D p;q ^ exp.n; k/ D p;q
J.v;m; n; k/ = Var.exp.m; k// ^ exp.m; k/ ¤ v ^ exp.n; k/ D exp.m; k/
K.v; s;m; n; k/ = Var.exp.m; k// ^ exp.m; k/ D v ^ exp.n; k/ D s
L.m; n; k/ = .9i < k/Œexp.m; k/ D pSq � exp.m; i/ ^ exp.n; k/ D pSq � exp.n; i/�
M.m; n; k/ = .9i < k/.9j < k/Œexp.m; k/ D pCq � exp.m; i/ � exp.m; j /^

exp.n; k/ D pCq � exp.n; i/ � exp.n; j /�
N.m; n; k/ = .9i < k/.9j < k/Œexp.m; k/ D p�q � exp.m; i/ � exp.m; j /^

exp.n; k/ D p�q � exp.n; i/ � exp.n; j /�

*T13.49. The following are theorems of PA.

(a) PA ` Tsubseq.m; n; t; v; s; u/$ fTermseq.m; t/ ^ len.m/ D len.n/^
exp.n; len.n/ :� 1/ D u ^ .8k < len.m//ŒI.m; n; k/ _ J.v;m; n; k/_
K.v; s;m; n; k/ _ L.m; n; k/ _M.m; n; k/ _N.m; n; k/�g

(b) (i) PA ` Termsub.t; v; s; u/ $
.9x � Xt /.9y � Yt;u/Tsubseq.x; y; t; v; s; u/

(ii) PA ` Xt D Œpi.len.t//t �len.t/

(iii) PA ` Yt;u D Œpi.len.t//u�len.t/

*(c) PA ` ŒTerm.s/^Tsubseq.m; n; t; v; s; u/�! .8j < len.n//Term.exp.n; j //

corollary: PA ` ŒTerm.s/ ^ Termsub.t; v; s; u/�! Term.u/

(d) PA ` t D p;q! Tsubseq.2
t
; 2
t
; t; v; s; t/

(e) PA ` .Var.t/ ^ t ¤ v/! Tsubseq.2
t
; 2
t
; t; v; s; t/

*(f) PA ` .Term.s/ ^ Var.t/ ^ t D v/! Tsubseq.2
t
; 2
s
; t; v; s; s/

*(g) PA ` Tsubseq.m; n; t; v; s; u/ !

Tsubseq.m � 2
pSq�t

; n � 2
pSq�u

; pSq � t; v; s; pSq � u/

(h) PA ` ŒTsubseq.m; n; t; v; s; u/ ^ Tsubseq.m0; n0; t 0; v; s; u0/� !

Tsubseq.m�m0�2
pCq�t�t 0

; n�n0�2
pCq�u�u0

; pCq�t�t 0; v; s; pCq�u�u0/

(i) PA ` ŒTsubseq.m; n; t; v; s; u/ ^ Tsubseq.m0; n0; t 0; v; s; u0/� !

Tsubseq.m�m0�2
p�q�t�t 0

; n�n0�2
p�q�u�u0

; p�q�t�t 0; v; s; p�q�u�u0/
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*(j) PA ` Tsubseq.m; n; t; v; s; u/! Termsub.t; v; s; u/

*(k) PA ` ŒTerm.t/ ^ Term.s/�! 9uŒTermsub.t; v; s; u/^
len.u/ � len.t/ � len.s/ ^ .8k < len.u//exp.u; k/ � t C s�

(a)–(b) are from the definitions. (c) follows directly. (d)–(i) generate sequences to yield
(j). Then (k) establishes bounds on a term substitution, required for corresponding
bounds related to formsub as for T13.50n,o below.

Some substitution results for formulas are closely related to the previous theorem.
Let,

O.v; s;m; n; k/ = Atomic.exp.m; k// ^Atomsub.exp.m; k/; v; s; exp.n; k//
P.m; n; k/ = .9i < k/Œexp.m; k/ D til.exp.m; i// ^ exp.n; k/ D til.exp.n; i//�
Q.m; n; k/ = .9i < k/.9j < k/Œexp.m; k/ D cnd.exp.m; i/; exp.m; j //^

exp.n; k/ D cnd.exp.n; i/; exp.n; j //�
R.v; p;m; n; k/ = .9i < k/.9j � p/ŒVar.j / ^ j ¤ v ^ exp.m; k/ D unv.j; exp.m; i//^

exp.n; k/ D unv.j; exp.n; i//�
S.v; p;m; n; k/ = .9i < k/.9j � p/ŒVar.j / ^ j D v ^ exp.m; k/ D unv.j; exp.m; i//^

exp.n; k/ D exp.m; k/�

*T13.50. The following are theorems of PA.

(a) PA ` Atomsub.p; v; s; q/ $
.9a � p/.9b � p/.9a0 � q/.9b0 � q/ŒTerm.a/ ^ Term.b/^
p D pDq � a � b ^ Termsub.a; v; s; a0/ ^ Termsub.b; v; s; b0/^
q D pDq � a0 � b0�

(b) PA ` Fsubseq.m; n; p; v; s; q/$ fFormseq.m; p/ ^ len.m/ D len.n/^
exp.n; len.n/ :� 1/ D q ^ .8k < len.m//ŒO.v; s;m; n; k/ _ P.m; n; k/_
Q.m; n; k/ _R.v; p;m; n; k/ _ S.v; p;m; n; k/�g

(c) (i) PA ` Formsub.p; v; s; q/ $
.9x � Xp/.9y � Yp;q/Fsubseq.x; y; p; v; s; q/

(ii) PA ` Xp D Œpi.len.p//p�len.p/

(iii) PA ` Yp;q D Œpi.len.p//q�len.p/

(d) (i) PA ` formsub.p; v; s/ D .�q � Zp;s/Formsub.p; v; s; q/

(ii) PA ` Zp;s D Œpi.len.p/ � len.s//pCs�len.p/�len.s/

(e) PA ` Atomsub.p; v; s; q/! 1 < q

(f) PA ` ŒTerm.s/ ^Atomsub.p; v; s; q/�! Atomic.q/

(g) PA ` ŒTerm.s/^Fsubseq.m; n; p; v; s; q/�! .8j < len.n//W ff .exp.n; j //

corollary: PA ` ŒTerm.s/ ^ Formsub.p; v; s; q/�! W ff .q/

(h) PA ` ŒAtomic.p/ ^Atomsub.p; v; s; q/�! Fsubseq.2
p
; 2
q
; p; v; s; q/
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*(i) PA ` Fsubseq.m; n; p; v; s; q/ !
Fsubseq.m � 2

til.p/
; n � 2

til.q/
; til.p/; v; s; til.q//

(j) PA ` ŒFsubseq.m; n; p; v; s; q/ ^ Fsubseq.m0; n0; p0; v; s; q0/� !
Fsubseq.m�m0 � 2

cnd.p;p0/
; n� n0 � 2

cnd.q;q0/
; cnd.p; p0/; v; s; cnd.q; q0//

(k) PA ` ŒFsubseq.m; n; p; v; s; q/ ^ Var.u/ ^ u ¤ v� !
Fsubseq.m � 2

unv.u;p/
; n � 2

unv.u;q/
;unv.u; p/; v; s;unv.u; q//

(l) PA ` ŒFsubseq.m; n; p; v; s; q/ ^ Var.u/ ^ u D v� !
Fsubseq.m � 2

unv.u;p/
; n � 2

unv.u;p/
;unv.u; p/; v; s;unv.u; p//

(m) PA ` Fsubseq.m; n; p; v; s; q/ !
.8i < len.m//Formsub.exp.m; i/; v; s; exp.n; i//

corollary: PA ` Fsubseq.m; n; p; v; s; q/! Formsub.p; v; s; q/

*(n) PA ` ŒAtomic.p/ ^ Term.s/�! 9qŒAtomsub.p; v; s; q/^
len.q/ � len.p/ � len.s/ ^ .8k < len.q//exp.q; k/ � p C s�

*(o) PA ` ŒW ff .p/ ^ Term.s/�! 9qŒFormsub.p; v; s; q/^
len.q/ � len.p/ � len.s/ ^ .8k < len.q//exp.q; k/ � p C s�

*(p) PA ` ŒW ff .p/ ^ Term.s/�! Formsub.p; v; s;formsub.p; v; s//

(q) PA ` ŒW ff .p/ ^ Term.s/�! W ff .formsub.p; v; s//

(a)–(m) are like results from the previous theorem. Then (n)–(q) move from the
Formsub relation to the formsub function.

Finally we extend our results by means of a pair of matched theorems whose
results are related to unique readability for terms and then for formulas (as from
section 11.2).

*T13.51. The following are theorems of PA.

First, as a preliminary to T13.51f and then T13.52h it will be helpful to show the
following. We are thinking of c�a�c0�b�c00 as for example, p.q�a�p!q�b�p/q.

*(a) a. 8uŒ.P .u/ ^ len.u/ � x/! .8k < len.u//�P .val.u; k//� P
b. P .a/ ^P .b/ ^P .d/ ^P .e/ P
c. val.c � a � c0 � b � c00; j / D c � d � c0 � e � c00 P
d. len.c � a � c0 � b � c00/ � Sx P
e. j < len.c � a � c0 � b � c00/ P
f. ; < c ^ ; < c0 ^ ; < c00 P
g. 8v.P .v/! 1 < v/ P

:::

h. ?
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Given boundaries from (f) and (g): If (a) a term (formula) of length less than
or equal to x does not have an initial segment that is a term (formula); and
(b) a, b, d , e number terms (formulas); then a concatenation whose length is
less than or equal to Sx with terms (formulas) a and b cannot have an initial
segment (of length j ) equal to a concatenation with the terms (formulas) d
and e. As a corollary, when c0 D c00 D 1, by T13.46h,i these terms drop
out of the concatenations and the theorem reduces to a version where (c) is
val.c � a � b; j / D c � d � e, and the only substantive conjunct of (f) is the
first.

(b) PA ` ŒTerm.a/ ^ Term.b/�! ŒpSq � a D pSq � b ! a D b�

(c) PA ` Term.pSq � a/! 9rŒpSq � a D pSq � r ^ Term.r/�

*(d) PA ` Term.pCq�a/! 9r9sŒpCq�a D pCq� r � s^Term.r/^Term.s/�

(e) PA ` Term.p�q � a/! 9r9sŒp�q � a D p�q � r � s ^Term.r/^Term.s/�

*(f) PA ` Term.t/! .8k < len.t//�Term.val.t; k//

*(g) PA ` ŒTerm.a/ ^ Term.b/ ^ Term.c/ ^ Term.d/� !
Œr � a � b D r � c � d ! .a D c ^ b D d/�

Returning to our Chapter 11 discussion of unique readability, reasoning for (c)–(e) is
like that for T11.3. Then (f) is like T11.4. (g) applies especially in the case when r is
pCq or p�q or pDq; then it gives a uniqueness result for r � a � b like T11.5.

And now there are the parallel results for formulas. For the final result (l) let
Prvpa.n/ = 9xPrfpa.x; n/.

*T13.52. The following are theorems of PA.

(a) PA ` ŒW ff .p/ ^W ff .q/�! Œtil.p/ D til.q/! p D q�

(b) PA ` ŒVar.u/ ^ Var.v/�! Œunv.u; p/ D unv.v; q/! u D v�

(c) PA ` ŒW ff .p/ ^W ff .q/ ^ Var.u/ ^ Var.v/� !
Œunv.u; p/ D unv.v; q/! p D q�

*(d) PA ` W ff .pDq � a/! 9r9sŒpDq � a D pDq � r � s ^Term.r/^Term.s/�

*(e) PA ` W ff .p�q � p/! 9rŒp�q � p D til.r/ ^W ff .r/�

(f) PA ` W ff .p.q � p/! 9r9sŒp.q � p D cnd.r; s/ ^W ff .r/ ^W ff .s/�

(g) PA ` W ff .p8q � p/! 9w9rŒp8q � p D unv.w; r/ ^ Var.w/ ^W ff .r/�

(h) PA ` W ff .p/! .8k < len.p//�W ff .val.p; k//

*(i) PA ` ŒW ff .p// ^W ff .q/ ^W ff .a/ ^W ff .b/� !
Œcnd.p; q/ D cnd.a; b/! .p D a ^ q D b/�
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*(j) PA ` ŒW ff .cnd.p; q// ^W ff .p/�! W ff .q/

*(k) PA ` Axiompa.a/! W ff .a/

*(l) PA ` Prvpa.a/! W ff .a/

Again reasoning for (d)–(g) is like that for T11.3; then (h) is like T11.4; and (i) like
T11.5.

*E13.32. Show (d) and (i) from T13.40. Hard-core: show each of the results from
T13.40.

Hints for T13.40. (a) is immediate from the definition of power and T13.37.
(d) uses IN on the value of b. (e) uses IN on a. (f) is straightforward with
cases for mb D ; and ; < mb . (g) and (l) are by IN. For (h) and (i) under
the assumption for!I unabbreviate the inequality between b and a. For (m),
a < b _ a D b _ b < a; but the first and last are impossible.

*E13.33. Show (c) and (d) from T13.41. Hard-core: show each of the results from
T13.41.

Hints for T13.41. (a) is from the definition of fact and T13.37. (b) and (c) are
straightforward by IN. Reasoning for (d) is like (G2) in the arithmetic for Gödel
numbering reference once you realize that all the primes less than n are included
in fact.n/.

*E13.34. Show (k) and (l) from T13.42. Hard-core: show each of the results from
T13.42.

Hints for T13.42. (a) is from definition pi and T13.37. (b) is from T13.41d; (c)
applies T13.18.e; and then (d) and (e) are by T13.18(a) and (b). (k) and (l) are
simple inductions. (m) is by using IN on k to show .8y � pi.k//ŒPr.y/ !
9jpi.j / D y�; the result then follows easily with (l). Under the assumption for
!I, (n) is by IN on a. For (o) under assumptions for!I and �I, you will be able
to show pred.pi.m//jpi.n/a and use (n). For (p) under the assumption for!I
you will be able to show i � b ! pred.pi.m/i /js by induction on i ; the result
then follows easily with b � b.

*E13.35. Show (c) and (g) from T13.43. Hard-core: show each of the results from
T13.43.

Hints for T13.43. As a preliminary to (c), let PA ` ex.n; i/ D �xŒpred.pi.i/Sx/ −
Sn�, and show that PA defines ex; then you will be able to obtain .9x �

Sn/Œpred.pi.i/Sx/ − Sn� and apply T13.18e; for this, ; D ex.n; i/_; < ex.n; i/;



CHAPTER 13. GÖDEL’S THEOREMS 709

in either case, ex.n; i/ � Sn; the first case is easy; for the other, apply T13.11h and
go for the goal by 9E. (g) is by showing that a D �xŒpred.pi.i/Sx/ − Sn�. (m):
With T13.43f it is easy to show 9qŒpi.i/exp.Sn;i/ � q D Sn� and so to obtain a j
such that pi.i/exp.Sn;i/�j D Sn; then it is easy enough to obtain pred.pi.i// − j ;
the hard part is to show 8y.y ¤ i ! exp.j; y/ D exp.Sn; y//—for this, it will
be helpful to establish that j is a successor. (n): Toward an application of
T13.43g it will be easy to obtain the left conjunct, pred.pi.i/exp.Sm;i/Cexp.Sn;i//

j.Sm�Sn/; for the right, it will be helpful to begin with T13.43m applied to Sm,
and again to Sn.

*E13.36. Show (e) and (j) from T13.44. Hard-core: show each of the results from
T13.44.

Hints for T13.44. (b): with T13.43i you will be able to obtain .8z � Sn/ŒSn �
z ! exp.Sn; z/ D ;� and existentially generalize on Sn. Under the assumption
for !I, (f) divides into cases for m D ; and ; < m; for the latter, suppose
i – len.m/; then you will be able to make use of (c). (h) is straightforward with
T13.23d and ultimately (f). For (i), begin with len.pi.i/p/ < Si _ len.pi.i/p/ D
Si _ Si < len.pi.i/p/ by T13.11q; the first is easily eliminated with T13.44f;
then, supposing Si < len.pi.i/p/, you will be able to obtain a contradiction using
T13.44d. (j): Under the assumption len.n/ � a for (8I), either n D ; or ; < n;
the first case is easy; for the second, there is some m such that n D Sm; your
main reasoning will be to show exp.Sm; a/ D ;. (k): Under the assumption for
!I, ; D n or ; < n; the first is impossible; so there is somem such that n D Sm;
with this, suppose 1 — exp.Sm; l/; then with T13.44b you will be able to reach
len.Sm/ D l and contradiction from this.

*E13.37. Show the existential condition to the definition of exc, and then T13.45m.
Hard-core: show each of the results from T13.45.

Hints for T13.45. (d) is by IN on a. (e) is by IN on i ; in the show under
.8j < i/exp.val�.m; n; i/; j / D exc.m; n; j / and a < Si you will have separate
cases for a < i and a D i . (f) is straightforward with applications of (e), (a), and
(b). For (g) you may obtain i � l ! val�.m; n; i/ � Œpi.l/mCn�i by induction
on i ; in the show it will be useful to obtain exc.m; n; i/ � m C n and from
this pi.l/exc.m;n;i/ � pi.l/mCn. (k) is easy with (i). For (n) you will be able to
show 8nŒlen.Sn/ � x ! val.Sn; x/ D Sn� by induction on x: the ;-case is
straightforward; then under the inductive assumption with len.Sa/ � Sx for!I
you have len.Sa/ � x _ len.Sa/ D Sx; the first case is straightforward; the
second is an extended argument—you will be able to apply T13.43m to obtain
a q > ; and so an Sr whose prime factorization is like that of Sa but without
pi.x/—show len.Sr/ � x so that from the assumption, val.Sr; x/ D Sr , and
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then the result from that. For (o) under the assumption for!I, you will be able to
get i � q ! val.n; i/ � Œpi.q/r �i by IN on i .

*E13.38. Show T13.46b and, towards a demonstration of T13.46e, show that PA `
l � len.m�n/ (see hint below). Hard-core: show each of the results from T13.46.

Hints for T13.46. (b) is easy with theorems from T13.45. (e) divides into showing
(i) l � len.m � n/ and (ii) len.m � n/ � l ; part (i) divides into cases for ; D
len.n/ and ; < len.n/; and within the first, again, cases for ; D len.m/ and
; < len.m/; for (ii), assume len.m � n/ — l , then len.m � n/ is some Sp
and for some a, len.Sp/ D S.a C l/, and using T13.43m you will be able to
find a j like m � n but without pi.a C l/ in its factorization to contradict an
instance of T13.46d. (g): where l 0 D len.a/ C len.b/ C len.c/, you will be
able to show .8i < l 0/exp..a � b/ � c/; i/ D exp.a � .b � c/; i/. (j) and (k) are
straightforward with T13.46c. For (l) you will be able to obtain val.Sm�Sn; a/ D
val.val.Sm; a/ � val.Sn; a :

� len.Sm//; a/ by T13.45m, and from this the result
you want. (m) and (n) are by induction on a.

*E13.39. Work T13.47n and then T13.48g including, in the extended _E, at least the
E and F cases. Hard-core: show each of the results from T13.47 and T13.48.

Hints for T13.47. (f) is straightforward by an extended _E under assumptions for
!I and (8I). For (h), under the assumption for!I, work systematically through
its conjuncts to apply (b). Similarly (j)–(l) are disjunctive but straightforward.
For (m) let P = 9nŒTermseq.n;exp.m; k//^ len.n/ � len.exp.m; k//^ .8i < len.n//exp.n; i/ � exp.m; k/�;
under the assumption for !I, show 8x.8k < len.m//.len.exp.m; k// � x ! P / by IN;
the basis is straightforward; then, under the inductive assumption along with
a < len.m/ for (8I) and len.exp.m; a// � Sx for!I, apply (b); the derivation
is then a (long) argument by cases where you will be able to apply (h)–(l). (n)
follows easily with (m) and T13.45o.

Hints for T13.48. (a)–(k) work very much like the parallel theorems from T13.47.
In particular, T13.48g parallels T13.47j.

*E13.40. Work T13.50m including, in the extended_E, at least theO case. Hard-core:
show each of the results from T13.49 and T13.50.

Hints for T13.49. For (c) under the assumption for!I go for 8j.j < len.n/!
Term.exp.n; j /// by T13.11ag. For (j) let P .m;n; v; s; k/ = 9a9bŒTsubseq.a; b;exp.m; k/; v; s;

exp.n; k// ^ len.a/ � len.exp.m; k// ^ .8i < len.a//.exp.a; i/ � exp.m; k/ ^ exp.b; i/ � exp.n; k//�; then
under the assumption for !I, show 8x.8k < len.m//Œlen.exp.m; k/ � x !

P � by IN; the result follows from this. For (k) let P .m; i; v; s/ = 9x9y9uŒTsubseq.x; y;

exp.m; i/; v; s; u/ ^ len.u/ � len.exp.m; i// � len.s/ ^ .8k < len.u//exp.u; k/ � exp.m; i/C s�; under the



CHAPTER 13. GÖDEL’S THEOREMS 711

assumption Term.t/ ^ Term.s/ given Termseq.m; t/ you will be able to show
8i Œi < len.m/! P � by strong induction on i ; the result follows easily from this.

Hints for T13.50. (a)–(m) and (o) work very much like the parallel theorems from
T13.49. (p) follows easily with (o).

*E13.41. Work T13.52h including, in the extended _E, at least the E and F cases.
Hard-core: show each of the results from T13.51 and T13.52.

Hints for T13.51. For (a) suppose j < len.c/, this leads to contradiction so that
len.c/ � j and you can “pick off” the first concatenated terms from premise (c) to
get val.a�c0�b�c00; j :

� len.c// D d �c0�e�c00; suppose j :
� len.c/ < len.a/,

again this leads to contradiction so that len.a/ � j
:
� len.c/ and val.a; j :

�

len.c// D a; either len.d/ < len.a/ _ len.d/ D len.a/ _ len.a/ < len.d/; the
first and last lead to contradiction, and with the other you will be able to pick
off the next terms; contiue to val.c00; ...j :

� len.c// :� len.a// :� len.c0// :�
len.b// D c00; then you will have the makings to contradict premise (e). For
(f) show 8x8t Œ.Term.t/ ^ len.t/ � x/ ! .8k < len.t//�Term.val.t; k//�
by IN on x; the zero case is easy; then under the inductive assumption, with
Term.a/ ^ len.a/ � Sx for!I and j < len.a/ for (8I), ; D j _ ; < j ; the
first case is easy; for the second you have (9x � B/Termseq.x; a/ and then with
assumptions Termseq.m; a/ for (9E) and Term.val.a; j // for �I, the argument
becomes an extended disjunction from A.m; len.m/ :

� 1/ _ B.m; len.m/ :
�

1/ _ C.m; len.m/ :� 1/ _D.m; len.m/ :� 1/ where you can reach contradiction
in each.

Hints for T13.52. (j) is straightforward starting with (f); at some stage you will
need to worry about the case q D ;. Given T13.39 (and E13.31), (k) and (l) are
not hard; for (l) you can use T13.11ag.

13.4.2 The Condition

After all our preparation, we are ready to turn to the second derivability condition,
that PA ` �.P ! Q/ ! .�P ! �Q/. Again, given both PA ` �.P ! Q/

and PA ` �P the idea is that there are j and k such that PRFPA.j;4pP ! Qq/ and

PRFPA.k; bpPq/ so that l = j ? k ? y2bpQq numbers a proof of Q. We show PA `
Prvpa.cnd.p; q// ! .Prvpa.p/ ! Prvpa.q//; the second condition (without free
variables) follows as an immediate corollary.

Observe again that we have on the table expressions of the sort, C, Plus, and
plus—where the first is a primitive symbol of LNT, the second the original relation to
capture the recursive function plus, and the last a function symbol defined through
T13.37. In view of demonstrated equivalences, we will tend to slide between them
without notice. In particular by the corollary to T13.34, Prvpa.n/ = 9xPrfpa.x; n/ is
equivalent to Prvpa.n/ = 9xPrfpa.x; n/.
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*T13.53. PA ` Prvpa.cnd.p; q// ! .Prvpa.p/ ! Prvpa.q//. Corollary: PA `
�.P ! Q/! .�P ! �Q/.

To manage long formulas let,

Q.m; k/ = .9i < k/.9j < k/Icon.exp.m; i/; exp.m; j /; exp.m; k//

Then T13.39j appears in the form, PA ` Prfpa.m; n/$

exp.m; len.m/ :� 1/ D n^1 < m^ .8k < len.m//.Axiompa.exp.m; k//_Q.m; k//

Now see the derivation on the following page.

The derivation is long and skips steps; but it should be enough for you to see how the
argument works—and to fill in the details if you choose. First, from the part up to
the line labeled (a), under assumptions for!I, there are derivations numbered j , k,
and a longer sequence numbered l (at lines 9, 10, 11). And the last member of this
longer sequence is an immediate consequence of last members from the derivations
numbered j and k. At (b) the results from (16) are all applied to the sequence
numbered l ; so the last formula in the longer sequence is an immediate consequence
of its earlier members. From lines up to (c), the different fragments of the longer
sequence have the character of a proof. And at (d), the whole sequence numbered
l has the character of a proof. Finally, from lines up to (e) we observe that this
longer sequence yields Prvpa.q/ and discharge the assumptions for the result that
Prvpa.cnd.p; q// ! ŒPrvpa.p/ ! Prvpa.q/� so that PA ` Prvpa.cnd.p; q// !
.Prvpa.p/! Prvpa.q//.

But now we have PA ` Prvpa.cnd.pPq; pQq//! ŒPrvpa.pP q/! Prvpa.pQq/�
as an instance, and by capture, PA ` Prvpa.pP ! Qq/ ! ŒPrvpa.pPq/ !
Prvpa.pQq/� so that PA ` �.P ! Q/! .�P ! �Q/. Thus the second derivabil-
ity condition is established.

*E13.42. As a start to a complete demonstration of T13.53, provide a demonstration
through part (c) that does not skip any steps. You may find it helpful to divide
your demonstration into separate parts for (a), (b), and then for lines (22) and (24).
Hard-core: complete the entire derivation.

Hint: As a preliminary to (24) it will be helpful to show PA proves .8i < s/ŒP .tC

i/ _ .9m < i/.9n < i/Q.t Cm; t C n; t C i/� ! .8i W t � i < t C s/ŒP .i/ _ .9m < i/.9n < i/Q.m;n; i/�.
Where l is a fixed parameter, let P .tC i/ be Axiompa.exp.l; tC i// and Q.tCm; tC n; tC i/ be

Icon.exp.l; tCm/;exp.l; tCn/;exp.l; tC i//. Then (23) is of the sort to which the preliminary
theorem applies.
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T13.53
1. Prvpa.cnd.p; q// A (g ,!I)

2. W ff .cnd.p; q// 1 T13.52l
3. Prvpa.p/ A (g ,!I)

4. W ff .p/ 3 T13.52l
5. W ff .q/ 2,4 T13.52j
6. Icon.cnd.p; q/; p; q/ T13.39e,g
7. 9vPrfpa.v; cnd.p; q// 1 def Prvpa
8. 9vPrfpa.v; p/ 3 def Prvpa
9. Prfpa.j; cnd.p; q// A (g , 79E)

10. Prfpa.k;p/ A (g , 89E)

11. l D j � k � 2
q def

12. ; < len.j /^ ; < len.k/ from 9,10
13. exp.j; len.j / :� 1/ D cnd.p; q/ 9 T13.39j
14. exp.k; len.k/ :� 1/ D p 10 T13.39j
15. exp.l; len.j /C len.k// D q 11 T13.46e,f

a 16. IconŒexp.j; len.j / :� 1/;exp.k; len.k/ :� 1/;exp.l; len.j /C len.k//� 6,13,14,15DE
17. .8i < len.j //Œexp.l; i/ D exp.j; i/� 11 T13.46c
18. .8i < len.k//Œexp.l; len.j /C i/ D exp.k; i/� 11 T13.46c
19. exp.l; len.j / :� 1/ D exp.j; len.j / :� 1/ 17,12 T13.21g
20. exp.l; len.j /C len.k/ :� 1/ D exp.k; len.k/ :� 1/ 18,12 T13.21g

b 21. IconŒexp.l; len.j / :� 1/;exp.l; len.j /C len.k/ :� 1/;
exp.l; len.j /C len.k//� 16,19,20DE

22. .8i < len.j //ŒAxiompa.exp.l; i//_
.9m < i/.9n < i/Icon.exp.l;m/;exp.l; n/;exp.l; i//� 9,17 T13.39j

23. .8i < len.k//ŒAxiompa.exp.l; len.j /C i// _
.9m < i/.9n < i/Icon.exp.l; len.j /Cm/;exp.l; len.j /C n/;
exp.l; len.j /C i//� 10,18 T13.39j

c 24. .8i W len.j / � i < len.j /C len.k//ŒAxiompa.exp.l; i// _
.9m < i/.9n < i/Icon.exp.l;m/;exp.l; n/;exp.l; i//� from 23

25. x < len.l/ A (g , (8I))

26. x < len.j /_ len.j / � x < len.j /C len.k/_ x D len.j /C len.k/ from 11,25
27. x < len.j / A (g , 26_E)

28. Axiompa.exp.l; x//_Q.l; x/ 22,27 (8E)

29. len.j / � x < len.j /C len.k/ A (g , 26_E)

30. Axiompa.exp.l; x//_Q.l; x/ 24,29 (8E)

31. x D len.j /C len.k/ A (g , 26_E)

32. Q.l; x/ from 21,31
33. Axiompa.exp.l; x//_Q.l; x/ 32 _I

34. Axiompa.exp.l; x//_Q.l; x/ 26,27-33 _E

d 35. .8x < len.l//ŒAxiompa.exp.l; x//_Q.l; x/� 25-34 (8I)
36. 1 < l with 11
37. exp.l; len.l/ :� 1/ D q 15 T13.46e
38. exp.l; len.l/ :� 1/ D q ^ 1 < l ^

.8x < len.l//ŒAxiompa.exp.l; x//_Q.l; x/� 37,36,35 ^I
39. Prfpa.l; q/ 38 T13.39j
40. Prvpa.q/ 39 9I

41. Prvpa.q/ 8,10-40 9E

42. Prvpa.q/ 7,9-41 9E

43. Prvpa.p/! Prvpa.q/ 3-42!I

e 44. Prvpa.cnd.p; q//! ŒPrvpa.p/! Prvpa.q/� 1-43!I
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Second Theorems of Chapter 13

T13.19. For any friendly recursive function r.Ex/ and original formula R.Ex; v/ by which it is ex-
pressed and captured, PA defines a function r.Ex/ such that PA ` v D r.Ex/ $ R.Ex; v/.
This theorem depends on conditions for the recursion clause and so on T13.20 and T13.29.

T13.20. Where F .Ex; y; v/ is the formula for recursion, PA ` 8m8nŒ.F .Ex; y;m/ ^ F .Ex; y; n//

! m D n�.

T13.21–T13.24. T13.21 Results for a :
� b. T13.22 results for ajb. T13.23 results for Pr.a/ and

Rp.a/. T13.24 results for lcm.a/.

T13.25. PA ` Œ.8i < k/h.i/ � m.i/ ^ 8i8j..i < j ^ j < k/ ! Rp.Sm.i/; Sm.j ///� !
9p.8i < k/rm.p;m.i// D h.i/.

T13.26–T13.28. T13.26 results for maxp and maxs. T13.27 PA ` 9p9q.8i < k/ˇ.p; q; i/ D h.i/.
T13.28 PA ` 9p9qŒ.8i < k/ˇ.p; q; i/ D ˇ.a; b; i/ ^ ˇ.p; q; k/ D n�.

T13.29. PA ` 9v9p9qŒˇ.p; q;;/ D g.Ex/^ .8i < y/h.Ex; i; ˇ.p; q; i// D ˇ.p; q; Si/^ˇ.p; q; y/
D v�.

T13.30. Suppose f.Ex; y/ is defined by g.Ex/ and h.Ex; y; u/ so that PA ` v D f.Ex; y/$ F .Ex; y; v/;
then, (a) PA ` f.Ex;;/ D g.Ex/ and (b) PA ` f.Ex; Sy/ D h.Ex; y;f.Ex; y//.

T13.31. For any friendly recursive function r.Ex/, PA defines a coordinate function r.Ex/.

T13.32–T13.33. T13.32 is some sample applications of T13.31. T13.33 extends applications by
equivalences for suc, idntj

k
, zero, Dn, pred, plus, times, subc, and absval.

T13.34–T13.36. T13.34 for any recursive R defined in Chapter 12, PA defines R such that PA `
R.Ex/$ chR.Ex/ D ;. T13.35 Results for sg, csg, and chR. T13.36 Equivalences for Eq, Leq,
Less, Neg,Dsj, .9 y � z/, and .�y � z/.

T13.37. For any friendly recursive function f.x/ PA defines a coordinate function f.Ex/. And for any
recursive relation R.Ex/ as defined in Chapter 12, PA defines a coordinate relation R.Ex/.

T13.38–T13.39. T13.38 extension of T13.37 by equivalences for Imp, Cnj, .9 y < z/, .8y � z/,
.8y < z/, Fctr and Prime. T13.39 is some sample applications leading to Prfpa.

T13.40–T13.43. T13.40 results for ma. T13.41 results for fact. T13.42 results for pi. T13.43
results for exp.

T13.44–T13.46. T13.44 results for len. T13.45 results for val. T13.46 results for m � n.

T13.47–T13.50 T13.47 results for Termseq. T13.48 results for Formseq. T13.49 results for
Tsubseq. T13.50 results for Fsubseq.

T13.51–T13.52. T13.51 on unique readability for terms. T13.52 on unique readability for formulas.

T13.53. PA ` Prvpa.cnd.p; q//! .Prvpa.p/! Prvpa.q//.

corollary (D2): PA ` �.P ! Q/! .�P ! �Q/.
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13.5 The Third Condition: �P ! ��P

To show the third condition, that PA ` �P ! ��P , it is sufficient to show PA `
Q! �Q. For when Q is �P , the result is immediate. Further, �P is Prvpa.pP q/
and Prvpa.pP q/ is a †1 sentence. So it is sufficient to show that for any †1 sentence
Q, PA ` Q ! �Q. That is what we do. Of course we have already seen from
D1 that if PA ` Q then PA ` �Q. So we need to push the conditional from the
metalanguage into the theory. We begin with some additional applications, especially
with respect to formsub (section 13.5.1). Then we focus what needs to be shown by
an alternate characterization of †1 formulas (13.5.2). Then some results that apply
Prvpa to special forms substituting numerals into places for free variables (13.5.3).
Finally we will be in a position to show the third condition (13.5.4).

13.5.1 More Applications

Recall that where p = pP q, v = pvq, and s = psq, formsub.p; v; s/ returns the Gödel
number of P v

s . Let gvar.n/ = y2 y23Cy2n be the Gödel number of variable xn. In addition,
as from page 623, num.n/ returns the Gödel number of the standard numeral for n.
So formsub.p; gvar.n/;num.y// numbers the formula replacing free instances of xn
by a numeral for the value assigned to y. So, for example, if y is assigned the value
of 2, then formsub.p; gvar.n/; num.y// returns pP xn

2
q. And, of course, PA defines

coordinate formsub.p;gvar.n/;num.y//. We require some results for these notions.

First, a pair of theorems with some results for substitutions into terms and then
into formulas. As on pages 704–705, I–N and O–S are subformulas of Tsubseq and
Fsubseq respectively.

*T13.54. The following are theorems of PA.

(a) PA ` Freet.t; v/$ �Termsub.t; v; v � 4; t /

(b) PA ` exp.m; k/ D p;q !
�ŒJ.v;m; n; k/_K.v; s;m; n; k/_L.m; n; k/_M.m; n; k/_N.m; n; k/�

*(c) PA ` ŒVar.exp.m; k// ^ exp.m; k/ ¤ v� !
�ŒI.m; n; k/ _K.v; s;m; n; k/ _L.m; n; k/ _M.m; n; k/ _N.m; n; k/�

(d) PA ` ŒVar.exp.m; k// ^ exp.m; k/ D v� !
�ŒI.m; n; k/ _ J.v;m; n; k/ _ L.m; n; k/ _M.m; n; k/ _N.m; n; k/�

(e) PA ` exp.m; k/ D pSq � a !
�ŒI.m; n; k/_J.v;m; n; k/_K.v; s;m; n; k/_M.m; n; k/_N.m; n; k/�

(f) PA ` exp.m; k/ D pCq � a !
�ŒI.m; n; k/_J.v;m; n; k/_K.v; s;m; n; k/_L.m; n; k/_N.m; n; k/�
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(g) PA ` exp.m; k/ D p�q � a !
�ŒI.m; n; k/_J.v;m; n; k/_K.v; s;m; n; k/_L.m; n; k/_M.m; n; k/�

*(h) PA ` ŒTermsub.t; v; s; q/ ^ Termsub.t; v; s; r/�! q D r

(i) PA ` ŒVar.w/ ^�Freet.w; v/�! v ¤ w

(j) PA ` ŒVar.w/ ^�Freet.pSq � w; v/�! v ¤ w

*(k) PA ` ŒTerm.t/^Term.s/^Var.v/�! Œ�Freet.t; v/! Termsub.t; v; s; t/�

*(l) PA ` ŒTerm.t/ ^ Var.v/�! Œ.Freet.t; v/ ^ Termsub.t; v; s; u//! s � u�

Given that Termsub depends on Tsubseq, and given the disjunctive nature of Tsubseq,
reasoning as in (h) with both Termsub.t; v; s; q/ and Termsub.t; v; s; r/ results in an
extended _E inside each subderivation of an extended _E. Theorems like (b)–(g) let
us “pick off” disjuncts in a reasonable way. And similarly for (c)–(g) in the theorem
that follows.

*T13.55. The following are theorems of PA.

(a) PA ` Freef .p; v/$ �Formsub.p; v; v � 4; p/

(b) PA ` ŒVar.w/ ^�Freef .p; v/�! �Freef .unv.w; p/; v/

(c) PA ` Atomic.exp.m; k// !
�ŒP.m; n; k/ _Q.m; n; k/ _R.v; p;m; n; k/ _ S.v; p;m; n; k/�

(d) PA ` exp.m; k/ D p�q � a !
�ŒO.v; s;m; n; k/ _Q.m; n; k/ _R.v; p;m; n; k/ _ S.v; p;m; n; k/�

*(e) PA ` exp.m; k/ D p.q � a !
�ŒO.v; s;m; n; k/ _ P.m; n; k/ _R.v; p;m; n; k/ _ S.v; p;m; n; k/�

(f) PA ` ŒVar.j / ^ j ¤ v ^ exp.m; k/ D p8q � j � a� !
�ŒO.v; s;m; n; k/ _ P.m; n; k/ _Q.m; n; k/ _ S.v; p;m; n; k/�

(g) PA ` ŒVar.j / ^ j D v ^ exp.m; k/ D p8q � j � a� !
�ŒO.v; s;m; n; k/ _ P.m; n; k/ _Q.m; n; k/ _R.v; p;m; n; k/�

(h) PA ` ŒAtomsub.p; v; s; q/ ^Atomsub.p; v; s; r/�! q D r

*(i) PA ` ŒFormsub.p; v; s; q/ ^ Formsub.p; v; s; r/�! q D r

(j) PA ` ŒW ff .p/ ^ Term.s/� !
ŒFormsub.p; v; s; q/! formsub.p; v; s/ D q�

(k) PA ` ŒTerm.s/ ^ Var.v/� !
ŒAtomsub.p; v; v � 4; p/! Atomsub.p; v; s; p/�
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(l) PA ` ŒW ff .p/ ^ Term.s/ ^ Var.v/� !
Œ�Freef .p; v/! formsub.p; v; s/ D p�

corollary: if variable x is not free in formula P and PA ` Term.s/, then
PA ` formsub.pP q; pxq; s/ D pPq

*(m) PA ` Var.v/ !
Œ.�Atomsub.p; v; v � 4; p/ ^Atomsub.p; v; s; q//! s � q�

*(n) PA ` ŒW ff .p/^Term.s/^Var.v/�! ŒFreef .p; v/! s � formsub.p; v; s/�

The corollary to (l) is immediate by capture.

Now some results for Ffseq and Freefor. For a function like FFSEQ.m; s; v; u/ let,

T .m; k/ = Atomic.exp.m; k//
U.m; k/ = .9j < k/Œexp.m; k/ D til.exp.m; j //�
V .m; k/ = .9i < k/.9j < k/Œexp.m; k/ D cnd.exp.m; i/; exp.m; j //�
W.u; v;m; k/ = .9p � u/.9j � u/ŒVar.j / ^ j D v ^W ff .p/ ^ exp.m; k/ D unv.j; p/�
X.u; v; s;m; k/ = .9i < k/.9j � u/ŒVar.j / ^ j ¤ v^

.�Freet.s; j / _�Freef .exp.m; i/; v//^
exp.m; k/ D unv.j; exp.m; i//�

*T13.56. The following are theorems of PA.

(a) PA ` Ffseq.m; s; v; u/$ fexp.m; len.m/ :� 1/ D u ^ 1 < m^
.8k < len.m//ŒT .m; k/ _ U.m; k/ _ V.m; k/ _W.u; v;m; k/_
X.u; v; s;m; k/�g

(b) (i) PA ` Freefor.s; v; u/$ .9x � Bu/Ffseq.x; s; v; u/

(ii) PA ` Bu D Œpi.len.u//u�len.u/

(c) PA ` Ffseq.m; s; v; p/! .8k < len.m//.1 < exp.m; k//

*(d) PA ` ŒW ff .p/ ^ Var.v/�! Freefor.v; v; p/

(e) PA ` Atomic.p/! Ffseq.2
p
; s; v; p/

(f) PA ` Ffseq.m; s; v; p/! Ffseq.m � 2
til.p/

; s; v; til.p//

(g) PA ` ŒFfseq.m; s; v; p/ ^ Ffseq.n; s; v; q/� !
Ffseq.m � n � 2

cnd.p;q/
; s; v; cnd.p; q//

(h) PA ` ŒW ff .p/ ^ Var.v/�! Ffseq.2
unv.v;p/

; s; v;unv.v; p//

(i) PA ` ŒFfseq.m; s; v; p/^Var.w/^w ¤ v^.�Freet.s; w/_�Freef .p; v//�

! Ffseq.m � 2
unv.w;p/

; s; v;unv.w; p//

(j) PA ` exp.m; k/ D p�q � a !
�ŒT .m; k/ _ V.m; k/ _W.u; v;m; k/ _X.u; v; s;m; k/�
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(k) PA ` exp.m; k/ D p.q � a !
�ŒT .m; k/ _ U.m; k/ _W.u; v;m; k/ _X.u; v; s;m; k/�

(l) PA ` ŒVar.w/ ^ w ¤ v ^ exp.m; k/ D p8q � w � a� !
�ŒT .m; k/ _ U.m; k/ _ V.m; k/ _W.p; v;m; k/�

(m) PA ` Ffseq.m; s; v; p/! .8i < len.m//W ff .exp.m; i//

corollary: PA ` Ffseq.m; s; v; p/! W ff .p/

*(n) PA ` Ffseq.m; s; v; p/! .8i < len.m//Freefor.s; v; exp.m; i//

corollary: PA ` Ffseq.m; s; v; p/! Freefor.s; v; p/

*(o) PA ` ŒW ff .p/ ^ Freefor.s; v; til.p/�! Freefor.s; v; p/

(p) PA ` ŒW ff .p/ ^W ff .q/ ^ Freefor.s; v; cnd.p; q//� !
ŒFreefor.s; v; p/ ^ Freefor.s; v; q/�

(q) PA ` ŒVar.u/ ^ u ¤ v ^W ff .p/ ^ Freefor.s; v;unv.u; p//� !
ŒFreefor.s; v; p/ ^ .�Freet.s; u/ _�Freef .p; v//�

(a)–(b) are from the definitions. Reasoning for others works like that for results we
have seen before.

We are now positioned for a series of results related to numerals, to the rule Gen,
and to axiom A4. For reasoning about numerals let numseq.n/ be as follows:

PA ` numseq.;/ D pi.;/num.;/

PA ` numseq.Sy/ D numseq.y/ � pi.Sy/num.Sy/

The exponents of numseq.n/ are the Gödel numbers of 0 : : : n. We shall be able to show
that numseq.n/ numbers a term sequence for num.n/ and so that Term.num.n//.

*T13.57. The following are theorems of PA.

(a) (i) PA ` num.;/ D p;q
(ii) PA ` num.Sy/ D pSq � num.y/

(b) PA ` gvar.n/ D 2
23C2�n

(c) PA ` Var.gvar.n//

(d) PA ` gvar.m/ D gvar.n/! m D n

*(e) PA ` ŒPrvpa.p/ ^ Var.v/�! Prvpa.unv.v; p//

(f) PA ` Axiompa.n/! Prvpa.n/

*(g) PA ` Axiomad4.n/$ 9s.9p � n/.9v � n/ŒW ff .p/ ^ Var.v/^
Term.s/ ^ Freefor.s; v; p/ ^ n D cnd.unv.v; p/;formsub.p; v; s//�

(h) PA ` ; < num.x/
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(i) PA ` 1 < numseq.x/

(j) PA ` len.num.x// D Sx

*(k) PA ` len.numseq.x// D Sx

*(l) PA ` .8y � x/exp.numseq.x/; y/ D num.y/

*(m) PA ` Var.v/! v ¤ num.y/

*(n) PA ` Termseq.numseq.x/;num.x//

corollary: PA ` Term.num.x//

*(o) PA ` Tsubseq.numseq.n/;numseq.n/;num.n/; v; s;num.n//

corollary: PA ` Termsub.num.n/; v; s;num.n//

corollary: PA ` �Freet.num.n/; v//

*(p) PA ` ŒW ff .p/ ^ Var.v/�! Freefor.num.x/; v; p/

(q) PA ` W ff .p/ !
Prvpa.cnd.unv.gvar.n/; p/;formsub.p;gvar.n/;num.x////

(a) and (b) are from the definitions. Effectively, (e) is like Gen. (g) is like the intuitive
version of A4 from page 620; it follows from the original version resulting from
T13.39h (and E13.31). Then (q) results with (g) when the substituted term is a
numeral (so that associated restrictions are automatically met).

Finally, a theorem with results first for distribution of substitution over a condi-
tional, and then for substitution into other substitutions. Each of the latter include
matched results for Termsub, Atomsub, and then Formsub.

*T13.58. The following are theorems of PA.

(a) PA ` ŒW ff .p/ ^W ff .q/ ^ Term.s/� !
formsub.cnd.p; q/; v; s/ D cnd.formsub.p; v; s/;formsub.q; v; s//

*(b) PA ` ŒTerm.p/ ^ Term.t/� !
9qŒTermsub.p; v;num.y/; q/ ^ Termsub.q; v; t; q/�

*(c) PA ` ŒAtomic.p/ ^ Term.t/� !
9qŒAtomsub.p; v;num.y/; q/ ^Atomsub.q; v; t; q/�

*(d) PA ` ŒW ff .p/ ^ Term.t/� !
formsub.p; v;num.y// D formsub.formsub.p; v;num.y//; v; t/

*(e) PA ` ŒTerm.p/ ^ v ¤ w� ! 9q9t9t 0Œ
Termsub.p; v;num.y/; t/ ^ Termsub.p;w;num.z/; t 0/^
Termsub.t; w;num.z/; q/ ^ Termsub.t 0; v;num.y/; q/�
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*(f) PA ` ŒAtomic.p/ ^ v ¤ w�! 9q9t9t 0Œ
Atomsub.p; v;num.y/; t/ ^Atomsub.p;w;num.z/; t 0/^
Atomsub.t; w;num.z/; q/ ^Atomsub.t 0; v;num.y/; q/�

*(g) PA ` ŒW ff .p/ ^ v ¤ w� !
formsub.formsub.p; v;num.y//; w;num.z// D
formsub.formsub.p;w;num.z//; v;num.y//

(h) PA ` ŒTerm.p/ ^ Var.w/�! 9q9t9t 0Œ
Termsub.p; v; w; t/ ^ Termsub.p; v;num.y/; t 0/^
Termsub.t; w;num.y/; q/ ^ Termsub.t 0; w;num.y/; q/�

(i) PA ` ŒAtomic.p/ ^ Var.w/�! 9q9t9t 0Œ
Atomsub.p; v; w; t/ ^Atomsub.p; v;num.y/; t 0/^
Atomsub.t; w;num.y/; q/ ^Atomsub.t 0; w;num.y/; q/�

(j) PA ` ŒW ff .p/ ^ Var.v/ ^ Var.w/ ^ Freefor.w; v; p/� !
formsub.formsub.p; v; w/; w;num.y// D
formsub.formsub.p; v;num.y//; w;num.y//

*(k) PA ` ŒTerm.p/ ^ Var.w/�! 9q9t9t 0Œ
Termsub.p; v; pSq � w; t/ ^ Termsub.p; v;num.Sy/; t 0/^
Termsub.t; w;num.y/; q/ ^ Termsub.t 0; w;num.y/; q/�

*(l) PA ` ŒAtomic.p/ ^ Var.w/�! 9q9t9t 0Œ
Atomsub.p; v; pSq � w; t/ ^Atomsub.p; v;num.Sy/; t 0/^
Atomsub.t; w;num.y/; q/ ^Atomsub.t 0; w;num.y/; q/�

*(m) PA ` ŒW ff .p/ ^ Var.v/ ^ Var.w/ ^ Freefor.pSq � w; v; p/� !
formsub.formsub.p; v; pSq � w/;w;num.y// D
formsub.formsub.p; v;num.Sy//; w;num.y//

Speaking loosely: From (a), .P ! Q/
v
s = P v

s ! Qvs . From theorems leading up
to (d), P v

num.y/ = .P v
num.y//

v
t . From theorems leading up to (g), if v = w then

.P v
num.y//

w
num.z/ = .Pw

num.z//
v
num.y/. From ones leading to (j), if w is free for v in P , then

.P v
w /
w
num.y/ = .P v

num.y//
w
num.y/. And from ones leading to (m), if Sw is free for v in P ,

then .P v
Sw
/w
num.y/ = .P v

num.Sy//
w
num.y/. For these results it is important that num.y/ is a

numeral and so has no variables to be replaced.

*E13.43. Set up the argument for T13.55l including assertion of the main proposition
to be shown by induction; then set up the show part working just the P case.
Hard-core: finish each of the results in T13.54 and T13.55.

Hints for T13.54. (h): Under assumptions for !I and (9E) you have both
Tsubseq.m; n; t; v; s; q/ and Tsubseq.m0; n0; t; v; s; r/; with this show 8kŒk <
len.m/! .8x < len.m0//.exp.m; k/ D exp.m0; x/! exp.n; k/ D exp.n0; x//�



CHAPTER 13. GÖDEL’S THEOREMS 721

by strong induction; the result follows easily from this. (k): Under assumptions
for!I, with T13.54a and T13.49k you can obtain and exploit existentials to get
both Tsubseq.m; n; t; v; v � 4; t / and Tsubseq.m0; n0; t; v; s; u/ with goal t D u;
by strong induction show 8kŒk < len.m/ ! .8x < len.m0//.exp.m; k/ D
exp.m0; x/ ! .exp.m; k/ D exp.n; k/ ! exp.m0; x/ D exp.n0; x///�; then the
result follows easily. (l): Under assumptions for !I you can obtain and ex-
ploit existentials to get Tsubseq.m; n; t; v; v�4; r/ and Tsubseq.m0; n0; t; v; s; u/
where r ¤ t with goal s � u; by strong induction show 8kŒk < len.m/ !
.8x < len.m0//.exp.m; k/ D exp.m0; x/ ! .exp.m; k/ ¤ exp.n; k/ ! s �

exp.n0; x///�; the result follows.

Hints for T13.55. See the corresponding members of T13.54.

E13.44. Taking as given that PA ` Termsub.t; v; v; t/, show that PA ` .Sent.p/ ^
Var.v//! �Freef .p; v/. Hint: Under the assumption for!I you will be able
to obtain formsub.p; v; v/ D p; then the result is easy from v � p _ p < v.

*E13.45. Show T13.56m. Hard-core: show the rest of the results from T13.56.

Hints for T13.56. For (d) you will be able to apply T13.48j and T13.45o. (m):
Under the assumption for !I, you can show 8x.8k < len.m//Œlen.exp.m; k// � x !

9nFormseq.n;exp.m; k//� by IN; the result follows easily. (n): Let P = 9nŒFfseq.n; s; v;exp.m; k//

^ len.n/ � len.exp.m; k// ^ .8i < len.n//exp.n; i/ � exp.m; k/� ; under the assumption for !I,
show 8x.8k < len.m//Œlen.exp.m; k// � x! P � by IN; the result follows from this.

*E13.46. Show (q) from T13.57. Hard-core: show the rest of the results from T13.57.

Hints for T13.57. For (e) under the assumption for!I and then Prfpa.m; p/ for
9E, apply T13.39j to obtain Prfpa.m � 2

unv.v;p/
;unv.v; p//. (k) is by IN, where

you will be able to show both SSx � len.numseq.Sx// and len.numseq.Sx// �
SSx. For (m) under assumptions for!I and, with T13.47a, (9E) the argument is
by IN on the value of y; for the show it may help to think about the length of v.
For (n) apply T13.47b; and similarly for (o) T13.49a. For (p), you will be able to
use T13.48j to set up an application of T13.56a.

*E13.47. Show T13.58a. Hard-core: finish the rest of the results in T13.58.

Hints for T13.58. (b): Under the assumption for !I, obtain and exploit an
existential to get Termseq.m; p/; then you can show 8x.8k < len.m//Œlen.exp.m; k/ �

x ! 9q.Termsub.exp.m; k/; v;num.y/; q/ ^ Termsub.q; v; t; q//� by IN. (c): Under the assump-
tion for !I, apply T13.48a and with (b) obtain and exploit existentials to get
Termsub.a; v;num.y/; q/^Termsub.q; v; t; q/ and Termsub.b; v;num.y/; r/^Termsub.r; v; t; r/. (d): Under
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the assumption for!I, obtain and exploit an existential to get Formseq.m; p/;
then you will be able to show 8x.8k < len.m//Œlen.exp.m; k/ � x ! 9q.Formsub.exp.m; k/;

v;num.y/; q/ ^ Formsub.q; v; t; q//� by IN. (e): Under the assumption for !I and with
Termseq.m; p/, let P = 9q9t9t 0ŒTermsub.exp.m; k/; v;num.y/; t/^ Termsub.exp.m; k/;w;num.z/; t 0/^

Termsub.t;w;num.z/; q/ ^ Termsub.t 0; v;num.y/; q/�; go for 8x.8k < len.m//.len.exp.m; k// � x ! P /

by IN. (j): Under the assumption for !I and with Formseq.m; p/, let P =

Freefor.w; v;exp.m; k//! 9q9t9t 0ŒFormsub.exp.m; k/; v;w; t/^Formusb.exp.m; k/; v;num.y/; t 0/^Formsub.t;

w;num.y/; q/^Formsub.t 0;w;num.y/; q/�; show 8x.8k < len.m//.len.exp.m; k// � x! P /.

13.5.2 Sigma Star

Our aim is to show PA ` Q! �Q for any†1 sentence Q. The task is simplified by a
“minimal” specification of the†1 formulas themselves. Toward this end, we introduce
a special class of formulas, the †? formulas; and show that every †1 formula is
provably equivalent to a †? formula. †? formulas are as follows:

(†?) For any distinct variables x, y, and :,

(a) ; D :, y D :, Sy D :, xC y D :, and x � y D : are †?.

(b) If P is †?, then so is 9xP .

(c) If P and Q are †?, then so are .P _Q/ and .P ^Q/.

(d) If P is †?, then so is .8x � y/P where y does not occur in P .

(CL) Any †? formula may be formed by repeated application of these rules.

Notice the new restriction on a bounded universal, where the bound is a variable y

that does not occur in P . Given that the specification of†? formulas is a restriction of
that for †1 formulas, it is obvious that every †? formula is †1. We aim to show the
other direction: that every †1 formula is provably equivalent to a †? formula. Then
results which apply to all the †? formulas immediately transfer to the †1 formulas.
We begin showing that there are †? formulas equivalent to atomic equalities of the
sort t D x. Then (depending on an extended notion of normal form and a result
according to which �0 formulas always have equivalent normal forms) we show that
there are †? formulas equivalent to all the �0 formulas. And from this there are †?
formulas equivalent to all the †1 formulas.

First, then, the result for atomic equalities.

T13.59. For any atomic P of the form t D x where x does not appear in t, there is a
†? formula P†? such that PA ` P $ P†? .

Suppose P is of the form t D x where x does not appear in t. By induction on
the function symbols in t,
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Basis: If t has no function symbols, then it is the constant ; or a variable y other
than x; so P is of the form ; D x or y D x; but these are already †?
formulas. So let P†? be the same as P . Then PA ` P $ P†? .

Assp: For any i , 0 i k, if t has i function symbols, there is a P†? such that
PA ` P $ P†? .

Show: If t has k function symbols, there is a P†? such that PA ` P $ P†? .
If t has k function symbols, then it is of the form Sr, rC s, or r � s for
r and s with k function symbols.

(S ) t is Sr, so that P is Sr D x. For some new variable z, set P†? = 9zŒ.r D
z/†? ^ Sz D x�. Then P†? is †?. By assumption, PA ` r D z $ .r D

z/†? . So reason as follows:

1. r D z $ .r D z/†? by assp

2. Sr D x A (g,$I)

3. r D r ^ Sr D x from 2
4. 9zŒr D z ^ Sz D x� 3 9I
5. 9zŒ.r D z/†? ^ Sz D x� 1,4 with T9.9

6. 9zŒ.r D z/†? ^ Sz D x� A (g,$I)

7. .r D z/†? ^ Sz D x A (g, 69E)

8. r D z 1,7$E
9. Sr D x from 7,8

10. Sr D x 6,7-9 9E

11. Sr D x $ 9zŒ.r D z/†? ^ Sz D x� 2-5,6-10$I

Since z does not appear in r and is not x, the restriction on 9E is met. So
PA ` P $ P†? .

(+) t D sC r, so that P is sC r D x. For some new variables u and v, set
P†? = 9u9vŒ..s D u/†? ^ .r D v/†?/ ^ uC v D x�. Then P†? is †?;
and PA ` P $ P†? .

(�) Similarly.

Indct: For any P of the form t D x, there is a P†? such that PA ` P $ P†? .

Now generalize some operations from T8.1. There we said a formula is in
normal form iff its only operators are _, ^, and �, and the only instances of � are
immediately prefixed to atomics. Now a formula is in (extended) normal form iff its
only operators are _, ^, �, or a bounded quantifier, and the only instances of � are
immediately prefixed to atomics (which may include inequalities). Again, generalizing
from before, where P is a normal form, let P 0 be like P except that _ and ^,
universal and existential quantifiers and, for an atomic A, A and�A are interchanged.
So, for example, .9x � p/.x D p _ p – x/0 = .8x � p/.x ¤ p ^ p < x/.
Still generalizing, for any �0 formula whose operators are �,!, and the bounded
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quantifiers, for atomic A, let AN = A; and Œ�P �N = ŒPN�
0; .P ! Q/N = .ŒPN�

0_QN/;
Œ.9x � t/P �N = .9x � t/PN and Œ.8x � t/P �N = .8x � t/PN and similarly for
.9x < t/P and .8x < t/P . Then as a simple extension to the result from E8.10,

T13.60. For any �0 formula P�0 , there is a normal formula PN such that ` P�0 $

PN.

The demonstration is a straightforward extension of the reasoning from E8.9 and
E8.10.

So each �0 formula is a provably equivalent to a normal form.
Now we show that each �0 formula is a provably equivalent to a †? formula.

With the previous theorem, it is sufficient to show that normal forms are provably
equivalent to †? formulas. Thus,

*T13.61. For any �0 formula P�0 there is a †? formula P†? such that PA ` P�0 $

P†? .

From T13.60, for any �0 formula P�0 , there is a normal PN such that ` P�0 $

PN. By induction on the number of operators in PN, we show there is a P†? such
that PA ` PN $ P†? . The result is immediate.

Basis: If PN has no operators, then it is an atomic of the sort s D t, s � t, or
s < t.

(D) PN is s D t. For some new variable z, set P†? = 9zŒ.s D z/†? ^ .t D

z/†? �. By T13.59, PA ` s D z $ .s D z/†? and PA ` t D z $ .t D

z/†? ; so PA ` PN $ P†? .
(�) PN is s � t, which is to say 9z.z C s D t/ for z not in s or t. By the

case immediately above, PA ` .z C s D t/ $ .z C s D t/†? . Set
P†? = 9z.z C s D t/†? . Then PA ` PN $ P†? . And similarly for <.

Assp: For any i , 0 i k, if a normal PN has i operator symbols, then there is a
†? formula P†? such that PA ` PN $ P†? .

Show: If a normal PN has k operator symbols, then there is a †? formula P†?
such that PA ` PN $ P†? .
If PN has k operator symbols, then it is of the form �A, B ^ C , B _ C ,
.9x � t/B, .9x < t/B, .8x � t/B, or .8x < t/B, where A is atomic
and B and C are normal with k operator symbols.

(�) PN is �A for atomic A. There are three cases:
(i) PN is s ¤ t. Set P†? = .s < t/†? _ .t < s/†? ; then by assumption,
PA ` s < t $ .s < t/†? and PA ` t < s $ .t < s/†? ; and with
T13.11q,s, PA ` PN $ P†? .
(ii) PN is s – t; set P†? = .t � s/†? ; then by assumption, PA ` t �

s$ .t � s/†? ; and with T13.11t, PA ` PN $ P†? .
(iii) And similarly for P†? = s — t.
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(^) PN is B ^ C . Set P†? = B†? ^ C†? ; since B and C are normal, by
assumption PA ` B $ B†? and PA ` C $ C†? ; so PA ` PN $ P†? .
And similarly for _.

(8) PN is .8x � t/B. For some new variable z set P†? = 9zŒ.t D z/†? ^

.8x � z/B†? �; by assumption PA ` t D z $ .t D z/†? and PA ` B $

B†? so PA ` PN $ P†? . And, by a related construction, similarly for
.8x < t/B.

(9) PN is .9x � t/B. Set P†? = 9xŒ.x � t/†? ^B†? �; then by assumption
PA ` x � t $ .x � t/†? and PA ` B $ B†? ; so PA ` PN $ P†? .
And similarly for .9x < t/B.

Indct: For any normal PN there is a P†? such that PA ` PN $ P†? .

From T13.60 for any�0 formula P�0 , there is a normal PN such that ` P�0 $ PN

and now PA ` PN $ P†? . So PA ` P�0 $ P†? .

Finally, with this, you can show that for any†1 formula P†1 there is a†? formula
P†? such that PA ` P†1 $ P†? .

*T13.62. For any †1 formula P†1 there is a †? formula P†? such that PA ` P†1 $

P†? .

Treating �0 formulas as atomic, the argument is by induction on the number of
operators in P†1 . Homework.

So every †1 formula is provably equivalent to a †? formula. So a result for all †?
formulas transfers to all the †1 formulas. And that is what we set out to show in this
section.

*E13.48. By the method of T13.59, T13.60, and T13.61 find a P†? such that PA `
.8x � y/Œz < Sy ! x D z�$ P†?; then show that PA proves the biconditional
in at least one direction. Hard-core: show the biconditional in both directions.
Hints: Begin converting .8x � y/Œz < Sy ! x D z� to normal form; then by
the methods of T13.61 eliminate negated atomics and inequalities. Consider a tree
for the resultant expression; working through the tree, for each term t generate a
†? formula equivalent to t D : by the methods of T13.59; and use T13.61 again
for the formulas.

E13.49. Povide a demonstration to show T13.60.

E13.50. Fill in the parts of T13.59 and T13.61 that are left as “similarly” to show that
PA ` P†1 $ P†? .

*E13.51. Demonstrate T13.62.
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13.5.3 Substitutions

The demonstration that for any †? (and so †1) sentence Q, PA ` Q ! �Q is by
induction on the number of operators in Q—and so moves from the parts of Q to
the whole. As it turns out, we shall find it easier to work with whole sentences than
than with open subformulas. With this in mind, we introduce a sub Ey.pPq; Et / which
substitutes numerals for variables free in P . The substitutions result in (numbers
of) sentences about which we shall be able to obtain results. And when P itself is
a sentence, there are no variables to replace, so that our results apply directly to the
original P .

For this, let Ey be a (possibly empty) sequence of n variables, and Et = t1 : : : tn a
sequence of n terms. Consider an enumeration enum. Ey; i/ of variable subscripts in Ey so
that enum. Ey; i/ = yi is the subscript of the ith variable and yi the numeral corresponding
to that subscript; so if Ey is x3x6x2, enum. Ey; 1/ = y1 = 3, enum. Ey; 2/ = y2 = 6, and
enum. Ey; 3/ = y3 = 2; and generally the variables of Ey are xy1 : : : xyn , the variables of
Ez are xz1 : : : xzn , and so forth. Then for i n,

PA ` sub0
Ey
.p; Et / D p

PA ` subSi
Ey
.p; Et / D formsub.sub i

Ey
.p; Et /;gvar.ySi/;num.tSi//

And PA ` sub Ey.p; Et / D subn
Ey
.p; Et /.

So each sub i
Ey

substitutes a numeral for the value assigned to ti into the place
of variable xyi , and sub replaces them all. In the ordinary case, p is the number
of a formula P , and Ey includes all the variables free in P . So sub substitutes
numerals for values assigned to Et for all the variables Ey that are free in the formula
numbered p. For a one-variable case, enum.ya; 1/ is just a and subya.pP .ya/q; t / =
sub1

ya
.pP .ya/q; t / = formsub.pP .ya/q;gvar.a/;num.t//. Observe that if t includes

free variables, subya.pP .ya/q; t / has those variables free, but returns the number of
the sentence that substitutes a numeral for the value assigned to t into the ya-place of
P . Also we have not defined a function by recursion, but rather recursively specified
a sequence of functions. Thus the super- and subscript notations do not indicate
variables of sub i

Ey
.p; Et / and a correlate to enum does not appear in the LNT expression;

rather we use enum to make the specification in which there appears a certain numeral
(in this case a).

For sub Ey.pP q; Et /, we shall often be concerned with the case where Et just is Ey.
For this we have,

T13.63. For any i and formula P , PA ` W ff .sub i
Ey
.pP q; Ey//.

By an easy induction with T13.50q.

So PA ` W ff .sub Ey.pP q; Ey//. And from a few quick theorems (collected in the
substitution vectors box on page 728), so long as Ex and Ey each include all the variables
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free in P , PA ` subEx.pP q; Ex/ D sub Ey.pP q; Ey/. Given this, we shall not usually
worry about details of the vectors.

Now, introducing double brackets as a special notation: Where Ex includes all the
variables free in P ,

PrvpaŒŒP .Ex/�� = Prvpa.subEx.pPq; Ex//

Suppose the free variables of P just are the members of Ex. Then Prvpa.pP q/ asserts
the provability of the open formula P .Ex/. But PrvpaŒŒP �� itself has all the free vari-
ables of P and asserts the provability of whatever sentences have numerals for the vari-
ables free in P . Thus by 8E it follows from 8xPrvpaŒŒP .x/�� that PrvpaŒŒP .x/��x

;
; but

this is Prvpa.subx.pP .x/q; x//x; , which is Prvpa.subx.pP .x/q;;//; which, as we
shall see, is equivalent to Prvpa.pP x

;
q/. And, more generally, from 8xPrvpaŒŒP .x/��

follow each of the sentences Prvpa.pP x
;
q/, Prvpa.pP x

S;
q/, and so forth. When P

is itself a sentence, there are no substitutions to be made and PrvpaŒŒP �� is the same
as Prvpa.pPq/. Thus we set out to show PA ` P ! PrvpaŒŒP �� for †? formulas.
When P is a sentence, this gives PA ` P ! Prvpa.pP q/, which is to be shown.

In order to do this we shall require some quick theorems in order to manipulate
this new notion. There are analogs to D1 and D2, and results for substitution. Each
is by a short induction. Again, given their equivalence, we apply results for Prvpa
directly to Prvpa. First, the results like D1 and D2:

T13.71. If PA ` P , then PA ` PrvpaŒŒP ��.

Suppose PA ` P and Ex includes all the variables free in P . By induction on the
value of n, we show PA ` Prvpa.subn

Ex
.pPq; Ex//. The result is immediate. We

revert to (III) from the Chapter 8 induction schemes reference.

Basis: sub0
Ex
.pP q; Ex/ = pP q. Since PA ` P , by D1, PA ` Prvpa.pP q/; so PA `

Prvpa.sub0
Ex
.pP q; Ex//.

Assp: PA ` Prvpa.sub i
Ex
.pP q; Ex//.

Show: PA ` Prvpa.subSi
Ex
.pPq; Ex//.

1. Prvpa.sub i
Ex
.pP q; Ex// by assp

2. W ff .sub i
Ex
.pP q; Ex// T13.63

3. Var.gvar.xSi// T13.57c

4. PrvpaŒunv.gvar.xSi/; sub i
Ex
.pP q; Ex//� 1,3 T13.57e

5. PrvpaŒcnd.unv.gvar.xSi/; sub i
Ex
.pPq; Ex//;

formsub.sub i
Ex
.pP q; Ex/;gvar.xSi/;num.xxSi///� 2 T13.57q

6. PrvpaŒunv.gvar.xSi/; sub i
Ex
.pP q; Ex//� !

PrvpaŒformsub.sub i
Ex
.pP q; Ex/;gvar.xSi/;num.xxSi//� 5 T13.53

7. PrvpaŒformsub.sub i
Ex
.pP q; Ex/;gvar.xSi/;num.xxSi//� 6,4!E

8. Prvpa.subSi
Ex
.pPq; Ex// 7 def sub

Indct: For any n, PA ` Prvpa.subn
Ex
.pP q; Ex//.
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Substitution Vectors

T13.64. Let Ex be some xx1 : : : xxa , and for some Eu and Ev let Ey = Ex; Eu, and Ez = Ex; Ev; then
for any i a, PA ` sub i

Ey
.pP q; Ey/ D sub i

Ez
.pPq; Ez/. By an easy induction.

*T13.65. Let Ey0 = xa; xy1 : : : xyu ; xyuC1 ; : : : xyn and in general Eyu = xy1 : : : xyu ; xa;

xyuC1 : : : xyn . Then for any formula P and u n, PA ` subSu
Ey0
.pP q; Ey0/ =

subSu
Eyu
.pPq; Eyu/. Corollary: PA ` sub Ey0

.pPq; Ey0/ D sub Eyu
.pPq; Eyu/.

*T13.66. If the variables of Ex are the same as the variables of Ey then PA ` sub Ey.pPq; Ey/ D
subEx.pPq; Ex/.
Suppose the variables of Ex are the same as the variables of Ey but in a possibly different
order. To convert Ey to Ex, a straightforward approach is to use T13.65 to switch
members into the first position in the reverse of their order in Ex. Suppose Ey =
hxx4 ; xx1 ; xx6 ; xx5 ; xx2 ; xx3i. Then we may sort the variables as follows:

0. xx4 ; xx1 ; xx6 ; xx5 ; xx2 ; xx3

1. xx6 ; xx4 ; xx1 ; xx5 ; xx2 ; xx3

2. xx5 ; xx6 ; xx4 ; xx1 ; xx2 ; xx3

3. xx4 ; xx5 ; xx6 ; xx1 ; xx2 ; xx3

4. xx3 ; xx4 ; xx5 ; xx6 ; xx1 ; xx2

5. xx2 ; xx3 ; xx4 ; xx5 ; xx6 ; xx1

6. xx1 ; xx2 ; xx3 ; xx4 ; xx5 ; xx6

The reasoning is officially by induction, but simple enough, so left as an exercise.

*T13.67. For some formula P , let Eyu = xy1 : : : xyu ; xa; xyuC1 : : : xyn for variable xa not free
in P ; then PA ` subu

Eyu
.pPq; Eyu/ D subSu

Eyu
.pP q; Eyu/.

*T13.68. For some formula P , let Eyu = xy1 : : : xa : : : xyu ; xa; xyuC1 : : : xyn for variable xa

duplicated in the sequence; then PA ` subSu
Eyu
.pP q; Eyu/ D subSSu

Eyu
.pP q; Eyu/.

*T13.69. If the variables of Ey and Ez are ordered by their subscripts, Ey includes just the free
variables of formula P , but Ez includes variables not in Ey, then PA ` sub Ey.pP q; Ey/ D
subEz.pP q; Ez/.

T13.70. If Ex and Ey include all the free variables of formula P , then PA ` subEx.pPq; Ex/ D
sub Ey.pP q; Ey/.
Let Ex0 and Ey0 be like Ex and Ey except that variables are in standard order, and Ez be just the
free variables of formula P in standard order. Then by T13.66, PA ` subEx.pPq; Ex/ D
subEx0.pP q; Ex0/; by T13.69, PA ` subEx0.pP q; Ex0/ D subEz.pP q; Ez/; by T13.69 again,
PA ` subEz.pPq; Ez/ D sub Ey0.pP q; Ey0/; and with T13.66, PA ` sub Ey0.pPq; Ey0/ =
sub Ey.pP q; Ey/. So PA ` subEx.pP q; Ex/ D sub Ey.pP q; Ey/.
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So PA ` Prvpa.subEx.pPq; Ex//; which is to say PA ` PrvpaŒŒP ��. So if PA ` P ,
then PA ` PrvpaŒŒP ��.

T13.72. PA ` PrvpaŒŒP ! Q��! .PrvpaŒŒP ��! PrvpaŒŒQ��/

Suppose Ex includes all the free variables of P ! Q. We set out to show
PA ` sub i

Ex
.cnd.pP q; pQq/; Ex// D cnd.sub i

Ex
.pP q; Ex/; sub i

Ex
.pQq; Ex//. This leads

immediately to the desired result.

Basis: PA ` sub0
Ex
.cnd.pP q; pQq/; Ex// D cnd.sub0

Ex
.pPq; Ex/; sub0

Ex
.pQq; Ex//.

1. sub0
Ex
.cnd.pP q; pQq/; Ex/ D cnd.pP q; pQq/ def sub

2. sub0
Ex
.pP q; Ex/ D pP q def sub

3. sub0
Ex
.pQq; Ex// D pQq def sub

4. sub0
Ex
.cnd.pP q; pQq/; Ex/ D cnd.sub0

Ex
.pP q; Ex/; sub0

Ex
.pQq; Ex// 1,2,3DE

Assp: PA ` sub i
Ex
.cnd.pP q; pQq/; Ex// D cnd.sub i

Ex
.pPq; Ex/; sub i

Ex
.pQq; Ex//.

Show: PA ` subSi
Ex
.cnd.pPq; pQq/; Ex// D cnd.subSi

Ex
.pP q; Ex/; subSi

Ex
.pQq; Ex//.

1. W ff .sub i
Ex
.pP q; Ex// ^W ff .sub i

Ex
.pQq; Ex// T13.63

2. Term.num.xxSi// T13.57n

3. subSi
Ex
.pP q; Ex/ D formsub.sub i

Ex
.pP q; Ex/;gvar.xSi/;num.xxSi// def sub

4. subSi
Ex
.pQq; Ex/ D formsub.sub i

Ex
.pQq; Ex/;gvar.xSi/;num.xxSi// def sub

5. subSi
Ex
.cnd.pP q; pQq/; Ex/

6. D formsub.sub i
Ex
.cnd.pP q; pQq/; Ex/;gvar.xSi/;num.xxSi// def sub

7. D formsub.cnd.sub i
Ex
.pP q; Ex/; sub i

Ex
.pQq; Ex//;

gvar.xSi/;num.xxSi// by assp

8. D cnd.formsub.sub i
Ex
.pP q; Ex/;gvar.xSi/;num.xxSi//;

formsub.sub i
Ex
.pQq; Ex/;gvar.xSi/;num.xxSi/// 1,2 T13.58a

9. D cnd.subSi
Ex
.pP q; Ex/; subSi

Ex
.pQq; Ex// 3,4DE

Indct: For any i, PA ` sub i
Ex
.cnd.pP q; pQq/; Ex// D cnd.sub i

Ex
.pP q; Ex/; sub i

Ex
.pQq; Ex//.

So PA ` subEx.cnd.pP q; pQq/; Ex// D cnd.subEx.pPq; Ex/; subEx.pQq; Ex//. Now moving
to the desired result,

1. Prvpa.subEx.pP ! Qq; Ex// A (g,!I)

2. pP ! Qq D cnd.pP q; pQq/ cap

3. Prvpa.subEx.cnd.pP q; pQq/; Ex// 1,2DE

4. Prvpa.cnd.subEx.pP q; Ex/; subEx.pQq; Ex/// 3 above

5. Prvpa.subEx.pP q; Ex//! Prvpa.subEx.pQq; Ex// 4 T13.53

6. Prvpa.subEx.pP ! Qq; Ex// !
ŒPrvpa.subEx.pPq; Ex//! Prvpa.subEx.pQq; Ex//� 1-5!I

So PA ` Prvpa.subEx.pP ! Qq; Ex// ! ŒPrvpa.subEx.pP q; Ex// ! Prvpa.subEx.pQq;
Ex//� which is to say, PA ` PrvpaŒŒP ! Q��! .PrvpaŒŒP ��! PrvpaŒŒQ��/.
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Finally the substitution result. In the simplest case, where x is some xi , then
PrvpaŒŒP .x/�� is of the sort Prvpa.formsub.pP .x/q;gvar. i /;num.x///. The free x
may be replaced by t so that PrvpaŒŒP .x/��xt is Prvpa.formsub.pP .x/q;gvar. i /;
num.t///. In case t is free for x in P , one might think this converts to PrvpaŒŒP .t/��.
We do not show the general case. However, we do obtain a result that moves certain
substitutions across the double bracket.

*T13.73. For distinct variables x and y, where t is one of ;, y, Sx, or Sy, and t is
free for x in P , then PA ` PrvpaŒŒP x

t ��$ PrvpaŒŒP ��xt .

We consider just the case when t = Sy. Others are similar and left for homework.
Where x is distinct from y, let t = Sy and suppose t is free for x in P . Let Ew be
the sequence x; y; Ez where x and y do not appear in Ez and x and y are variables
xi and xj . We set out to show PA ` sub u

Ew
.pP x

Sy
q; Ew/ D sub u

Ew
.pP q; Ew/xSy . The

result follows easily. The equality between these terms first obtains at sub 2
Ew

and
continues after. So our sequence for the induction is sub 2

Ew
, sub 3

Ew
, and so on. Say

the indexes on Ez begin at three.

Basis: PA ` sub 2
Ew
.pP x

Syq; Ew/ D sub 2
Ew
.pPq; Ew/xSy .

See the derivation on the following page.
Assp: For 2 u, PA ` sub u

Ew
.pP x

Syq; Ew/ D sub u
Ew
.pP q; Ew/xSy .

Show: PA ` subSu
Ew
.pP x

Syq; Ew/ D subSu
Ew
.pPq; Ew/xSy .

1. subSu
Ew
.pP x

Sy
q; Ew/

2. D formsub.sub u
Ew
.pP x

Sy
q; Ew/;gvar.zSu/;num.xzSu// def sub

3. D formsub.sub u
Ew
.pP q; Ew/x

Sy
;gvar.zSu/;num.xzSu// by assp

4. D formsub.sub u
Ew
.pP q; Ew/;gvar.zSu/;num.xzSu//

x
Sy

abv

5. D subSu
Ew
.pP q; Ew/x

Sy
def sub

Indct: For any u, PA ` sub u
Ew
.pP x

Syq; Ew/ D sub u
Ew
.pPq; Ew/xSy .

Line (4) is justified insofar as x does not appear in Ez and the substitution does
not interact with xzSu . So PA ` sub Ew.pP x

Sy
q; Ew/ D sub Ew.pP q; Ew/xSy . So byDE,

PA ` Prvpa.sub Ew.pP x
Sy
q; Ew//$ Prvpa.sub Ew.pPq; Ew//xSy , where this is to say,

PA ` PrvpaŒŒP x
Sy ��$ PrvpaŒŒP ��xSy .

This completes what we set out to show in this section. And we are positioned for
a demonstration of the third derivability condition.

E13.52. Provide a demonstration for T13.63.

*E13.53. Provide a demonstration for T13.65. Hard-core: Show all of T13.64–
T13.69.
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Hints for T13.65. The argument is an induction on the value of u. For the
show you need PA ` subSSu

Ey0
.pPq; Ey0/ D subSSu

EyuC1
.pPq; EyuC1/. The key is that subSSu

EySu
.pPq; EySu/ =

formsubŒformsub.subu
EySu
.pPq; EySu/;gvar.ySu/;num.xySu //;gvar.a/;num.xa/�—and you will be able to

use T13.64. As a preliminary it will be useful to show with T13.58g that for any
a, b, and formula P , PA ` formsub.formsub.pPq;gvar.a/;num.xa//;gvar.b/;num.xb// D formsub.

formsub.pPq;gvar.b/;num.xb//;gvar.a/;num.xa//.

Hints for T13.67. Where Eyu = xy1 : : : xyu ; xa; xyuC1 : : : xyn , let Ez = xy1 : : : xyu

and Ez0 = xyuC1 : : : xyn so Eyu = Ez; xa; Ez
0; then it suffices to show that (�) PA `

subu
Ez
.pPq; Ez/ D subSu

xa;Ez
.pPq; xa; Ez/: for by T13.64, PA proves subu

Eyu
.pPq; Eyu/ is subu

Ez
.pPq; Ez/;

with (�) this is subSu
xa;Ez

.pPq; xa; Ez/; by T13.66, this is subSu
Ez;xa

.pPq; Ez; xa/; and by T13.64
again, this is just subSu

Eyu
.pPq; Eyu/.

Hints for T13.69. Where the variables of Ey are xy1 : : : xym and of Ez are xz1 : : : xzn ,
let i:j “count” from 0:0 to m:n so that when ySi = zSj then S.i:j/ = Si:Sj, and when
ySi = zSj then S.i:j/ = i:Sj. Then you will be able to show that for any member of
this i:j sequence, PA ` sub i

Ey
.pP q; Ey/ D sub j

Ez
.pP q; Ez/.

*E13.54. Complete ;-case to T13.73. Hard-core, complete all of the remaining cases.
Hint: for the ;- and Sx-cases you need only consider the sequence Ew D x; Ez.

T13.73 (basis)

1. W ff .pP q/ ^ Freefor.pSq � gvar. j /;gvar. i /; pP q/ cap

2. Var.gvar. i // ^ Var.gvar. j // ^ Term.num.x// T13.57c,n

3. sub 1
Ew
.pP x

Sy
q; Ew/

4. D formsub.pP x
Sy
q;gvar. i /;num.x// def sub

5. D pP x
Sy
q 2 T13.55l

6. sub 2
Ew
.pP x

Sy
q; Ew/

7. D formsub.sub 1
Ew
.pP x

Sy
q; Ew/;gvar. j /;num.y// def sub

8. D formsub.pP x
Sy
q;gvar. j /;num.y// 3-5DE

9. D formsub.formsub.pP q;gvar. i /; pSq � gvar. j //;gvar. j /;num.y// cap

10. D formsub.formsub.pP q;gvar. i /;num.Sy//;gvar. j /;num.y// 1,2 T13.58m

11. sub 1
Ew
.pP q; Ew/

12. D formsub.pP q;gvar. i /;num.x// def sub

13. sub 2
Ew
.pP q; Ew/x

Sy

14. D formsub.sub 1
Ew
.pP q; Ew/;gvar. j /;num.y//x

Sy
def sub

15. D formsub.formsub.pP q;gvar. i /;num.x//;gvar. j /;num.y//x
Sy

11-12DE

16. D formsub.formsub.pP q;gvar. i /;num.Sy//;gvar. j /;num.y// abv

17. sub 2
Ew
.pP x

Sy
q; Ew/ D sub 2

Ew
.pP q; Ew/x

Sy
6-10,13-16DE

Line (5) is justified by the corollary to T13.55l insofar as x is not free in P x
Sy .
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13.5.4 The Condition

We turn now showing that for any †? formula P , PA ` P ! PrvpaŒŒP ��. This is the
result we need for D3 and so with D1, D2, and T13.8 to complete the demonstration
of Gödel’s second ı̃ncompleteness theorem for PA.

T13.74. For any †? formula P , PA ` P ! PrvpaŒŒP ��.

Let P be a †? formula. By induction on the number of operators in P ,

Basis: If a †? P has no operator symbols, then for distinct variables x, y, and
:, it is an atomic of the sort ; D :, y D :, Sy D :, x C y D :, or
x � y D :.

(;) Suppose P is ; D z. Homework.

(y) Suppose P is y D z. Homework.

(S ) Suppose P is Sy D z. Reason as follows:

1. Sy D Sy DI
2. PrvpaŒŒSy D Sy�� 1 T13.71
3. Sy D z A (g,!I)

4. PrvpaŒŒ.Sy D z/z
Sy
�� 2 abv

5. PrvpaŒŒSy D z��z
Sy

4 T13.73

6. PrvpaŒŒSy D z�� 5,3DE

7. Sy D z ! PrvpaŒŒSy D z�� 3-6!I

Observe that T13.71 applies to theorems, and so not to formulas under the
assumption for!I. We thus take care to restrict its application to formulas
against the main scope line. Also lines (4)–(6) apply a pattern we shall
see repeatedly: First line (5) applies T13.73 to (4); unabbreviated, (5)
is Prvpa.suby;z.pSy D zq; y; z//zSy ; which is, Prvpa.suby;z.pSy D zq;
y; Sy//; and so byDE, Prvpa.suby;z.pSy D zq; y; z//, which is (6).

(+) Suppose P is x C y D z. Then PA ` P ! PrvpaŒŒP ��. The proof in PA
requires appeal to IN, with induction on the value of x in 8y.x C y D
z ! PrvpaŒŒx C y D z��/. See the derivation on page 735.

(�) Suppose P is x � y D z. Then PA ` P ! PrvpaŒŒP ��. The proof in PA
requires appeal to IN on the value of x in 8z.x�y D z ! PrvpaŒŒx�y D
z��/. The argument is as on page 736.

Assp: For any i , 0 i k if a †? P has i operator symbols, then PA ` P !

PrvpaŒŒP ��.

Show: If a †? P has k operator symbols, then PA ` P ! PrvpaŒŒP ��.

If †? P has k operator symbols, then it is of the form, A ^ B, A _ B,
9xA, or .8x � y/A where y is not in A, for †? A and B with k

operator symbols.
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(^) P is A ^B. Reason as follows:
1. A! PrvpaŒŒA�� by assp
2. B ! PrvpaŒŒB�� by assp
3. A! .B ! .A ^B// T9.4
4. PrvpaŒŒA! .B ! .A ^B//�� 3 T13.71
5. A ^B A (g,!I)

6. PrvpaŒŒA�� from 1,5
7. PrvpaŒŒB�� from 2,5
8. PrvpaŒŒA��! PrvpaŒŒB ! .A ^B/�� 4 T13.72
9. PrvpaŒŒB ! .A ^B/�� 8,6!E

10. PrvpaŒŒB��! PrvpaŒŒA ^B�� 9 T13.72
11. PrvpaŒŒA ^B�� 10,7!E

12. .A ^B/! PrvpaŒŒA ^B�� 5-11!I

(_) Similarly.

(9) P is 9xA. Reason as follows:
1. A! PrvpaŒŒA�� by assp
2. A! 9xA T3.30
3. PrvpaŒŒA! 9xA�� 2 T13.71
4. 9xA A (g,!I)

5. A A (g, 49E)

6. PrvpaŒŒA�� 1,5!E
7. PrvpaŒŒA��! PrvpaŒŒ9xA�� 3 T13.72
8. PrvpaŒŒ9xA�� 7,6!E

9. PrvpaŒŒ9xA�� 4,5-8 9E

10. 9xA! PrvpaŒŒ9xA�� 4-9!I

Let PrvpaŒŒ9xA�� at (8) have the same free variables as 9xA; then x is not
free in PrvpaŒŒ9xA��, and the restriction is met for 9E at (9).

(8) P is .8x � y/A. The argument in PA requires appeal to IN, for induction
on the value of y. See the derivation on page 737.

Indct: For any †? formula P , PA ` P ! PrvpaŒŒP ��.

Now it is a simple matter to pull together our results into the third derivability
condition.

T13.75. For any formula P , PA ` �P ! ��P .

Consider any formula P and the †1 sentence .�P /†1 . By T13.62, there is a
.�P /†? such that PA ` .�P /†1 $ .�P /†? . By T13.74, PA ` .�P /†? !

PrvpaŒŒ.�P /†? ��. Reason as follows:
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1. .�P /†1 $ .�P /†? T13.62
2. .�P /†? ! PrvpaŒŒ.�P /†? �� T13.74

3. PrvpaŒŒ.�P /†? ! .�P /†1 �� 1 T13.71
4. PrvpaŒŒ.�P /†? ��! PrvpaŒŒ.�P /†1 �� 3 T13.72
5. .�P /†1 ! PrvpaŒŒ.�P /†1 �� 1,2,4 HS

So for the †1 sentence �P , PA ` �P ! PrvpaŒŒ�P ��; and since �P is a
sentence, this is to say, PA ` �P ! Prvpa.p�Pq/; which is to say, PA `
�P ! ��P .

So, at long last, we have a demonstration of D3 and so, given demonstration of the
other conditions, a complete demonstration that PA does not prove its own consistency!

E13.55. Complete the demonstration of T13.74 by completing the remaining cases.

13.6 Reflections on the Second Theorem

It is worth reflecting a bit on what we have accomplished. Beginning in section 13.2
we saw how the second theorem results for recursively axiomatized theories extending
Q that satisfy the derivability conditions. We then set out to show that PA satisfies the
derivability conditions. The first is easy, the others not. In section 13.3 we introduced
the idea of definition in PA and demonstrated that PA defines functions coordinate to
(friendly) recursive functions. 13.4 moves to demonstration of the second condition:
Supposing �.P ! Q/ and �P , the basic idea of combining derivations to obtain �Q,
and so �.P ! Q/ ! .�P ! �Q/ is straightforward. But considerable effort is
expended to show that PA has the resources for the relevant results. And we have just
completed discussion of the third condition, in which we simplified the problem by
substitution theorems and †? formulas. If you have gotten this far you have seen the
theorem proved. Thus you have progressed considerably beyond the initial argument
from the derivability conditions. One reason why it is typical to bypass the details is
that there are so many details—not all themselves mathematically significant. Still, it
is interesting to see how reasoning from Chapter 12 is reflected in PA for the second
theorem.

We conclude this chapter with a couple final reflections and consequences on our
results. In particular we say something about alternate characterizations of consistency,
and then about the relation between Gödel’s second theorem and Löb’s theorem.

13.6.1 Consistency sentences

As is common for discussions of Gödel’s second theorem, we have let Conpa be
�Prvpa.p; D S;q/. But other sentences would do as well. So, where F is any
formula whose negation is a theorem, we might let Conpaa be �Prvpa.pF q/. In
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T13.74(+)

1. ; C y D y T6.56

2. x C Sy D z $ Sx C y D z T6.48,T6.58

3. PrvpaŒŒ; C y D y�� 1 T13.71

4. PrvpaŒŒx C Sy D z ! Sx C y D z�� 2 T13.71

5. .x C y D z/x
;

A (g,!I)

6. ; C y D z 5 abv

7. y D z 1,6DE

8. PrvpaŒŒ.; C y D z/zy �� 3 abv

9. PrvpaŒŒ; C y D z��zy 8 T13.73

10. PrvpaŒŒ; C y D z�� 9,7DE

11. PrvpaŒŒ.x C y D z/x
;
�� 10 abv

12. PrvpaŒŒx C y D z��x
;

11 T13.73

13. .x C y D z/x
;
! PrvpaŒŒx C y D z��x

;
5-12!I

14. .x C y D z ! PrvpaŒŒx C y D z��/x
;

13 abv

15. 8y.x C y D z ! PrvpaŒŒx C y D z��/x
;

14 8I

16. 8y.x C y D z ! PrvpaŒŒx C y D z��/ A (g,!I)

17. .x C y D z/x
Sx

A (g,!I)

18. Sx C y D z 17 abv

19. x C Sy D z 2,18$E

20. .x C y D z ! PrvpaŒŒx C y D z��/y
Sy

16 8E

21. x C Sy D z ! PrvpaŒŒx C y D z��y
Sy

20 abv

22. PrvpaŒŒx C y D z��y
Sy

21,19!E

23. PrvpaŒŒx C Sy D z�� 22 T13.73

24. PrvpaŒŒx C Sy D z��! PrvpaŒŒSx C y D z�� 4 T13.72

25. PrvpaŒŒSx C y D z�� 24,23!E

26. PrvpaŒŒx C y D z��x
Sx

25 T13.73

27. .x C y D z/x
Sx
! PrvpaŒŒx C y D z��x

Sx
17-26!I

28. .x C y D z ! PrvpaŒŒx C y D z��/x
Sx

27 abv

29. 8y.x C y D z ! PrvpaŒŒx C y D z��/x
Sx

28 8I

30. 8y.x C y D z ! PrvpaŒŒx C y D z��/ !

8y.x C y D z ! PrvpaŒŒx C y D z��/x
Sx

16-29!I

31. 8y.x C y D z ! PrvpaŒŒx C y D z��/ 15,30 IN

Observe that insofar as PrvpaŒŒP .Ex/�� just is a (complex) formula with Ex free, quantifier
rules apply in the usual way; in particular, 8I at (15) and (29), and 8E at (20) are as usual.

So PA ` x C y D z ! PrvpaŒŒx C y D z��.
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T13.74(�)

1. ; � y D ; T6.63
2. Sx � y D z $ x � y C y D z T6.65
3. x � y D v ! .v C y D z ! x � y C y D z/ T3.38
4. PrvpaŒŒ; � y D ;�� 1 T13.71
5. PrvpaŒŒx � y C y D z ! Sx � y D z�� 2 T13.71
6. PrvpaŒŒx � y D v ! .v C y D z ! x � y C y D z/�� 3 T13.71
7. .x � y D z/x

;
A (g,!I)

8. ; � y D z 7 abv
9. z D ; 1,8DE

10. PrvpaŒŒ.; � y D z/z
;
�� 4 abv

11. PrvpaŒŒ; � y D z��z
;

10 T13.73
12. PrvpaŒŒ; � y D z�� 11,9DE
13. PrvpaŒŒ.x � y D z/x

;
�� 12 abv

14. PrvpaŒŒx � y D z��x
;

13 T13.73
15. .x � y D z/x

;
! PrvpaŒŒx � y D z��x

;
7-14!I

16. .x � y D z ! PrvpaŒŒx � y D z��/x
;

15 abv
17. 8z.x � y D z ! PrvpaŒŒx � y D z��/x

;
16 8I

18. 8z.x � y D z ! PrvpaŒŒx � y D z��/ A (g,!I)

19. .x � y D z/x
Sx

A (g,!I)

20. Sx � y D z 19 abv
21. x � y C y D z 2,20$E
22. 9v.x � y D v/ DI,9I
23. x � y D v A (g, 229E)

24. v C y D z 21,23DE
25. PrvpaŒŒv C y D z�� 24 (+) case
26. x � y D v ! PrvpaŒŒx � y D z��zv 18 8E
27. PrvpaŒŒx � y D z��zv 26,23!E
28. PrvpaŒŒx � y D v�� 27 T13.73
29. PrvpaŒŒx � y D v��! PrvpaŒŒv C y D z ! x � y C y D z�� 6 T13.72
30. PrvpaŒŒv C y D z ! x � y C y D z�� 29,28!E
31. PrvpaŒŒv C y D z��! PrvpaŒŒx � y C y D z�� 30 T13.72
32. PrvpaŒŒx � y C y D z�� 31,25!E
33. PrvpaŒŒx � y C y D z��! PrvpaŒŒSx � y D z�� 5 T13.72
34. PrvpaŒŒSx � y D z�� 33,32!E
35. PrvpaŒŒx � y D z��x

Sx
34 T13.73

36. PrvpaŒŒx � y D z��x
Sx

22,23-35 9E
37. .x � y D z/x

Sx
! PrvpaŒŒx � y D z��x

Sx
19-36!I

38. .x � y D z ! PrvpaŒŒx � y D z��/x
Sx

37 abv
39. 8z.x � y D z ! PrvpaŒŒx � y D z��/x

Sx
38 8I

40. 8z.x � y D z ! PrvpaŒŒx � y D z��/ !
8z.x � y D z ! PrvpaŒŒx � y D z��/x

Sx
18-39!I

41. 8z.x � y D z ! PrvpaŒŒx � y D z��/ 17,40 IN

So PA ` x � y D z ! PrvpaŒŒx � y D z��.
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T13.74(8)

1. Ax
;
! PrvpaŒŒAx

;
�� by assp

2. .8x � ;/A$ Ax
;

thrm (with T8.25)

3. PrvpaŒŒAx
;
! .8x � ;/A�� 2 T13.71

4. .8x � y/A
y
;

A (g,!I)

5. .8x � ;/A 4 abv

6. Ax
;

2,5$E

7. PrvpaŒŒAx
;
�� 1,6!E

8. PrvpaŒŒAx
;
��! PrvpaŒŒ.8x � ;/A�� 3 T13.72

9. PrvpaŒŒ.8x � ;/A�� 8,7!E

10. PrvpaŒŒ.8x � y/A��y
;

9 T13.73

11. .8x � y/A
y
;
! PrvpaŒŒ.8x � y/A��y

;
4-10!I

12. ..8x � y/A! PrvpaŒŒ.8x � y/A��/y
;

11 abv

13. Ax
Sy
! PrvpaŒŒAx

Sy
�� by assp

14. .8x � Sy/A$ ..8x � y/A ^Ax
Sy
/ use T13.11p

15. PrvpaŒŒ..8x � y/A ^Ax
Sy
/! .8x � Sy/A�� 14 T13.71

16. .8x � y/A! PrvpaŒŒ.8x � y/A�� A (g,!I)

17. ..8x � y/A ^Ax
Sy
/! PrvpaŒŒ.8x � y/A ^Ax

Sy
�� 16,13 (^) case

18. .8x � y/A
y
Sy

A (g,!I)

19. .8x � Sy/A 18 abv

20. .8x � y/A ^Ax
Sy

14,19$E

21. PrvpaŒŒ.8x � y/A ^Ax
Sy
�� 17,20!E

22. PrvpaŒŒ.8x � y/A ^Ax
Sy
��! PrvpaŒŒ.8x � Sy/A�� 15 T13.72

23. PrvpaŒŒ.8x � Sy/A�� 22,21!E

24. PrvpaŒŒ.8x � y/A��y
Sy

23 T13.73

25. .8x � y/A
y
Sy
! PrvpaŒŒ.8x � y/A��y

Sy
18-24!I

26. ..8x � y/A! PrvpaŒŒ.8x � y/A��/y
Sy

25 abv

27. ..8x � y/A! PrvpaŒŒ.8x � y/A��/ !

..8x � y/A! PrvpaŒŒ.8x � y/A��/y
Sy

16-26!I

28. .8x � y/A! PrvpaŒŒ.8x � y/A�� 12,27 IN

For (5) and (10) and then (19) and (24) it is important that y in a bounded quantifier of the
†? formula does not appear in A.

So PA ` .8x � y/A! PrvpaŒŒ.8x � y/A��.
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particular, we might simply consider the case where F is ? and set Conpaa =
�Prvpa.p?q/. Then it is easy to see that PA ` Conpa$ Conpaa.

PA ` ; D S; $?; so with D1, PA ` Prvpa.p; D S; $?q/; so with D2,
PA ` Prvpa.p; D S;q/ $ Prvpa.p?q/; and transposing, PA ` Conpa $
Conpaa.

Thus, having shown PA ° Conpa we have PA ° Conpaa as well.
Again, one might let Conpab = �9xŒPrvpa.x/ ^ Prvpa.til.x//�. Then we are

saying PA is consistent just in case there is no formula such that PA proves both it
and its negation. This might seem a particularly natural consistency sentence. Again,
PA ` Conpa $ Conpab. We show PA ` Prvpa.p; D S;q/ $ 9xŒPrvpa.x/ ^
Prvpa.til.x//� and transpose.

First from left to right: Since PA ` ; ¤ S;, and a contradiction implies anything,
for some formula A, PA ` ; D S; ! A and PA ` ; D S; ! �A. Reason as
follows:

1. ; D S; ! A thrm
2. ; D S; ! �A thrm

3. Prvpa.p; D S; ! Aq/ 1 D1
4. Prvpa.p; D S; ! �Aq/ 2 D1
5. Prvpa.p; D S;q/ A (g,!I)

6. Prvpa.p; D S;q/! Prvpa.pAq/ 3 D2
7. Prvpa.p; D S;q/! Prvpa.p�Aq/ 4 D2
8. Prvpa.pAq/ ^Prvpa.p�Aq/ 5,6,7
9. Prvpa.pAq/ ^Prvpa.til.pAq// 8 cap

10. 9xŒPrvpa.x/ ^Prvpa.til.x//� 9 9I

11. Prvpa.p; D S;q/! 9xŒPrvpa.x/ ^Prvpa.til.x//� 7-10!I

Now the other direction. First, generalize the notion of a basic sentence from
Chapter 4 (page 93) so that it applies not just to sentences but to formulas (and
forms) of any sentential or quantificational language—again, working up a tree, basic
expressions are the first expressions that do not have an operator from the sentential
language as main operator. So the basic formulas of Fx ^ 9yGxy are Fx and
9yGxy. Say B1 : : :Bn are a (sentential) basis for the formulas of some context (say
a derivation) just in case B1 : : :Bn are the basic expressions from all the formulas of
that context.

Now where B1 : : :Bn are a basis for A, consider some variables b1 : : : bn; let
B�i be bi ; �P � be til.P �/; and .P ! Q/� be cnd.P �;Q�/. Then by an easy
induction PA ` .W ff .b1/ ^ : : : ^W ff .bn// ! W ff .A�/. And we shall be able to
show that if

ÀDs
P , and B1 : : :Bn are a basis for formulas of its derivation, then

PA ` .W ff .b1/ ^ : : : ^ W ff .bn// ! Prvpa.P �/. Though we put off details to
homework, it is simple enough to see how the argument goes: The argument is an
induction on the line number of a derivation, like ones we saw in Chapter 9. Consider
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an ADs derivation of P ; and assume W ff .b1/ ^ : : : ^ W ff .bn/: Corresponding to
any axiom A, we may use T13.39h,i to get Axiompa.A�/ and then T13.57f for
Prvpa.A�/. Corresponding to an application of MP to some A and A ! B, use
T13.53 to convert Prvpa.cnd.A�;B�// to Prvpa.A�/! Prvpa.B�/ and apply MP.
As an example, consider the following lines of a sort we might have obtained in
Chapter 3:

1. A! .B ! A/ A1
2. ŒA! .B ! A/�! Œ.A! B/! .A! A/� A2
3. .A! B/! .A! A/ 1,2 MP

Then A and B are a basis. And we may reason,

0. W ff .a/ ^W ff .b/ A (g, DT)

1.1. Axiompa.cnd.a; cnd.b; a/// 0 T13.39h,i
1. Prvpa.cnd.a; cnd.b; a/// 1.1 T13.57f

2.1. Axiompa.cnd.cndŒa; cnd.b; a/�; cndŒcnd.a; b/; cnd.a; a/�// 0 T13.39h,i
2. Prvpa.cnd.cndŒa; cnd.b; a/�; cndŒcnd.a; b/; cnd.a; a/�// 2.1 T13.57f

3.1. Prvpa.cndŒa; cnd.b; a/�/! Prvpa.cndŒcnd.a; b/; cnd.a; a/�/ 2 T13.53
3. Prvpa.cndŒcnd.a; b/; cnd.a; a/�/ 3.1, 1 MP

4. .W ff .a/ ^W ff .b//! Prvpa.cndŒcnd.a; b/; cnd.a; a/�/ 0-3 DT

And similarly we might show the correlate to T3.9, ` �A! .A! B/, which we
record as a theorem.

T13.76. PA ` .W ff .a/ ^W ff .b//! Prvpa.cndŒtil.a/; cnd.a; b/�/

But then we may reason as follows:

1. W ff .p; D S;q/ cap
2. 9xŒPrvpa.x/ ^Prvpa.til.x//� A (g,!I)

3. Prvpa.j / ^Prvpa.til.j // A (g, 29E)

4. W ff .j / 3 T13.52l
5. Prvpa.cndŒtil.j /; cnd.j; p; D S;q/�/ 1,4 T13.76
6. Prvpa.til.j //! Prvpa.cnd.j; p; D S;q// 5 T13.53
7. Prvpa.cnd.j; p; D S;q// from 3,6
8. Prvpa.j /! Prvpa.p; D S;q/ 7 T13.53
9. Prvpa.p; D S;q/ from 3,8

10. Prvpa.p; D S;q/ 2,3-9 9E

11. 9xŒPrvpa.x/ ^Prvpa.til.x//�! Prvpa.p; D S;q/ 2-10!I

Note that we reason with free variables under the assumption for 9E. Thus it is
important that theorems 13.52l, 13.76, and 13.53 have application not merely to
numerals, but to free variables.

Putting the different parts together, PA ` Prvpa.p; D S;q/$ 9xŒPrvpa.x/ ^
Prvpa.til.x//� and, transposing, PA ` Conpa$ Conpab. So, to this extent, it does
not matter which version of the consistency statement we select. Underlying the
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point that these different statements are equivalent is that anything follows from a
contradiction—so that the one follows from the others.13 Having shown PA ° Conpa,
we therefore have PA ° Conpaa and PA ° Conpab. These are particular sentences
which, like G , are unprovable. They have special interest because they are true just in
case PA is consistent.

Still, it is worth asking whether there is some different sentence to express the
consistency of PA such that it would be provable. Consider for example a trick related
to the Rosser sentence. Let,

Prfpac.x; y/ = Prfpa.x; y/ ^ .8v � x/�Prfpa.v; p; D S;q/

So Prfpac.x; y/ requires a measure of consistency: it says x numbers a proof of the
formula numbered y and no proof numbered less than or equal to x demonstrates
inconsistency (; D S;). Then so long as T is a recursively axiomatized theory
extending Q and T is consistent, Prfpac.x; y/ continues to capture PRFPA.x; y/.

(i) Suppose T is a recursively axiomatized theory extending Q and T is consis-
tent. Suppose hm; ni 2 PRFPA. (a) By capture, T ` Prfpa.m; n/. And (b),
since T is consistent, there is no proof of a contradiction in T and again by cap-
ture, T ` �Prfpa.0; p; D S;q/; T ` �Prfpa.1; p; D S;q/ and . . . and T `
�Prfpa.m; p; D S;q/; so with T8.25, T ` .8v � m/�Prfpa.v; p; D S;q/.
So T ` Prfpac.m; n/.

(ii) Suppose hm; ni … PRFPA; by capture, T ` �Prfpa.m; n/; so T ` �ŒPrfpa.m; n/
^ .8v � m/�Prfpa.v; p; D S;q/�, and this is just to say T ` �Prfpac.m; n/.

Given this, set Prvpac.y/ = 9xPrfpac.x; y/, and Conpac = �Prvpac.p; D S;q/.
The idea, then, is that Conpac just in case there is no proof, in the sense of Prfpac, of
a contradiction.

But Prvpac is designed so that Prvpac.p; D S;q/ is impossible—by its definition,
Prvpac.p; D S;q/ requires an x that numbers a proof of ; D S; such that no v � x
numbers a proof of ; D S;. This is impossible; thus it is nearly immediate that
PA ` �9xŒPrfpa.x; p; D S;q/ ^ .8v � x/�Prfpa.v; p; D S;q/�, and so that
PA ` Conpac. This works because Prfpac builds in from the start that nothing
numbers a proof of ; D S;.

Intuitively, so long as PA is consistent, Prfpac works just fine. But if PA is not
consistent, then Prfpac no longer tracks with proof. If PA is not consistent, then there
may be an m such that Prfpa.m; p/ though there is no n such that Prfpac.n; p/—just
because m is greater than the number of the proof of 0 D 1. Similarly, if PA is

13This equivalence breaks down in a non-classical logic which blocks ex falso quodlibet, the principle
that from a contradiction anything follows. So, for example, in relevant logic, it might be that there is
some A such that T ` A ^�A but T ° ; D S;. See Priest, Non-Classical Logics for an introduction
to these matters.
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consistent, Conpac is true, as it should be. But if PA is inconsistent then it no longer
tracks with consistency—so it is not the case that T is consistent iff Conpac . So its
provability is, in this sense, uninteresting.

Insofar as Conpac is provable it must be that Prvpac fails one or more of the
derivability conditions. To see how this might be, suppose PA is inconsistent and
proofs are ordered so that,

PRFPA.p; pA! Bq/ PRFPA.q; pAq/ PRFPA.r; p; D S;q/ PRFPA.s; pBq/

where p q r s, r is the least number for a proof of ; D S;, and s is the least
number for a proof of B. Then PA ` Prvpa.pA! Bq/ and PA ` Prvpa.pAq/,
so that PA ` Prvpa.pBq/. However both PA ` Prvpac.pA! Bq/ and PA `
Prvpac.pAq/ but, insofar as proofs of B are numbered greater than the proof of
; D S;, PA ° Prvpac.pBq/. In this case, D2 fails, so that our main argument to
show PA ° Conpa does not apply to Conpac.

Of course, one might suggest that yet a different expression, or perhaps some
change to the numbering or derivation systems would yield the provability of con-
sisentcy. With respect to expressions, we have seen some equivalent to our original
formulation and so not provable—and another that, while provable, does not yield
consistency. Thus we have a template for thinking about alternatives to our demonstra-
tion that a natural consistency sentence is not provable with our standard derivation
and numbering system.14

*E13.56. Provide the argument to show that if
ÀDs

P and B1 : : :Bn are a basis for
its derivation, then PA ` .W ff .b1/ ^ : : : ^W ff .bn// ! Prvpa.P �/. You may
take as given that for any Q for which B1 : : :Bn are a basis, PA ` .W ff .b1/ ^
: : : ^W ff .bn//! W ff .Q/.

E13.57. Provide the argument to show that PA ` Conpac.

13.6.2 Löb’s Theorem

There is an analogy between Gödel’s first ı̃ncompleteness theorem and the “paradox
of the liar.” On the face of it, ‘This sentence is not true’ (‘I am lying now’) cannot
consistently be assumed to be either true or not true (think about it—and for an
accessible introduction, see Chapter 6 of Read, Thinking About Logic). And there is
a related puzzle about the “truth teller.” So, ‘This sentence is true’ can sensibly be
assumed to be either true or not true. And there are corresponding questions about
provability. By the diagonal lemma there is a sentence H such that H $ ��H ,
analogous to the liar, which says of itself that it is not provable; we have seen that

14For discussion and further references see note 9 on page 646 along with Grabmayr, “On the
Invariance of Gödel’s Second Theorem.”
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such an H is not provable. Similarly by the diagonal lemma there is an H such that
H $ �H , analogous to the truth teller, which says of itself that it is provable. In a
brief note, “A Problem Concerning Provability” L. Henkin asks whether this latter H

is provable. The answer has interesting ramifications. An answer to Henkin’s question
follows immediately from Löb’s theorem.

T13.77. Suppose T is a recursively axiomatized theory extending Q for which the
derivability conditions D1–D3 hold and for some sentence P , T ` �P ! P ,
then T ` P . Löb’s Theorem.

Suppose T is a recursively axiomatized theory extending Q for which the deriv-
ability conditions hold and for some sentence P , T ` �P ! P . Since T
is a recursively axiomatized theory extending Q, the diagonal lemma obtains.
Consider Prvt.y/ ! P ; this is an expression of the sort F .y/ to which the
diagonal lemma applies; so by the diagonal lemma there is some H such that
T ` H $ .Prvt.pHq/ ! P /—that is, T ` H $ .�H ! P /. Reason as in
the upper box on page 744.

Now return to our original question. Suppose T ` P $ �P ; then T ` �P ! P ;
so by Löb’s theorem, T ` P . So if T proves P $ �P , then T proves P .

Löb’s theorem is at least surprising! From s̃oundness, if P is provable then P , so
that �P ! P is true. One might think that PA would “believe” in its s̃oundness so
that any such sentence would be provable. But from the theorem, if PA ° P , then
PA ° �P ! P . So in any case when PA ° P , PA does not “know” about its own
s̃oundness with respect to P . Observe that insofar as �P ! P is true, for any case
where PA ° P we have here another sentence true but not provable.

And the theorem permits some interesting observations. First, an application to
the logic of provability. We have thought of � as an abbreviation in LNT, applied in
forms whose operators are �,!, and �. By obtaining the derivability conditions, we
have shown that K4 is s̊ound in the sense that, at the level of such forms, if K̀4 P

then PA ` P —if expressions of form P are theorems of K4, then (unabbreviated)
expressions of that same form are theorems of PA. It is natural to ask if the converse
is true, whether K4 is c̊omplete so that if PA ` P , then K̀4 P . But K4 is not so
c̊omplete. To see this let K4LR be like K4 but with the addition of the Löb rule,

LR If T ` �P ! P then T ` P .

By Löb’s theorem, K4LR is s̊ound, so that if K̀4LR P , then PA ` P . But by its appeal
to the diagonal lemma, the proof of Löb’s theorem is not entirely contained within
K4. And, in fact, K4LR has theorems that are not theorems of K4. In particular,

K̀4LR �.�P ! P /! �P ,
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1. �Œ�.�P ! P /! �P �! Œ��.�P ! P /! ��P � D2
2. �.�P ! P /! .��P ! �P / D2
3. �.�P ! P /! ��.�P ! P / D3
4. �Œ�.�P ! P /! �P �! Œ�.�P ! P /! �P � 1,2,3 T6.4
5. �.�P ! P /! �P 4 LR

From this, PA ` �.�P ! P / ! �P . But from E13.60 just below, 6�K4 �.�P !

P /! �P so that from the s̊oundness of K4 on its (worlds) semantics, 6 K̀4 �.�P !

P /! �P . So PA proves something that K4 does not. So K4 is not c̊omplete in the
sense that if PA ` P then K̀4 P .

It is worth observing that K4LR is equivalent to a logic GL that drops the Löb
rule and is like K4 with D3 replaced by �.�P ! P /! �P . Since K4LR proves
�.�P ! P /! �P , K4LR proves anything proved by GL. And GL proves anything
proved by K4LR: By E13.59 below, the Löb rule is derived in GL. And though D3 is
replaced by the new axiom, it remains a theorem of GL. For this, see the lower box on
the next page. Since they are equivalent, together with K4LR, GL is s̊ound in the sense
that if G̀L P then PA ` P . In fact GL (K4LR) is also c̊omplete so that if PA ` P

then G̀L P . So GL (K4LR) represents the logic of provability. But discussion of its
c̊ompleteness is a matter for another place (see Boolos, The Logic of Provability).

Finally, given that Löb’s theorem depends upon the derivability conditions, it is
perhaps not surprising that Löb’s theorem both results in and results from Gödel’s
second theorem: First, the second theorem follows from Löb’s result.

For some recursively axiomatized T including PA, suppose Löb’s theorem but not
Gödel’s second theorem. With the latter, T is consistent and T ` ��.0 D 1/;
from the second of these, with _I and Impl, T ` �.0 D 1/! 0 D 1; so by Löb’s
theorem T ` 0 D 1: but T ` 0 ¤ 1; so T is inconsistent. Reject the assumption:
Gödel’s second theorem obtains.

And Löb’s theorem follows from Gödel’s second theorem.15 For this we shall
need a couple of preliminary results. First, a result analogous to the deduction theorem
(T9.3). For some theory T extending PA, let T 0 be T [ fP g. Then T 0 demonstrates
that if A is provable in T 0, then P ! A is provable in T . Thus, noticing the
distinction between Prvt and Prvt0,

T13.78. For a recursively axiomatized T including PA and sentences P and A, let T 0

be T [ fP g; then T 0 ` Prvt0.pAq/! Prvt.pP ! Aq/.

Consider a recursively axiomatized theory T including PA and sentences P and
A with Gödel numbers p and a. Let T 0 be T [ fP g. Reasoning in the case where
T just is PA, the basic structure of the argument is as from the box on page 746.
Reasoning reflects that for the deduction theorem.

15This argument originates from a lecture by Saul Kripke. See Kripke, “On Two Paradoxes of
Knowledge,” pages 47–48; and Smith, An Introduction to Gödel’s Theorems, page 257.
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T13.77
1. �P ! P prem
2. H $ .�H ! P / diag lemma
3. ŒH ! .�H ! P /� ^ Œ.�H ! P /! H � 2 abv
4. H ! .�H ! P / 3 with T3.21
5. �ŒH ! .�H ! P /� 4 D1
6. �ŒH ! .�H ! P /�! Œ�H ! �.�H ! P /� D2
7. �H ! �.�H ! P / 6,5 MP
8. �.�H ! P /! .��H ! �P / D2
9. �H ! .��H ! �P / 7,8 T3.2

10. Œ�H ! .��H ! �P /�! Œ.�H ! ��H /! .�H ! �P /� A2
11. .�H ! ��H /! .�H ! �P / 10,9 MP
12. �H ! ��H D3
13. �H ! �P 11,12 MP
14. �H ! P 13,1 T3.2
15. .�H ! P /! H 3 with T3.20
16. H 15,14 MP
17. �H 16 D1
18. P 14,17 MP

So if T ` �P ! P , then T ` P

D3 in GL

1. �P ! ŒP ! .�P ^P /� T9.4
2. .��P ^ �P /! �P T3.20
3. .��P ^ �P /! ŒP ! .�P ^P /� 2,1 T3.2
4. P ! Œ.��P ^ �P /! .�P ^P /� 3 T3.3
5. �.�P ^P /! .��P ^ �P / E13.8
6. Œ.��P ^ �P /! .�P ^P /�! Œ�.�P ^P /! .�P ^P /� 5 T3.5
7. P ! Œ�.�P ^P /! .�P ^P /� 4,6 T3.2
8. �.P ! Œ�.�P ^P /! .�P ^P /�/ 7 D1
9. �.P ! Œ�.�P ^P /! .�P ^P /�/ !

.�P ! �Œ�.�P ^P /! .�P ^P /�/ D2
10. �P ! �Œ�.�P ^P /! .�P ^P /� 9,8 MP
11. �Œ�.�P ^P /! .�P ^P /�! �.�P ^P / GL
12. �P ! �.�P ^P / 10,11 T3.2
13. �P ! .��P ^ �P / 12,5 T3.2
14. .��P ^ �P /! ��P T3.21
15. �P ! ��P 13,14 T3.2
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Now let T 0 = T [ f�P g. Suppose T ` P ; then both T 0 ` P and T 0 ` �P , so
that T 0 is inconsistent. And with T10.6, if T ° P , then T 0 is consistent. So T 0 is
consistent iff T ° P . Thus one might treat �Prvt.pP q/ as yet another consistency
sentence for T 0, true iff T 0 is consistent—and provably equivalent to Cont0. We shall
require just one side of this equivalence, that if T 0 ` �Prvt.pPq/ then T 0 ` Cont0.
For this, distinguish �T and �T 0 corresponding to Prvt and Prvt0. Then by application
of T13.78, T 0 ` �T 0A! �T .�P ! A/. And,

T13.79. For a recursively axiomatized T including PA, let T 0 be T [ f�P g; then if
T 0 ` ��TP , then T 0 ` Cont0.

Let T be a recursively axiomatized theory including PA, and T 0 be T [ f�P g,
and suppose T 0 ` ��TP . Since T includes PA, T ` .�P ! 0 D 1/! P ; so
with D1 and D2, T ` �T .�P ! 0 D 1/ ! �TP ; and because T 0 extends T ,
T 0 ` �T .�P ! 0 D 1/! �TP . Now reasoning in T 0,

1. ��TP from T 0

2. �T .�P ! 0 D 1/! �TP as above
3. �T 0.0 D 1/! �T .�P ! 0 D 1/ T13.78
4. �Cont0 A (c, �E)

5. �T 0.0 D 1/ 4 abv
6. �T .�P ! 0 D 1/ 5,3!E
7. �TP 2,6!E
8. ? 1,7 ?I
9. Cont0 4-8 �E

So if T 0 ` ��TP , then T 0 ` Cont0.

And if desired, it is not hard to show the other direction, that if T 0 ` Cont0 then
T 0 ` ��TP .16

Now to show that Gödel’s second theorem implies Löb’s theorem we may reason
as follows:

For some recursively axiomatized T including PA, suppose Gödel’s second the-
orem but not Löb’s theorem. From the latter, for some P , T ` �TP ! P

but T ° P . If T is inconsistent, then T ` P ; but T ° P ; so T is consistent.
Since T is consistent and T ° P by T10.6, T [ f�P g is consistent. Let T 0

be T [ f�P g; so T 0 is consistent. Since T 0 extends T , T 0 ` �TP ! P , and
since it has �P as an axiom, T 0 ` �P ; so by MT, T 0 ` ��TP . But since T 0 is
consistent, by Gödel’s second theorem, T 0 ° Cont0; so by T13.79, T 0 ° ��TP .
This is impossible: Löb’s theorem obtains.

16Within T 0 suppose Cont0; then, as from the previous section, �9xŒPrvt0.x/ ^ Prvt0.til.x//�.
Assume for contradiction that Prvt.pPq/; then since T 0 includes T , Prvt0.pPq/; and since �P is an
axiom of T 0, Prvt0.til.pPq//; so, generalizing, 9xŒPrvt0.x/ ^ Prvt0.til.x//�; reject the assumption,
�Prvt.pPq/.
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T13.78
1. Sent.p/ cap
2. W ff .p/ cap
3. Prvt0.a/ A (g ,!I)

4. 9xPrft0.x; a/ 3 abv
5. Prft0.m; a/ A (g , 49E)

6. exp.m; len.m :
� 1// D a 5 T13.39j

7. 1 < m 5 T13.39j
8. .8k < len.m//ŒAxiomt.exp.m; k//_ p D exp.m; k/_

.9i < k/.9j < k/Icon.exp.m; i/;exp.m; j /;exp.m; k//� 5 T13.39j
9. .8z < x/Œz < len.m/! Prvt.cnd.p;exp.m; z///� A (g ,!I)

10. x < len.m/ A (g ,!I)

11. Axiomt.exp.m; x//_ p D exp.m; x/_
.9i < x/.9j < x/Icon.exp.m; i/;exp.m; j /;exp.m; x// 8,10 (8E)

12. Axiomt.exp.m; x// A (g , 11_E)

13. W ff .exp.m; x// 12 T13.52k
14. Prvt.exp.m; x// 12 T13.57f
15. Axiomt.cnd.exp.m; x/; cnd.p;exp.m; x//// 2,13 T13.39h,i
16. Prvt.cnd.exp.m; x/; cnd.p;exp.m; x//// 15 T13.57f
17. Prvt.exp.m; x//! Prvt.cnd.p;exp.m; x/// 16 T13.53
18. Prvt.cnd.p;exp.m; x/// 17,14!E

19. p D exp.m; x/ A (g , 11_E)

20. Prvt.cnd.p; p// 2 as T13.76
21. Prvt.cnd.p;exp.m; x/// 20,19DE

22. .9i < x/.9j < x/Icon.exp.m; i/;exp.m; j /;exp.m; x// A (g , 11_E)

:
:
:

23. Prvt.cnd.p;exp.m; x/// homework

24. Prvt.cnd.p;exp.m; x/// 11,12-18,19-21,22-23 _E
25. x < len.m/! Prvt.cnd.p;exp.m; x/// 10-24!I

26. .8z < x/Œz < len.m/! Prvt.cnd.p;exp.m; z///� !
Œx < len.m/! Prvt.cnd.p;exp.m; x///� 9-25!I

27. 8xf.8z < x/Œz < len.m/! Prvt.cnd.p;exp.m; z///� !
Œx < len.m/! Prvt.cnd.p;exp.m; x///�g 26 8I

28. 8xŒx < len.m/! Prvt.cnd.p;exp.m; x///� 27 T13.11ag
29. ; < len.m/ 7 T13.44h
30. len.m/ :� 1 < m 29 T13.21g
31. Prvt.cnd.p;exp.m; len.m/ :� 1/// from 28,30
32. Prvt.cnd.p; a// 31,6DE

33. Prvt.cnd.p; a// 4,5-32 9E
34. Prvt0.a/! Prvt.cnd.p; a// 3-33!I

So T 0 ` Prvt0.pAq/ ! Prvt.cnd.pP q; pAq//, and by capture, T 0 ` Pprvt0.pAq/ !
Prvt.pP ! Aq/. From Prvt0.a/ there is a sequence numbered m with last member A

such that each member is an axiom of T , P itself, or arises from previous members by a
rule. Then from the inductive assumption (9), and x < len.m/ at (10), the main task is to
show Prvt.cnd.p; exp.m; x///. In this case where T is PA, we freely appeal to theorems
from before. It will be clear how to extend the result to recursively axiomatized theories
extending PA.
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This argument depends upon T13.79, which in turn depends upon D1 and D2. But
by reasoning from the second-to-last sentence above, if T 0 is consistent, then T 0 °
��TP . Treating ��TP itself as a consistency sentence for T 0, this result appears
as an instance of Gödel’s second theorem. Then Löb’s theorem follows from (this
instance of) the second theorem without separate appeal to T13.79. At any rate, the
force of Löb’s theorem is closely related to that of Gödel’s second theorem. We might
have expected something of the sort insofar as our K4 derivation of Löb’s theorem for
T13.77 requires all three of the derivability conditions no less than the K4 derivation
of the key result T13.7 for Gödel’s second theorem.

E13.58. In the middle of a restless night dreaming about PA you bolt out of bed.
“Eureka!” you cry, “I have discovered a simple means for proving the consistency
of arithmetic in a consistent theory.” Supposing PA is consistent, your idea is
to show PA ` �.0 D 1/ ! 0 D 1; then from PA ` 0 ¤ 1 it follows that
PA ` ��.0 D 1/ and so that PA ` Conpa. Explain why this is one of those ideas
that seems better at night than in the cold light of day.

E13.59. Show that if G̀L �P ! P then G̀L P , and so that the Löb rule is derived in
GL.

*E13.60. For those with some knowledge of worlds semantics for modal logic: K4 is
the normal modal logic with a transitive access relation. (i) Find a K4 interpretation
to show 6�K4 �.�P ! P /! �P by a case where P is atomic. Hint: You can do
this on an interpretation with just one world. (ii) Where the worlds are a; b; c and
aRb; bRc; aRc, show that the axiom is true at a. Remark: The axiom is valid on
interpretations which are such that R is transitive and every non-empty set Z of
worlds has a member x 2 Z with no y 2 Z such that xRy (so R is transitive and
R�1 is well-founded). Observe that (ii) meets this condition, but in your answer to
(i) it must fail. Challenge: show that the axiom is valid on interpretations which
meet the condition.

E13.61. Complete the demonstration for T13.78 in the case where T is PA. You may
find the result from E13.44, that PA ` .Sent.p/ ^ Var.v// ! �Freef .p; v/

useful.

*E13.62. Reasoning for Löb’s theorem is closely related to Curry’s paradox. For this
read �P to say that P is true rather than that it is provable. Consider some false
sentence F , as ‘I have no head’. Let C be the sentence, “If this sentence is true
then F ”—that is, “If ‘C ’ is true then F .” Take as given,
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D10. if P , then �P truth analog to D1
D20. �.P ! Q/! .�P ! �Q/ truth analog to D2
D30. �P ! ��P truth analog to D3

And as premises,

10. �F ! F from nature of truth (Tarski’s schema T)
20. C $ .�C ! F / from the definition of C

Use these principles to show that you have no head. Reflect on this result (if,
indeed, you can without a head): When � indicates provability, we are in a
position to deny (1) that PA ` �P ! P whenever PA ` �P . But it may seem
less plausible to deny (10) in a context where �F . Supposing you do have a head,
what do you think is wrong? For discussion, see Chapter 6 of Read, Thinking
About Logic.

E13.63. For each of the following concepts, explain in an essay of about two pages,
so that (college freshman) Hannah could understand. In your essay, you should
(i) identify the objects to which the concept applies, (ii) give and explain the
definition, and give and explicate examples (iii) where the concept applies, and
(iv) where it does not. Your essay should exhibit an understanding of methods
from the text. The last three might be based on working, or maybe just paging,
through the relevant sections.

a. The essential elements contributing to the proof (from this chapter) of the
ı̃ncompleteness of arithmetic.

b. With special focus on section 13.2, the essential elements contributing to the
demonstration that PA does not prove its own consistency.

c. The essential elements contributing to the demonstration that PA defines
friendly recursive functions.

d. The essential elements contributing to the demonstration of the second deriv-
ability condition.

e. The essential elements contributing to the demonstration of the third derivabil-
ity condition.
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Final Theorems of Chapter 13

T13.54. Further results for Termsub.

T13.55. Further results for Formsub.

T13.56. Results for Freefor.

T13.57. Results for num, Gen, and A4.

T13.58. Results for iterated substitutions.

T13.59. For any atomic P of the form t D x where x does not appear in t, there is a †?
formula P†? such that PA ` P $ P†? .

T13.60. For any �0 formula P�0 , there is a normal formula PN such that ` P�0 $ PN.

T13.61. For any �0 formula P�0 there is a †? formula P†? such that PA ` P�0 $ P†? .

T13.62 For any †1 formula P†1 there is a †? formula P†? such that PA ` P†1 $ P†? .

T13.63 For any i and formula P , PA ` W ff .sub i
Ey
.pPq; Ey//.

corollary: PA ` W ff .sub Ey.pP q; Ey//.

T13.64–T13.70 Theorems leading to T13.70: If Ex and Ey include all the free variables of
formula P , then PA ` subEx.pP q; Ex/ D sub Ey.pP q; Ey/.

T13.71 If PA ` P , then PA ` PrvtŒŒP ��. (analog to D1)

T13.72 PA ` PrvtŒŒP ! Q��! .PrvtŒŒP ��! PrvtŒŒQ��/. (analog to D2)

T13.73 For distinct variables x and y, where t is one of ;, y, Sx, or Sy, and t is free for
x in P , then PA ` PrvpaŒŒP x

t ��$ PrvpaŒŒP ��xt .

T13.74 For any †? formula P , PA ` P ! PrvtŒŒP ��.

T13.75 For any formula P , PA ` �P ! ��P . (D3)

T13.76 PA ` .W ff .a/ ^W ff .b//! Prvt.cndŒtil.a/; cnd.a; b/�/.

T13.77 Suppose T is a recursively axiomatized theory extending Q for which the deriv-
ability conditions D1–D3 hold and for some sentence P , T ` �P ! P , then
T ` P . Löb’s Theorem.

T13.78 For a recursively axiomatized T including PA and sentences P and A, let T 0 be
T [ fP g; then T 0 ` Prvt0.pAq/! Prvt.pP ! Aq/.

T13.79 For a recursively axiomatized T including PA, let T 0 be T [ f�P g; then if
T 0 ` ��TP , then T 0 ` Cont0.



Chapter 14

Logic and Computability

In the introduction to Part IV we raised the question whether there is an effective
method to decide if a given sentence is a theorem. In this chapter we take up that
question, along with some topics in computability more generally. We begin with
the notion of a Turing machine and a Turing computable function; then we shall
be able to show that the Turing computable functions are the same as the recursive
functions (section 14.1). Once we have seen this, it is a short step from a problem
about computability—the halting problem—to another demonstration of essential
results (section 14.2). Further, according to Church’s thesis, the Turing computable
functions, and so the recursive functions, are all the algorithmically computable
functions. This converts results like T12.23 according to which no recursive relation
is true just of (numbers for) theorems of predicate logic, into ones according to which
no algorithmically decidable relation is true just of theorems of predicate logic—
where this result is much more than a curiosity about an obscure class of functions
(section 14.3).

14.1 Turing Computable Functions

We begin saying what a Turing machine, and the Turing computable functions are.
Then we turn to demonstrations that Turing computable functions are recursive, and
recursive functions are Turing computable.

14.1.1 Turing Machines

A Turing machine is a simple device which, despite its simplicity, is capable of
computing any recursive function—and capable of computing whatever is computable
by the more sophisticated computers with which we are familiar.1

1So called after Alan Turing, who originally proposed them hypothetically, prior to the existence
of modern computing devices, for purposes much like our own. Turing went on to develop electro-
mechanical machines for code breaking during World War II, and was involved in development of early

750
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We may think of a Turing machine as consisting of a tape, machine head, and a
finite set of instruction quadruples.

(A) 1 0 1
N

The tape is a sequence of cells, infinite in two directions, where the cells may be
empty or filled with 0 or 1. The machine head, indicated by arrow, reads or writes
the contents of a given cell, and moves left or right, one cell at a time. The head is
capable of five actions: (L) move left one cell; (R) move right one cell; (B) write a
blank; (0) write a zero; (1) write a one. When the head is over a cell it is capable of
reading or writing the contents of that cell.

Instruction quadruples are of the sort, hq1;C;A; q2i and constitute a function in
the sense that no two quadruples have hq1;Ci the same but hA; q2i different. For an
instruction quadruple: (q1) labels the quadruple; (C) is a possible state or content
of the scanned cell; (A) is one of the five actions; (q2) is a label for some (other)
quadruples. In effect, an instruction quadruple q1 says, “if the current cell has content
C, perform action A and go to instruction q2.” The machine begins at an instruction
with label q1 = 1, and stops after executing an instruction with q2 = 0.2

For a simple example, consider the following quadruples, along with the tape (A)
from above.

(B)
h1; 0;R; 1i 1: if 0, move right and return to instruction 1
h1; 1; 0; 1i 1: if 1, write 0 and return to instruction 1
h1;B; L; 2i 1: if blank, move left and go to instruction 2

h2; 0; L; 2i 2: if 0, move left and return to instruction 2
h2;B;R; 0i 2: if blank, move right and stop

The machine begins at label 1. In this case, the head is over a cell with content 1; so
from the second instruction the machine writes 0 in that cell and returns to instruction
label 1. Because the cell now contains 0, the machine reads 0; so, from instruction 1,
the head moves right one space and returns to instruction 1 again. Now the machine
reads 0; so it moves right again and returns to instruction 1. Because it reads 1, again
the machine writes 0 and goes to instruction 1 where it moves right and goes to 1.
Now the head is over a blank; so it moves left one cell, and goes to 2. At instruction
2, the head moves left so long as the tape reads 0. When the head reaches a blank, it
moves right one space, back over the word, and stops. So the result is,

(C) 0 0 0
N

In the standard case, we begin with a blank tape except for one or more binary
“words” where the words are separated by single blank cells, and the machine head is

stored-program computers after the war. The Imitation Game (film, 2014) is a dramatization of his life.
2Specifications of Turing machines differ somewhat. So, for example, some versions allow instruc-

tion quintuples, and allow different symbols on the tape. Nothing about what is computable changes on
the different accounts.
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over the leftmost cell of the leftmost block. The above example is a simple case of
this sort, but also,

(D) 1 0 1 1 1 1 0 1 0 1
N

And in the usual case the program halts with the head over the leftmost cell of a single
word on the tape. A total function f.Ex/ is Turing computable when, beginning with Ex
on the tape in binary digits, the result is f.Ex/. (A Turing machine might calculate the
values of a function that is partial in the sense that it does not return a value for every
input string; we are particularly interested in total functions.) Thus our little program
computes zero.x/, beginning with any x and returning the value 0.

It will be convenient to require that programs are dextral (right-handed), in the
sense that (a) in executing a program we never write in a cell to the left of the initial
cell, or scan a cell more than one to the left of the initial cell; and (b) when the program
halts, the head is over the initial cell and the final result begins in the same cell as the

Binary Numbers
With the proliferation of electronic devices, we are surrounded by applications of
the binary number system. Still, it is possible to interact with such devices without
understanding how they work! Given their importance, most of us will have been
introduced to binary numbers at one time or another. In any case, here is a quick
primer.

A standard number system has some base whose powers are the places of numbers
in that system. So, for example, in the usual base 10,

. . .
10000 1000 100 10 1

104 103 102 101 100

A numeral tells us how many of the powers there are in each place. So, for example,
1234 = .1 1000/ .2 100/ .3 10/ .4 1/. Notice that for base b, the digits
are 0 through b 1. And similarly for the binary system whose base is 2 with just
digits 0 and 1.

. . .
16 8 4 2 1

24 23 22 21 20

Then, for example, 1101 = .1 8/ .1 4/ .0 2/ .1 1/—that is, 13. The
binary system is particularly convenient in the context of electronic devices (and
Turing Machines!) whose “mechanism” conveniently records just the “on/off”
states corresponding to 1 and 0.
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initial scanned cell. This does not affect what can be computed, but aids in predicting
results when Turing programs are combined. Our little program is dextral.

A program to compute suc.x/ is not much more difficult. Let us begin by thinking
about what we want the program to do. With a three-digit input word, the desired
outputs are,

000 � 001 100 � 101
001 � 010 101 � 110
010 � 011 110 � 111
011 � 100 111 � 1000

Moving from the right of the input word, we want to turn any one to a zero until we
can turn a zero (or a blank) to a one. Here is a way to do that:

(F)
h1; 0;R; 1i move to end of word
h1; 1;R; 1i
h1;B; L; 5i

h5; 0; 1; 7i flip 1 to 0 then 0 or blank to 1
h5; 1; 0; 6i
h5;B; 1; 7i

h6; 0; L; 5i

h7; 0; L; 7i return to start
h7; 1; L; 7i
h7;B;R; 0i

Do not worry about the gap in instruction labels. Nothing so far requires instruction
labels be sequential. This program moves the head to the right end of the word; from
the right, flips one to zero until it finds a zero or blank; once it has acted on a zero or
blank, it returns to the start.

So far, so good. But there is a problem with this program: In the case when the
input is, say,

(G) 1 1 1
N

the output is,

1 0 0 0
N

with the first symbol one to the left of the initial position. We turn the first blank to
the left of the initial position to a one. So the program is not dextral. The problem is
solved by “shifting” the word in the case when it is all ones:
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(H)

if solid ones shift right flip 1 to 0 then 0 to 1
h1; 0;R; 4i h5; 0; 1; 7i
h1; 1;R; 1i h5; 1; 0; 6i
h1;B; 1; 2i h5;B; 1; 7i

h2; 1; L; 2i h6; 0; L; 5i
h2;B;R; 3i

return to start
h3; 1;B; 3i h7; 0; L; 7i
h3;B;R; 4i h7; 1; L; 7i

h7;B;R; 0i
h4; 0;R; 4i
h4; 1;R; 4i
h4;B; L; 5i

Stages 5, 6, and 7 are as before. This time we test to see if the word is all ones. If not,
the program jumps to 4 where it goes to the end, and to the routine from before. If it
gets to the end without encountering a zero, it writes a one, returns to the beginning
and deletes the initial symbol—so that the entire word is shifted one to the right. Then
it goes to instruction 4 so that it goes to the right and works entirely as before. This
time the output from tape (G) is,

1 0 0 0
N

as it should be. It is worthwhile to follow the actual operation of this and the previous
program on one of the many Turing simulators available on the web (see E14.1).

More complex is a copy program to take an input x and return x:x. This program
has four basic elements:

(1) A sort of control section which says what to do, depending on what sort of
character we have in the original word. If the character is 0 or 1, write a blank
to “mark the spot” and jump to the appropriate copy program. If the character is
a blank, jump to the finish.

(2) A program to copy 0; beginning from blank in the original word, move right to
the second blank (across the blank between words, and to the blank to be filled);
write a 0; move left to the original position, and replace the 0.

(3) Similarly a program to copy 1; beginning from blank in the original word, move
right to the second blank; write a 1; move left to the original position, and
replace the 1.

(4) And a program to move the head back to the original position when we are done.

Here is a program to do the job:
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(I)

(1) Control (2) Copy 0 (3) Copy 1
h1; 0;B; 10i move from blank move from blank
h1; 1;B; 20i h10;B;R; 11i h20;B;R; 21i
h1;B; L; 30i

right 2 blanks: 0 right 2 blanks: 1
(4) Finish h11; 0;R; 11i h21; 0;R; 21i
start of word h11; 1;R; 11i h21; 1;R; 21i
h30; 0; L; 30i h11;B;R; 12i h21;B;R; 22i
h30; 1; L; 30i
h30;B;R; 0i h12; 0;R; 12i h22; 0;R; 22i

h12; 1;R; 12i h22; 1;R; 22i
h12;B; 0; 13i h22;B; 1; 23i

left 2 blanks: 0 left 2 blanks: 1
h13; 0; L; 13i h23; 0; L; 23i
h13; 1; L; 13i h23; 1; L; 23i
h13;B; L; 14i h23;B; L; 24i

h14; 0; L; 14i h24; 0; L; 24i
h14; 1; L; 14i h24; 1; L; 24i
h14;B; 0; 15i h24;B; 1; 25i

next char: return next char: return
h15; 0;R; 1i h25; 1;R; 1i

You should be able to follow each stage.

*E14.1. If you have not already done so, install some convenient version of Ruby on
your computing platform (compare E12.3). Then obtain the Turing machine sim-
ulator from the text website, https://tonyroyphilosophy.net/symbolic-
logic/. (See the files “running ruby” and “running the simulator” for help.)
Study the copy program from the text along with the sample file suc.rb from the
website. Then, starting with blank.rb, create Turing programs to compute the
following. It will be best to submit your programs electronically.

a. copy.m/. Takes input m and returns m:m. This is a simple implementation of
the program from the text.

b. zero./. Hint: Since zero./ has no input, it operates only on a blank portion of
the tape. This will be the easiest Turing program you ever write.

c. pred.n/. Hint: For later applications, it will be helpful to give your function
two separate exit paths: One when the input is a string of 0s, returning with
the input. In any other case, subtract one. The method simply flips that for
successor: From the right, change 0 to 1 until some 1 can be flipped to 0.
There is no need to worry about the addition of a possible leading 0 to your
result.

https://tonyroyphilosophy.net/symbolic-logic/
https://tonyroyphilosophy.net/symbolic-logic/
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d. idnt33.x; y; z/. For x:y:z observe that z might be longer than x and y put together.
Here is a way to proceed: z is not longer than x, y, and z put together. So move
to the start of the third word; use copy to generate x:y:z:z then plug spaces so
that you have one long first word, xoyoz:z; you can mark the first position of
the long word with a blank; then it is a simple matter of running a basic copy
routine from right to left, and erasing junk when you are done.

e. Combine your zero./ and idnt33.x; y; z/ to form zero2.x; y/ = idnt33.x; y; zero.//.
You will want to move past the first two words, run zero./, return to the start,
and run idnt33.

Hint: Be sure to comment liberally, or you will never be able to unscramble
what you have done! Also, “outline-style” indentation of code can help clarify
subordination.

14.1.2 Turing Computable Functions are Recursive

We turn now to showing that the (dextral) Turing computable functions are the same
as the recursive functions. This divides into showing that every Turing computable
function is recursive, and then that every recursive function is Turing computable. In
this section, we show the first. But we begin with the simpler result that there is a
recursive enumeration of Turing machines. We shall need this as we go forward, and
it will let us compile some important preliminary results along the way.

The method is by now familiar. It will require some work, but we can do it in the
same way as we approached formulas and theorems before. Begin by assigning to
each symbol a Gödel Number.

a. gŒB� = 3 d. gŒL� = 9
b. gŒ0� = 5 e. gŒR� = 11
c. gŒ1� = 7 f. gŒqi� = 13 2i

For a quadruple, say, hq1;B; L; q1i, set g = 215 33 59 715. And for a sequence
of quadruples with numbers g0; g1; : : : ; gn the super Gödel number gs = 2g0 3g1

� � � p
gn
n . Again, for convenience we frequently refer to the individual symbol codes

with angle quotes around the symbol so hBi = 3, and to expressions by corner quotes
so pBq = 23.

Now we define a recursive function and some simple recursive relations,

lb.v/ = y13C y2v

LB.n/ = .9v � n/.n D lb.v//

SYM.n/ = n D yhBi _ n D yh0i _ n D yh1i

ACT.n/ = SYM.n/ _ n D yhLi _ n D yhRi
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QUAD.n/ = len.n/ D y4^ LB.exp.n; y0//^ SYM.exp.n; y1//^ ACT.exp.n; y2//^ LB.exp.n; y3//

lb.v/ is the Gödel number of instruction label v. Then the relations are true when n is
the number for an instruction label, a symbol, an action, and a quadruple. In particular,
a code for a quadruple numbers a sequence of four symbols of the appropriate sort.

We are now ready to number the Turing machines. For this, adopt a simple
modification of our original specification: We have so-far supposed that a Turing
machine might lack any given quadruple, say h3; 1; x; yi. In case it lacks this quadruple,
if the machine reads 1 and is sent to state 3 it simply “hangs” with no place to go.
Where q is the largest label in the machine, we now suppose that for any p q, if
no hp;C; x; yi is a member of the machine, the machine is simply supplemented with
hp;C;C; pi. The effect is as before: In this case, there is a place for the machine to go;
but if the machine goes to hp;C;C; pi, it remains in that state, repeating it over and
over. In the case of label 0, the states are added to the machine, but serve no function,
as the zero label forces halt. Further, we suppose that the quadruples in a Turing
machine are taken in order, h0; 0; x; yi, h0; 1; x; yi, h0;B; x; yi, h1; 0; x; yi, h1; 1; x; yi,
h1;B; x; yi, . . . , hq; 0; x; yi, hq; 1; x; yi, hq;B; x; yi. So each Turing machine has a
unique specification. On this account, a Turing machine halts when it reaches a state
of the sort h0; x; y; zi. And the ordered specification itself guarantees the functional
requirement—that there are no two quadruples with the first values the same and the
latter different. So for TMACH.n/,

.9w < len.n//.len.n/ D y3 � .wC y2// ^ .8v W y3 � vC y2 < len.n//.8x � n/f

Œx D exp.n; y3 � v/! .QUAD.x/ ^ exp.x; y0/ D lb.v/ ^ exp.x; y1/ D yh0i/�^

Œx D exp.n; y3 � vC y1/! .QUAD.x/ ^ exp.x; y0/ D lb.v/ ^ exp.x; y1/ D yh1i/�^

Œx D exp.n; y3 � vC y2/! .QUAD.x/ ^ exp.x; y0/ D lb.v/ ^ exp.x; y1/ D yhBi/�g

Given our modifications, the length of a Turing machine must be a non-zero multiple of
three including at least the initial labels zero and one. So for some w, len.n/ = 3 .w 2/.
Then for each initial label v there are three quadruples; so there are quadruples 3 v,
3 v 1, and 3 v 2 taken in the standard order, each with initial label v. Since n is a
super Gödel number and each x the number of a quadruple, it is the exponents of x
that reveal the instruction label and cell content.

But now it is easy to see,

T14.1. There is a recursive enumeration of the Turing machines. Set,
mach.0/ = �zŒTMACH.z/�

mach.Sn/ = �zŒmach.n/ < z ^ TMACH.z/�

Since mach.n/ is a recursive function from the natural numbers onto the Turing
machines, they are recursively enumerable. While this enumeration is recursive, it is
not primitive recursive.

Now, as we work toward a demonstration that Turing computable functions are
recursive, let us pause for some key ideas. Consider a tape divided as follows:
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(J)

left¸
right

»
1 0 1 0 1 1 0

N

We shall code the tape with a pair of numbers—where at any stage the head divides
the tape into left and right parts, first a standard code for the right hand side p10110q,
and second a code for the left side read from the inside out pB01q. Taken as a pair,
these numbers record at once contents of the tape, and the position of the head—which
is always over the first digit of the coded right number.

Say a dextral Turing machine computes a total function f.n/ = m. Let us suppose
that we have recursive functions encode.a/ = b and decode.b/ = a to move between
a natural number a and the code b for its binary representation—so when f.n/ = m,
encode.n/ takes natural number n and returns the code for the initial tape value;
and decode takes the code for the final tape value and returns natural number m; so
running encode followed by (a coding of) the Turing machine then decode computes
the function. Thus we concentrate on the machine itself, and wish to track the status
of the Turing machine i given input n for each step j of its operation. In order to
track the status of the machine, we shall require functions left.i; n; j/, right.i; n; j/ to
record codes of the left and right portions of the tape, and state.i; n; j/ for the current
quadruple state of the machine.

First, as we have observed, for any Turing machine, there is a unique quadruple
for any instruction label q1 and content C. Thus machs.i; k; c/ numbers a quadruple
as a function of the number of the machine in the enumeration, and Gödel numbers
for an initial label and a cell content. Let machs.i; k; c/ be,

.�y � mach.i//.9v < len.mach.i///Œy D exp.mach.i/; v/ ^ exp.y; y0/ D k ^ exp.y; y1/ D c�

So machs.i; k; c/ returns the number of that quadruple in machine i whose initial label
has number k and cell content number c. Since the machine is a total function, there
must be a unique state with those values (when k is not an initial label or c not a
content the function simply defaults to mach.i/).

In addition, let us adopt a sort of converse to concatenation, lop.n; a/ that “lops”
an initial portion of length a off from n.

lop.n; a/ = .�x � n/.8i < len.n/ :
� a/.exp.x; i/ D exp.n; aC i//

So we want the least x such that its length is the length of n less a, and the exponents
of x at any position i are the same as those of n at a i.

Recall that our Turing machine is to calculate a function f.n/ = m. Initial values
of left.i; n; j/, right.i; n; j/, and state.i; n; j/ are straightforward.

left.i; n; 0/ = bpBBq
right.i; n; 0/ = encode.n/

state.i; n; 0/ = machs.i; lb.y1/; exp.right.i; n; y0/; y0//
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On a dextral machine, the machine never writes to the left of its initial position, and
the head never moves more than one position to the left of its initial position; so we
simply set the value of the left portion to a couple of blanks. This ensures that there is
enough “space” on the left for the machine to operate (and that, for any position of
the machine head, there is always a left portion of the tape). The starting right number
is just the code of the input to the function. And the initial state value is determined
by the instruction label 1 and the first value on the tape which is coded by the first
exponent of right.i; n; 0/.

For the successor values,

left.i; n;Sj/ =

8̂<̂
:

left.i; n; j/ if SYM.exp.state.i; n; j/; y2//
y2exp.right.i;n;j/;y0/ ? left.i; n; j/ if exp.state.i; n; j/; y2/ D yhRi
lop.left.i; n; j/; y1/ if exp.state.i; n; j/; y2/ D yhLi

If a symbol is written in the current cell, there is no change in the left number. If
the head moves to the left or the right, the first value is either appended or deleted,
depending on direction. And similarly for right.i; n;Sj/ but with separate clauses for
each of the symbols that may be written onto the first position. And now the successor
value for state is determined by the Turing machine together with the new label and
the value under the head after the current action has been performed.

state.i; n;Sj/ = machs.i; exp.state.i; n; j/; y3/; exp.right.i; n;Sj/; y0//

The machine jumps to a new state depending on the label and value on the tape.
Observe that we are here proceeding by simultaneous recursion, defining multiple
functions together. It should be clear enough how this works (see E12.26, page 610).

Let stop.i; n; j/ return the instruction label to which machine i on input n moves
after step j. If the machine enters a zero state then it halts; so stop.i; n; j/ takes the
value 0 just in case machine i with input n stops after step j. Thus,

stop.i; n; j/ = .�y � len.mach.i///.exp.state.i; n; j/; y3/ D lb.y//

exp.state.i; n; j/; y3/ is the Gödel number of the new instruction label; lb.y/ is the
Gödel number of label y; so exp.state.i; n; j/; y3/ = lb.y/ when y is the new label. So
stop.i; n; j/ takes the value 0 in case the label y is zero, and the machine halts.3

T14.2. Every Turing computable function is a recursive function. Supposing Turing
machine i computes a function f.n/,

f.n/ = decode.right.i; n; �jŒstop.i; n; j/ D y0�//

3These recursive functions are defined for any value of j; but their values after stop.i; n; j/
hits zero do not matter. Supposing that the zero states are filled with the particular instructions
h0; 0; 0; 0i; h0; 1; 1; 0i; h0;B;B; 0i, the recursive functions will continue to reflect the state of the halted
machine.
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When a dextral Turing machine stops, the value of right is just the code of its output
value m; so if we decode right.i; n; j/ at that stage, we have the value of the function
calculated by the Turing machine. Since the Turing computable function is total, there
must be some j where the machine is stopped; so the minimization operates on a
regular function. Since this function is recursive, the function calculated by Turing
machine i is a recursive function.

*E14.2. Find a recursive function to calculate right.i; n;Sj/. Hint: You might find a
combination of ? and lop useful for the case when a symbol is written into the
first cell.

*E14.3. Find recursive functions to calculate encode.n/ and decode.m/. Hint: You
may find it helpful to start with codes reversed so that they read from right to left;
then you can find a recursive rcode.n/ that returns the code for n, and flip the
result; decode results easily from encode.

E14.4. Suppose a “dual” Turing machine has two tapes, with a machine head for
each. Instructions are of the sort hqi;Ca;Cb;Aa;Ab; qji where a and b indicate the
relevant tape. Show that every function f.m; n/ that is dual Turing computable is
recursive. You may take encode and decode as given, and assume the machine
starts with values m and n on tapes a and b and ends with the value on tape a.
Hint: Once you set up your sextuples, each label will be associated with nine
different possible input combinations.

14.1.3 Recursive Functions are Turing Computable

To complete the demonstration that the recursive functions are identical to the Turing
computable functions, we now show that all recursive functions are Turing com-
putable.

T14.3. Every recursive function is Turing computable.

Suppose f.Ex/ is a recursive function. Then there is a sequence of recursive func-
tions f0; f1; : : : ; fn such that fn = f, where each member is either an initial function
or arises from previous members by composition, recursion, or regular minimiza-
tion. The argument is by induction on this sequence.

Basis: We have already seen that the initial function suc.x/ is Turing computable;
and similarly for zero./, and idntjk, as illustrated in E14.1.

Assp: For any i, 0 i k, fi.Ex/ is Turing computable.
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Show: fk.Ex/ is Turing computable.

fk is either an initial function or arises from previous members by compo-
sition, recursion, or regular minimization. If it is an initial function, then
reason as in the basis. So suppose fk arises from previous members.

(c) fk.Ex; Ey; Ez/ arises by composition from g.Ey/ and h.Ex;w; Ez/. By assumption
g.Ey/ and h.Ex;w; Ez/ are Turing computable. For the simplest case, consider
h.g.y//: Chain together Turing programs to calculate g.y/ and then h.w/—
so the first program operates upon y to calculate g.y/ and the second begins
where the first leaves off, operating on the result to calculate h.g.y//.
A case like h.x; g.y/; z/ is more complex insofar as g.y/ may take up a
different number of cells from y: it is sufficient to run a copy to get x:y:z:y;
then g.y/ to get x:y:z:g.y/; then copy for x:y:z:g.y/:z and a copy that uses
the last two numbers to get x:g.y/:z. Then you can run h. And similarly in
other cases.

(r) fk.Ex; y/ arises by recursion from g.Ex/ and h.Ex; y; u/. By assumption g.Ex/
and h.Ex; y; u/ are Turing computable. Recall our little programs from
Chapter 12 which begin by using g.Ex/ to find f.0/ and then use h.Ex; y; u/
repeatedly for y in 0 to b 1 to find the value of f.Ex; b/ (see, for example,
page 570). We shall reason similarly. For a representative case, consider
f.m; b/.

a. Produce a sequence,
m:b:m:b 1:m:b 2 : : :m:2:m:1:m:0:m

This requires a copypair.x; y/ that takes m:n and returns m:n:m:n and
pred.x/. Given m:b on the tape, run copypair to get m:b:m:b (and mark
the first cell of the first m with a blank). Then loop as follows: if the
final b is 0, delete it, go to the previous m, and move on to step (b);
otherwise run pred on the final b, move to previous m, run copypair,
and loop.

b. Run g on the last block of digits m. This gives,
m:b:m:b 1:m:b 2 : : :m:2:m:1:m:0:f.m; 0/

c. Back up to the previous m and run h on the concluding three blocks
m:0:f.m; 0/. This gives,

m:b:m:b 1:m:b 2 : : :m:2:m:1:f.m; 1/
And so forth. Stop when you reach the m with an extra blank (with
two blanks in a row). At that stage, we have, m�:b:f.m; b/. Fill the first
blank, run idnt33, and you are done.

Observe that the original m:b plays no role in the calculation other to serve
as the initial template for the series, and then as an end marker on your
way back up—there is never a need to apply h to any value greater than
b 1 in the calculation of f.m; b/.
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(m) fk.Ex/ arises by regular minimization from g.Ex; y/. By assumption, g.Ex; y/
is Turing computable. For a representative case, suppose we are given m
and want �yŒg.m; y/ D 0�.

a. Given m, produce m:0:m:0.

b. From a tape of the form m:y:m:y loop as follows: Move to the second
m; run g on m:y; this gives m:y:g.m; y/; check to see if the result is
zero; if it is, run idnt32 and you are done (this is the same as deleting
the last zero and running idnt22); if the result is not zero, delete g.m; y/
to get m:y; run suc on y; and then a copier to get m:y0:m:y0, and loop.
The loop halts when it reaches the value of y for which g has output
0—and there must be some such value if g is regular.

Indct: Any recursive function f.Ex/ is Turing computable.

And from T14.2 together with T14.3, the Turing computable functions are identical
to the recursive functions. It is perhaps an “amazing” coincidence that functions
independently defined in these ways should turn out to be identical. And we have
here the beginnings of an idea behind Church’s thesis which we shall explore in
section 14.3.

*E14.5. From exercise E14.1 you should already have Turing programs for suc.x/,
pred.x/, copy.x/, and idnt33.x; y; z/. Now produce each of the following, in order,
leading up to the recursive addition function. When you require one as part of
another simply copy it into the larger file.

a. The function, hplus.x; y; u/ = suc.idnt33.x; y; u//. For addition, g.x/ = idnt11.x/
= x, which requires no action; so we will not worry about that.

b. The function, copypair. Take a:b and return a:b:a:b. One approach is to
produce a simple modification of copy that takes a:b and produces a:b:a. Run
this program starting at a, and then another copy of it starting at b.

c. The function, cascade. This is the program to produce m:n:m:n 1:m:n 2
: : :m:0:m. The key elements are copypair and pred. To prepare for the next
stage, you should begin by running copypair and then “damage” the very first
m by putting a blank in its first cell. Let the program finish with the head on
m at the end.

d. The function, plus.m; n/. For this, g is trivial. So from plus.m; 0/ = m at the
far right of the sequence, back up two words; check to see if there is an extra
blank; if so, run idnt33 and you are done; if not, run h.x; y; u/ and loop.

There are easier ways to do addition on a Turing machine. The obvious strategy is
to put m in a location x and n in a location y; run suc on the value in location x
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and then pred on the value in location y; the result appears in x when pred hits
zero. The advantage of our approach is that it illustrates (an important case of) the
demonstration that a Turing machine can compute any recursive function.

E14.6. Produce each of the following, leading up to a Turing program for the function
�yŒch.x D pred.y// D y0�, that is the function which returns the least y such that x
equals the predecessor of y—such that the characteristic function of x D pred.y/
returns 0.

a. The function idnt22.x; y/. This can be a simple modification of idnt33.

b. The function ch.x D y/, which returns 0 when x = y and otherwise 1. This is,
of course, a recursive function. But you can get it more efficiently and more
directly. To compare numbers, you have to worry about leading zeros that
might make equivalent numbers physically distinct. One approach is to check
whether one or both of x and y is all zeros: if both, they are equivalent; if one,
they are not; otherwise, run pred on both, and loop.

c. The function ch.x D pred.y//. This is a simple case of composition.

d. The function �yŒch.x D pred.y// D y0�, by the routine discussed in the text.

Of course, for any number except 0, this is nothing but a long-winded equivalent
to suc.x/. The point, however, is to apply the algorithm for regular minimization,
and so to work through the last stage of the demonstration that recursive functions
are Turing computable.

14.2 Essential Results

In Chapter 12 essential results were built on Carnap’s equivalence and the diagonal
lemma. This time, we depend on a halting problem with special application to Turing
machines. Once we have established the halting problem, results like ones from before
follow in short order.

14.2.1 Halting

A Turing machine is a set of quadruples. Things are arranged so that Turing machines
do not “hang” in the sense that they reach a state with no applicable instruction. But a
Turing machine may go into a loop or routine from which it never emerges. That is, a
Turing machine may or may not halt in a finite number of steps. So for example, this
machine never stops.

h1; 0; 0; 1i
h1; 1; 1; 1i
h1;B;B; 1i
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For any input it simply repeats forever. This raises the question whether there is a
general way to tell whether Turing machines halt when started on a given input. This
is an issue of significance for computing theory. And, as we shall see, the answer has
consequences beyond computing.

The problem divides into narrower “self-halting” and broader “general-halting”
versions. First, the self-halting problem: By T14.1 there is an enumeration of the
Turing machines. Consider an enumeration of Turing machines, …0;…1; : : : and an
array as follows:

(K)

0 1 2 � � �

…0 …0.0/ …0.1/ …0.2/
…1 …1.0/ …1.1/ …1.2/
…2 …2.0/ …2.1/ …2.2/
:::

We run …0 on inputs 0; 1; : : :; …1 on 0; 1; : : :; and so forth. Now ask whether there
is a Turing program (that is, a recursive function) to decide in general whether …i

halts when applied to its own number in the enumeration—a program H.i/ such that
H.i/ = 0 if …i.i/ halts, and H.i/ = 1 if …i.i/ does not halt.

T14.4. There is no Turing machine H.i/ such that H.i/ = 0 if …i.i/ halts and H.i/ = 1
if it does not.

Suppose otherwise. That is, suppose there is a halting machine H.i/ where for any
…i.i/, H.i/ = 0 if …i.i/ halts and H.i/ = 1 if it does not. Chain this program into a
simple looping machine ƒ.j/ defined as follows:

hq; 0; 0; qi
hq; 1; 1; 0i

So when j = 0, ƒ goes into an infinite loop, remaining in state q forever; when
j = 1, ƒ halts gracefully with output 1. Let the combination of H and ƒ be �.i/;
so �.i/ calculatesƒ.H.i//. On our assumption that there is a Turing machine H.i/,
the machine � must appear in the enumeration of Turing machines with some
number d.

But this is impossible. Consider �.d/ and suppose �.d/ halts; since � halts on
input d, the halting machine, H.d/ = 0; and with this input,ƒ goes into the infinite
loop; so the composition ƒ.H.d// does not halt; and this is just to say �.d/ does
not halt. Reject the assumption: �.d/ does not halt. But since �.d/ does not halt,
the halting machine H.d/ = 1; and with this input, ƒ halts gracefully with output
1; so the composition ƒ.H.d// halts; and this is just to say �.d/ halts. Reject the
original assumption, there is no machine H.i/ which says whether an arbitrary
…i.i/ halts.
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For this argument, it is important that H is a component of �. Information about
whether � halts gives information about the behavior of H, and information about the
behavior of H, about whether � halts.

The more general question is whether there is a machine to decide for any …i and
n whether …i.n/ halts. But it is immediate that if there is no Turing machine to decide
the more narrow self-halting problem, there is no Turing machine to decide this more
general version.

T14.5. There is no Turing machine H.i; n/ such that H.i; n/ = 0 if …i.n/ halts and
H.i; n/ = 1 if it does not.

Suppose otherwise. That is, suppose there is a halting machine H.i; n/ where
for any …i.n/, H.i; n/ = 0 if …i.n/ halts and H.i; n/ = 1 if it does not. Chain this
program after a copier K.n/ which takes input n and gives n:n. The combination
H.K.i// decides whether …i.i/ halts. This is impossible; reject the assumption:
There is no such Turing machine H.i; n/.

And when combined with T14.3 according to which every recursive function is Turing
computable, these theorems which tell us that no Turing program is sufficient to solve
the halting problem, yield the result that no recursive function solves the halting
problem: If a function is recursive, then it is Turing computable; and since it is Turing
computable, it does not solve the halting problem. Observe that we may be able to
decide in particular cases whether a program halts. No doubt you have been able to
do so in exercises! What we have shown is that there is no perfectly general recursive
method to decide whether …i.n/ halts.

E14.7. Say a function is �-recursive just in case it satisfies the conditions for the
recursive functions but without the regularity requirement for minimization; so
�yŒg.Ex; y/ D y0� returns the least y such that both g.Ex; y/ = 0 and for every z y,
g.Ex; z/ 0 if there is one and otherwise is undefined. Where every recursive
function f.Ex/ is total in the sense that it returns a value for every Ex, some �-
recursive functions are partial insofar as there may be values of Ex for which
they return no value (as occurs when minimization is applied to a g.Ex; y/ that
never evaluates to zero); so all the recursive functions are �-recursive, but some
�-recursive functions are not recursive. Suppose that the �-recursive functions
can be numbered and that there is a �-recursive function emrfnc.i/ to enumerate
them; so emrfnc.i/ returns the Gödel number of the ith function in the enumeration.
(You will have occasion to produce this function in a later exercise.) Show that
there is no �-recursive function def.i/ such that def.i/ = 0 if fi.i/ is defined and
def.i/ = 1 if fi.i/ is undefined. Hint: Consider delta.i/ = �yŒdef.i/ D y ^ y D y1�
as applied to its own number in the enumeration. We might think of this as the
definition problem.
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14.2.2 The Decision Problem

Recall our demonstration from section 12.5.3 that if Q is consistent and L extends
LNT then no recursive relation identifies the L-theorems of predicate logic. With the
identity between the recursive functions and the Turing computable functions, this is
the same as the result that no Turing computable function identifies the L-theorems of
predicate logic. We are now in a position to obtain a related result directly, by means
of the halting problem. Recall from section 12.5.2 that a theory T is !-inconsistent
iff for some P .x/, T proves each P .m/ but also proves �8xP .x/. Equivalently, T
is !-inconsistent iff T proves each �P .m/ but also proves 9xP .x/. We show,

T14.6. If Q is !-consistent and L includes LNT, then no Turing computable function
prvpl.n/ is such that prvpl.n/ = 0 just in case n numbers an L-theorem of predicate
logic.

Suppose otherwise, that Q is !-consistent, L includes LNT, and some Turing
computable prvpl.n/ = 0 just in case n numbers an L-theorem of predicate logic.
Consider our recursive function stop.i; n; j/ which takes the value 0 if …i.n/ halts
after step j. Since it is recursive, stop is captured by some Stop.i; n; j; z/ so that,

(i) If …i.i/ halts after step j, Q ` Stop. i ; i ; j ;;/

(ii) If …i.i/ never halts, Q ` �Stop. i ; i ; j ;;/ for any j

Let H .i/ = 9zStop.i; i; z;;/. Then if …i.i/ halts, there is some j such that
Q ` Stop. i ; i ; j ;;/; so Q ` H . i /. And if …i.i/ never halts, for every j, Q `
�Stop. i ; i ; j ;;/; and since Q is !-consistent, Q ° H . i /. So …i.i/ halts iff
Q ` H . i /.

The axioms Q1–Q7 of Q are equivalent to their universal closures; with the axioms
in this form, let Q be the conjunction of Q1–Q7; since Q1–Q7 are particular
sentences, Q is a particular sentence; so Q ` H . i / iff Q ` H . i /; by DT iff
` Q! H . i /. So,

` Q! H . i / iff …i.i/ halts

Let q = pQq and h.i/ = formsub.2pH .i/q; cpiq; num.i//—so h.i/ is the number of
H . i /. Then prvpl.cnd.q; h.i/// takes the value 0 iff Q! H . i / is a theorem, iff
…i.i/ halts. So prvpl solves the halting problem. This is impossible; reject the
assumption: If Q is !-consistent, then there is no Turing computable function that
returns the value zero just for numbers of L-theorems of predicate logic.

Further, as observed on page 631, Q is !-consistent; it follows that no Turing com-
putable function prvpl.n/ takes the value 0 just in case n numbers an L-theorem
of predicate logic. And, of course, this is equivalent to the result that no recursive
function returns zero just for L-theorems of predicate logic.4

4This argument, and the parallel one in Chapter 12 have the advantage of simplicity. However,
this result that no recursive function returns zero just for L-theorems of predicate logic need not be
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E14.8. Return again to the �-recursive functions from E14.7. Take as given that
(i) relative to the enumeration of �-recursive functions, there is a �-recursive
murec.i; n/ that returns the value a iff fi.n/ = a and (ii) for any�-recursive function
f there is a†1 formula F so that if hhm1 : : :mni; ai 2 f then NŒF .m1 : : :mn; a/� =
T and if hhm1 : : :mni; ai … f then NŒ�F .m1 : : :mn; a/� = T. Given this, use the
definition problem from E14.7 to show that if Q is sound, then no �-recursive
function muprvpl.n/ is such that muprvpl.n/ = 0 just in case n numbers a theorem
of predicate logic.

Hint: Given murec.i; n/ consider the Murec.i; n; y/ such that if fi.n/ = a then
NŒMurec. i ; n; a/� = T, and if fi.n/ = a then NŒ�Murec. i ; n; a/� = T; as an
analog to H .i/, let Defined.i/ = 9zMurec.i; i; z/; show that fi.i/ is defined iff
Q ` Defined. i /.

14.2.3 Ĩncompleteness Again

In Chapter 12 and Chapter 13 we saw ı̃ncompleteness results in different forms: one
from consistency and capture, and another from s̃oundness and expression. We are
positioned to see the result again in both forms.

Semantic Version

In T12.19 we showed that the theorems of a recursively axiomatized formal theory
are recursively enumerable, and used this to show that PRVT is recursive for consistent
and negation c̃omplete theories. This contrasts with the corollary to T12.21 according
to which PRVT is not recursive for consistent theories extending Q. An ı̃ncompleteness
result follows. This time we shall be able to contrast the enumeration of theorems
with an enumeration of truths. The idea is to show that a Turing machine …t.i/ to
enumerate the truths of LNT solves the halting problem, and so that there is no such
Turing machine. Thus the enumeration of theorems is not an enumeration of all truths.

T14.7. The set of all truths in a language including LNT is not recursively enumerable.

Consider a language L including LNT and again our recursive function stop.i; n; j/;
since it is recursive, it is expressed by some Stop.i; n; j; z/; set H .i/ = 9zStop.i; i;
z;;/ and let h.i/ = formsub.2pH .i/q; cpiq; num.i//—so h.i/ is the number of
H . i /.

Suppose NŒH . i /� = T; then for some m, NŒStop. i ; i ;m;;/� = T; so by expression,
hhi; i;mi; 0i 2 stop; so …i.i/ stops. Suppose NŒH . i /� = T; then for any m 2 U,
NŒStop. i ; i ;m;;/� = T; so by expression, hhi; i;mi; 0i … stop; so …i.i/ never
stops. So (a) NŒH . i /� = T iff …i.i/ halts.

conditional on the consistency (or !-consistency) of Q. For an illuminating and direct demonstration
that no Turing machine solves the decision problem, see Chapter 11 of Boolos, Burgess, and Jeffrey,
Computability and Logic. See also page 632, note 21.



CHAPTER 14. LOGIC AND COMPUTABILITY 768

Now suppose some …t.i/ enumerates the truths of L, halting with output 0 if
h.i/ appears in the enumeration—if NŒH . i /� = T, and halting with output 1 if
til.h.i// appears in the enumeration—if NŒ�H . i /� = T. Exactly one of H . i / or
�H . i / is true; so the number for one of them will eventually turn up insofar as…t

enumerates all the truths of LNT. So (b) …t.i/ halts with output 0 iff NŒH . i /� = T.

By (a) and (b) …t.i/ halts with output 0 iff …i.i/ halts; so …t.i/ solves the halting
problem. This is impossible; reject the assumption: there is no such Turing
machine. And since no Turing machine enumerates the truths of L, no recursive
function enumerates the truths of L.

This theorem, together with T12.19 which tells us that if T is a recursively
axiomatized formal theory then the set of theorems of T is recursively enumerable,
puts us in a position to obtain an ı̃ncompleteness result mirroring T12.17 and T13.3.

T14.8. If T is a recursively axiomatized s̃ound theory whose language includes LNT,
then there is a sentence P such that T ° P and T ° �P .

Suppose T is a recursively axiomatized s̃ound theory whose language L includes
LNT. By T12.19, there is a recursive enumeration of the theorems of T , and since
T is s̃ound, all of the theorems in the enumeration are true. But by T14.7, there is
no recursive enumeration of all the truths of L; so the enumeration of theorems
is not an enumeration of all truths; so some true P is not among the theorems of
T ; from this, P u is true but not among the theorems of T . And since P u is true,
�P u is not true; and since T is s̃ound, neither is �P u among the theorems of T .
So T ° P u and T ° �P u.

This ı̃ncompleteness result requires the s̃oundness of T , where s̃oundness is more than
mere consistency. But it requires only that the language include LNT and so have the
power to express recursive functions—where this leaves to the side a requirement that
T extends Q, and so be able to capture recursive functions.

Syntactic Version

By related reasoning, we can obtain the other sort of ı̃ncompleteness result as well.
Thus we have a theorem like T12.18 and T13.4. Let T be a recursively axiomatized
theory extending Q, and once again consider stop.i; n; j/; since stop is recursive and T
extends Q, stop is captured in T by some Stop.i; n; j; z/; let H .i/ = 9zStop.i; i; z;;/
and h.i/ = formsub.2pH .i/q; cpiq; num.i//; so h.i/ is the number of H . i /. Consider
a Turing machine …s.i/ which tests whether successive values of m number a proof
of �H . i /, halting if some m numbers a proof and otherwise continuing forever—so
…s.i/ evaluates PRFT.m; til.h.i/// for successive values of m; since T is a recursively
axiomatized theory, this is a recursive relation so that there must be some such Turing
machine. We can think of …s.i/ as seeking a proof that …i.i/ does not halt.
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T14.9. Suppose T is a recursively axiomatized theory extending Q; then if T is
consistent T ° H .s/, and if T is !-consistent, T ° �H .s/.

Suppose T is a recursively axiomatized theory extending Q, and let H .i/ and
…s.i/ be as above.

Suppose T is consistent and …s.s/ halts. By its definition, …s.i/ halts just in case
some m numbers a proof of�H . i /; since…s.s/ halts, then, there is some m such
that PRFT.m; til.h.s///; so T ` �H .s/. But if …s.s/ halts, for some m, hhs; s;mi;
0i 2 stop; so by capture, T ` Stop.s; s;m;;/; so T ` 9zStop.s; s; z;;/, which
is to say, T ` H .s/; and since T is consistent, T ° �H .s/. This is impossible;
reject the assumption: (�) if T is consistent, then …s.s/ does not halt.

(i) Suppose T is consistent and T ` �H .s/; then for some m, PRFT.m; til.h.s///;
so by its definition, …s.s/ halts. But since T is consistent, by (�) …s.s/ does not
halt. Reject the assumption: T ° �H .s/.

(ii) Suppose T is !-consistent and T ` H .s/; then T ` 9zStop.s; s; z;;/. But
since T is !-consistent, it is consistent; so by (�) …s.s/ does not halt; so for any
m, hhs; s;mi; 0i … stop; and by capture, for any m, T ` �Stop.s; s;m;;/; so by
!-consistency, T ° 9zStop.s; s; z;;/. This is impossible, T ° H .s/

Observe that T14.8 is an existential result—there is some P such that neither it
nor its negation is provable—while T14.9 finds a particular sentence H .s/ such
that T ° H .s/ and T ° �H .s/. So these theorems reflect a difference between
ı̃ncompleteness results of Chapter 12 and Chapter 13. Given the difference between
sentences G and H .s/, again, T14.9 is roughly the form in which Gödel first proved
the ı̃ncompleteness of arithmetic. We shall leave the matter here—although, as we
saw from chapters 12 and 13, it is possible to drop the requirement of !-consistency
for the simple result that no consistent, recursively axiomatized theory extending Q is
negation c̃omplete.

E14.9. Use the definition problem for �-recursive functions to show that there is no
recursive enumeration of the set of truths of LNT. Use this result to show that if T
is a recursively axiomatized sound theory whose language includes LNT, then T is
negation ı̃ncomplete.

Hint: Return to murec.i; n/, Murec.i; n; y/, and Defined.i/ from E14.8, along
with defined.i/ = formsub.5pDefined.i/q; cpiq; num.i//. Suppose there is an enu-
meration entruth.n/ of the truths of LNT; and let ENUMDEF.i/ be the equality
entruthŒ�y.entruth.y/ D defined.i/ _ entruth.y/ D til.defined.i//� D defined.i/.
Then its characteristic function, chenumdef is 0 just in case NŒDefined. i /� = T.
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14.3 Church’s Thesis

We have attained a number of negative results, as T14.6 that if Q is !-consistent then
no Turing computable function prvpl.n/ returns zero just for numbers of theorems
of predicate logic, and from T14.7 that no Turing machine enumerates the truths of
LNT. These are interesting. But, one might very well think, if no Turing machine
computes a function, then we ought simply to compute the function some other way.
So the significance of our negative results is magnified if the Turing computable
functions are, in some sense, the only computable functions. If in some important
sense the Turing computable functions are the only computable functions, and no
Turing machine computes a function, then in the relevant sense the function is not
computable. Thus Church’s Thesis:

CT The total numerical functions that are effectively computable by some algo-
rithmic method are just the recursive functions.

We want to be clear first, on the content of this thesis, and once we know what it says,
on reasons for thinking that it is true.

14.3.1 The Content of Church’s thesis

Church’s thesis makes a claim about “total numerical functions that are effectively
computable by an algorithmic method.” Original motivations are from the simple
routines we learn in grade school for addition, multiplication, and the like. These ef-
fectively compute total numerical functions by an algorithmic method. By themselves,
such methods are of interest. However, we mean to include the sorts of methods
contemporary computing devices can execute. These are of considerable interest as
well. Let us take up the different elements of the proposal in turn.

First, as always, a numerical function is total iff it is defined on the entire numerical
domain. Arbitrary functions on a finite domain may be finitely specified by listing their
members, and then computed by simple lookup. This was our approach with simple,
but arbitrary, functions from Chapter 4. The question of computability becomes
interesting when domains are not finite (and from methods like those in the Chapter 2
countability reference, a function on an infinite domain is always comparable to one
that is total). So Church’s thesis is a thesis about the computability of total functions.

A function is effectively computable iff there is a method for finding its output
for any given input value(s). Correspondingly, a property or relation is effectively
decidable iff its characteristic function is effectively computable. So methods for
addition and multiplication are adequate to calculate the value of the function for any
inputs. Or consider a Turing machine programmed to enumerate the theorems of T ,
stopping with output 0 if it reaches (the number for) P , and output 1 if it reaches �P

(for the sake of this example, restrict attention just to theorems that are sentences).
Then if T is a consistent recursively axiomatized and negation c̃omplete theory, this is
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an effective method for deciding the theorems of T . If P is a theorem, it eventually
shows up in the enumeration, and the Turing machine stops with output 0. If P is
not a theorem, �P is a theorem, so �P eventually shows up in the enumeration,
and the machine stops with output 1. This was the idea behind T12.20. But if T is
not negation c̃omplete, this is not an effective method for deciding theorems of T . If
P is a theorem, it eventually shows up in the enumeration, and the machine stops
with output 0. But if P is not a theorem and T is not negation c̃omplete, �P might
also fail to be a theorem. In this case, the machine continues forever, and does not
stop with output 1; so for some inputs, this method does not find the value of the
characteristic function, and we have not described an effective method for deciding
the theorems of this T .

From the start, we may agree that there is some uncertainty about the notion
of an algorithmic method; so, for example, different texts offer somewhat different
definitions. However, as we did for logical validity and soundness in Chapter 1, we
shall take a particular account as a technical definition—partly as clarified in the
definition (AC) and examples that follow. Difficulties to the side, there does seem
to be a relevant core notion: For our purposes an algorithmic method is a finitely
constrained rule-based procedure (rote, if you will).5

There is some vagueness in how much “processing” is allowed in following a rule.
So, “write down the value of f.n/” will not do a as a rule for arbitrary f.n/; and, less
dramatically, an algorithm for multiplication does not typically include instructions for
required additions. However, we may take it that if a function is Turing computable,
then the function is algorithmically computable. A Turing machine operates by a
finitely constrained rule-based method. Again, standard methods for addition and
multiplication are examples of algorithmic procedures. Truth table construction is
another example of a method that proceeds by rote in this way. Given the basic tables
for the operators, one simply follows the rules to complete the tables and determine
validity—and one could program a Turing machine to perform the same task. Thus
validity in sentential logic is effectively decidable by an algorithmic method. In
contrast, derivations are not an algorithmic method. The strategies are helpful! But, at
least in complex cases, there may come a stage where insight or something like lucky
guessing is required. And at such a stage, you are not following any rules by rote, and
so not following any specific algorithm to reach your result.

And algorithmic methods operate under finite constraints. In general, we shall
not worry about how large these constraints may be, so long as they remain finite.
So, for example, searching (numbers for) the theorems of a negation c̃omplete theory
is likely to involve massive integers, to consume huge amounts of memory, and
enormous amounts of time. All the same, the search terminates while the integers,
memory, and time remain finite. Or consider truth table construction. If this is to be

5We have no intention of engaging Wittgenstenian concerns about following a rule. See, for example,
Kripke, Wittgenstein on Rules and Private Language.
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an effective method for determining validity, it should return a result for any sentence.
But for any n 0 there are sentences with that many atomic sentences (for example,
A1 ^ A2 ^ : : : ^ An), so the corresponding table requires 2n rows. This number
may be arbitrarily large—and a table may require more paper or memory than are in
the entire universe. But, in every case, the limit is finite. So, for our purposes, the
methods qualify as algorithmic. Contrast a device, which we may call “god’s mind,”
that stores all the theorems of an ı̃ncomplete theory sorted in order of their Gödel
numbers. Since the theory is ı̃ncomplete, a search to find one of P or �P among
the theorems is not an effective method to decide if P is a theorem. But, in this case,
it is sufficient to search up to the Gödel number of P to see if that sentence is in
the database: if it is in the database then P is a theorem, if it is not in the database
then P is not a theorem. It is not our intent to deny the existence of god, or that one
might very well solve mathematical problems by prayer (though this might not go
over very well on examinations which require that you show your work)! But, insofar
as a device requires infinite memory or the like, it will not for our purposes count as
an algorithmic method.

Or consider again a Turing machine programmed to enumerate the theorems of
T , stopping with output 0 if it reaches (the number for) P , but continuing forever
if P does not appear. One might suppose the information that P is not a theorem
is contained already in the fact that the machine never halts, and that god or some
being with an infinite perspective might very well extract this information from the
machine. Perhaps so. But this method is not algorithmic just because it requires the
infinite perspective. Still, there are interesting attempts to attain the effect of this
latter machine without appeals to god. Consider, first, “Zeno’s machine.” As before,
the machine enumerates theorems, this time flashing a light if P appears in the list.
However, for some finite time t (say 60 seconds), this machine takes its first step in
t=2 seconds, its second step in t=4 seconds, and for any n, step n in t=2n seconds.
But the sum t=2 t=4 � � � = t , and the Turing machine runs through all of infinitely
many steps in time t .6 So start the machine. If the light flashes before t seconds
elapse, P is a theorem. If t elapses, the machine has run through all of infinitely many
steps, so if the light does not flash, P is not a theorem.

One might object that this proposal reduces to a tautology of the sort, “If such-and-
such (impossible) circumstances obtain, then the theorems are decidable.” Great, but
who cares? However we should not reject the general strategy out of hand. From even
a very basic introduction to special relativity, one is exposed to time dilation effects
(for a simple case see the time dilation reference on page 774). General relativity
allows a related effect. Where special relativity applies just to reference frames moving
at constant velocity relative to one another, general relativity allows accelerated frames.
And it is at least consistent with the laws of general relativity for one frame to have

6An infinite sum is defined to be the limit of its partial sums. Compare E8.16 and, for discussion of
Zeno, Sainsbury, Paradoxes, Chapter 1.
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an infinite elapsed time, while another’s time is finite.7 So, for a Malament-Hogarth
(MH) machine, put a Turing machine in the one frame and an observer in the other.
The Turing machine operates in the usual way in its frame enumerating the theorems
forever. If P is a theorem, it sends a signal back to the observer’s frame that is
received within the finite interval. From the observer’s perspective, this machine runs
through infinitely many operations. So if a signal is received in the finite interval, P

is a theorem. If no signal is received in the finite interval, then P is not a theorem.
There is considerable room for debate about whether such a machine is physically
possible. But, even if physically realized, it is not algorithmic. For we require that an
algorithmic method terminates in a finite number of steps.

Church’s thesis is thus that the total numerical functions that are effectively com-
putable by some algorithmic method are the same as the recursive functions. Suppose
we obtain a negative result that some function is not algorithmically computable. The
result does not apply to god’s mind or Zeno’s machine. Still, even as contemporary
devices increase speed, memory, and efficiency, their capacities remain finite. Thus the
negative result remains of considerable interest: So long as a routine follows definite
rules, no (finite) amount of parallel processing, high-speed memory, nanotechnology,
and so forth is going to make a difference—the function remains uncomputable.

14.3.2 The Basis for Church’s thesis

It is widely accepted that Church’s thesis is true, but also that it is not susceptible
to proof. We shall return to the question of proof. There are perhaps three sorts
of reasons that have led philosophers, computer scientists, and logicians to think
it is true. (i) A number of independently defined notions plausibly associated with
computability converge on the recursive functions. (ii) No plausible counterexamples—
algorithmically computable functions not recursive—have come to light. And (iii)
there is a sort of rationale from the nature of an algorithm. This last may verge on, or
amount to, demonstration of Church’s thesis.

Independent Definitions

Historically, Church’s thesis arose out of early attempts to specify the computable
functions. The thesis emerged as it was recognized that a number of such attempts,
independently proposed, converge on the recursive functions. So, for example, the
recursive functions and the Turing computable functions are independently defined.
We have seen that the Turing computable functions are the same as the recursive
functions.

7Students with the requisite math and physics background might be interested in Hogarth, “Does
General Relativity Allow an Observer To View an Eternity In a Finite Time?” See also Earman and
Norton, “Forever is a Day,” and for the same content, Chapter 4 of Earman, Bangs, Crunches, Whimpers,
and Shrieks (but with additional, though still difficult, setup in earlier chapters of the text).
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Simple Time Dilation
It is natural to think that, just as a wave in water approaches a boat faster when
the boat is moving toward it than when the boat is moving away, so light would
approach an observer faster when she is moving toward it, and more slowly when
she is moving away. But this is not so. The 1887 Michelson-Morley experiment
(and many others) verify that the speed of light has the same value for all observers.
Special relativity takes as foundational:

1. The laws of physics may be expressed in equations having the same form
in all frames of reference moving at constant velocity with respect to one
another.

2. The speed of light in free space has the same value for all observers, regardless
of their state of motion.

These principles have many counterintuitive consequences. Here is one: Consider
a clock which consists of a pulse of light bouncing between two mirrors separated
by distance L as in (A) below. Where c is the constant speed of light, the time
between ticks is the distance traveled by the pulse divided by its speed L=c.
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Now consider the same clock as observed from a reference frame relative to which
it is in motion, as in (B). The speed of light remains c (instead of being increased, as
one might expect, by the addition of the horizontal component to its velocity). But
the distance traveled between ticks is greater than L, so the time between ticks is
greater than L=c—which is to say the clock ticks more slowly from the perspective
of the second frame.

One might wonder what happens if this clock is rotated 90 degrees so that the pulse
is bouncing parallel to the direction of motion, or what would happen if time were
measured by a pendulum clock. But within a frame, everything is coordinated
according to the usual laws: On special relativity, there are coordinated changes to
length, mass, and the like so that the effect is robust. As observed from a reference
frame relative to which the frame is in motion, time, mass, and length are distorted
together. For further discussion, consult any textbook on introductory modern
physics.
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And we are in a position to close another loop. From T12.14, the recursive
functions are captured by recursively axiomatized theories extending Q. But the
recursive functions are total functions; and consistent recursively axiomatized theories
extending Q are among the recursively axiomatized theories extending Q. So the
recursive functions are total functions captured by consistent recursively axiomatized
theories extending Q. But also,

T14.10. Every total function that can be captured by a consistent recursively axioma-
tized theory extending Q is recursive.

Suppose a total function f.m/ can be captured in a consistent recursively axiom-
atized theory T extending Q; then there is some F .x; y/ such that if hm; ni 2 f,
then T ` F .m; n/ and with T12.6 if hm; ni … f then T ` �F .m; n/. Sup-
pose hm; ni 2 f; since f is a function, any k = n is such that hm; ki … f; so
T ` �F .m; k/; and since T is consistent, T ° F .m; k/. So for any m, (i) there
are some n and a such that hm; ni 2 f and PRFT.a; pF .m; n/q/; and (ii) for k = n
there is no a such that PRFT.a; pF .m; k/q/.

Intuitively, we can find the value of f.m/ by searching the theorems until we find
one of the sort F .m; n/; and from this extract the value n. More formally: First,
for the number of F .m; n/,

numf.m; n/ = formsubŒformsub.3pF .x; y/q;cpxq; num.m//;cpyq; num.n/�

So numf.m; n/ gives the Gödel number of F .m; n/ as a function of m and n. By
(loose) analogy with code from Chapter 12 (page 628),

codef.m/ = �zŒlen.z/ D y2 ^ PRFT.exp.z; y0/; numf.m; exp.z; y1///�

So codef.m/ is of the sort 2a 3n, where a numbers a proof of numf.m; n/, that is,
of F .m; n/. The minimization is well-defined since there always are such an a
and n. And there is only one n for which there is a proof of F .m; n/. So,

f.m/ = exp.codef.m/; y1/

n is easily recovered from codef: The exponents of codef.m/ are a and n; and
exp.codef.m/; y1/ returns the n. And since exp.codef.m/; y1/ is a recursive func-
tion, f.m/ is a recursive function.

We use the F .x; y/ that captures f.m/ to generate a recursive specification for f.m/. So
every total function that can be captured by a consistent recursively axiomatized theory
extending Q is recursive. So a total function is captured in a consistent recursively
axiomatized theory extending Q iff it is recursive. And increasing the power of a
deductive system from Q to PA and beyond does not extend the range of captured



CHAPTER 14. LOGIC AND COMPUTABILITY 776

functions. So the recursive functions, Turing computable functions, and total functions
captured by a consistent recursively axiomatized theory extending Q are the same.8

E14.10. Given that Plus.x; y; z/ captures plus.m; n/ in a consistent recursively ax-
iomatized theory extending Q, apply the method of T14.10 to show that plus is
recursive.

Failure of Counterexamples

Another reason for accepting Church’s thesis is the failure to find counterexamples.
This may be very much the same point as before: When we set out to define a notion
of computability, or compute a function, what we end up with are recursive functions,
rather than something other. We have seen that many standard computable functions
are in fact recursive. Of course, god’s mind, Zeno’s machine, an MH machine, or
the like might compute a non-recursive function. Perhaps there are such devices.
However, on our account, they are not algorithmic. What we do not seem to have are
algorithmic methods for computing non-recursive functions.

But also in this category of reasons to accept Church’s thesis is the failure of a
natural strategy for showing that Church’s thesis is false. Suppose one were to propose
that the primitive recursive functions are all the recursive functions, and so that regular
minimization is redundant (perhaps you have had this very idea). Here is a way to see
this hypothesis false:

Observe that, as in the recursive enumeration reference on the following page, the
primitive recursive functions are recursively enumerable. Consider an enumeration of
the primitive recursive functions of one free variable and an array as follows:

(L)

0 1 2 � � �

f0 f0.0/ f0.1/ f0.2/
f1 f1.0/ f1.1/ f1.2/
f2 f2.0/ f2.1/ f2.2/
:::

And consider the function d.n/ = fn.n/ y1. This function is recursive. For any n: (i)
run the enumeration to find fn; (ii) run fn to find fn.n/; (iii) add one. Since each step
is recursive, the whole is recursive. But d.n/ is not primitive recursive: d.0/ = f0.0/;
d.1/ = f1.1/; and in general, d.n/ = fn.n/; so d is not identical to any of the primitive
recursive functions. So there are recursive functions that are not primitive recursive.
And since recursive functions are (Turing-)computable, there are computable functions
that are not primitive recursive.

8And there are more. Church himself was originally impressed by an equivalence between his
lambda-definable functions and the recursive functions. As additional examples, Markov algorithms are
discussed in Mendelson, Introduction to Mathematical Logic, §5.5; abacus machines in Boolos, Burgess,
and Jeffrey, Computability and Logic, §5; see below for discussion of the Kolmogorov-Uspenskii
machine.
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Enumerating Primitive Recusive Functions
Introduce a language LR for an alternative representation of the recursive functions. The
syntax of this language is developed in the usual way. Symbols are Z0, S1, I ni , Compn,
and Recn with parentheses and comma. Then,

RL (b) If P n is Z0, S1, or Ini (for 1 i n) then P n is a formula.

(c) If Pm and Qn1 : : :Q
n
m are formulas, then Compn.Pm;Qn1 : : :Q

n
m/ is a formula.

(r) If Gn and HnC2 are formulas, then RecnC1.Gn;HnC2/ is a formula.

(CL) Any formula can be formed by repeated application of these rules.

For (c) we allow the superscript on a Qi to be 0 so long as at least some are n. These
expressions may be exhibited on trees in the usual way. So, for example, you should be
able to see that Rec2.I 11 ;Comp3.S1; I 33 // is a formula.

And expressions of this language may be interpreted so that each P n represents a recursive
function that applies to n objects. Say Ex is x1 : : : xn.

IR (z) IŒZ0� = zero./

(s) IŒS1�.x/ = suc.x/

(i) IŒIni �.Ex/ = idntni .Ex/

(c) IŒCompn.Pm;Qn1 : : :Q
n
m/�.Ex/ = IŒPm�.IŒQn1 �.Ex/ : : : IŒQ

n
m�.Ex//

(r) IŒRecnC1.Gn;HnC2/�.Ex; 0/ = IŒGn�.Ex/
IŒRecnC1.Gn;HnC2/�.Ex;Sy/ = IŒHnC2�.Ex; y; IŒRecnC1.Gn;HnC2/�.Ex; y//

You should be able to construct a tree parallel to one that shows P is a formula, to show its
interpretation. Thus, for example, IŒRec2.I 11 ;Comp3.S1; I 33 //�.x; y/ = plus.x; y/, where
IŒRec2.I 11 ;Comp3.S1; I 33 //�.x; 0/ = idnt11.x/ and IŒRec2.I 11 ;Comp3.S1; I 33 //�.x;Sy/ =
suc.idnt33.x; y; plus.x; y///. Again, for case (c), Q.Ex/ may have Ex empty when the su-
perscript on Q is 0.*

Now a recursive enumeration of the primitive recursive functions is straightforward. From
their interpretation, an enumeration of the formulas is an enumeration of the primitive
recursive functions: Assign numbers to the symbols and formulas of LR; find a recursive
RLWFF.n/ true of numbers for formulas; and enumerate,

eprfnc.0/ = �zŒRLWFF.z/�

eprfnc.Sn/ = �zŒeprfnc.n/ < z ^ RLWFF.z/�

So there is a recursive enumeration of the primitive recursive functions. Observe that the
enumeration of the primitive recursive functions is based entirely on syntactical considera-
tions from the formulas of our language.

——————

*Observe that we apply a generalized version of composition on which IŒQn
1 �.Ex/ : : : IŒQ

n
m�.Ex/

are substituted respectively for the variables of IŒPm�. Clearly, a generalized composition
results from multiple applications of our familiar singular form. And singular composition
can be seen as an instance of the generalized form: Say we have Pm.Ex;w; Ez/ and Qb. Ey/

and want Rn.Ex; Ey; Ez/ D P .Ex;Q. Ey/; Ez/. Suppose indexes on the n variables of R are
x1 : : : xa, y1 : : : yb , z1 : : : zc where y-indexes may or may not overlap x- and z-indexes. If
b D 0 so that Ey is empty, then Compn.Pm; I nx1 : : : I

n
xa
;Q0; I nz1 : : : I

n
zc
/ will do. Otherwise

take, Compn.Pm; I nx1 : : : I
n
xa
;Compn.Qb; I ny1 : : : I

n
yb
/; I nz1 : : : I

n
zc
/.
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It is natural to think that a related argument would show that not all computable
functions are recursive: Enumerate the recursive functions, and consider the diagonal
function d.n/ = fn.n/ 1; if the enumeration is computable, then this function is
computable but not among the recursive functions; so there are computable functions
not recursive. Observe, however, that this enumeration of the recursive functions
cannot itself be recursive. As described in the recursive enumeration box, it is an
entirely “grammatical” matter to enumerate the primitive recursive functions. But
there is no parallel method for the recursive fuctions. This is clear already by the
halting and definition problems (for the latter see E14.7)—there is no recursive way to
say in general whether a function is regular, and so to identify functions as recursive.
But we may make the point by another diagonal argument (here applied to Turing
machines).

Suppose there is a recursive enumeration of Turing machines to compute recursive
functions (of one free variable) and consider an array as follows:

(M)

0 1 2 � � �

…0 …0.0/ …0.1/ …0.2/
…1 …1.0/ …1.1/ …1.2/
…2 …2.0/ …2.1/ …2.2/
:::

With modifications appropriate to this enumeration, by reasoning from T14.2 each
…n.n/ computes a recursive f.n/ = decode.right.n; n; �jŒstop.n; n; j/ D y0�//;
since f.n/ is recursive f.n/C y1 is recursive and computed by some �.n/; �.n/
is a Turing program of one free variable; so �.n/ appears in the enumeration of
Turing programs. But this is impossible: �.0/ = …0.0/; �.1/ = …1.1/; and in
general �.n/ = …n.n/. Reject the assumption: there is no recursive enumeration
of Turing machines to compute recursive functions.

And since there is no recursive enumeration of Turing machines to compute recursive
functions, there is no recursive enumeration of the recursive functions.9

Even so, we could “diagonalize out” of the recursive functions given a computable
enumeration of the recursive functions—a computable enumeration would let us
compute a function not on the list, and so show that the recursive functions are not
the same as the computable functions. Our demonstration that there is no recursive
enumeration of the recursive functions does not show that there is no computable
enumeration. But it does show that our strategy for finding a counterexample to
Church’s thesis requires that which it is attempting to show: a computable function (to

9From T14.1 there is a recursive enumeration of all the Turing machines; but not every Turing
machine computes a total function—and the recursive enumeration of Turing machines does not convert
to a recursive enumeration of the recursive functions.
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do the enumeration) that is not recursive. So we are blocked from the proposed means
of finding a computable function that is not a recursive function. So this attempt to
find a counterexample to Church’s thesis fails.10

*E14.11. From the recursive enumeration box, (i) Construct a tree to show that
Rec2.I 11 ;Comp3.S1; I 33 // is a formula of LR. Then for each P i in your tree,
give its interpretation as applied to i variables. At the bottom you may let
Plus2 abbreviate Rec2.I 11 ;Comp3.S1; I 33 //, and plus2 abbreviate IŒPlus2�. (ii)
And similarly to show that Rec2.Comp1.I 22 ; I

1
1 ; Z

0/;Comp3.Plus2; I 33 ; I
3
1 // is a

formula of LR whose interpretation is times.

*E14.12. (i) Assign numbers to expressions of LR and produce the relation RLWFF to
complete the demonstration that there is an enumeration of primitive recursive
functions. (ii) Extend the demonstration that there is an enumeration of primitive
recursive functions to an enumeration emrfnc of �-recursive functions (as from
E14.7). Hints: Take section 10.3.2 as a model for assigning numbers to symbols
with superscripts and/or subscripts. For an RLSEQ like FORMSEQ, you will need to
know the number of PLACES for members of the sequence (always contained in the
first symbol). Also, for Comp, you will want a number for a sequence of m prior
formulas each of which has 0 or n places.

The Nature of an Algorithm

There are also reasons for Church’s thesis from the very nature of an algorithm.11

Perhaps the “received wisdom” with respect to Church’s thesis is as follows:

The reason why Church’s [Thesis] is called a thesis is that it has not been rigor-
ously proved and, in this sense, it is something like a “working hypothesis.” Its
plausibility can be attested inductively—this time not in the sense of mathemat-
ical induction, but “on the basis of particular confirming cases.” The Thesis is
corroborated by the number of intuitively computable functions commonly used
by mathematicians, which can be defined within recursion theory. But Church’s
Thesis is believed by many to be destined to remain a thesis. The reason lies, again,
in the fact that the notion of effectively computable function is a merely intuitive

10S. Kleene, who was among the founders of recursion theory (and author of the classic text,
Introduction to Metamathematics), reports that “When Church proposed this thesis [around 1933], I
sat down to disprove it by diagonalizing out of the class of the �-definable functions. But, quickly
realizing that the diagonalization cannot be done effectively, I became overnight a supporter of the thesis.”
(“Origins of Recursive Function Theory,” page 59). Again, the �-definable functons are equivalent to
the recursive functions (see note 8 on page 776).

11Material in this section is developed from Smith, An Introduction to Gödel’s Theorems, Chapter
45; and Smith, “Squeezing Arguments”; along with Kolmogorov and Uspenskii, “On the Definition of
an Algorithm.” See also Black, “Proving Church’s Thesis.”
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and somewhat fuzzy one. It is quite difficult to produce a completely rigorous
proof of the equivalence between intuitively computable and recursive functions,
precisely because one of the sides of the equivalence is not well-defined.12

There are a couple of themes in this passage. First, that Church’s thesis is typically
accepted on grounds of the sort we have already considered. Fair enough. But second
that it is not, and perhaps cannot, be proved. The idea seems to be that the recur-
sive functions are a precise mathematically defined class, while the algorithmically
computable functions are not. Thus there is no hope of a demonstrable equivalence
between the two.

But we should be careful. Granted: If we start with an inchoate notion of com-
putable function that includes, at once, calculations with pencil and paper, calculations
on the latest and greatest supercomputer, and calculations on Zeno’s machine, there
will be no saying whether the computable functions definitely are, or are not, identical
to the Turing computable functions. But this is not the notion with which we are
working. We have a relatively refined technical account of algorithmic computability.
Of course, it is not yet a mathematical definition. But neither are our Chapter 1
accounts of logical validity and soundness; yet we have been able to show in T9.1 that
any argument that is quantificationally valid (in our mathematical sense) is logically
valid. And similarly, the whole translation project of Chapter 5 assumes the possibility
of moving between ordinary and mathematical notions. It is at least possible that an
informally defined predicate might pick out a precise object. The question is whether
we can “translate” the notion of an algorithm to formal terms.

So let us turn to the hard work of considering whether there is an argument for
accepting Church’s thesis. A natural first suggestion is that the step-by-step and finite
nature of any algorithm is always within the reach of, or reflected by, some Turing
program or recursive function, so that the algorithmically computable functions are
inevitably recursively computable.13 Already, this may amount to a consideration or
reason in favor of accepting the thesis. In Chapter 45 of his An Introduction to Gödel’s
Theorems, Peter Smith advances a proposal according to which such considerations
amount to proof.

Smith’s overall strategy involves “squeezing” algorithmic computability between
a pair of mathematically precise notions. Even if a condition C (say, “being a tall
person”) is informally defined, it might remain that there is some completely precise
sufficient condition S (being over seven feet tall), such that anything that is S is
C , and perfectly precise necessary condition N (being over five feet tall) such that
anything that is C is N . So,

S � C � N

12Berto, There’s Something About Gödel, pages 76–77. Compare Rogers, Mathematical Logic and
Formalized Theories, page 216, and Shoenfield, Mathematical Logic, pages 119-121.

13This idea is contained already in the foundational papers of Church, “An Unsolvable Problem,”
and Turing, “On Computable Numbers.”
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If it should also happen that N implies S , then the loop is closed, so that,

S ” C ” N

And the target condition C is equivalent to (squeezed between) the precise necessary
and sufficient conditions. Of course, in our simple example, N does not imply S :
being over five feet tall does not imply being over seven feet tall.

For Church’s thesis, we already have that Turing computability is sufficient for
algorithmic computability. So what is required is some necessary condition so that,

T � A � N

Turing computability implies algorithmic computability and algorithmic computability
implies the necessary condition. Church’s thesis follows if, in addition, N implies
Turing computability. As it turns out, we shall be able to specify a condition N which
(mathematically) implies T . Then translation connects T to A and A to N .

We take as given that Turing computability implies algorithmic computability.
Given this, the argument has three stages: (i) there are some necessary features of
an algorithm, such that any algorithm has those features; (ii) any routine with those
features is embodied in a modified Kolmogorov-Uspenskii (MKU) machine; (iii)
every function that is MKU computable is recursive, and so Turing computable.

Necessary features MKU computability Turing computability- -

The result is that MKU computability works as the precise condition N in the squeez-
ing argument: T implies A, A implies N , and N implies T . So T iff A iff N , and
Church’s thesis is established.

Perhaps the following are necessary conditions on any algorithm, so that any algo-
rithm satisfies the conditions. If, additionally, we hold that any routine which satisfies
the constraints is an algorithm, then the conditions are necessary and sufficient—so
we may see them as an extension or sharpening of our initial more sketchy account.
At this stage, though, the important requirement is that any algorithm satisfies the
conditions.

AC (1) There is some space consisting of a finite array of “cells” which may stand
in some relations R0, R1; : : : ; Ra and contain some entities s0; s1; : : : ; sb .

(2) At every stage, there is some finite “active” portion of the space upon
which the algorithm operates.

(3) The body of the algorithm includes finitely many instructions for (rote)
modification of the active space depending on its character, and for jump-
ing to the next set of instructions.

(4) There is some finite initial setup, and result after a finite number of steps.
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So this sets up an algorithm abstractly described.14 So far, an excellent manual might
specify an algorithm for installing a computer or assembling a piece of IKEA furniture.
But we are specially interested in algorithms to compute arithmetical functions. Thus
the calculation of an arithmetical function f.Ex/ = y somehow takes Ex as an input, and
gives a way to read off the value of y after a finite number of steps.

Observe that the finite constraints on the space, relations, and objects in AC(1) are
a consequence of the other conditions: Beginning with a finite initial setup, including
finitely many cells standing in finitely many relations and filled with finitely many
objects, then modifying finite portions of the space finitely many times, all we are
going to get are finitely many cells, standing in finitely many relations, filled with
finitely many objects.

Just as there are infinitely many integers, each individually finite, so our account
of an algorithm permits infinitely many different active areas, each individually finite.
Continuing with the analogy to integers, it is natural to think that an algorithm could
contain instructions of the sort “if a is odd write 1, and otherwise 0.” This instruction
has application to infinitely many integers, and might be represented as a set (function),

fh0; 0i; h1; 1i; h2; 0i; h3; 1i; : : :g

with infinitely many members. One might therefore think that an algorithm should
permit infinitely many instructions (one for each pair) to accommodate the infinitely
many inputs. But consider how the instruction to write 1 iff a is odd is actually
implemented: Given an input, we do not apply an infinite “lookup table” to find the
result; rather we apply a rule, dividing by 2 to see if there is a remainder. As for
a Turing machine, such a rule is implemented by finitely many instructions. If an
instruction does require an infinite lookup table, then it is not algorithmic just because
it requires the infinite table. Notice that this example illustrates the point that finitely
many instructions cannot include specifications for all the infinitely many possible
arrangements a space may have.

All the same, algorithms have wide compass. On the face of it, given their extreme
simplicity, it is not obvious that Turing machines compute every algorithmically com-
putable function. But a related device, the MKU machine (modified from Kolmogorov
and Uspenskii, “On the Definition of an Algorithm”) purports to implement conditions
along these lines.

MKU (1) There is a dataspace consisting of some cells c0; c1; : : : ; ca which may
stand in relations R0; R1; : : : ; Rb and contain symbols s0; s1; : : : ; sc . In
simple cases, we may think of such arrangements graphically as follows:

14Smith seems to grant that some such conditions are necessary, even though some method may
satisfy the conditions yet fail to count as an algorithm. Perhaps this is because he is impressed by the
initial examples of routines implemented by human agents with relatively limited computing power.
This is not a problem for his squeezing argument, since the corresponding recursive function may yet be
computable by some other method which satisfies more narrow constraints—for example, by a Turing
machine.
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(N)

a b c

d

?

R1

R2

In this case there are four cells with contents a, b, c, d—though there is no
requirement that a cell contain just a single symbol. There are relations
R1 and R2; R2 is a binary relation and R1 tertiary; each such relation
constitutes an edge.

(2) Among the one-place relations is an origin property O such that exactly
one cell has it—as indicated by ? above. Then, depending on the instruc-
tions, for some n the active area includes all cells on paths n edges from
the origin. From (N), cells other than the origin are all one edge from the
origin cell.

(3) Instructions are finitely many quadruples of the sort hqi ; Sa; Sb; qj i where
qi and qj are instruction labels; Sa describes an active area; and Sb a state
with which the active area is to be replaced. Associate each cell in Sa with
the least number of edges between it and the origin; let n be the greatest
such integer in Sa; this n remains the same in every quadruple with label
qi , though the value of n may vary as qi varies. Again, instructions are a
function in the sense that no instruction has hqi ; Sai the same but hSb; qj i
different.15 We may see Sa and Sb as follows:

(O)

a b c

d

e

f

(Sa)

?

(b1)

(b2)

R1

R2

R3

R2

�

a b c

d

e

x

w

(b1)

(b2)

(Sb)

?

R1

R3

R2

R2

R2

In this case n = 2. The active area Sa is replaced by the configuration
Sb . The concentric rectangles indicate “boundary” cells, n edges from the
origin, which may themselves be related to cells not part of the active area;
the replacing area retains boundary cells, and the substitution of one area
for another their relations from and to cells outside the active area.

15States are the same when they map onto the same dataspace. Observe that some Sa and S 0a might
both map to a given dataspace in case one is included in the other. But the consistency requirement
is satisfied when n is constant: for consistency, it is sufficient to require that so long as n.qi ; Sa/ is a
constant, there are no instructions with hqi ; Sai the same but hSb ; qj i different.
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(4) There is some finite initial setup, and some means of reading off the final
value of the function (for different relation and symbol sets, these may be
different). We think of the origin cell as the “machine head,” where an
algorithm always begins with an instruction label qi = 1 and terminates
when qi = 0.

Thus an MKU machine is a significant generalization of a Turing machine. We allow
arbitrarily many symbols. And the dataspace is no longer a tape with cells in a fixed
linear relation, but a space with cells in arbitrary relations which may themselves be
modified by the program. Instructions respond to, and modify, not just individual
cells, but arbitrarily large areas of the dataspace. Still, it remains that an instruction qi
is of the sort, if Sa perform action A and go to instruction qj . So, the instruction (O)
might be applied to get,

(P)

a b c

d

e

f

g

h

(A)

?

R1

R2

R3

R2

R3

R3

�

a b c

d

e

x

w

g

h

(B)

?

R1

R3

R2

R2

R2

R3

R3

As indicated by the dotted line, the dataspace (A) has an active area of the sort required
in instruction (O); so the active area is replaced according to the instruction for the
resultant space (B). The example is arbitrary. But that is the point: The machine
allows arbitrary rote modifications of a dataspace.

Insofar as the MKU machine is a generalization of a Turing machine, it is clear
enough that Turing computable functions are MKU computable. But for us the
important point is that every MKU computable function is recursive and so Turing
computable.

T14.11. Every MKU computable function is a recursive function.

We have been through this sort of thing before. And there are different ways to
proceed. I indicate only some natural first steps. Begin assigning numbers to labels,
symbols, cells, and relations in some reasonable way.

a. gŒqi � = 3 8i c. gŒci � = 7 8i

b. gŒsi � = 5 8i d. gŒr ij � = 9 8.2i 3j /

Then the number for a page is phci i0 p
hsai
1 � � � p

hsb i
n , and for an edge p

hri
j
i

0 p
hca1 i

1

� � � p
hcai

i

i . So a page is a cell with some sequence of symbols, and an edge is an
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i-place relation applied to i cells. Some data is a sequence of pages with distinct
cell numbers, and a structure is a sequence of distinct edges. Cells are (immediately)
connected on a structure when the structure has an edge of which both are members,
and connected on a structure when there is a sequence of cells from the structure,
beginning with the one, ending with the other such that each is immediately connected
to the next. A space is a structure with exactly one origin and every cell connected to
all the others. A dataspace is of the sort  m

0  n
1 where m numbers some data, n a

space, and every cell from m appears in n.
After that, with considerable work, MKUMACHINE.m/ when m numbers an MKU

machine. So, as above, the MKU machines are enumerable. Then mkumachs.u; a; d/
numbers an instruction as a function of the index for the machine, initial label, and
dataspace.16 For machine u with input n, mkudataspace.u; n; j/ and mkustate.u; n; j/
give the current number of the dataspace and state. And mkustop.u; n; j/ takes the
value zero when the machine is stopped. Then,

f.n/ = mkudecode.mkudataspace.u; n; �jŒmkustop.u; n; j/ D y0�//

It is a chore to work this out (and you have an opportunity to do so in exercises). But it
should be clear that it can be done. Then any MKU computable function is recursive,
and therefore every MKU computable function is Turing computable.

Given this, the squeezing argument is complete: Turing computability implies al-
gorithmic computability; algorithmic computability implies MKU computability; and
MKU computability implies Turing computability. So the algorithmically computable
functions are the same as the Turing computable functions. Church’s thesis!

Insofar as MKU computability mathematically implies Turing computability,
this argument is just as strong as the premises that Turing computability implies
algorithmic computability, and then that algorithmic computability implies MKU
computability. For these, we translate between the formal and informal notions.
Insofar as translation is not itself a formal procedure, the result is not formal proof of
Church’s thesis. Still, translation may play a role in proof: We take as given that Turing
computable functions are algorithmically computable. For the other direction, note
how the four parts of definition MKU reflect the parts of AC. Insofar as an algorithm
just is a method for rote modifications of a (data) space and MKU computability
accommodates arbitrary rote modifications of a data space, our idea is that MKU
computability is inevitably sufficient to embody the arbitrary algorithm.

It is clear enough that Turing computability implies algorithmic computability.
However the inference from algorithmic computability to MKU computability is more
contentious. Perhaps it is difficult to imagine an algorithmic method that does not
conform to AC and then MKU. But failure of imagination is not the same as proof.

16Given the potential for infinitely many different active areas, rather than supplementing the machine
with repeating commands for every missing instruction, include a single label that loops on the origin
such that the machine defaults to it.
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So there is space for different objections: First, one might worry that the account AC
of an algorithm is insufficient in some respect. AC is offered as a further exposition or
sharpening of our initial notion of a “finitely constrained rule-based procedure.” It is
abstract and generic enough to encompas a wide variety of procedures we care about.
Let us take it as a specification of the methods to which our version of Church’s thesis
applies. Take this way, AC is definitional.

Still, one might worry that the MKU machine does not compute every algorithm
from AC. Against this, there are a couple of replies. First, careful about what the
MKU machine can do. Say we are interested in parallel computing, whether by
persons following instructions or by computing devices. An MKU machine has but a
single origin; this might seem to be a problem. Still, an active area might have many
“shapes”—and things might be set up as follows:

(Q) m
m
m
m
m�

�

?

�

�� -

?

6
@@

��

�� @@

@@ ��

��

@@

with “satellite” centers to achieve the effect of parallel computing. Similarly, with a
bit of thought, one can see how the MKU machine might achieve the effect of absolute
addressing or the like. And there might be more or less sophisticated ways of mapping
instructions onto a dataspace; for example, there might be some “filtering” such that
only certain features of a space are relevant to a match. So it is important to recognize
the generality already built into the MKU machine.

Perhaps, though, the objection goes through and some algorithmic method really
is beyond the reach of the MKU machine. So for example some algorithm might
require physical actions other than symbol manipulation. Consider a method for truth
table construction with the instruction, “whack yourself in the head three times and
write a T in the first row of the first column.” An MKU machine does not have a
head, and so cannot perform this action. More seriously, we might consider actions
as applied to, say, a physical abacus—as “move the bead on the second wire to the
leftmost available position.” The MKU machine does not move physical beads on
a wire, so it does not perform addition on an abacus. Still, it should be possible to
number the states of an abacus, and to represent the successive states so as to calculate
any function that can be worked on the physical device. In this case, the claim is not
that the MKU machine implements every algorithm, but rather that it models every
algorithm. Supposing this is sustained, the argument for Church’s thesis stands.

So we are not left with a formal proof of Church’s thesis. Rather we have reasons
from the independent definitions, the failure of counterexamples, and the nature of
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an algorithm. For the latter, we translated an informal notion into a formal one—
and our argument is as strong as that translation. Taken together, these amount to
a (compelling) case for Church’s thesis. Not all knowledge is mathematical. And
similarly we might know Church’s thesis, without a mathematical proof of it.

To the extent that Church’s thesis is either plausible or established, our limiting
results become full-fledged incomputability results with applications to logic and
computing more generally. So, for example, by the decision problem, no Turing
machine computes numbers for theorems of predicate logic. So by Church’s thesis,
no algorithmic method computes numbers for theorems of predicate logic. And the
result does not apply just to numbers: Suppose some algorithmic method identifies the
theorems of predicate logic; this method is naturally extended to one that calculates
numbers for theorems of predicate logic—but there is no such method; so no algorith-
mic method identifies the theorems of predicate logic. Thus there is, say, no extension
of our proof strategies from Chapter 6 to an algorithmic method that determines, for
arbitrary P , whether P is a theorem. Insofar as there is no such method, provability
is not a decidable relation.

In addition, from Church’s thesis, the computability of a function implies that it is
recursive. Having attained Church’s thesis only at the very end, we have not applied
the thesis in this way. But one might move from the observation that some function is
computable, through the thesis, to the result that the function is recursive. In many
cases, this shortcuts elaborate demonstrations that a function can be built up from the
initial functions. So, for example, from the existence of computerized proof-checking
programs, one might move to the conclusion that there is a recursive PRFT.m; n/ to
say whether the sequence numbered m is a proof of the expression numbered n. We
already know that there is this recursive relation. But this sort of thing is frequently
done.

E14.13. Write down MKU instructions to mimic the effect of the Turing machine
from example (B) computing zero.x/. You may assume that cells are arranged as
in a Turing machine, with each standing in the “to the left of” relation to the next.
Given this simple arrangement, it will be convenient to present your program in
table form—so, for example, the following is sufficient to move the origin cell
back along a string of zeros to the start position and stop.

qi Sa Sb qj

a B ! 0? ! B B ! 0? ! B 0

a B ! 0? ! 0 B ! 0? ! 0 0

a 0 ! 0? ! B 0? ! 0 ! B a

a 0 ! 0? ! 0 0? ! 0 ! 0 a

In this case the Sa areas have depth 1 edge. This exercise illustrates the point that
Turing computable functions are MKU computable.
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*E14.14. Work out codes for the MKU machine through dataspace. Hard-core: As-
suming functions mkuencode.a/ and mkudecode.b/, complete the demonstration
that any MKU computable function f.n/ is recursive. For this, you may assume a
straightforward picture on which dataspaces “match” when there is a one-to-one
relation from the cells of one onto cells of the other that preserves both contents
and relations among matching cells.

E14.15. For each of the following concepts, explain in an essay of about two pages,
so that (college freshman) Hannah could understand. In your essay, you should
(i) identify the objects to which the concept applies, (ii) give and explain the
definition, and give and explicate examples (iii) where the concept applies, and
(iv) where it does not. Your essay should exhibit an understanding of methods
from the text.

a. The Turing computable functions, and their relation to the recursive functions.

b. The essential elements from the chapter contributing to a demonstration of the
decision problem, along with the significance of Church’s thesis for this result.

c. The essential elements from this chapter contributing to a demonstration of
(the semantic version of) the ı̃ncompleteness of arithmetic.

d. Church’s thesis, along with reasons for thinking it is true, including the
possibility of demonstrating its truth.
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Theorems of Chapter 14

T14.1 There is a recursive enumeration of the Turing machines.

T14.2 Every Turing computable function is a recursive function.

T14.3 Every recursive function is Turing computable.

T14.4 There is no Turing machine H.i/ such that H.i/ = 0 if …i.i/ halts and H.i/ = 1 if it
does not.

T14.5 There is no Turing machine H.i; n/ such that H.i; n/ = 0 if…i.n/ halts and H.i; n/ = 1
if it does not.

T14.6 If Q is !-consistent and L includes LNT, then no Turing computable function
prvpl.n/ is such that prvpl.n/ = 0 just in case n numbers an L-theorem of predicate
logic.

T14.7 The set of all truths in a language including LNT is not recursively enumerable.

T14.8 If T is a recursively axiomatized s̃ound theory whose language includes LNT, then
there is a sentence P such that T ° P and T ° �P .

T14.9 Suppose T is a recursively axiomatized theory extending Q; then if T is consistent
T ° H .s/, and if T is !-consistent, T ° �H .s/.

T14.10 Every total function that can be captured by a consistent recursively axiomatized
theory extending Q is recursive.

T14.11 Every MKU computable function is a recursive function.

And we mention,

CT Church’s Thesis: The total numerical functions that are effectively computable by
some algorithmic method are just the recursive functions.
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Looking Forward and Back

We began this text in Part I setting up the elements of classical symbolic logic. Thus
we began with four notions of validity: logical validity, validity in AD, validity in ND,
and semantic quantificational validity. After a parenthesis in Part II to think about
techniques for reasoning about logic, we began to put those techniques to work. The
main burden of Part III was to show s̊oundness and c̊ompleteness of our classical
logic, that � ` P iff � � P . This is the good news. In Part IV we established
some limiting results. These include Gödel’s first and second theorems, that no
consistent recursively axiomatized extension of Q is negation c̃omplete, and that no
consistent recursively axiomatized theory extending PA proves its own consistency.
Results about derivations are associated with computations, and the significance of
this association extended by means of Church’s thesis. This much constitutes a solid
introduction to classical logic, and should position you make progress in logic and
philosophy along with related areas of mathematics and computer science.

Excellent texts which mostly overlap the content of this one, but extend it in
different ways are Mendelson, Introduction to Mathematical Logic; Enderton, A Math-
ematical Introduction to Logic; and Boolos, Burgess, and Jeffrey, Computability and
Logic; these put increased demands on the reader (and such demands are one moti-
vation for our text), but should be accessible to you now; Shoenfield, Mathematical
Logic is excellent yet still more difficult. Smith, An Introduction to Gödel’s Theorems
extends the material of Part IV; Cooper, Computability Theory develops it especially
from the perspective of Chapter 14. Manzano, Model Theory and, more advanced,
Hodges, A Shorter Model Theory extend the material of section 11.4. Much of what
we have done presumes some set theory as Enderton, Elements of Set Theory.

In places, we have touched on logics alternative to classical logic, including
free logic, multi-valued logic, modal logic, and logics with alternative accounts
of the conditional. A good place to start is Priest, Non-Classical Logics, which is
profitably read with Roy, “Natural Derivations for Priest” which introduces derivations
in a style much like our own. Our logic is first-order insofar as quantifiers bind
just variables for objects. Second-order logic lets quantifiers bind variables for
classes or properties as well (so 8x8yŒx D y ! 8F.F x $ Fy/� expresses
the indiscernibility of identicals). Second-order logic has important applications
in mathematics, and raises important issues in metalogic. For this, see Shapiro,
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Foundations Without Foundationalism, and Manzano, Extensions of First Order Logic.
Plural logic adds to our symbols quantifiers 8xx and 9yy, read for any things xx, and
there are some things yy, along with relations of the sort t � T to say that t is among
the T ’s. This permits some (but not all) of the powers of second-order logic without
apparent quantification over classes or properties. Oliver and Smiley, Plural Logic is
a good introduction. Though our languages have infinitely many symbols, formulas
are always finitely long. Infinitary logic drops this constraint and allows expressions
that are infinitely long. As for plural and second-order logic, the expressive power of
infinitary logic exceeds that of our own. Discussions of infinitary logic presuppose
significant background in set theory though Bell, “Infinitary Logic” and Nadel, “L!1!

and Admissible Fragments” are a reasonable place to start.
Philosophy of logic and mathematics is a subject matter of its own. Shapiro,

“Philosophy of Mathematics and Its Logic” (along with the rest of the articles in the
same Oxford Handbook), and Shapiro, Thinking About Mathematics are a good place
to start. Benacerraf and Putnam, Philosophy of Mathematics and Marcus and McEvoy,
Philosophy of Mathematics are collections of classic articles.

Smith’s online, “Beginning Mathematical Logic: A Study Guide” is an excellent
comprehensive guide to further resources.

Have fun!
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� tilde, 33, 47
! arrow, 33, 47
_ wedge, 40, 57
^ caret, 40, 57
$ double arrow, 40, 57
D equals, 47, 62, 85, 299
8 for all, 47
8x universal quantifier, 49
9 exists, 57
9x existential quantifier, 57
; zero (object language), 62, 85, 299
S successor, 62, 85, 299
C plus, 62, 85, 299
� times, 62, 85, 299
< less than, 62, 85, 299
` single turnstile, 67, 201
Ax

t x replaced by t, 78, 263
� less than or equal, 85, 299
IŒA� truth valuation, 94, 122, 336
T true, 94
F false, 94
²,¤ (etc.), slash notation, 101, 311
� double turnstile, 102, 125
2 set membership, 112
f g curley brace, 112
h i angle brace, 112
�, � subset, proper subset, 112
\;
T

intersection, 112
[;
S

union, 112
¿ empty set, 112
N natural numbers, 113
NN interpretation LNT

< , 113
d.xjo/ variable assignment, 115
IdŒt� term assignment, 115
IdŒP � satisfaction assignment, 118
S satisfied, 118

N not satisfied, 118
II interpretation function, 135
II! intended interpretation, 135
? bottom, 217, 245, 275
P t=s replace one or more, 290
.8x W B/ restricted universal, 295
.9x W B/ restricted existential, 295
.8x < t/ bounded universal, 295, 299
.9x < t/ bounded existential, 295, 299
N interpretation LNT, 300
" up arrow, 319
) metalinguistic conditional, 320
, metalinguistic biconditional, 320
: metalinguistic negation, 320
M metalinguistic conjunction, 320
O metalinguistic disjunction, 320

metalinguistic contradiction, 320
S metalinguistic existential, 323
A metalinguistic universal, 336
n numeral of LNT, 390
T r==s replace at most one, 426
AB==C replace at most one, 429
P u universal closure, 464
' equivalence relation, 480, 531
[a] equivalence class, 481, 531
Md.†/ models of †, 502
jMj formulas true on M, 504
�
Š �-isomorphism, 506
Š isomorphism, 507
P positive integers, 508
� elementary equivalence, 508
� restriction, 512
2N even natural numbers, 512
v submodel, 514
� elementary submodel, 515
�
@
� �-embedding, 517

798
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@
� embedding, 517
Z integers, 517
ran.f/ range of function, 518
�- �-elementary embedding, 519
- elementary embedding, 519W

generalized disjunction, 523, 526V
generalized conjunction, 523, 526

Mn at most n, 523
Ln at least n, 523
� cardinal same size, 534
� cardinal less than, 534
4 cardinal less or equal, 534
@ cardinal number, 534
card.M/ cardinality of M, 534
R real numbers, 534
} powerset, 536
P e existential closure, 543
Ex=Ex vector, 567, 575
n numeral of LNT, 573
9Ev=8Ev quantifier block, 588, 589
pP q Gödel number, 612, 756
pP q numeral, 612
bpP q recursive function, 612
h i symbol code, 612, 756
9Š exactly one, 649
AB

C
replace all, 650

ŒŒP �� number after sub, 727

AB abbreviation, quantificational, 57
AB abbreviation, sentential, 40
AC algorithmic computability, 781
AD axiomatic derivation, full, 82
ADq axiomatic derivation, quantifier, 79
ADs axiomatic derivation sentential, 70
AI term assignment on interpretation, 394
AP axiomatic derivation preliminary, 67
AR argument, 5
AS atomic subformula, sentential, 39
AV axiomatic consequence, 67
AX axiomatization, 521
CA categorical, 521
CF characteristic function, 603
Cf coordinate functions, 682
CG criterion of goodness, 135
CM composition, 567
Cm coordinate minimization, 687
Con consistency, 453, 463

CP capture, 587
Cr coordinate relations, 687
CS compound and simple, 142
CT Church’s thesis, 770
DC declarative sentence, 142
�0 formulas, 588
EE elementary equivalence, 508
EL elementary embedding, 519
EM embedding, 517
ES elementary submodel, 515
EXf expression for function, 574
EXr expression for relation, 573
FA accessible formula, 206
FR formula, quantificational, 52
FR formula, sentential, 37
FR0 quantificational formula abbreviated,

58
FR0 sentential formula abbreviated, 41
IR interpretation recursive language, 777
IS isomorphism, 506
IS immediate subformula, sentential, 39
IT invalidiey test, 13
LS logical soundness, 12
LV logical validity, 12
Max maximality, 458, 466
MKU machine, 782
MO main operator (informal), 142
MO main operator, sentential, 39
NC (negation) c̃omplete, 521
ND natural derivations, full, 290
ND+ natural derivation plus, 297
NDs natural derivation sentential, 225
NDs+ natural derivation sentential plus,

259
NP natural derivation preliminary, 199
PA Peano arithmetic, 85, 312
…1 formulas, 588
PR primitive recursive, 571
Q Robinson arithmetic, 300, 312
QI quantificational interpretation, 111
QV quantificational validity, 125, 336
RC relatively complete, 521
RD recursion, 567
RF recursive function, 571
RL recursive language, 777
RM regular minimization, 571
RQ restricted quantifiers, 295
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RS relatively sound, 521
RT recursion theorem, 569
SA accessible subderivation, 206
SB subformula, sentential, 39
SC strategies for a contradiction (quantifi-

cational), 278
SC strategies for a contradiction (senten-

tial), 243
Scgt scapegoat set, 468
SD subderivation, 206
SF satisfaction, 118, 334, 340, 343
SF0 satisfaction abbreviations, 132, 334,

344
SG strategies for a goal (quantificational),

278
SG strategies for a goal (sentential), 231
SI s̃ound (on intended models), 521
SM submodel, 514
SO sentential operator, 142
†1 Sigma one formulas, 588
†? Sigma star formulas, 722
ST sentential truth, 94, 320
ST0 sentential truth abbreviations, 109, 328
SV sentential validity, 101, 323
TA term assignment, 115, 338
TF truth functional operator, 142
TI truth on an interpretation, 122, 336
TP translation procedure, 143
TR term, 50
VC vocabulary, quantificational, 47
VC vocabulary, sentential, 33
VT validity test, 16

abb, unpack abbreviation (meta), 328
abv, unpack abbreviation (obj), 70, 299
alternate semantics of variables, 352
alternatives to classical logic

free logic, 114
infinitary logic, 526
modal logic, 412

GL, 743
K4, 644, 747
K4LR, 742

multi-valued logic, 151
relevant logic, 26, 740
second-order logic, 526

argument AR, 5

standard form, 5
axiomatic derivation

A�, 76, 376
A?, 419, 426, 430, 439, 443, 451, 474
A#, 487
AD, 82

deduction theorem, 420–423
equivalent to ND, 413–443
independence of axioms, 376, 498–

502
Peano arithmetic in, 85–90
quantificational ADq, 79
sentential ADs, 70

generic account AL, 66
axiom, 66
axiom schema, 66
consequence AV, 67
cumulative nature, 68, 71–72, 86
derivation, 68
preliminary system AP, 67
proof, 67
rule, 66
theorem, 67
validity, 67

beta function
see recursive functions

biconditional
formal expression, 41
metalinguistic expression, 320
ordinary operator

if and only if, 160
just in case, 160

Carnap’s Equivalence, 624, 637
Chinese remainder theorem, 581

proved in PA, 672
Church’s thesis

see computability
completeness, 407

c̊ompleteness, 445
quantificational, 463–487
sentential, 452–462

c̊ompleteness, definitions for
consistency Con, 453, 463, 485
core thesis �, 454
core thesis ?, 464
core thesis ??, 475
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maximality Max, 458, 466, 485
scapegoat set Scgt, 468, 485
universal closure, 464

c̃ompleteness, 511, 560, 563
by quantifier elimination, 545
finite domain, 541
of theory L, 556
of theory S, 550

ı̃ncompleteness of arithmetic, 626–631,
636–642, 767–769

relative completeness, 505
c̊ompleteness and, 506
c̃ompleteness and, 511

computability
algorithmic computability, 771–773

definition AC, 781
Church’s thesis CT, 770–773

basis for, 773–787
effective computability, 770
effective decidability, 560, 562, 770
halting problem, 763
MKU computable function

same as recursive, 784–785
MKU machine, 782–784
Turing computable function, 752

same as recursive, 756–762
Turing machine, 750–755

conditional
and cause, 159
formal expression, 33

antecedent, 38
consequent, 38

material, 38
metalinguistic expression, 320
ordinary operator

if then, 157
only if, 158

subjunctive, 159
conjunction

formal expression, 40
conjunct, 40

metalinguistic expression, 320
ordinary operator

and, 151
both and, 154
but, 151

consistency

defined Con, 453, 463, 485, 560
formal consistency sentences

alternatives to Cont, 734–741
Cont, 643

not provable in PA, 642–734
derivability conditions, 644

semantic argument for, 451
contradiction

formal expression, 217
metalinguistic expression, 320
ordinary, 20

countability, 35, 48

decidability, effective, see computability
decision problem, 632, 766
diagonal lemma, 624, 637
disjunction

formal expression, 40
disjunct, 40

metalinguistic expression, 320
ordinary operator

either or, 154
or, exclusive, 153
or, inclusive, 153
unless, 153

enumeration, 455, 628
equality

reflexivity
theorem of AD, 82
theorem of ND, 292

symmetry
theorem of AD, 83
theorem of ND, 292

transitivity
theorem of AD, 83
theorem of ND, 292

equivalence class, 481, 531
equivalence relation, 481, 531
expressive completeness, 490–493

fixed point, 625
font conventions, 693
formal language

basic sentence, 93, 738
defined expressions, 649–655
diagonalization, 623, 636–637
expression of, 34
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expressive completeness, 490–493
characteristic sentence, 491

LNT
< , 62

LNT, 85, 299
Lq, 47
Ls , 33
normal form, 371

disjunctive normal form, 378, 547
extended normal form, 723

object language, 34
operator

binary, 38, 54
scope, 54
unary, 38, 54

unique readability, 494–497
see also formal language, sentential;

formal language, quantificational
formal language, quantificational, 46–64

�0 formula, 588
…1 formula, 588
†1 formulas, 588
†? formula, 722
abbreviation AB, 57
abbreviations, other, 59, 62
atomic formula, 54, 58
bound variable, 54
bounded quantifiers, 295, 299
closure

existential, 543
universal, 464

first-order, 526
formula FR, FR0, 52, 58
free for, 78, 263
free term, 290, 426
free variable, 54
immediate subformula, 54, 58
main operator, 53, 58
numeral, 390, 573
open formula, 54
operator, 53, 58
restricted quantifiers, 295, 299
sentence, 56
subformula, 53, 58
term TR, 50
variable-free term, 79, 264, 471
vocabulary VC, 47
see also formal language

formal language, sentential, 33–45
abbreviation AB, 40
abbreviations, other, 42
atomic formula AS, 39, 41
formula FR, FR0, 37, 41
immediate subformula IS, 39, 41
main operator MO, 39, 41
sentence, 37
subformula SB, 39, 41
unabbreviation, 43–45
vocabulary VC, 33
see also formal language

function
capture of CPf, 587
expression of EXf, 574
see also set theory; recursive function

fundamental theorem of arithmetic, 457,
467

generalization
derivation rule, 79
existential

formal expression, 57
universal

formal expression, 46
Gödel number

formula, 455, 464, 611
super, 611
Turing machine, 756

Gödel’s first ı̃ncompleteness theorem
see completeness

Gödel’s second ı̃ncompleteness theorem
see consistency

Gödel, K., 453, 561, 580, 638

halting problem
see computability

Henkin, L., 453, 742
Hilbert, D., 561, 645

iff, if and only if, 12
ı̃ncompleteness of arithmetic

see completeness
interpretation

quantificational, 111
domain of, 111
universe of, 111

sentential, 94
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standard
for LNT

< NN, 113
for LNT N, 300

invalidity
in derivation systems

semantic argument for, 451
logical

test for IT, 13
quantificational

and tree diagram, 126
in metalanguage, 353–357

sentential
and truth table, 103

see also validity

Löb’s theorem, 741–747

mathematical induction
formal

axiom schema, 85, 306
rule, 85, 306

metalinguistic scheme, 362, 367
mathematics

philosophy of, 418, 562, 646
metalanguage

and form, 34
derivations in, 321
formal, 320
natural, 34–36, 49, 66
rules for reasoning in, 332, 351

biconditional rules bcnd, 327
bottom introduction bot, 320
commutation com, 320
conditional rules cnd, 327
conjunctive rules cnj, 320
definition def, 347
DeMorgan dem, 320
disjunctive rules dsj, 320
distribution dst, 329
equality rules eq, 338
existential rules exs, 323
idempotence idm, 320
inspection ins, 324
negation rules neg, 320
quantifier negation qn, 336
universal rules unv, 336

model theory
axiomatization, 502

finite, 502
categorical set, 511
compactness, 522
completeness, relative, 505
c̃ompleteness, 511, 560, 563
elementary equivalence EE, 508
embedding EM, 517
embedding, elementary EL, 519
isomorphism IS, 506
Löwenheim-Skolem theorems, 533
model, 451

nonstandard for arithmetic, 530
size of, 534

quantifier elimination, 546
and theory L, 552
and theory S, 548

satisfiability, 522
finite, 522

Skolem’s paradox, 538
soundness, relative, 504
s̃oundness, 511, 560, 563
submodel SM, 514
submodel, elementary ES, 515

natural derivation
N �, 439
N ?, 443
accessible formula FA, 206
accessible subderivation SA, 206
auxiliary assumption, 203

discharge of, 205
condition on rules, 201
definition def, 658
ND equivalent to AD, 413–443
preliminary system NP, 199
proof, 200
scope line, 202
subderivation SD, 206

exit strategy for, 208, 216, 227
theorem, 201
validity, 201
without premises, 227
see also natural derivation, senten-

tial; natural derivation, quantifi-
cational

natural derivation, quantificational
includes rules of NDs, 263
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instantiation of variable, 264
Peano arithmetic in, 306–311
Robinson arithmetic in, 300–305
rules of ND (NDs and), 264–291
8 exploitation 8E, 264
8 introduction 8I, 269
9 exploitation 9E, 271
9 introduction 9I, 265
D exploitationDE, 290
D introductionDI, 289

rules of ND+ (ND, NDs+ and), 294–
296

bounded 8 exploitation (8E), 296
bounded 8 introduction (8I), 296
bounded 9 exploitation (9E), 296
bounded 9 introduction (9I), 296
quantifier distribution QD, 294
quantifier negation QN, 294
quantifier placement QP, 294
quantifier switch QS, 294
restricted quantifier negation RQN,

296
strategies SC, SG, 278

SC1, 282
SC2, 282
SC3, 284
SC4, 285
SG1, 279
SG2, 279
SG3, 280
SG4, 281
SG5, 281
with equality, 291

see also natural derivation
natural derivation, sentential

rules of NDs, 207–228
reiteration R, 205
! exploitation!E, 207
! introduction!I, 208
^ exploitation ^E, 211
^ introduction ^I, 212
� exploitation �E, 216, 217
� introduction �I, 216, 217
_ exploitation _E, 219
_ introduction _I, 218
$ exploitation$E, 224
$ introduction$I, 224

rules of NDs+ (NDs and), 254–261
? introduction ?I, 217
? exploitation ?E, 254
association Assoc, 257
commutation Com, 257
DeMorgan DeM, 257
disjunctive syllogism DS, 255
distribution Dist, 258
double negation DN, 256
equivalence Equiv, 258
exportation Exp, 258
hypothetical syllogism HS, 255
idempotence Idem, 257
implication Impl, 257
modus tollens MT, 254
negated biconditional NB, 255
transposition Trans, 257

strategies for a contradiction SC, 243–
251

SC1, 243
SC2, 244
SC3, 245
SC4, 247

strategies for a goal SG, 231–239
SG1, 232
SG2, 233
SG3, 233
SG4, 235
SG5, 236

strategy for main operator _, 250
in NDs+, 258

see also natural derivation
negation

and quantity, 21
formal expression, 33, 47, 311
metalinguistic expression, 101, 320
ordinary operator

neither nor, 154, 155
not both, 154, 155
not the case that, 151

number
even natural number 2N, 512
integer Z, 517
natural number N, 113
positive integer P , 508
real number R, 534
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Peano arithmetic
and Gödel’s second theorem, 642
axioms of PA, 85, 306
extends Qs, 593
in AD, 85–90
in ND+, 306–311
theorem of, 85, 306

predicate logic, 46
proof

formal relation
Prvt, 643
Prvpa, 707

see also axiomatic derivation; natural
derivation; recursive relations,
proof

quotation symbols, 612, 756

recursive definition, 37
basis for mathematical induction, 362,

364
closure clause, 37
recursion theorem RT, 569
simultaneous recursion, 610
see also recursive function; recursive

relation
recursive function

captured in Q, Qs, 586–601
canonical formula, 601
original formula, 594

coordinate definitions, 682, 687
defined, 571

composition CM, 567
cmp, 655
initial functions, 566
recursion RD, 567
regular minimization RM, 571
�yQ.Ex; y/, 656

defined complements
friendly recursive, 661
�-recursive, 765, 767, 769, 779
primitive recursive PR, 571

expressed in LNT, 572–584
canonical formula, 601
original formula, 579

represented in RL, 777
same as captured functions, 775
see also recursive functions

recursive functions
arithmetic

absval jx - yj, 602
absval, 684
fact Š, 568
fact, 696
lcm, 671
maxp, 672
maxs, 672
yn, 567
Dn, 684
plusC, 512, 568
plus, 683, 684
power xy, 572
power, 683, 695
pred, 602
pred, 684
qt, 610
qt, 660
rm, 610
rm, 660
subc :

�, 602
subc, 684
x
:
� y, 667

times �, 514, 568
times, 683, 684

“-function, 581
capture of, 594
definition in PA, 660
expression of, 583

enumeration of theorems
code, 628
ethrmt, 628
pos, 629

formula substitution
formsub, 619
formsub, 705

Gödel numbers
caret, 617
caret, 691
cncat ?, 612
cncat �, 690, 700
cnd, 615
cnd, 691
diag, 623
gvar, 715
gvar, 718
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num, 623
num, 718
numseq, 718
sub, 726
til, 615
til, 691
unv, 615
unv, 691
wedge, 617

initial functions
idntjk, 566
idntj

k, 661
suc S, 512, 566
suc, 661
zero, 566
zero, 661

prime
exp, 609
exp, 697
exc, 699
len, 609
len, 698
pi  , 608
pi, 696
val, 699
val�, 699

selection by cases
f.Ex/ = f, 607

sign
csg sg, 603
csg, 686
sg, 602
sg, 686

Turing machine
decode, 758
encode, 758
lb, 756
left, 758
mach, 757
machs, 758
right, 758
state, 758
stop, 759

recursive operators
bounded quantification
.8y � z/, 606
.8y � z/, 690

.8y < z/, 606

.8y < z/, 690

.9y � z/, 606

.9 y � z/, 687

.9y < z/, 606

.9 y < z/, 690
least under bound
.�y � z/, 606
.�y � z/, 687
.�y � z/, 657

truth functions
CNJ ^, 606
Cnj, 690
DSJ _, 606
Dsj, 687
IMP!, 606
Imp, 690
NEG �, 606
Neg, 687

recursive relation, 603
captured in Q, 604
coordinate, 687
expressed in LNT, 603
friendly, 685

defined in PA, 685
see also recursive relations

recursive relations
arithmetic

EQD, 604
Eq, 687
FCTR j, 608
Fctr, 690
mjn, 668
LEQ �, 604
Leq, 687
LESS <, 604
Less, 687
PRIME, 608
Prime, 690
Pr, 669
Rp, 669

formula
ATOMIC, 614
Atomic, 703
ATOMSUB, 618
Atomsub, 705
FFSEQ, 619
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Ffseq, 717
FORMSEQ, 615
Formseq, 703
FORMSUB, 618
Formsub, 705
FREEf, 619
Freef , 716
FREEFOR, 620
Freefor, 717
FSUBSEQ, 618
Fsubseq, 705
SENT, 619
WFF, 614
W ff , 703

proof
AXIOMAD, 622
AXIOMADS, 616
AXIOMPA, 622
Axiompa, 691
AXIOMQ, 622
GEN, 621
Gen, 691
ICON, 621
Icon, 691
MP, 616
Mp, 691
PRFAD, 622
PRFADS, 616
PRFPA, 622
Prfpa, 691
PRFQ, 622
PRFT, 626
PRVT (negation complete theory), 629

term
FREEt, 619
Freet, 715
TERM, 614
Term, 702
TERMSEQ, 614
Termseq, 701
TERMSUB, 618
Termsub, 704
TSUBSEQ, 617
Tsubseq, 704
VAR, 613
Var, 701

Turing machine

ACT, 756
LB, 756
QUAD, 757
SYM, 756
TMACH, 757

relation
capture of CPr, 587
characteristic function of CF, 603
expression of EXr, 573
see also set theory; recursive relation

Robinson arithmetic
axioms of Q, 300
decides atomics of LNT, 389–396
decides �0 sentences, 589
in ND+, 300–305
ı̃ncompleteness and, 564
proves true †1 sentences, 591
strengthened Qs, 593
theorem of, 300
trichotomy in, 396–402

Rosser, B., 639
Ruby language, 570, 572, 755

semantic reasoning
derivations for, 321
introductory, 316–319
quantificational, 334–357
sentential, 319–331
see also metalanguage; semantics sen-

tential; semantics quantificational
semantics, quantificational, 110–131

abbreviations, 129–131
entailment QV

formal, 336
natural, 125

interpretation QI, 111
domain of, 111
universe of, 111

satisfaction SF SF0

formal, 334, 340, 343, 344
natural, 118, 132

tautology, 125
term assignment TA

formal, 338
natural, 115

term on interpretation AI, 394
tree branch conditions
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B(s), 119
B(r), 119
B(�), 119
B(!), 119
B(8), 119
B0.^/, 129
B0._/, 129
B0.$/, 129
B0.9/, 129

trees
for satisfaction, 118–121, 130
for term assignment, 116
invalidity, 126–128, 130
truth, 122

truth on interpretation TI
formal, 336
natural, 122

validity QV
formal, 336
naural, 125

variable assignment, 114
variable, semantics of, 352

semantics, sentential, 93–108
abbreviations, 106–108
characteristic table

T(�), 94
T(!), 94
T0._/, 106
T0.^/, 106
T0.$/, 106
T("), 319

entailment SV

formal, 323
natural, 101

interpretation, 94
tautology, 102
truth on interpretation ST, ST0

formal, 320, 328
natural, 94, 109, 319

truth table
and validity, 102–104, 107
arbitrary interpretations, 96–97
constructing values, 97–100, 107
short method, 104–105, 108

truth tree, 94, 106
validity SV

formal, 323

natural, 101
set theory

Cantor’s theorem, 536
cardinality, 534

cardinal comparison, 534
cardinal number, 534

closure
under constants, 514
under functions, 514

continuum hypothesis, 500, 534
function, 112

domain, 569
into, 506
one-to-one, 506
onto, 506
partial, 569
range of, 518
regular, 570
restriction of, 512
total, 112

n-tuple, 112
orderings

linear order, 527
partial order, 526
well-order, 527

ordinal number, 534
powerset, 536
relation, 112

restriction of, 512
set, 112

countable, 33, 35, 48
enumeration of, 628
intersection, 112
uncountable, 48
union, 112

subset, 112
ZFC, 528, 534, 539
see also function; recursive function;

relation; recursive relation
Smith, P., 780
soundness, 407

logical LS, 12
and truth, 12, 23–24

relative soundness, 504
s̊oundness and, 505
s̃oundness and, 511

s̊oundness, 445–451
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strong, 376
weak, 375

s̃oundness, 511, 560, 563
stories, and logical validity, 6–9

consistent, 8
maximal, 7

successor, see recursive functions, 113

Tarski’s theorem, 632–633
Tarski, A., 352
theory, 560

!-complete, 627
!-consistent, 627
nicely specified, 561, 626
recursively axiomatized, 626
theorem of, 560
theories

L, 552
PA, 85–90, 306–311
Q, 300–305
Qs, 593
S, 548

translation
basis for evaluation of validity, 161,

409–413
criterion of goodness CG, 135
intended interpretation, 135
interpretation function, 135
natural, 150
of argument, 136, 161
see also translation, sentential; trans-

lation, quantificational
translation, quantificational, 164–194

elementary sentences, 166–169
quantifier switching, 168

equality, 190–194
definite descriptions, 193
quantity expressions, 191–193

exception clauses, 176
equality in, 193

overlapping quantifiers, 179–188
quantifier placement, 184–188

quantification of complexes, 171–177
quantifier switching, 175

sentences without quantifiers, 165–166
variables as placeholders, 169
see also tranlsation

translation, sentential, 136–162
compound and simple CS, 137, 142
declarative sentence DC, 136, 142
main operator MO, 137, 142
sentential operator SO, 136, 142

and underlines, 136–138
translation procedure TP, 143

equivalent sentences, 143
equvalent operators, 146
parallel tree, 146
parse tree, 143
results in good translation, 148
�, 151
^, 151–152
_, 153–154
!, 157–158
$, 160

truth functional operator TF, 138–142
test not truth functional, 138
test truth functional, 139

see also translation; negation;
conjunction; disjunction; condi-
tional; biconditional

tree diagram
consequence in AL, 67
formula, 37, 42, 52, 58, 63
invalidity, quantificational, 126, 130
parallel tree, translation, 146
parse tree, translation, 143
recursive function, 572
satisfaction, 119–121, 130

application to translation, 166–192
sentential truth, 94, 106
term, 50
term assignment, 116
unabbreviation, 45, 58, 63
with language RL, 777

truth table, see semantics, sentential
Turing machine

see computability
Turing, A., 750

unique readability, 494–497

validity
in axiomatic derivation, 67
in natural derivation, 201
logical LV, 12
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alternate formulations, 28
and form, 24–25
and relevance, 25–27
and truth, 12, 23
test for VT, 16

quantificational QV
formal, 336
implies logical validity, 408–409
natural, 125

sentential SV

formal, 323
implies logical validity, 408–409
natural, 101

see also invalidity
vector, 567
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