Symbolic Logic

An Accessible Introduction to Serious Mathematical Logic

Tony Roy

This work is licensed under a Creative Commons
Attribution—NonCommercial-ShareAlike 4.0 International License.
http://creativecommons.org/licenses/by-nc-sa/4.0/

Qoo

From first print edition, 2023
(Third revision, July 2025)

Additional resources for this work are available at
https://tonyroyphilosophy.net/symbolic-logic/

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://tonyroyphilosophy.net/symbolic-logic/

For my girls,
Rose, Hannah, Christina

Preface

There is, I think, a gap between what many students learn in their first course in
formal logic, and what they are expected to know for their second. While courses in
mathematical logic with metalogical components often cast only the barest glance
at mathematical induction or even the very idea of reasoning from definitions, a first
course may also leave these untreated, and fail explicitly to lay down the definitions
upon which the second course is based. The aim of this text is to integrate material
from these courses and, in particular, to make serious mathematical logic accessible to
students I teach. The first parts introduce classical symbolic logic as appropriate for
beginning students; the last parts build to Godel’s completeness and incompleteness
results. A distinctive feature of the last section is a complete development of Godel’s
second incompleteness theorem.

Accessibility, in this case, includes components which serve to locate this text
among others: First, assumptions about background knowledge are minimal. I do
not assume particular content about computer science, or about mathematics much
beyond high school algebra. Officially, everything is introduced from the ground up.
No doubt, the material requires a certain sophistication—which one might acquire
from other courses in critical reasoning, mathematics, or computer science. But the
requirement does not extend to particular contents from any of these areas.

Second, I aim to build skills, and to keep conceptual distance for different applica-
tions of ‘so’ relatively short. Authors of books that are completely correct and precise
may assume skills and require readers to recognize connections not fully explicit.
It may be that this accounts for some of the reputed difficulty of the material. The
results are often elegant. But this can exclude a class of students capable of grasping
and benefiting from the material, if only it is adequately explained. Thus I attempt
explanations and examples to put the student at every stage in a position to understand
the next. In some cases, I attempt this by introducing relatively concrete methods for
reasoning. The methods are, no doubt, tedious or unnecessary for the experienced
logician. However, I have found that they are valued by students, insofar as students
are presented with an occasion for success. These methods are not meant to wash over
or substitute for understanding details, but rather to expose and clarify them. Clarity,
beauty, and power come, I think, by getting at details, rather than burying or ignoring
them.

v

PREFACE v

Third, the discussion is ruthlessly directed at core results. Results may be rendered
inaccessible to students, who have many constraints on their time and schedules,
simply because the results would come up in, say, a second course rather than a first.
My idea is to exclude side topics and problems, and to go directly after (what I see as)
the core. One manifestation is the way definitions and results from earlier sections
feed into ones that follow. Thus simple integration is a benefit. Another is the way
predicate logic with identity is introduced as a whole in Part I. Though it is possible
to isolate sentential logic from the first parts of Chapter 2 through Chapter 6, and so to
use the text for separate treatments of sentential and predicate logic, the guiding idea is
to avoid repetition that would be associated with independent treatments for sentential
logic, or perhaps monadic predicate logic, the full predicate logic, and predicate logic
with identity.

Also (though it may suggest I am not so ruthless about extraneous material as I
would like to think), I try to offer some perspective about what is accomplished along
the way. Some of this is by organization; some by asides to the main text; and some
built into the main content. So for example the text may be of particular interest to
those who have, or desire, an exposure to natural deduction in formal logic. In this
case, insight arises from the nature of the system. In the first part, I introduce both
axiomatic and natural derivation systems; and in Part I1I, show how they are related.

There are different ways to organize a course around this text. Chapters locate
and order material conceptually. But in many contexts the conceptual order will be
other than the best pedagogical order, and content may be taken in different ways. For
students who are likely to complete the whole, a straightforward option is to proceed
sequentially through the text from beginning to end (but postponing Chapter 3 until
after Chapter 6). Taken as wholes, Part II depends on Part I; parts III and IV on parts [
and II. At the level of whole chapters, dependencies are as in the box on the next page.
At a more fine-grained level, one might construct a sequence, like one I have regularly
offered, as follows:

informal notions: Chapter 1
sentential logic: first parts of chapters 2, 4, 5, 6
predicate logic: latter parts of chapters 2, 4, 5, 6
transitional: chapters 3, 7, first parts of 8
advanced topics: metalogic: 8.3, Part 111; and/or incompleteness: 8.4, Part IV

For predicate logic I have preferred to cover material in the order 2, 6, 4, 5 to convey a
sense of the formal language “by immersion” prior to chapters 4 and 5. Thus the text
is compatible with different course organizations—and may (should) be customized
to your own needs!

A remark about Chapter 7 especially for the instructor: By a formally restricted
system for reasoning with semantic definitions, Chapter 7 aims to leverage derivation
skills from earlier chapters to informal reasoning with definitions. I have had a difficult
time convincing instructors to try this material—and even been told flatly that these

PREFACE vi

Chapter dependencies. Though there are cross references throughout, the following repre-
sent reasonable sequences for study:

Chapter 1

Chapter 2

Chapter 4

Chapter 5
Chapt'é'r.é. Chapter 7
Chapter 8
Chapter 9 Chapter 12
Chapter 10 Chapter 13 Chapter 14

Chapter 11

The relation between Chapter 6 and Chapter 3 is pedagogical rather than logical, and might
be ignored for students with sufficient technical background (but see the caution in the box
on page 69 of Chapter 3).

skills “cannot be taught.” In my experience, this is false (and when I have been able
to convince others to try the chapter, they have quickly seen its value). Perhaps the
difficulty is just that the strategy is unfamiliar. Of course, if one is presented with
students whose mathematical sophistication is sufficient for advanced work, it is not
necessary. But if (as is often the case, especially for students in philosophy) one
obtains one’s mathematical sophistication from courses in logic, this chapter is an
important part of the bridge from earlier material to later. Additionally, the chapter is
an important “takeaway” even for students who will not continue to later material. The
chapter closes an open question from Chapter 4—how it is possible to demonstrate
quantificational validity. But further, the ability to reason closely with definitions is a
skill from which students in (sentential or) predicate logic, even though they never
go on to formalize another sentence or do another derivation, will benefit both in
philosophy and more generally.

Another remark about the (long) sections 13.3, 13.4, and 13.5. These develop in
PA the “derivability conditions” for Godel’s second incompleteness theorem. They
are perhaps for enthusiasts. Still, in my experience many students are enthusiasts
and, especially from an introduction, benefit by seeing the conditions derived—else

PREFACE vii

the very idea of proving in a formal theory results about provability may remain
mysterious. There are different ways to treat the sections. One might work through
them in some detail. However, even if you skim demonstrations lightly, there is an
advantage having a panorama at which to gesture and say “thus it is accomplished!”

Naturally, results in this book are not innovative. If there is anything original,
it is in presentation. Even here, I am greatly indebted to others, especially perhaps
Bergmann, Moor, and Nelson, The Logic Book, Mendelson, Introduction to Math-
ematical Logic, and Smith, An Introduction to Gédel’s Theorems. 1 thank my first
logic teacher, G.J. Mattey, who communicated to me his love for the material. And
I thank especially my colleagues John Mumma and Darcy Otto for many helpful
comments. Hannah Baehr and Catlin Andrade provided comments and some of the
answers to exercises. In addition I have received helpful feedback from Ramachandran
Venkataraman and Steve Johnson, along with students in different logic classes at
California State University San Bernardino. Hannah and Steve Baehr produced the
cover.

This text evolved over a number of years starting modestly from notes originally
provided as a supplement to other texts. The current version divides naturally into
two volumes, the first (including Parts I and II) for reasoning in logic, and the second
(including Parts III and IV) for reasoning about it. These volumes are available
in hardcopy from Amazon.com. In addition, both the text and answers to selected
exercises are available as PDF downloads at https://tonyroyphilosophy.net/
symbolic-logic/. The website includes also a forum for comment and discussion.
I recommend working from the hardcopy: for a text that you do not merely read but
rather work through, it makes a difference to see more than a “screen’s worth” at a
time, mark on pages, and such. (The hardcopy is available at the lowest allowable
price, without royalties for me, so this is no self-interested recommendation.) Of
course, the electronic version is useful too—an advantage over the hardcopy is that
its many internal links are live. Further, the assiciated Symbolic Logic APPlication
(SLAPP) is freely available from the website. In its current version (3.0) it is sufficient
for the production of exercises from (at least) Volume 1 of the text. In addition SLAPP
checks derivations from chapters 3 and 6, and has a help function for the basic I/E-rule
systems of chapter 6. It is well-worth using this tool.

I think this is fascinating material, and consider it great reward when students
respond “cool!” as they sometimes do. I hope you will have that response more than
once along the way.

T.R. July 2025

https://www.amazon.com
https://tonyroyphilosophy.net/symbolic-logic/
https://tonyroyphilosophy.net/symbolic-logic/

Contents

Preface
Contents

Quick Reference Guides

I The Elements: Four Notions of Validity

1 Logical Validity and Soundness

1.1 Consistent Stories o o e e e
1.2 TheDefinitions e
1.3 Some Consequences v v v v v it e e e e

2 Formal Languages

2.1 Introductory e
2.2 Sentential Languages o0
2.3 Quantificational Languages

3 Axiomatic Deduction

3.1 General

32 Sentential e

3.3 Quantificational

34 Application: PA
4 Semantics

4.1 Sentential e

4.2 Quantificational
5 Translation

5.1 General

5.2 Sentential

5.3 Quantificational L .

iv

viii

xi

12
23

31
31
33
46

65
66
69
77
85

93
93
110

CONTENTS

6 Natural Deduction
6.1 General e e
6.2 Sentential
6.3 Quantificational o
6.4 Applications: QandPA oo

II Transition: Reasoning About Logic

7 Direct Semantic Reasoning
7.1 Introductory
7.2 Sentential e
7.3 Quantificational e

8 Mathematical Induction
8.1 General Characterization
8.2 Preliminary Examples
8.3 Further Examples (for Part III)
8.4 Additional Examples (for Part1V)

III Classical Metalogic: Soundness and éompleteness

9 Preliminary Results
9.1 Semantic Validity Implies Logical Validity
9.2 Validity in AD Implies Validity inND
9.3 Validity in ND Implies Validity inAD
9.4 Extendingto ND+ e e

10 Main Results
10.1 Soundness . . . o oo i
10.2 Sentential (olompleteness
10.3 Quantificational éompleteness: Basic Version
10.4 Quantificational (oiompleteness: Full Version

11 More Main Results
11.1 Expressive Completeness,
11.2 Unique Readability
11.3 Independence
11.4 Beginning Model Theory

ix

198
198
207
263
299

315

317
318
320
335

361
361
367
380
390

406

409
409
414
421
440

446
447
453
464
476

CONTENTS

IV Logic and Arithmetic: Incompleteness and Computability

12 Recursive Functions and Q
12.1 Recursive Functions
12.2 Expressing Recursive Functions
12.3 Capturing Recursive Functions
12.4 More Recursive Functions
12.5 Essential Results

13 Godel’s Theorems
13.1 Godel’s First Theorem
13.2 Godel’s Second Theorem: Overview
13.3 The Derivability Conditions: Definition
13.4 The Second Condition: O(— @) - (O —-0O&)
13.5 The Third Condition: O — O0L oo ..
13.6 Reflections on the Second Theorem

14 Logic and Computability
14.1 Turing Computable Functions
14.2 Essential Results,
14.3 Church’s Thesis i it it et it e

Concluding Remarks
Bibliography

Index

560

564
566
573
587
602
623

637
637
643
650
695
716
735

751
751
764
771

791
794

799

Quick Reference Guides

Negation and Quantity i 21
Classical Validity e 28
Countability 35
PartsofaFormula 39
More on Countability 48
Grammar Quick Reference 61
ADs Quick Reference 78
AD Quick Reference 84
Peano Arithmetic (AD) e 92
Greek Characters i i i it i i e 102
Semantics Quick Reference (sentential) 109
Basic Notions of Set Theory 112
Semantics Quick Reference (quantificational) 132
Definitions for Translation 142
‘Neither nor’ and ‘Notboth” 155
Cause and Conditional, 159
Definitions for Auxiliary Assumptionso 206
NDs Quick Reference e 225
NDs+ Quick Reference 259
ND Quick Reference 291
ND+ Quick Reference 298
Lar Quick Reference L 301
Robinson and Peano Arithmetic (ND+) 313
Metalinguistic Quick Reference (sentential) 333
Metalinguistic Quick Reference (quantificational) 352
On the Semantics of Variables 353
Theorems of Chapter 7 e 359
Induction Schemes 368
First Theorems of Chapter 8 390
Final Theorems of Chapter 8 405
Numeraland Number 419
Theorems of Chapter9 445

xi

Quick Reference Guides xii

Some Arithmetic Relevant to Godel Numbering 458
More Arithmetic Relevant to Godel Numbering 468
Theorems of Chapter 10. 490
First Theorems of Chapter 11 514
Basic Definitions for Model Theory 522
Extensions of Classical Logic 527
Cantor’s Theorem 537
Final Theorems of Chapter 11 559
The Recursion Theoremo 570
Arithmetic for the Beta Function 583
Sigma-1 and Pi-1 Formulas, 591
FirstResultsof Chapter 12 606
Final Resultsof Chapter 12 636
Additional Theorems of PA 649
First Theorems of Chapter 13 660
Font Conventions it 694
Second Theorems of Chapter 13 715
Substitution Vectors e e 729
Final Theorems of Chapter 13 750
Binary Numbers e 753
Simple Time Dilation 775
Enumerating Primitive Recusive Functions 778

Theorems of Chapter 14 790

Part 1

The Elements: Four Notions of
Validity

Introductory

Symbolic logic is a tool for argument evaluation. In this part of the text we introduce
the basic elements of that tool. Those parts are represented in the following diagram:

Truth and
Validity

Arguments Language Consideration

Proof and
Validity

Ordinary Symbolic / Metalogical

The starting point is ordinary arguments. Such arguments come in various forms and
contexts—from politics and ordinary living, to mathematics and philosophy. Here is a
classic, simple case:

All humans are mortal.
(A) Socrates is a human.

Socrates is mortal.

This argument has premises listed above a line, with a conclusion listed below. The
premises are supposed to demonstrate the conclusion. Here is another case which may
seem less simple:

If the maid did it, then it was done with a revolver only if it was done in the
parlor. But if the butler is innocent, then the maid did it unless it was done in
the parlor. The maid did it only if it was done with a revolver, while the butler is
guilty if it did happen in the parlor. So the butler is guilty.

(B)

It is fun to think about this; from the given evidence, it follows that the butler did it!
Here is an argument that is both controversial and significant:

There is evil. If god is good, then there is no evil unless god has morally
sufficient reasons for allowing it. If god is both omnipotent and omniscient, then
god does not have morally sufficient reasons for allowing evil. So god is not
good, omnipotent, and omniscient.

©)

PART1 THE ELEMENTS 3

A being is omnipotent if it is all-powerful, and omniscient if all-knowing. Thus this is
a version of the famous “problem of evil” for traditional theism. It matters whether
the conclusion is true! Roughly, an argument is good if it does what it is supposed to
do, if its premises demonstrate the conclusion; and an argument is bad if it does not
do what it is supposed to do, if its premises fail to demonstrate the conclusion. So a
theist (someone who accepts that there is a god) may want to hold that (C) is a bad
argument, but an atheist (someone who denies that there is a god) that it is good.

We begin in Chapter 1 with an account of success for ordinary arguments (the
leftmost box). So we say what it is for an argument to be good or bad. This introduces
us to the fundamental notions of logical validity and logical soundness. These will
be our core concepts for argument evaluation. But just as it is one thing to know
what honesty is, and another to know whether someone is honest, so it is one thing to
know what logical validity and logical soundness are, and another to know whether
an argument is valid or sound. In some cases, it may be obvious. But others are not
so clear—as, for example, cases (B) or (C) above, along with complex arguments in
mathematics and philosophy. Thus symbolic logic is introduced as a sort of machine
or tool to identify validity and soundness.

This machine begins with certain symbolic representations of ordinary arguments
(the box second from the left). That is why it is symbolic logic. We introduce these
representations in Chapter 2, and translate from ordinary arguments to the symbolic
representations in Chapter 5. Once arguments have this symbolic representation, there
are different methods of operating upon them. We develop three such methods, each
with its own distinctive advantages and disadvantages.

An account of truth and validity is developed for the symbolic representations
in Chapter 4 and Chapter 7 (the upper box). On this account, truth and validity are
associated with clearly defined criteria for their evaluation. And validity from this
upper box implies logical validity for the ordinary arguments that are symbolically
represented. Thus we obtain clearly defined criteria to identify the logical validity
of arguments we care about. Evaluation of validity for the butler and evil cases is
entirely routine given the methods from Chapter 2, Chapter 4, and Chapter 5—though
the soundness of (C) will remain controversial!

One account of proof and validity is developed for the symbolic representations
in Chapter 3, and another in Chapter 6. So there are separate applications of the proof
method (the lower box). Again, on these accounts, proof and validity are associated
with clearly defined criteria for their evaluation. And validity by the proof methods
implies logical validity for the ordinary arguments that are symbolically represented.
In each case the result is another well-defined approach to the identification of log-
ical validity. Evaluation of validity for the butler and evil cases is entirely routine
given the methods from, say, Chapter 2, Chapter 3, and Chapter 5, or alternatively,
Chapter 2, Chapter 5, and Chapter 6—though, again, the soundness of (C) will remain
controversial.

PART1 THE ELEMENTS 4

These, then, are the elements of our logical “machine”—we start with the funda-
mental notion of logical validity, then there are symbolic representations of ordinary
reasonings, along with approaches to evaluation from truth and validity, and from
proof and validity. These elements are developed in this part. In later parts we turn
to thinking about how these parts work together (the right-hand box). In particular,
we begin thinking how to reason about logic (Part II), demonstrate that the same
arguments come out valid by the truth method as by the proof methods (Part I1I), and
establish limits on application of logic and computing to arithmetic (Part IV). But first
we have to say what the elements are. And that is the task we set ourselves in this part.

Chapter 1

Logical Validity and Soundness

We have said that symbolic logic is a tool or machine for the identification of argument
goodness. In this chapter we begin, not with the machine, but with an account of this
“argument goodness” that the machinery is supposed to identify. In particular, we
introduce the notions of logical validity and logical soundness.

An argument is made up of sentences one of which is taken to be supported by
the others.

AR An argument is some sentences, one of which (the conclusion) is taken to be
supported by the remaining sentences (the premises).

(Important definitions are often offset and given a short name as above; then there
may be appeal to the definition by its name, in this case, ‘AR’.) So an argument has
premises which are taken to support a conclusion. Such support is often indicated
by words or phrases of the sort, ‘so’, ‘it follows’, ‘therefore’, or the like. We will
typically represent arguments in standard form with premises listed as complete
sentences above a line, and the conclusion under. Roughly, an argument is good if
the premises do what they are taken to do, if they actually support the conclusion. An
argument is bad if they do not accomplish what they are taken to do, if they do not
actually support the conclusion.

Logical validity and soundness correspond to different ways an argument can go
wrong. Consider the following two arguments:

Only citizens can vote All citizens can vote
(A) Hannah is a citizen (B) Hannah is a citizen
Hannah can vote Hannah can vote

The line divides premises from conclusion, indicating that the premises are supposed
to support the conclusion. Thus these are arguments. But these arguments go wrong
in different ways. The premises of argument (A) are true; as a matter of fact, only

CHAPTER 1. LOGICAL VALIDITY AND SOUNDNESS 6

citizens can vote, and Hannah (my daughter) is a citizen. But she cannot vote; she
is not old enough. So the conclusion is false. Thus, in argument (A), the relation
between the premises and the conclusion is defective. Even though the premises
are true, there is no guarantee that the conclusion is true as well. We will say that
this argument is logically invalid. In contrast, argument (B) is logically valid. If its
premises were true, the conclusion would be true as well. So the relation between the
premises and conclusion is not defective. The problem with this argument is that the
premises are not true—not all citizens can vote. So argument (B) is defective, but in a
different way. We will say that it is logically unsound.

The task of this chapter is to define and explain these notions of logical validity
and soundness. I begin with some preliminary notions in section 1.1, then turn to
official definitions of logical validity and soundness (section 1.2), and finally to some
consequences of the definitions (section 1.3).

1.1 Consistent Stories

Given a certain notion of a possible or consistent story, it is easy to state definitions
for logical validity and soundness. So I begin by identifying the kind of stories that
matter. Then we will be in a position to state the definitions, and apply them in some
simple cases.

Let us begin with the observation that there are different sorts of possibility.
Consider, say, ‘Hannah could make it in the WNBA (that is, in the Women’s National
Basketball Association)’. This seems true. She is reasonably athletic, and if she were
to devote herself to basketball over the next few years, she might very well make it
in the WNBA. But wait! Hannah is only a kid—she rarely gets the ball even to the
rim from the top of the key—so there is no way she could make it in the WNBA. So
we have said both that she could and that she could not make it. But this cannot be
right. What is going on? Here is a plausible explanation: Different sorts of possibility
are involved. When we hold fixed current abilities, we are inclined to say there is no
way she could make it. When we hold fixed only general physical characteristics, and
allow for development, it is natural to say that she might. Similarly, I sometimes ask
students if it is possible to drive the 60 miles from our campus in San Bernardino to
Los Angeles in 30 minutes. From natural assumptions about Los Angeles traffic, law
enforcement, and the like, most say it is not. But some, under different assumptions,
allow that it can be done! In each example, the scope of what is possible varies with
whatever constraints are in play: the weaker the constraints, the broader the range of
what is possible. In ordinary contexts, constraints are understood—so when you ask a
friend if she can make it to your party in thirty minutes, rocket ships and jet cars are
not an option. That is how we manage to communicate.

The sort of possibility we are interested in is very broad, and constraints are
correspondingly weak. We will allow that a story is possible or consistent so long as

CHAPTER 1. LOGICAL VALIDITY AND SOUNDNESS 7

it involves no internal contradiction. A story is impossible when it collapses from
within. For this it may help to think about the way you respond to ordinary fiction.
Consider, say, J.LK. Rowling’s Harry Potter and the Prisoner of Azkaban. Harry and
his friend Hermione are at wizarding school. Hermione acquires a “time turner” which
allows time travel, and uses it in order to take classes that are offered at the same time.
Such devices are no part of the actual world, but they fit into the wizarding world of
Harry Potter. So far, then, the story does not contradict itself. So you go along.

At one stage, though, Harry is at a lakeshore under attack by a bunch of fearsome
“dementors.” His attempts to save himself appear to have failed when a figure across
the lake drives the dementors away. But the figure who saves Harry is Harry himself
who has come back from the future. Somehow then, as often happens in these stories,
the past depends on the future, at the same time as the future depends on the past:
Harry is saved only insofar as he comes back from the future, but he comes back from
the future only insofar as he is saved. This, rather than the time travel itself, generates
an internal conflict. The story makes it the case that you cannot have Harry’s rescue
apart from his return, and cannot have Harry’s return apart from his rescue. This
might make sense if time were always repeating in an eternal loop. But, according to
the story, there were times before the rescue and after the return. So the story faces
internal collapse. Notice: the objection does not have anything to do with the way
things actually are—with existence of time turners or the like; it has rather to do with
the way the story hangs together internally.! Similarly, we want to ask whether stories
hold together internally. If a story holds together internally, it counts for our purposes
as consistent and possible. If a story does not hold together, it is not consistent or
possible.

In some cases, stories may be consistent with things we know are true in the real
world. Thus Hannah could grow up to play in the WNBA. There is nothing about our
world that rules this out. But stories may remain consistent though they do not fit with
what we know to be true in the real world. Here are cases of time travel and the like.
Stories become inconsistent when they collapse internally—as when a story says that
some time both can and cannot happen apart from another.

As with a movie or novel, we can say that different things are true or false in our
stories. In Harry Potter it is true that Harry and Hermione travel through time with a
timer turner, but false that they go through time in a DeLorean (as in the Back to the
Future films). In the real world, of course, it is false that there are time turners, and
false that DeLoreans go through time. Officially, a complete story is always maximal

Tn more consistent cases of time travel (in fiction) time seems to move on different paths so that
after today and tomorrow, there is another today and another tomorrow. So time does not return to the
very point at which it first turns back. In the trouble cases, time seems to move in a sort of “loop” so that
a point on the path to today (this very day) goes through tomorrow. With this in mind, it is interesting to
think about say, the Terminator (1984, 1991) and Back to the Future (1985, 1989, 1990) films along
with, maybe more consistent, Groundhog Day (1993) and, very much like it, Happy Death Day (2017).
Even if I am wrong, and the Potter story is internally consistent, the overall point should be clear. And it
should be clear that I am not saying anything serious about time travel.

CHAPTER 1. LOGICAL VALIDITY AND SOUNDNESS 8

in the sense that any sentence is either true or false in it. A story is inconsistent when
it makes some sentence both true and false. Since, ordinarily, we do not describe
every detail of what is true and what is false when we tell a story, what we tell is only
part of a maximal story. In practice, however, it will be sufficient for us merely to give
or fill in whatever details are relevant in a particular context.

But there are a couple of cases where we cannot say when sentences are true or
false in a story. The first is when stories we tell do not fill in relevant details. In The
Wizard of Oz (film, 1939) it is true that Dorothy wears red shoes. But the film has
nothing to say about whether she likes Twinkies. By itself, then, the film does not give
us enough information to say that ‘Dorothy likes Twinkies’ is either true or false in the
story. Similarly, there is a problem when stories are inconsistent. Suppose according
to some story,

(a) All dogs can fly
(b) Fido is a dog
(c) Fido cannot fly

Given (a), all dogs fly; but from (b) and (c), it seems that not all dogs fly. Given (b),
Fido is a dog; but from (a) and (c) it seems that Fido is not a dog. Given (c), Fido
cannot fly; but from (a) and (b) it seems that Fido can fly. The problem is not that
inconsistent stories say too little, but rather that they say too much. When a story is
inconsistent, we will refuse to say that it makes any sentence (simply) true or false.’

It will be helpful to consider some examples of consistent and inconsistent stories:

(a) The real story, “Everything is as it actually is.” Since no contradiction is
actually true, this story involves no contradiction; so it is internally consistent and
possible.

(b) “All dogs can fly: over the years, dogs have developed extraordinarily
large and muscular ears; with these ears, dogs can fly.” It is bizarre, but not obviously
inconsistent. If we allow the consistency of stories according to which monkeys fly,
as in The Wizard of Oz, or elephants fly, as in Dumbo (films 1941, 2019), then we
should allow that this story is consistent as well.

(c) “All dogs can fly, but my dog Fido cannot; Fido’s ear was injured while he was
chasing a helicopter, and he cannot fly.” This is not internally consistent. If all dogs
can fly and Fido is a dog, then Fido can fly. You might think that Fido retains a sort of
flying nature—just because Fido remains a dog. In evaluating internal consistency,
however, we require that meanings remain the same.

2The intuitive picture developed above should be sufficient for our purposes. However, we are
on the verge of vexed issues. For further discussion, you may want to check out the vast literature
on “possible worlds.” Contributions of my own include the introductory article, “Modality,” in The
Continuum Companion to Metaphysics.

CHAPTER 1. LOGICAL VALIDITY AND SOUNDNESS 9

F All dogs can fly T
© able to fly Fido is a dog flying nature
T Fido cannot fly F

If ‘can fly’ means ‘is able to fly’ then in the story it is true that Fido cannot fly, but not
true that all dogs can fly (since Fido cannot). If ‘can fly’ means ‘has a flying nature’
then in the story it is true that all dogs can fly, but not true that Fido cannot (because
he remains a dog). The only way to keep both ‘all dogs fly’ and ‘Fido cannot fly’ true
is to switch the sense of ‘can fly’ from one use to another. So long as ‘can fly’ means
the same in each use, the story is sure to fall apart insofar as it says both that Fido is
and is not that sort of thing.

(d) “Germany won WWII; the United States never entered the war; after a long
and gallant struggle, England and the rest of Europe surrendered.” It did not happen;
but the story does not contradict itself. For our purposes, then, it counts as possible.

(e) “1+1 = 3; the numerals ‘2’ and ‘3’ are switched (the numerals are ‘1°, ‘3°,
2°, ‘4, ‘5, ‘6’, ...); so that one and one are three.” This story does not hang together.
Of course numerals can be switched—so that people would correctly say, ‘1+1 = 3",
But this does not make it the case that one and one are three! We tell stories in our
own language (imagine that you are describing a foreign-language film in English).
Take a language like English except that ‘fly’ means ‘bark’; and consider a movie
where dogs are ordinary, so that people in the movie correctly assert, in their language,
‘dogs fly’. But changing the words people use to describe a situation does not change
the situation. It would be a mistake to tell a friend, in English, that you saw a movie
in which there were flying dogs. Similarly, according to our story, people correctly
assert, in their language, ‘1 +1 = 3’. But it is a mistake to say in English (as our story
does), that this makes one and one equal to three.

Last notes:

29 ¢

e Some authors prefer talk of “possible worlds,
to that of consistent stories. It is conceptually simpler to stick with stories, as I
have, than to have situations and distinct descriptions of them. However, it is
worth recognizing that our consistent stories are or describe possible situations,
so that the one notion matches up directly with the others.

possible situations,” or the like

o It is essential to success that you work a significant body of exercises success-
fully and independently: In learning logic, you acquire a skill. Just as a coach
might help you to understand how to hit a baseball—but you learn to hit only by
practice—so an instructor (or this book) may help you to understand concepts
of logic, but you gain the skill only by practice. So do not neglect exercises!

e As you approach exercises, note that answers to problems indicated by star
are available at https://tonyroyphilosophy.net/symbolic-logic/. In

https://tonyroyphilosophy.net/symbolic-logic/

CHAPTER 1. LOGICAL VALIDITY AND SOUNDNESS 10

El.1.

addition, the website makes available the Symbolic Logic APPlication (SLAPP).
In version 3.0, SLAPP is an exercise editor sufficient for production of exercises
from (at least) the first volume of this text (it also adds check and help for
derivation exercises). Even without check and help SLAPP adds structure for
responses of the sort required in this chapter, and becomes increasingly valuable
as symbolic elements are introduced. So it is worth getting started with it now.

Say whether each of the following stories is internally consistent or inconsis-

tent. In either case, explain why.

*a.

*c.

*e.

El1.2.

Smoking cigarettes greatly increases the risk of lung cancer, although most
people who smoke cigarettes do not get lung cancer.

. Joe is taller than Mary, but Mary is taller than Joe.

Abortion is always morally wrong, though abortion is morally right in order
to save a woman’s life.

. Mildred is Dr. Saunders’s daughter, although Dr. Saunders is not Mildred’s

father.

No rabbits are nearsighted, though some rabbits wear glasses.

. Ray got an ‘A’ on the final exam in both Phil 200 and Phil 192. But he got a

‘C’ on the final exam in Phil 192.

*g. Barack Obama was never president of the United States, although Michelle is

president right now.

. Egypt, with about 100 million people is the most populous country in Africa,

and Africa contains the most populous country in the world. But the United
States has over 200 million people.

*1. The death star is a weapon more powerful than that in any galaxy, though there

is, in a galaxy far, far away, a weapon more powerful than it.

. Luke and the Rebellion valiantly battled the evil Empire, only to be defeated.

The story ends there.

For each of the following, (i) say whether the sentence is true or false in

the real world and then (ii) say, if you can, whether the sentence is true or false
according to the accompanying story. In each case, explain your answers. Do not
forget about contexts where we refuse to say whether sentences are simply true or
false. The first problem is worked as an example.

CHAPTER 1. LOGICAL VALIDITY AND SOUNDNESS 11

a.

b,

*c.

*e.

Sentence: Aaron Burr was never a president of the United States.

Story: Aaron Burr was the first president of the United States, however he
turned traitor and was impeached and then executed.

(1) It is true in the real world that Aaron Burr was never a president of the
United States. (ii) But the story makes the sentence false, since the story says
Burr was the first president.

Sentence: In 2006, there were still buffalo.

Story: A thundering herd of buffalo overran Phoenix, Arizona in early 2006.
The city no longer exists.

Sentence: After overrunning Phoenix in early 2006, a herd of buffalo overran
Newark, New Jersey.

Story: A thundering herd of buffalo overran Phoenix, Arizona in early 2006.
The city no longer exists.

Sentence: There has been an all-out nuclear war.

Story: After the all-out nuclear war, John Connor organized the resistance
against the machines—who had taken over the world for themselves.

Sentence: Barack Obama has swum the Atlantic.

Story: No human being has swum the Atlantic. Barack Obama and Leonardo
DiCaprio and you are all human beings, and at least one of you swam all the
way across.

Sentence: Some people have died as a result of nuclear explosions.

Story: As a result of a nuclear blast that wiped out most of this continent, you
have been dead for over a year.

Sentence: Your instructor is not a human being.

Story: Your instructor is a human being. However he has traveled widely and
received his degree from a logic academy located on one of Saturn’s moons.

Sentence: Lassie is a dog who cannot fly.

Story: Dogs have super-big ears and have learned to fly. Indeed, all dogs can
fly. However Lassie and Rin Tin Tin are dogs who cannot fly.

. Sentence: The Yugo is the most expensive car in the world.

Story: Jaguar and Rolls Royce are expensive cars. But the Yugo is more
expensive than either of them.

. Sentence: Lassie is a bird who has learned to fly.

Story: Dogs have super-big ears and have learned to fly. Indeed, all dogs can
fly. Among the many dogs are Lassie and Rin Tin Tin.

CHAPTER 1. LOGICAL VALIDITY AND SOUNDNESS 12

1.2 The Definitions

The definition of logical validity depends on what is true and false in consistent stories.
The definition of soundness builds directly on the definition of validity. Note: in
offering these definitions, I stipulate the way the terms are to be used; there is no
attempt to say how they are used in ordinary conversation; rather, we say what they
will mean for us in this context.

LV An argument is logically valid if and only if (iff) there is no consistent story in
which all the premises are true and the conclusion is false.

LS An argument is logically sound iff it is logically valid and all of its premises are
true in the real world.

Observe that logical validity has entirely to do with what is true and false in consistent
stories. Only with logical soundness is validity combined with premises true in the
real world.

Logical (deductive) validity and soundness are to be distinguished from inductive
validity and soundness. For the inductive case, it is natural to focus on the plausibility
or the probability of stories—where an argument is relatively strong when stories
that make the premises true and conclusion false are relatively implausible. Logical
(deductive) validity and soundness are thus a sort of limiting case, where stories that
make premises true and conclusion false are not merely implausible, but impossible.
In a deductive argument, conclusions are supposed to be guaranteed; in an inductive
argument, conclusions are merely supposed to be made probable or plausible. For
mathematical logic, we set the inductive case to the side, and focus on the deductive.

Also, do not confuse truth with validity and soundness. A sentence is true in
the real world when it correctly represents how things are in the real world, and true
in a story when it correctly represents how things are in the story. An argument is
valid when there is no consistent story that makes the premises true and conclusion
false, and sound when it is valid and all its premises are true in the real world. The
definitions for validity and soundness depend on truth and falsity for the premises
and conclusion in stories and then in the real world. But truth and falsity do not even
apply to arguments: just as it is a “category” mistake to say that the number three is
tall or short, so it is a mistake to say that an argument is true or false.’

1.2.1 Invalidity

It will be easiest to begin thinking about invalidity. From the definition, if an argu-
ment is logically valid, there is no consistent story that makes the premises true and

3From an introduction to philosophy of language, one might wonder (with good reason) whether the
proper bearers of truth are sentences rather than, say, propositions. This question is not relevant to the
simple point made above.

CHAPTER 1. LOGICAL VALIDITY AND SOUNDNESS 13

conclusion false. So to show that an argument is invalid, it is enough to produce even
one consistent story that makes premises true and conclusion false. Perhaps there
are stories that result in other combinations of true and false for the premises and
conclusion; this does not matter for the definition. However, if there is even one story
that makes premises true and conclusion false then, by definition, the argument is not
logically valid—and if it is not valid, by definition, it is not logically sound.

We can work through this reasoning by means of a simple invalidity test. Given
an argument, this test has the following four stages:

IT a. List the premises and negation of the conclusion.
b. Produce a consistent story in which the statements from (a) are all true.
c. Apply the definition of validity.
d. Apply the definition of soundness.
We begin by considering what needs to be done to show invalidity. Then we do it.

Finally we apply the definitions to get the results. For a simple example, consider the
following argument:

Eating brussels sprouts results in good health
(D) Ophelia has good health

Ophelia has been eating brussels sprouts

We apply the invalidity test (IT), to show that this argument is both invalid and
unsound.

The definition of validity has to do with whether there are consistent stories in
which the premises are true and the conclusion false. Thus, in the first stage, we
simply write down what would be the case in a story of this sort.

a. List premises and In any story with the premises true and conclusion false,
negation of conclu-

. 1. Eating brussels sprouts results in good health
sion.

2. Ophelia has good health
3. Ophelia has not been eating brussels sprouts

Observe that the conclusion is reversed! At this stage we are not giving an argument.
Rather we merely list what is the case when the premises are true and conclusion
false. Thus there is no line between premises and the last sentence, insofar as there
is no suggestion of support. It is easy enough to repeat the premises for (1) and (2).
Then for (3) we say what is required for the conclusion to be false. Thus, ‘Ophelia has
been eating brussels sprouts’ is false if Ophelia has not been eating brussels sprouts. I
return to this point below, but that is enough for now.

An argument is invalid if there is even one consistent story that makes the premises
true and the conclusion false—so, since the conclusion is reversed, an argument is
invalid if there is even one consistent story in which the statements from (a) are all

CHAPTER 1. LOGICAL VALIDITY AND SOUNDNESS 14

true. Thus, to show invalidity, it is enough to produce a consistent story that “hits the
target” from (a).

b. Produce a consis- Story: Eating brussels sprouts results in good health, but
tent story in which eating spinach does so as well; Ophelia is in good health
the statements from but has been eating spinach, not brussels sprouts.

(a) are all true.

For the statements listed in (a): the story satisfies (1) insofar as eating brussels sprouts
results in good health; (2) is satisfied since Ophelia is in good health; and (3) is
satisfied since Ophelia has not been eating brussels sprouts. The story explains
how she manages to maintain her health without eating brussels sprouts, and so the
consistency of (1)—(3) together. The story does not have to be true—and, of course,
many different stories will do. All that matters is that there is a consistent story in
which the premises of the original argument are true, and the conclusion is false.

Producing a story that makes the premises true and conclusion false is the creative
part. What remains is to apply the definitions of validity and soundness. By LV, an
argument is logically valid only if there is no consistent story in which the premises
are true and the conclusion is false. So if, as we have demonstrated, there is such a
story, the argument cannot be logically valid.

c. Apply the definition ~ This is a consistent story that makes the premises true and
of validity. the conclusion false; thus, by definition, the argument is
not logically valid.

By LS, for an argument to be sound, it must have its premises true in the real world
and be logically valid. Thus if an argument fails to be logically valid, it automatically
fails to be logically sound.

d. Apply the definition ~ Since the argument is not logically valid, by definition, it
of soundness. is not logically sound.

Given an argument, the definition of validity depends on stories that make the
premises true and the conclusion false. Thus, in step (a) we simply list claims required
of any such story. To show invalidity, in step (b), we produce a consistent story that
satisfies each of those claims. Then in steps (c) and (d) we apply the definitions to get
the final results.

It may be helpful to think of stories as a sort of “wedge” to pry the premises of
an argument off its conclusion. We pry the premises off the conclusion if there is a
consistent way to make the premises true and the conclusion not. If it is possible to
insert such a wedge between the premises and conclusion, then a defect is exposed in
the way premises are connected to the conclusion. Observe that the flexibility we allow
in consistent stories (with flying dogs and the like) corresponds directly to the strength
of the required connection between premises and conclusion. If the connection is
sufficient to resist all such attempts to wedge the premises off the conclusion, then it is

CHAPTER 1. LOGICAL VALIDITY AND SOUNDNESS 15

significant indeed. Observe also that our method reflects what we did with argument
(A) at the beginning of the chapter: Faced with the premises that only citizens can
vote and Hannah is a citizen, it was natural to worry that she might be underage and
so cannot vote. But this is precisely to produce a story that makes the premises true
and conclusion false. Thus our method is not “strange” or “foreign”! Rather, it makes
explicit what has seemed natural from the start.

Here is another example of our method. Though the argument may seem on its
face not to be a very good one, we can expose its failure by our methods—in fact,
again, our method may formalize or make rigorous a way you very naturally think
about cases of this sort. Here is the argument:

I shall run for president

(E)
I shall be one of the most powerful men on earth

To show that the argument is invalid, we turn to our standard procedure:

a. In any story with the premise true and conclusion false,

1. I shall run for president
2. I shall not be one of the most powerful men on earth

b. Story: I do run for president, but get no financing and gain no votes; I lose the
election. In the process, I lose my job as a professor and end up begging for
scraps outside a Domino’s Pizza restaurant. I fail to become one of the most
powerful men on earth.

c. This is a consistent story that makes the premise true and the conclusion false;
thus, by definition, the argument is not logically valid.

d. Since the argument is not logically valid, by definition, it is not logically sound.

This story forces a wedge between the premise and the conclusion. Thus we use the
definition of validity to explain why the conclusion does not properly follow from
the premises. It is, perhaps, obvious that running for president is not enough to make
me one of the most powerful men on earth. Our method forces us to be very explicit
about why: running for president leaves open the option of losing, so that the premise
does not force the conclusion. Once you get used to it, then, our method may appear
as a natural approach to argument evaluation.

If you follow this method for showing invalidity, the place where you are most
likely to go wrong is stage (b), telling stories where the premises are true and the
conclusion false. Be sure that your story is consistent, and that it verifies each of the
claims from stage (a). If you do this, you will be fine.

E1.3. Use our invalidity test to show that each of the following arguments is not
logically valid, and so not logically sound. Understand terms in their most natural
sense.

CHAPTER 1. LOGICAL VALIDITY AND SOUNDNESS 16

*a. If Joe works hard, then he will get an ‘A’
Joe will get an ‘A’

Joe works hard

b. Harry had his heart ripped out by a government agent

Harry is dead

c. Everyone who loves logic is happy
Jane does not love logic

Jane is not happy

d. Our car will not run unless it has gasoline
Our car has gasoline

Our car will run

e. Only citizens can vote
Hannah is a citizen

Hannah can vote

1.2.2 Validity

Suppose I assert that no student at California State University San Bernardino is
from Beverly Hills, and attempt to prove it by standing in front of the library and
buttonholing students to ask if they are from Beverly Hills—I do this for a week and
never find anyone from Beverly Hills. Is the claim that no CSUSB student is from
Beverly Hills thereby proved? Of course not, for there may be students I never meet.
Similarly, failure to find a story to make the premises true and conclusion false does
not show that there is not one—for all we know, there might be some story we have
not thought of yet. So, to show validity, we need another approach. If we could show
that every story which makes the premises true and conclusion false is inconsistent,
then we could be sure that no consistent story makes the premises true and conclusion
false—and so, from the definition of validity, we could conclude that the argument is
valid. Again, we can work through this by means of a procedure, this time a validity
test.

VT . List the premises and negation of the conclusion.

a
b. Expose the inconsistency of such a story.

o

. Apply the definition of validity.

o

. Apply the definition of soundness.

In this case, we begin in just the same way. The key difference arises at stage (b). For
an example, consider this argument:

CHAPTER 1. LOGICAL VALIDITY AND SOUNDNESS 17

No car is a person
(F) My mother is a person

My mother is not a car

We apply the validity test (VT), to show that this argument is valid and then to evaluate
soundness.

Since LV has to do with stories where the premises are true and the conclusion
false, as before, we begin by listing the premises together with the negation of the
conclusion.

a. List premises and In any story with the premises true and conclusion false,
negation of conclu-

) 1. No car is a person
sion.

2. My mother is a person
3. My mother is a car

Any story where ‘My mother is not a car’ is false, is one where my mother is a car
(perhaps along the lines of the 1965 TV series, My Mother the Car).

For invalidity, we would produce a consistent story in which (1)—(3) are all true.
In this case, to show that the argument is valid, we show that this cannot be done.
That is, we show that no story that makes each of (1)—(3) true is a consistent story.

b. Expose the incon- In any such story,

sistency of such a Given (1) and (3).

story. 4. My mother is not a person
Given (2) and (4),
5. My mother is and is not a person

The reasoning should be clear if you focus just on the specified lines. Given (1) and
(3), if no car is a person and my mother is a car, then my mother is not a person. But
then my mother is a person from (2) and not a person from (4). So we have our goal:
any story with (1)—(3) as members contradicts itself and therefore is not consistent.
Observe that we could have reached this result in other ways. For example, we might
have reasoned from (1) and (2) that (4"), my mother is not a car; and then from (3) and
(4') to the result that (5') my mother is and is not a car. Either way, an inconsistency is
exposed. Thus, as before, there are different options for this creative part.
Now we are ready to apply the definitions of logical validity and soundness. First,

c. Apply the definition ~ So no consistent story makes the premises true and con-
of validity. clusion false; so by definition, the argument is logically
valid.

For the invalidity test, we produce a consistent story that “hits the target” from stage
(a) to show that the argument is invalid. For the validity test, we show that any attempt
to hit the target from stage (a) must collapse into inconsistency: No consistent story

CHAPTER 1. LOGICAL VALIDITY AND SOUNDNESS 18

includes each of the elements from stage (a) so that there is no consistent story in
which the premises are true and the conclusion false. So by application of LV the
argument is logically valid.

Given that the argument is logically valid, LS makes logical soundness depend on
whether the premises are true in the real world. Suppose we think the premises of our
argument are in fact true. Then,

d. Apply the definition In the real world no car is a person and my mother is a
of soundness. person, so all the premises are true; so since the argument
is also logically valid, by definition, it is logically sound.

Observe that LS requires for logical soundness that an argument is logically valid and
that its premises are true in the real world. Validity depends just on truth and falsity
in consistent stories; setting stories to the side, soundness requires in addition that
premises really are true. And we do not say anything at this stage about claims other
than the premises of the original argument. Thus we do not make any claim about the
truth or falsity of the conclusion, ‘My mother is not a car’. Rather, the observations
have entirely to do with the two premises, ‘No car is a person’ and ‘My mother is a
person’. When an argument is valid and the premises are true in the real world, by LS,
it is logically sound.

But it will not always be the case that a valid argument has true premises. Say
My Mother the Car is (surprisingly) a documentary about a person reincarnated as
a car (the premise of the show) and therefore a true account of some car that is a
person. Then some cars are persons and the first premise is false; so you would have
to respond as follows:

d’. Since in the real world some cars are persons, the first premise is not true. So,
though the argument is logically valid, by definition it is not logically sound.

Another option is that you are in doubt about reincarnation into cars, and in particular
about whether some cars are persons. In this case you might respond as follows:

d”. Although in the real world my mother is a person, I cannot say whether no car is
a person; so I cannot say whether the first premise is true. So though the argument
is logically valid, I cannot say whether it is logically sound.

So once we decide that an argument is valid, for soundness there are three options:

(1) You are in a position to identify all of the premises as true in the real world. In this
case, you should do so, and apply the definition for the result that the argument is
logically sound.

(i1) You are in a position to say that one or more of the premises is false in the real
world. In this case, you should do so, and apply the definition for the result that
the argument is not logically sound.

CHAPTER 1. LOGICAL VALIDITY AND SOUNDNESS 19

(iii) You cannot identify any premise as false, but neither can you identify them all as
true. In this case, you should explain the situation and apply the definition for the
result that you are not in a position to say whether the argument is logically sound.

So given a valid argument, there remains a substantive question about soundness. In
some cases, as for example (C) on page 2, this can be the most controversial part.

Again, given an argument, we say in step (a) what would be the case in any story
that makes the premises true and the conclusion false. Then, at step (b), instead of
finding a consistent story in which the premises are true and conclusion false, we show
that there is no such thing. Steps (c) and (d) apply the definitions for the final results.

Notice that there is an “inverse relation” between stories and validity: Stories with
premises true and conclusion false attack an argument. If some attack succeeds, the
argument fails; and if all attacks fail, the argument succeeds. So IT shows that an
argument fails by finding a successful attack; VT shows that an argument succeeds by
showing that attacks fail. Observe also that only one method can be correctly applied
in a given case. If we can produce a consistent story according to which the premises
are true and the conclusion is false, then it is not the case that no consistent story
makes the premises true and the conclusion false. Similarly, if no consistent story
makes the premises true and the conclusion false, then we will not be able to produce
a consistent story that makes the premises true and the conclusion false.

For showing validity, the most difficult steps are (a) and (b), where we say what
happens in every story where the premises true and the conclusion false. For an
example, consider the following argument:

All collies can fly
(G) Allcollies are dogs

All dogs can fly

It is invalid. We can easily tell a story that makes the premises true and the conclusion
false—say one where collies fly but dachshunds do not. Suppose, however, that we
proceed with the validity test as follows:

a. In any story with the premises true and conclusion false,

1. All collies can fly
2. All collies are dogs
3. No dogs can fly

b. In any such story,

Given (1) and (2),

4. Some dogs can fly

Given (3) and (4),

5. Some dogs can and cannot fly

CHAPTER 1. LOGICAL VALIDITY AND SOUNDNESS 20

c. So no consistent story makes the premises true and conclusion false; so by
definition, the argument is logically valid.

d. Since in the real world collies cannot fly, the first premise is not true. So, though
the argument is logically valid, by definition it is not logically sound.

The reasoning at (b), (c), and (d) is correct. Any story with (1)—(3) is inconsistent. But
something is wrong. (Can you see what?) There is a mistake at (a): It is not the case
that every story that makes the premises true and conclusion false includes (3). The
negation of ‘All dogs can fly’ is not ‘No dogs can fly’, but rather, ‘Not all dogs can fly’
(or ‘Some dogs cannot fly’). All it takes to falsify the claim that all dogs fly is some
dog that does not (on this, see the extended discussion on the following page). So for
argument (G) we have indeed shown that every story of a certain sort is inconsistent,
but have not shown that every story which makes the premises true and conclusion
false is inconsistent. In fact, as we have seen, there are consistent stories that make
the premises true and conclusion false.

Similarly, in step (b) it is easy to get confused if you consider too much information
at once. Ordinarily, if you focus on sentences singly or in pairs, it will be clear what
must be the case in every story including those sentences. It does not matter which
sentences you consider in what order, so long as in the end, you reach a contradiction
according to which something is and is not so.

So far, we have seen our procedures applied in contexts where it is given ahead
of time whether an argument is valid or invalid. But not all situations are so simple.
In the ordinary case, it is not given whether an argument is valid or invalid. In this
case, there is no magic way to say ahead of time which of our two tests, [T or VT
applies. The only thing to do is to try one way—if it works, fine. If it does not, try the
other. It is perhaps most natural to begin by looking for stories to pry the premises
off the conclusion. If you can find a consistent story to make the premises true and
conclusion false, the argument is invalid. If you cannot find any such story, you may
begin to suspect that the argument is valid. This suspicion does not itself amount
to a demonstration of validity. But you might try to turn your suspicion into such a
demonstration by attempting the validity method. Again, if one procedure works, the
other better not!

E1.4. Use our validity procedure to show that each of the following is logically valid,
and decide (if you can) whether it is logically sound.

*a. If Barack is president, then Michelle is first lady
Michelle is not first lady

Barack is not president

CHAPTER 1. LOGICAL VALIDITY AND SOUNDNESS 21

Negation and Quantity

In general you want to be careful about negations. To negate any claim J it is
always correct to write simply, if is not the case that . So ‘It is not the case that
all dogs can fly’ negates ‘All dogs can fly’. You may choose this approach for
conclusions in the first step of our procedures. At some stage, however, you will
need to understand what the negation comes to. It is easy enough to see that,

My motherisacar and My mother is not a car

negate one another. However, there are cases where caution is required. This is
particularly the case with terms involving quantities.

Say the conclusion of your argument is, “There are at least ten apples in the basket’.
Clearly a story according to which there are, say, three apples in the basket makes
this conclusion false. However, there are other ways to make the conclusion false—
as if there are two apples or seven. Any of these are fine for showing invalidity.

But when you show that an argument is valid, you must show that any story that
makes the premises true and conclusion false is inconsistent. So it is not sufficient to
show that stories with (the premises true and) three apples in the basket contradict.
Rather, you need to show that any story that includes the premises and fewer than
ten apples fails. Thus in step (a) of our procedure we always say what is so in every
story that makes the premises true and conclusion false. So in (a) you would have
the premises and, ‘There are fewer than ten apples in the basket’.

If a statement is included in some range of consistent stories, then its negation says
what is so in all the others—all the ones where it is not so.

not-P

all consistent stories

That is why the negation of ‘there are at least ten’ is ‘there are fewer than ten’.

The same point applies with other quantities. Consider some grade examples:
First, if a professor says that everyone will not get an ‘A’, she says something
disastrous—nobody in your class will get an ‘A’. In order to deny it, to show that
she is wrong, all you need is at least one person that gets an ‘A’. In contrast, if
she says that someone will not get an ‘A’, she says only what you expect from the
start—that not everyone will get an ‘A’. To deny this, you would need that everyone
gets an ‘A’. Thus the following pairs negate one another:

Everyone will not getan ‘A and Someone will get an ‘A’

Someone will not get an ‘A> and Everyone will get an ‘A’

It is difficult to give rules to cover all the cases. The best is just to think about what
you are saying, perhaps with reference to examples like these.

CHAPTER 1. LOGICAL VALIDITY AND SOUNDNESS 22

b. Only fools find love
Elvis was no fool

Elvis did not find love

c. If there is a good and omnipotent god, then there is no evil
There is evil

There is no good and omnipotent god

d. All sparrows are birds
All birds fly

All sparrows fly

e. All citizens can vote
Hannabh is a citizen

Hannah can vote

E1.5. Use our procedures to say whether the following are logically valid or invalid,
and sound or unsound. Hint: You may have to do some experimenting to de-
cide whether the arguments are logically valid or invalid—and so decide which
procedure applies.

a. If Barack is president, then Michelle is first lady
Barack is president

Michelle is first lady

b. Most professors are insane
TR is a professor

TR is insane

*c. Some dogs have red hair
Some dogs have long hair

Some dogs have long, red hair

d. If you do not strike the match, then it does not light
The match lights

You strike the match

e. Brittney is taller than Steph
Steph is at least as tall as TR

Steph is taller than TR

CHAPTER 1. LOGICAL VALIDITY AND SOUNDNESS 23

1.3 Some Consequences

We now know what logical validity and soundness are, and should be able to identify
them in simple cases. Still, it is one thing to know what validity and soundness are,
and another to know why they matter. So in this section I turn to some consequences
of the definitions.

1.3.1 Soundness and Truth

First, a consequence we want: The conclusion of every sound argument is true in the
real world. Observe that this is not part of what we require to show that an argument
is sound. LS requires just that an argument is valid and that its premises are true.
However it is a consequence of validity plus true premises that the conclusion is true
as well.

sound = valid + true premises
true conclusion

By themselves, neither validity nor true premises guarantee a true conclusion. How-
ever, taken together they do. To see this, consider a two-premise argument. Say the
real story describes the real world; so the sentences of the real story are all true in the
real world. Then in the real story, the premises and conclusion of our argument must
fall into one of the following combinations of true and false:

1 2 3 4 5 6 7 8

T T T F T F F F combinations for
T T F T F T F F the real story

T F T T F F T F

These are all the combinations of T and F. Say the premises are true in the real story;
this leaves open that the real story has the conclusion true as in (1) or false as in (2);
so the conclusion of an argument with true premises may or may not be true in the real
world. Say the argument is logically valid; then no consistent story makes the premises
true and the conclusion false; but the real story is a consistent story; so we can be sure
that the real story does not result in combination (2); again, though, this leaves open
any of the other combinations and so that the conclusion of a valid argument may or
may not be true in the real world. Now say the argument is sound; then it is valid and
all its premises are true in the real world; again, since it is valid, the real story does not
result in combination (2); and since the premises of a sound argument are true in the
real world, the premises do not fall into any of the combinations (3)—(8); (1) is the only
combination left: in the real story, and so in the real world, the conclusion of a sound
argument is true. And not only in this case but in general, if an argument is sound
then its conclusion is true in the real world: Since a sound argument is valid, there is
no consistent story where its premises are true and conclusion false; so the real story

CHAPTER 1. LOGICAL VALIDITY AND SOUNDNESS 24

does not have the premises true and conclusion false; and since the premises really
are true, the conclusion is not false—and so (given the maximality of our stories) true.
Put another way, if an argument is sound, its premises are true in the real story; but
then if the conclusion is not true, and so false, the real story has the premises true and
conclusion false—and since there is such a story, the argument is not valid. So if an
argument is sound, if it is valid and its premises are true, it has a true conclusion.

Note again: We do not need that the conclusion is true in the real world in order
to decide that an argument is sound; saying that the conclusion is true is no part of
our procedure for validity or soundness. Rather, by discovering that an argument is
logically valid and that its premises are true, we establish that it is sound; this gives us
the result that its conclusion therefore is true. And that is just what we want.

1.3.2 Validity and Form

It is worth observing a connection between what we have done and argument form.
Some of the arguments we have seen so far are of the same general form. Thus both
arguments at (H) have the form on the right.

If Joe works hard, then If Hannah is a citizen,
. A If 2 then @
he will get an ‘A then she can vote o
(H) Joe works hard Hannah is a citizen J
Joe will get an ‘A’ Hannah can vote @

As it turns out, all arguments of this form are valid. In contrast, the following
arguments with the indicated form are not.

If Joe works hard, then If Hannah can vote,
. s . .. If # then @
he will get an ‘A then she is a citizen o
@ Joe will get an ‘A’ Hannah is a citizen
- - >
Joe works hard Hannah can vote J

There are stories where, say, Joe cheats for the ‘A’, or Hannah is a citizen but not old
enough to vote. In these cases, it may be that & results in @, although there are ways
to have @ without >—this is what the stories bring out. And, generally, it is often
possible to characterize arguments by their forms, where a form is valid iff it has no
instance that makes the premises true and the conclusion false. On this basis, form
(H) above is valid, and (I) is not.

In chapters to come, we take advantage of certain very general formal or structural
features of arguments to identify ones that are valid and ones that are invalid. For now,
though, it is worth noting that some presentations of critical reasoning (which you
may or may not have encountered), take advantage of patterns like those above, listing
typical ones that are valid, and typical ones that are not (for example, Cederblom
and Paulsen, Critical Reasoning). A student may then identify valid and invalid

CHAPTER 1. LOGICAL VALIDITY AND SOUNDNESS 25

arguments insofar as they match the listed forms. This approach has the advantage of
simplicity—and one may go quickly to applications of the logical notions for concrete
cases. But the approach is limited to application of listed forms, and so to a very
narrow range of arguments. LV has application to any argument whatsoever. And for
our logical machine, within a certain range, we shall develop an account of validity
for quite arbitrary forms. So we are pursuing a general account or theory of validity
that goes well beyond the mere lists of these other more traditional approaches.

1.3.3 Relevance
Another consequence seems less welcome. Consider the following argument:

Snow is white
(J) Snow is not white

All dogs can fly

It is natural to think that the premises are not connected to the conclusion in the right
way—for the premises have nothing to do with the conclusion—and that this argument
therefore should not be logically valid. But if it is not valid, by definition, there is a
consistent story that makes the premises true and the conclusion false. And in this
case there is no such story, for no consistent story makes the premises true; so no
consistent story makes the premises true and the conclusion false; so, by definition,
this argument is logically valid. The procedure applies in a straightforward way.
Thus,

a. In any story with the premises true and conclusion false,

1. Snow is white
2. Snow is not white
3. Some dogs cannot fly

b. In any such story,

Given (1) and (2),
4. Snow is and is not white

c. So no consistent story makes the premises true and conclusion false; so by
definition, the argument is logically valid.

d. Since in the real world snow is white, the second premise is not true. So, though
the argument is logically valid, by definition it is not logically sound.

This seems bad! Intuitively, there is something wrong with the argument. But, on
our official definition, it is logically valid. One might rest content with the observation
that, even though the argument is logically valid, it is not logically sound. But this
does not remove the general worry. For this argument,

CHAPTER 1. LOGICAL VALIDITY AND SOUNDNESS 26

There are fish in the sea
K —
Nothing is round and not round

has all the problems of the other and is logically sound as well. (Why?) One might,
on the basis of examples of this sort, decide to reject the (classical) account of validity
with which we have been working. Some do just this.* But, for now, let us see
what can be said in defense of the classical approach. (And the classical approach is,
no doubt, the approach you have seen or will see in any standard course on critical
thinking or logic.)

As a first line of defense, one might observe that the conclusion of every sound
argument is true and ask, “What more do you want?” We use arguments to demonstrate
the truth of conclusions. And nothing we have said suggests that sound arguments
do not have true conclusions: An argument whose premises are inconsistent is sure
to be unsound. And an argument whose conclusion cannot be false is sure to have a
true conclusion. So soundness may seem sufficient for our purposes. Even though we
accept that there remains something about argument goodness that soundness leaves
behind, we can insist that soundness is useful as an intellectual tool. Whenever it is
the truth or falsity of a conclusion that matters, we can profitably employ the classical
notions.

But one might go further, and dispute even the suggestion that there is something
about argument goodness that soundness leaves behind. Consider the following two
argument forms:

(ds) & or @, not-P (add) P
Q P or@

According to ds (disjunctive syllogism), if you are given that 2 or @ and that not-J,
you can conclude that @. If you have cake or ice cream, and you do not have cake, you
have ice cream; if you are in California or New York, and you are not in California,
you are in New York; and so forth. Thus ds seems hard to deny. And similarly for
add (addition). Where ‘or’ means ‘one or the other or both’, when you are given that
&, you can be sure that & or anything. Say you have cake, then you have cake or ice
cream, cake or brussels sprouts, and so forth; if grass is green, then grass is green or
pigs have wings, grass is green or dogs fly, and so forth.

Return now to our problematic argument. As we have seen, it is valid according

to the classical definition LV. We get a similar result when we apply the ds and add
principles.

“Especially the so-called “relevance” logicians. For an introduction, see Graham Priest, Non-
Classical Logics. But his text presumes mastery of material corresponding to Part I and Part II of this
one. So the non-classical approaches develop or build on the classical one developed here.

CHAPTER 1. LOGICAL VALIDITY AND SOUNDNESS 27

1. Snow is white premise

2. Snow is not white premise

3. Snow is white or all dogs can fly from 1 and add

4. All dogs can fly from 2 and 3 and ds

If snow is white, then snow is white or anything. So snow is white or dogs fly. So we
use line 1 with add to get line 3. But if snow is white or dogs fly, and snow is not
white, then dogs fly. So we use lines 2 and 3 with ds to reach the final result. So our
principles ds and add go hand in hand with the classical definition of validity. The
argument is valid on the classical account; and with these principles, we can move
from the premises to the conclusion. If we want to reject the validity of this argument,
we will have to reject not only the classical notion of validity, but also one of our
principles ds or add. And it is not obvious that one of the principles should go. If we
decide to retain both ds and add then, seemingly, the classical definition of validity
should stay as well. If we have intuitions according to which ds and add should stay,
and also that the definition of validity should go, we have conflicting intuitions. Thus
our intuitions might, at least, sensibly be resolved in the classical direction.

These issues are complex, and a subject for further discussion. For now, it is
enough for us to treat the classical approach as a useful tool: It is useful in contexts
where what we care about is whether conclusions are true. And alternate approaches
to validity typically develop or modify the classical approach. So it is natural to begin
where we are, with the classical account. At any rate, this discussion constitutes a
sort of acid test: If you understand the validity of the “snow is white” and “fish in the
sea” arguments (J) and (K), you are doing well—you understand how the definition of
validity works, with its results that may or may not now seem controversial. If you
do not see what is going on in those cases, then you have not yet understood how the
definitions work and should return to section 1.2 with these cases in mind.

E1.6. Use our procedures to say whether the following are logically valid or invalid,
and sound or unsound. Hint: You may have to do some experimenting to de-
cide whether the arguments are logically valid or invalid—and so decide which
procedure applies.

a. Bob is over six feet tall
Bob is under six feet tall

Bob is disfigured

b. Marilyn is not over six feet tall
Marilyn is not under six feet tall

Marilyn is not in the WNBA

c. There are fish in the sea

Nothing is round and not round

CHAPTER 1. LOGICAL VALIDITY AND SOUNDNESS 28

Classical Validity

As we have mentioned, there are approaches to validity other than classical. But
the classical account remains the one developed in any standard course on critical
reasoning or logic. Not every course “exposes” cases like (J) but, insofar as the
classical definition is employed, all have the same result. Still, there are different
formulations of the classical account which may obscure underlying equivalence.
Here are some different formulations, the first three bad, the last three good:

)

2)

3)

(4%)

(5

(6™)

Sometimes it is said that an argument is valid iff the premises logically entail
the conclusion. On its face, this defines validity by a notion equally in need
of definition. It might be made adequate by an account of logical entailment,
perhaps along the lines of one of the accounts below.

It will not do to characterize valid arguments saying, “if the premises are true
then the conclusion is true.” For consider a true conclusion, as ‘Dogs bark’;
then any premises are such that if they are true then the conclusion is true.
But, say, the argument “There are fish in the sea, so Dogs bark™ has stories
with the premise true and conclusion false and so is not logically valid.

Similarly it is a mistake to characterize valid arguments saying “if the
premises are true then the conclusion must be true. For consider a valid
argument as, “I am less than 100 miles from Los Angeles, so I am less than
200 miles from Los Angeles.” The premise is true (of me now); so on this
account, the conclusion must be true; but the conclusion ‘I am less than 200
miles from Los Angeles’ is not such that it must be true—there are consistent
stories where I am, say, in London right now.

Perhaps, though, (3) is a sloppy way of saying, “it must be that if the premises
are true then the conclusion is true.” So the conditional, not the conclusion,
is true in all consistent stories. This is equivalent to LV. The conditional
is necessarily true iff every consistent story with the premises true has the
conclusion true; and this is so just in case none has the premises true and
conclusion false.

Given the match between stories and possibility, LV is straightforwardly
equivalent to an account on which an argument is logically valid iff it is not
possible for the premises to be true and the conclusion false—although, by
the appeal to stories, we have attempted to give some substance to the relevant
notion of possibility.

Another option is to say an argument is valid iff it has some valid form
(see section 1.3.2). This is not equivalent to LV, but remains a version of
the classical account. Formally valid arguments are logically valid. But an
argument can be logically valid without being formally valid. Return to the
example from (3). It is valid by LV. But it has form “J so @” of which there
are (many) instances with the premise true and conclusion false. Still, (J)
has form “&, not-P, so @” of which there are no instances that make the
premises true—thus the form comes out valid, and (J) as well.

CHAPTER 1. LOGICAL VALIDITY AND SOUNDNESS 29

*d. Cheerios are square

El1.7.

*a.

El1.8.

Chex are round

There is no round square

. All dogs can fly

Fido is a dog
Fido cannot fly

I am blessed

Respond to each of the following.

Create another argument of the same form as the first set of examples (H)
from section 1.3.2, and then use our regular procedures to decide whether it is
logically valid and sound. Is the result what you expect? Explain.

. Create another argument of the same form as the second set of examples (1)

from section 1.3.2, and then use our regular procedures to decide whether it is
logically valid and sound. Is the result what you expect? Explain.

Which of the following are true, and which are false? In each case, explain

your answers, with reference to the relevant definitions. The first is worked as an
example.

*c.

. A logically valid argument is always logically sound.

False. An argument is sound iff it is logically valid and all of its premises are
true in the real world. Thus an argument might be valid but fail to be sound if
one or more of its premises is false in the real world.

. A logically sound argument is always logically valid.

If the conclusion of an argument is true in the real world, then the argument
must be logically valid.

. If the premises and conclusion of an argument are true in the real world, then

the argument must be logically sound.

*e. If a premise of an argument is false in the real world, then the argument cannot

be logically valid.

If an argument is logically valid, then its conclusion is true in the real world.

*g. If an argument is logically sound, then its conclusion is true in the real world.

If an argument has contradictory premises (its premises are true in no consis-
tent story), then it cannot be logically valid.

CHAPTER 1. LOGICAL VALIDITY AND SOUNDNESS 30

*1. If the conclusion of an argument cannot be false (is false in no consistent
story), then the argument is logically valid.

j- The premises of every logically valid argument are relevant to its conclusion.

E1.9. For each of the following concepts, explain in an essay of about two pages,
so that (high-school age) Hannah could understand. In your essay, you should
(i) identify the objects to which the concept applies, (ii) give and explain the
definition, and give and explicate examples of your own construction (iii) where
the concept applies, and (iv) where it does not. Your essay should exhibit an
understanding of methods from the text.

a. Logical validity.

b. Logical soundness.

E1.10. Do you think we should accept the classical account of validity? In an essay
of about two pages, explain your position, with special reference to difficulties
raised in section 1.3.3.

Chapter 2

Formal Languages

Having said in Chapter 1 what validity and soundness are, we now turn to our logical
machine. As depicted in the picture of elements for symbolic logic on page 2, this
machine begins with symbolic representations of ordinary reasoning. In this chapter
we introduce the formal languages by introducing their grammar or syntax. After
some brief introductory remarks in section 2.1, the chapter divides into sections that
introduce grammar for a sentential language £, (section 2.2), and then the grammar
for an extended quantificational language &4 (section 2.3).

2.1 Introductory

There are different ways to introduce a formal language. It is natural to introduce
expressions of a new language in relation to expressions of one that is already familiar.
Thus a traditional course in a foreign language is likely to present vocabulary lists of
the sort,

chou: cabbage
petit: small

But the terms of a foreign language are not originally defined by such lists. Rather
French, in this case, has conventions of its own such that sometimes ‘chou’ corre-
sponds to ‘cabbage’ and sometimes it does not. It is not a legitimate criticism of
a Frenchman who refers to his sweetheart as mon petit chou to observe that she is
no cabbage! (Indeed, in this context, chou is chou a la créeme—a “cabbage-shaped”
cream puff—and works like ‘sweet’ or ‘honey’ in English.) Although it is possible
to use such lists to introduce the conventions of a new language, it is also possible
to introduce a language “as itself”’—the way a native speaker learns it. In this case,
one avoids the danger of importing conventions and patterns from one language onto
the other. Similarly, the expressions of a formal language might be introduced in

31

CHAPTER 2. FORMAL LANGUAGES 32

correlation with expressions of, say, English. But this runs the risk of obscuring just
what the official definitions accomplish. Since we will be concerned extensively with
what follows from the definitions, it is best to introduce our languages in their “pure”
forms.

In this chapter, we develop the grammar of our formal languages. Consider the
following algebraic expressions:

a+b=c a+ =c

Until we know what numbers are assigned to the terms (asa = 1,b =2, ¢ = 3), we
cannot evaluate the first for truth or falsity. Still, we can say that it is grammatical
and so capable of truth and falsity in a way that the other is not. Similarly, we
shall be able to evaluate the grammar of formal expressions apart from truth and
falsity—we do not have to know what the language represents in order to decide if its
expressions are grammatically correct. Or, again, just as a computer can check the
spelling and grammar of English without reference to meaning, so we can introduce
the vocabulary and grammar of our formal languages without reference to what their
expressions mean or what makes them true. The grammar, taken alone, is completely
straightforward. Taken this way, we work directly from the definitions, without
“pollution” from associations with English or whatever.

So we want the definitions. Even so, it may be helpful to offer some hints that
foreshadow how things will go. Do not take these as defining anything! Still, it is nice
to have a sense of how it fits together. Consider some simple sentences of an ordinary
language, say, “The butler is guilty’ and ‘The maid is guilty’. It will be convenient to
introduce capital letters corresponding to these, say, B and M. Such sentences may
combine to form ones that are more complex as, ‘It is not the case that the butler is
guilty’ or ‘If the butler is guilty, then the maid is guilty’. We shall find it convenient
to express these, ‘~the butler is guilty’ and ‘the butler is guilty — the maid is guilty’,
with operators ~ and —. Putting these together we get, ~B and B — M. Operators
may be combined in obvious ways so that B — ~M says that if the butler is guilty
then the maid is not. And so forth. We shall see that incredibly complex expressions
of this sort are possible!

In this case, simple sentences, ‘The butler is guilty’ and ‘The maid is guilty’
are “atoms” and complex sentences are built out of them. This is characteristic of
the sentential languages to be considered in section 2.2. For the quantificational
languages of section 2.3, certain sentence parts are taken as atoms. So quantificational
languages expose structure beyond that for the sentential case. Perhaps, though, this
will be enough to give you a glimpse of the overall strategy and aims for the formal
languages of which we are about to introduce the grammar.

CHAPTER 2. FORMAL LANGUAGES 33

2.2 Sentential Languages

Just as algebra or English have their own vocabulary or symbols and then grammatical
rules for the way the vocabulary is combined, so our formal language has its own
vocabulary and then grammatical rules for the way the vocabulary is combined. In
this section we introduce the vocabulary for a sentential language, introduce the
grammatical rules, and conclude with some discussion of abbreviations for official
expressions.

2.2.1 Vocabulary

We begin, then, with the vocabulary. In this section, we say which symbols are
included in the language, and introduce some conventions for talking about the
symbols.

For any sentential language &£, vocabulary includes,

vC (p) Punctuation symbols: ()
(o) Operator symbols: ~ —

(s) A non-empty countable collection of sentence letters

And that is all. ~ is tilde and — is arrow.' In order to fully specify the vocabulary
of any particular sentential language, we need to identify its sentence letters—so far
as definition VC goes, different languages may differ in their collections of sentence
letters. The only constraint on such specifications is that the collections of sentence
letters be non-empty and countable. A collection is non-empty iff it has at least one
member. So any sentential language has at least one sentence letter. A collection
is countable iff its members can be matched one-to-one with all (or some) of the
non-negative integers. Thus we might let the sentence letters be A, B, ..., Z, where
these correlate with the integers 1...26. Or we might let there be infinitely many
sentence letters, So, S1, 52, ... where the letters are correlated with the integers by
their subscripts.

So there is room for different sentential languages. Having made this point,
though, we immediately focus on a standard sentential language &£; whose sentence
letters are Roman italics A ... Z with or without positive integer subscripts. Thus,

A B K Z
are sentence letters of £;. Similarly,

Ay B; K7 Z23

'Sometimes sentential languages are introduced with different symbols, for example, — for ~, or
D for —. It should be easy to convert between presentations of the different sorts. And sometimes
sentential languages include operators in addition to ~ and — (for example, Vv, A, <>). Such symbols
will be introduced in due time—but as abbreviations for complex official expressions.

CHAPTER 2. FORMAL LANGUAGES 34

are sentence letters of £;. We will not use the subscripts very often, but they do
guarantee that we never run out of sentence letters. Perhaps surprisingly, as described
in the box on the next page (and E2.2), these letters too can be correlated with the
non-negative integers. Official sentences of £, are built out of this vocabulary.

To proceed, we need some conventions for talking about expressions of a language
like £5. Here, £, is an object language—the thing we want to talk about; and we
require conventions for the metalanguage—for talking about the object language. In
general, for any formal object language £, an expression is a sequence of one or more
elements of its vocabulary. Thus (4 — B) is an expression of £, but (A » B) is not.
(What is the difference?) We shall use script characters + . . . Z as variables that range
over expressions. Then ‘~’, ‘—’, ‘(’, and ‘)’ represent themselves. And concatenated
or joined symbols in the metalanguage represent the concatenation of the symbols
they represent.

To see how this works, think of metalinguistic expressions as “mapping” to object-
language ones. Thus, for example, where § represents an arbitrary sentence letter,
~4& may represent any of, ~A, ~B, or ~Z. But ~& does not represent ~(4 — B),
for it does not consist of a tilde followed by a sentence letter. With § restricted to
sentence letters, there is a straightforward map from ~& onto ~A4, ~B, or ~Z, but
not from ~& onto ~(4 — B).

~8 ~8 ~8 ~8
@ | ¥ N L

In the first three cases, ~ maps to itself, and § to a sentence letter. In the last case there
is no map. We might try mapping & to A or B; but this would leave the rest of the
expression unmatched. While there is no map from ~& to ~(4 — B), there is a map
from ~P to ~(A — B) if we let & represent any arbitrary expression, for ~(4 — B)
consists of a tilde followed by an expression of some sort. Metalinguistic expressions
give the form of ones in the object language. An object-language expression has some
form just when there is a complete map from the metalinguistic expression to it.

Say & represents any arbitrary expression. Then by similar reasoning, (A —
B) — (A — B) is of the form P — £.

P -
(B) N
——— ——
(A— B) > (A— B)
In this case, > maps to all of (A — B) and — to itself. A constraint on our maps is

that the use of the metavariables # . .. Z must be consistent within a given map. Thus
(A — B) — (B — B) is not of the form & — P.

CHAPTER 2. FORMAL LANGUAGES 35

Countability

To see the full range of languages which are allowed under vC, observe how
multiple infinite series of sentence letters may satisfy the countability constraint.
Thus, for example, suppose we have two series of sentence letters, Ag, A1, ... and
By, B1, These can be correlated with the non-negative integers as follows:

A() BO Al Bl Az B2

I
0o 1 2 3 4 5

For any non-negative integer n, A, is matched with 2n, and B, with 2n + 1. So
each sentence letter is matched with some non-negative integer; so the sentence
letters are countable. If there are three series, they may be correlated,

Ao B() Co Al Bl Cl

I N
0o 1 2 3 4 5

so that every sentence letter is matched to some non-negative integer. And similarly
for any finite number of series. And there might be 26 such series, as for our
language £;.

In fact even this is not the most general case. If there are infinitely many series of
sentence letters, we can still line them up and correlate them with the non-negative
integers. Here is one way to proceed. Order the letters as follows:

Ao — A A, — Az
/ - P

Bo B, B> B3

U /

Co C C> C3
e

Dy D, D> D3

so that any letter appears somewhere along the arrows. Then following the arrows,
match them accordingly with the non-negative integers,

A() A1 B() Co Bl A2

I
0 1 2 3 4 5

so that, again, any sentence letter is matched with some non-negative integer. It
may seem odd that we can line symbols up like this, but it is hard to dispute that
we have done so. Thus we may say that VC is compatible with a wide variety of
specifications, but also that all legitimate specifications have something in common:
If a collection is countable, it is possible to sort its members into a series with a
first member, a second member, and so forth.

CHAPTER 2. FORMAL LANGUAGES 36

P - P P - P
© o ? or ? i N
—_—— —— —— ——
(A— B) — (B — B) (A— B) — (B — B)

We are free to associate J” with whatever we want. However, within a given map,
once P is associated with some expression, we have to use it consistently within that
map.

Observe again that ~& and & — J are not expressions of £;. Rather, we use
them to talk about expressions of £,. And it is important to see how we can use the
metalanguage to make claims about a range of expressions all at once. Given that ~A4,
~B, and ~Z are all of the form ~&, when we make some claim about expressions
of the form ~&, we say something about each of them—but not about ~(4 — B).
Similarly, if we make some claim about expressions of the form # — &, we say
something with application to a range of expressions. In the next section, for the
specification of formulas, we use the metalanguage in just this way.

E2.1. Assuming that § may represent any sentence letter, and & any arbitrary
expression of &£;, use maps to determine whether each of the following expressions
is (i) of the form (§ — ~&) and then (ii) whether it is of the form (# — ~J).
In each case, explain your answers.

a. (A — ~A)

b. (A —> ~(R—> ~2))

o

. (~A > ~(R— ~2))

d (R— ~Z)—> ~(R—> ~Z))

&

(=) =~ (=)

E2.2. On the pattern of examples from the countability guide on page 35, show that
the sentence letters of £, are countable—that is, that they can be correlated with
the non-negative integers. On the scheme you produce, what numbers correlate
with A, Bj, and C1¢? Hint: Supposing that A without subscript is like Ag, for
any subscript 7, you should be able to produce a formula for the position of A4,
and similarly for B, C,, and the like. Then it will be easy to find the position of
any letter, even if the question is about, say, Lj25.

2.2.2 Formulas

We are now in a position to say which expressions of a sentential language are its
grammatical formulas and sentences. The specification itself is easy. We will spend a
bit more time explaining how it works. For a given sentential language &£,

CHAPTER 2. FORMAL LANGUAGES 37

FR (s) If & is a sentence letter, then & is a formula.
(~) If P is a formula, then ~& is a formula.
(—) If & and @ are formulas, then (# — @) is a formula.

(cL) Any formula may be formed by repeated application of these rules.

And we simply identify the formulas with the sentences. For any sentential language
&£, an expression is a sentence iff it is a formula.

FR is a first example of a recursive definition. Such definitions always build from
the parts to the whole. Frequently we can use “tree” diagrams to see how they work.
Thus, for example, by repeated applications of the definition, ~(4 — (~B — A)) is
a formula and sentence of £;.

A B A These are formulas by FR(s)

Since B is a formula, this is a formula by FR(~)

Since ~B and A are formulas, this is a formula by FR(—)

(A — (~B — A)) Since 4 and (~B — A) are formulas, this is a formula by FR(—)

~(4 = (~B —> 4)) Since (A — (~B — A)) is a formula, this is a formula by FR(~)

By FR(s), the sentence letters, A, B, and A are formulas; given this, clauses FR(~)
and FR(—) let us conclude that other, more complex, expressions are formulas as well.
Notice that, in the definition, # and @ may be any expressions that are formulas: By
FR(~), if B is a formula, then tilde followed by B is a formula; but similarly, if ~B
and A are formulas, then an opening parenthesis followed by ~ B, followed by —
followed by A and then a closing parenthesis is a formula; and so forth as on the tree
above. You should follow through each step very carefully.

A recursive definition always involves some “basic” starting elements, in this
case, sentence letters. These occur across the top row of our tree. Other elements
are constructed, by the definition, out of ones that come before. The last, closure,
clause tells us that any formula is built this way. To demonstrate that an expression is
a formula and a sentence, it is sufficient to construct it, according to the definition, on
a tree. If an expression is not a formula, there will be no way to construct it according
to the rules. Thus (A~ B) for example, is not a formula. A is a formula and ~ B is
a formula; but there is no way to put them together, by the definition, without — in
between.

Here are a couple of last examples which emphasize the point that you must
maintain and respect parentheses in the way you construct a formula. Thus consider,

CHAPTER 2. FORMAL LANGUAGES 38

A B These are formulas by FR(S)
B (4— B) Since A and B are formulas, this is a formula by FR(—)
~(A— B) Since (A — B) is a formula, this is a formula by FR(~)

And compare it with,

A B These are formulas by FR(s)
F ~4a Since A is a formula, this is a formula by FR(~)
(~A — B) Since ~A and B are formulas, this is a formula by FR(—)

Once you have (A — B) as in the first case, the only way to apply FR(~) puts the
tilde on the outside. To get the tilde inside the parentheses it has to go on first, as in
the second case. The significance of this point emerges immediately below.

It will be helpful to have some additional definitions, each of which may be
introduced in relation to the trees. Restrict attention to trees that branch in the usual
way: without extraneous nodes not required for the result, and without nodes used
more than once (so for every node, there is a unique upward path from the root to it).
Then for any formula J, each formula which appears in the tree for & including &
itself is a subformula of #. Thus ~(A — B) has subformulas:

A B (A — B) ~(A— B)
In contrast, (~A — B) has subformulas:
A B ~A (~4A — B)

So it matters for the subformulas how the tree is built. The immediate subformulas
of a formula & are the subformulas to which J is directly connected by lines. Thus
~(A — B) has one immediate subformula, (4 — B); (~A — B) has two, ~A and
B. The atomic subformulas of a formula J are the sentence letters that appear across
the top row of its tree. Thus both ~(4 — B) and (~A — B) have A and B as their
atomic subformulas. Finally, the main operator of a formula & is the last operator
added in its tree. Thus ~ is the main operator of ~(A — B), and — is the main
operator of (~4A — B). So, again, it matters how the tree is built. We sometimes
speak of a formula by means of its main operator: A formula of the form ~% is a
negation; a formula of the form (P — @) is a (material) conditional, where P is the
antecedent of the conditional and @ is the consequent. Because it operates on the two
immediate subformulas, — is a binary operator; because it has just one ~ is unary.

CHAPTER 2. FORMAL LANGUAGES 39

E2.3. For each of the following expressions, demonstrate that it is a formula and a
sentence of £, with a tree. Then on the tree (i) bracket all the subformulas, (ii)
box the immediate subformula(s), (iii) star the atomic subformulas, and (iv) circle
the main operator. A first case for ((~4 — B) — A) is worked as an example.

e A* B* These are formulas by FR(s)
s
u
b
f| ~A From A, formula by FR(~)
o
r
m|
u
1 From ~A and B, formula by FR(—)
a
S
_ ((~4 — B)@A) From (~A — B) and A, formula by FR(—)
*a. A
b. ~~~A
c. ~(~A — B)

d. (~C - ~(A —- ~B))

e. (~(A— B) = (C — ~A))

E2.4. Explain why the following expressions are not formulas or sentences of £;.
Hint: You may find that an attempted tree will help you see or explain what is
wrong.

a. (ADB)

Parts of a Formula

The parts of a formula are here defined in relation to its tree.

SB Each formula which appears in the tree for formula & including & itself is a
subformula of P.

IS The immediate subformulas of a formula & are the subformulas to which P
is directly connected by lines.

AS The atomic subformulas of a formula & are the sentence letters that appear
across the top row of its tree.

MO The main operator of a formula P is the last operator added in its tree.

CHAPTER 2. FORMAL LANGUAGES 40
b, (P — Q)
c. (~B)
d (A—-~B—>0C)

e. (A— B) > ~(A—C)— D)

E2.5. For each of the following expressions, determine whether it is a formula and
sentence of £;. If it is, show it on a tree, and exhibit its parts as in E2.3. If it is
not, explain why as in E2.4.

“a. ~((A = B) = (~(4 > B) > A))
b. ~(4 — B — (~(4 > B) — A))
“c. ~(A— B) > (~(4 - B) > 4)
d. (A = o A)

e. ((~(A— B) —> (~C - D)) > ~(~(E = F)—> G))

2.2.3 Abbreviations

We have completed the official grammar for our sentential languages. So far, the
languages are relatively simple. When we turn to reasoning about logic (in later parts),
it will be good to have our languages as simple as we can. However, for applications of
logic it will be advantageous to have additional expressions which, though redundant
with expressions of the language already introduced, simplify the work. I begin by
introducing these additional expressions, and then turn to the question about how to
understand the redundancy.

Abbreviating. As may already be obvious, formulas of a sentential language like &£
can get complicated quickly. Abbreviated forms give us ways to manipulate official
expressions without undue pain. First, for any formulas & and @,

AB (V) (P Vv @) abbreviates (~F — Q)
(A) (P A @) abbreviates ~(P — ~Q)
(<) (# < @) abbreviates ~((£ — Q) > ~(@ — P))

The last of these is easier than it looks; I say something about this below. V is
wedge, A is caret, and <> is double arrow. An expression of the form (£ v @)
is a disjunction with & and @ as disjuncts, it has the standard reading, (or @).
An expression of the form (P A @) is a conjunction with & and @ as conjuncts;

CHAPTER 2. FORMAL LANGUAGES 41

it has the standard reading, (and @). An expression of the form (£ < @) is a
(material) biconditional; it has the standard reading, (P iff @).> Again, we do not
use ordinary English to define our symbols. All the same, this should suggest how the
extra operators extend the range of what we are able to say in a natural way.

With the abbreviations, we are in a position to introduce derived clauses for FR.
Suppose P and @ are formulas; then by FR(~), ~& is a formula; so by FR(—),
(~&# — @) is a formula; but this is just to say that (# v @) is a formula. And
similarly in the other cases. (If you are confused by such reasoning, work it out on a
tree.) Thus we arrive at the following conditions:

FR' (V) If # and @ are formulas, then (£ Vv @) is a formula.
(A) If # and @ are formulas, then (P A Q) is a formula.

(«<>) If & and @ are formulas, then (P < @) is a formula.

Once FR is extended in this way, the additional conditions may be applied directly in
trees. Thus, for example, if J# is a formula and @ is a formula, we can safely move in
a tree to the conclusion that (£ Vv @) is a formula by FR'(\V). Similarly, for a more
complex case, ((A <+ B) A (~A Vv B)) is a formula.

A B A B These are formulas by FR(S)
(4 < B) ~A These are formulas by FR’(<>) and FR(~)
(©))
(~AV B) This is a formula by FR'(V)
((A< B)A(~AV B)) This is a formula by FR'(A)

In a derived sense, expressions with the new symbols have subformulas, atomic
subformulas, immediate subformulas, and main operator all as before. Thus on the
diagram immediately above, with notation from exercises—bracket for subformulas,
star for atomic subformulas, box for immediate subformulas, and circle for main
operator:

2Common alternatives are & for A, and = for <>. Less common nowadays is a dot (period) for A.

CHAPTER 2. FORMAL LANGUAGES 42

-~

A* B* A* B* These are formulas by FR(s)
s
u
b

(f) A< B ~A These are formulas by FR'(<>) and FR(~)

H)
u

1 (~AV B) This is a formula by FR'(V)
a
S

N (4= B)®(~A v B)) This is a formula by FR'(A)

In the derived sense, ((A <> B) A (~A Vv B)) has immediate subformulas (4 <> B)
and (~A Vv B), and main operator A.

Return to the case of (P <> @) and observe that it can be thought of as based on a
simple abbreviation of the sort we expect. That is, ((? — @) A (@ — P)) is of the
sort (A A B); so by AB(A), it abbreviates ~(A — ~B); but with (P — Q) for A
and (@ — #) for B, this is just, ~((P - @) - ~(@ — &)) as in AB(<>). So you
may think of (# <> @) as an abbreviation of ((# — @) A (& — #)), which in turn
abbreviates the more complex ~((# — @) — ~(@ — £)). This is what we expect:
a double arrow is like an arrow going from & to @ and an arrow going from @ to 5.

A couple of additional abbreviations concern parentheses. First, it is sometimes
convenient to use a pair of square brackets [] in place of parentheses (). This is
purely for visual convenience; for example ((()())) may be more difficult to absorb
than ([()()]). Second, if the very last step of a tree for some formula & is justified by
FR(—), FR'(A), FR'(V), or FR'(<>), we feel free to abbreviate & with the outermost
set of parentheses or brackets dropped. Again, this is purely for visual convenience.
Thus, for example, we might write, A — (B — C) in place of (A — (B — C)).
As it turns out, where 4, B, and € are formulas, there is a difference between
(A = B) > €) and (A — (B — ©)), insofar as the main operator shifts from one
case to the other. In (A — B — €), however, it is not clear which arrow should be
the main operator. That is why we do not count the latter as a grammatical formula or
sentence. Similarly there is a difference between ~(A — B) and (~A — B); again,
the main operator shifts. However, there is no room for ambiguity when we drop just
an outermost pair of parentheses and write (A — B) — € for ((A — B) — €); and
similarly when we write A — (8 — €) for (A — (B — €)). The same reasoning
applies for abbreviations with A, V, or <>. So dropping outermost parentheses counts
as a legitimate abbreviation.

An expression which uses the extra operators, square brackets, or drops outermost
parentheses is a formula just insofar as it is a sort of shorthand for an official formula
which does not. But we will not usually distinguish between the shorthand expressions
and official formulas. Thus, again, the new conditions may be applied directly
in trees and, for example, the following is a legitimate tree to demonstrate that
AV ([A = B] A B) is a formula:

CHAPTER 2. FORMAL LANGUAGES 43

A A B B Formulas by FR(s)

[A — B] Formula by FR(—), with []
D

([A — B] A B) Formula by FR'(A)

Av([4— B]AB) Formula by FR’(V), with outer () dropped
So we use our extra conditions for FR’, introduce square brackets instead of paren-
theses, and drop parentheses in the very last step. The only case where you can omit
parentheses is if they would have been added in the very last step of the tree. So long
as we do not distinguish between shorthand expressions and official formulas, we
regard a tree of this sort as sufficient to demonstrate that an expression is a formula
and a sentence.

Unabbreviating. As we have suggested, there is a certain tension between the
advantages of a simple language, and one that is more complex. When a language
is simple, it is easier to reason about; when it has additional resources, it is easier to
use. Expressions with A, Vv, and <> are redundant with expressions that do not have
them—though it is easier to work with a language that has A, Vv, and <> than with one
that does not (something like reciting the Pledge of Allegiance in English, and then in
Morse code; you can do it in either, but it is easier in the former). If all we wanted was
a simple language to reason about, we would forget about the extra operators. If all
we wanted was a language easy to use, we would forget about keeping the language
simple. To have the advantages of both, we have adopted the position that expressions
with the extra operators abbreviate, or are a shorthand for, expressions of the original
language. It will be convenient to work with abbreviations in many contexts. But
when it comes to reasoning about the language, we set the abbreviations to the side
and focus on the official language itself.

For this to work, we have to be able to undo abbreviations when required. It is, of
course, easy enough to substitute parentheses back for square brackets, or to replace
outermost dropped parentheses. For formulas with the extra operators, it is always
possible to work through trees, using AB to replace formulas with unabbreviated
forms, one operator at a time. Consider an example:

CHAPTER 2. FORMAL LANGUAGES 44

A\/B A / A\\/B A /
(A< B) ~A ~(A—>B)—>~(B—>A4) ~A4
Q)]
(~AV B) (~~A— B)
((A< B)A(~AV B)) ~(~((A = B) > ~(B —> A)) > ~(~~A — B))

The tree on the left is (G) from above. The tree on the right uses AB to “unpack”
each of the expressions on the left. Atomics remain as before. Then, at each stage,
given an unabbreviated version of the parts, we give an unabbreviated version of the
whole. First, (A <> B) abbreviates ~((A — B) — ~(B — A)); this is a simple
application of AB(<>). ~A is not an abbreviation and so remains as before. From
AB(V), (P Vv @) abbreviates (~F — @); in this case, & is ~A and @ is B; so we
take tilde the & arrow the @ (so that we get two tildes). For the final result, we
combine the input formulas according to the unabbreviated form for A. It is more a
bookkeeping problem than anything: There is one formula # that is the unabbreviated
version of (A <> B), another @ that is the unabbreviated version of (~A Vv B); these
are combined into (£ A @) and so by AB(A) into ~(# — ~@). You should be able
to see that this is just what we have done. There is a tilde and a parenthesis; then the
&; then an arrow and a tilde; then the @; and a closing parenthesis. Not only is the
abbreviation more compact but, as we shall see, there is a corresponding advantage
when it comes to grasping what an expression says.

Here is another example, this time from (I). In this case, we replace also square
brackets and restore dropped outer parentheses.

A A B B A A B B
[A — B] (A— B)
(K)
([A—- B]AB) ~((A — B) > ~B)
AV ([A— B]AB) (~A4 - ~((A— B) > ~B))

In the right-hand tree, we reintroduce parentheses for the square brackets. Similarly,
we apply AB(A) and AB(V) to unpack shorthand symbols. And outer parentheses are
reintroduced at the very last step. Thus A v ([A — B] A B) is a shorthand for the
unabbreviated expression, (~A4 — ~((A — B) — ~B)).

Observe that these right-hand trees are not ones of the sort you would use directly
to show that an expression is a formula by FR! FR does not let you move directly from
that (A — B) is a formula and B is a formula, to the result that ~((4 — B) — ~B)

CHAPTER 2. FORMAL LANGUAGES 45

is a formula as just above. Of course, if (A — B) and B are formulas, then ~((4 —
B) — ~B) is a formula, and nothing stops a tree to show it. This is the point of
our derived clauses for FR'. In fact, this is a good check on your unabbreviations: If
the result is not a formula, you have made a mistake. But you should not think of
trees as on the right as involving application of FR. Rather they are unabbreviating
trees, having exactly one node corresponding to each node on the left; by AB the
unabbreviating tree unpacks each expression from the left into its unabbreviated form.
The combination of a formula constructed with FR” and then unabbreviated by AB
always results in an expression that meets all the requirements from FR.

E2.6. For each of the following expressions, demonstrate that it is a formula and a
sentence of £, with a tree. Then on the tree (i) bracket all the subformulas, (ii)
box the immediate subformula(s), (iii) star the atomic subformulas, and (iv) circle
the main operator.

“a. (AANB) > C
b. ~([A —> ~K14] v C3)
c. B> (~A < B)

d. (B — A) A (C Vv A)

e. (Av~B) < (CAA

*E2.7. For each of the formulas in E2.6a—e, produce an unabbreviating tree to find
the unabbreviated expression it represents.

*E2.8. For each of the unabbreviated expressions from E2.7a—e, produce a complete
tree to show by direct application of FR that it is an official formula.

E2.9. In the text, we introduced derived clauses to FR by reasoning as follows:
“Suppose J and @ are formulas; then by FR(~), ~J is a formula; so by FR(—),
(~&P — @) is a formula; but this is just to say that (# v @) is a formula. And
similarly in the other cases” (page 41). Supposing that # and @ are formulas,
produce the similar reasoning to show that (£ A @) and (P < @) are formulas.
Hint: Again, it may help to think about trees.

CHAPTER 2. FORMAL LANGUAGES 46

E2.10. For each of the following concepts, explain in an essay of about two pages,
so that (high-school age) Hannah could understand. In your essay, you should
(i) identify the objects to which the concept applies, (ii) give and explain the
definition, and give and explicate examples of your own construction (iii) where
the concept applies, and (iv) where it does not. Your essay should exhibit an
understanding of methods from the text.

a. The vocabulary for a sentential language, and use of the metalanguage.
b. A formula of a sentential language.
c. The parts of a formula.

d. The abbreviation and unabbreviation for an official formula of a sentential
language.

2.3 Quantificational Languages

The methods by which we define the grammar of a quantificational language are very
much the same as for a sentential language. Of course, in the quantificational case,
additional expressive power is associated with additional complications. We will
introduce a class of ferms before we get to the formulas, and there will be a distinction
between formulas and sentences. As before, however, there is the vocabulary and
then the grammatical elements. After introducing the vocabulary, we build to terms,
formulas, and sentences. The chapter concludes with some discussion of abbreviations,
and of a particular language with which we shall be concerned later in the text.

Here is a brief intuitive picture: At the start of section 2.2 we introduced ‘The
butler is guilty’ and ‘The maid is guilty’ as atoms for sentential languages, and the rest
of the section went on to fill out that picture. For the quantificational languages of this
section, our atoms are certain sentence parts. Thus we introduce a class of individual
terms which work to pick out objects. In the simplest case, we might introduce b and
m to pick out the butler and the maid. Similarly, we introduce a class of predicate
expressions as (x is guilty) and (x killed y) indicating them by capitals as G! or K?
(with the superscript to indicate the number of object places). Then G1b says that
the butler is guilty, and K2bm that the butler killed the maid. We shall read VxG ' x
to say for any thing x, it is guilty—that everything is guilty. (The upside-down ‘A’
for all is the universal quantifier.) As indicated by this reading, the variable x works
very much like a pronoun in ordinary language. And, of course, our notions may be
combined. Thus, YxG!x A K2bm says that everything is guilty and the butler killed
the maid. Thus we expose structure buried in sentence letters from before. Insofar as
the language includes quantifiers (upside-down ‘A’) and predicates (as G! or K?) it
is said to be a language for quantificational (or predicate) logic. Of course we have

CHAPTER 2. FORMAL LANGUAGES 47

so-far done nothing to define such a language. But this should give you a picture of
the direction in which we aim to go.

2.3.1 Vocabulary

We begin by specifying the vocabulary or symbols of our quantificational languages.
For now, do not worry about what the symbols mean or how they are used. Our task
is to identify the symbols and give some conventions for talking about them. For any
quantificational language £ the vocabulary consists of,

VC (p) Punctuation symbols: ()
(o) Operator symbols: ~ — V
(v) A countably infinite collection of variable symbols
(s) A countable collection of sentence letters
(c) A countable collection of constant symbols
(f) For any integer n = 1, a countable collection of n-place function symbols

(r) For any integer n = 1, a countable collection of n-place relation symbols

Each of the countable collections may be empty except that there are always the
variable symbols, and there must be at least one relation symbol. Unless otherwise
noted, ‘=" 1is always included among the 2-place relation symbols, and the variable
symbols are 7 ...z with or without positive integer subscripts. Notice that all the
punctuation symbols, operator symbols and sentence letters remain from before
(except that the collection of sentence letters may be empty). There is one new
operator symbol, with the new variable symbols, constant symbols, function symbols,
and relation symbols.

This definition VC is parallel to definition VC from section 2.2. For definitions with
both sentential and quantificational versions, I adopt the convention of naming the
initial sentential version in small caps, and the quantificational version in large.

In order to fully specify the vocabulary of any particular language, we need to
specify its variable symbols, sentence letters, constant symbols, function symbols,
and relation symbols. Our general definition VC leaves room for languages with
different collections of these symbols. As before, the requirement that the collections
be countable is compatible with multiple series; for example, there may be sentence
letters A, A1, Aa, ..., B, By, Ba,.... So, again VC is compatible with a wide variety
of specifications, but legitimate specifications always require that variable symbols,
sentence letters, constant symbols, function symbols, and relation symbols can be
sorted into series with a first member, a second member, and so forth.

As a sample for these specifications, we shall adopt a generic quantificational
language &, which includes the standard variables, the equality symbol ‘=" and,

CHAPTER 2. FORMAL LANGUAGES 48

More on Countability

Given what was said on page 35, one might think that every collection is countable.
However, this is not so. This amazing and simple result was proved by G. Cantor
in 1873. Consider the collection which includes every countably infinite series of
digits O through 9 (or, if you like, decimal representations of real numbers between
0 and 1). Suppose that the members of this collection can be correlated one-to-one
with the non-negative integers. Then there is some list,

— ayp a1 a» az aa
— by by by by ba
co €1 €2 €3 ¢4

— do d] d2 d3 d4
— ey e} e e3 eg4

AWN~O
I

which matches each series of digits with a non-negative integer. For any digit x, say
x’ is the digit after it in the standard ordering (where 0 follows 9). Now consider
the digits along the diagonal, ag, b1, ¢z, ... and ask: does the series ag, by, 5, . ..
appear anywhere in the list? It cannot be the first member, because ag # ay; it
cannot be the second, because b # b’ ; it cannot be the third because ¢, # c’z; and
similarly for every member. So ay, b}, ¢, ... does not appear in the list. So we
have failed to match all the infinite series of digits with non-negative integers.
One might suggest simply adding ay,, b}, c}, ..., say at position 0 and pushing the
other members down—but then, from the diagonal of this new list, ag, a’, b5, c5, . ..
is missing. And similarly for any attempt! Insofar as its members cannot be matched
to the non-negative integers, the set of all infinite series of digits is uncountable.

As an example, consider the following attempt to line up the non-negative integers
with the series of digits: For each non-negative integer, repeat its digits, except that
for “duplicate” cases—1 and 11, 2 and 22, 12 and 1212—prefix enough Os so that
no later series duplicates an earlier one.

o - 0 0 0 0 00O OO 0 0O 0 0 O
1 - 111 111 1 1 1 1 1 1 1
2 - 2 2 2 2 2 2 2 2 2 2 2 2 2
3 - 3 3 3 3 3 3 3 3 3 3 3 3 3
4 — 4 4 4 4 4 4 4 4 4 4 4 4 4
5 -5 55555555 5 5 55
6 — 6 6 6 6 6 6 6 6 6 6 6 6 6
7 - 7 7 7 7 7 7 777 7 7 77
8 — 8 8 8 8 8 8 8 8 8 8 8 8 8
9 — 9 9 9 9. 9 9 9 9 9 9 9 9 9
0 - 1 0 1 0 1 0 1 0 1 0 1 0 1
1 - o 1 1 1 1 1 1 1 1 1 1 1 1
2 - 1 2 1 2 1 2 1 2 1 2 1 2 1

Then, by the above method, from the diagonal,
1 2 3 4 5 6 7 8 9 0 2 2 2
cannot appear anywhere on the list. And similarly, any list has some missing series.

CHAPTER 2. FORMAL LANGUAGES 49

Sentence letters: uppercase Roman italics A ... Z with or without positive integer
subscripts

Constant symbols: lowercase Roman italics @ . . . & with or without positive integer
subscripts

Function symbols: for any integer n = 1, superscripted lowercase Roman italics
a" ...z" with or without positive integer subscripts

Relation symbols: for any integer n = 1, superscripted uppercase Roman italics
A™ ... Z" with or without positive integer subscripts.

Observe that constant symbols and variable symbols partition the lowercase alphabet:
a...h for constants, and i ...z for variables. Function symbols are distinguished
from constant and variable symbols by their superscripts; similarly relation symbols
are distinguished from sentence letters by their superscripts. Function symbols with
a superscript 1 (a!...z') are one-place function symbols; function symbols with
a superscript 2 (a2 . .. z?) are two-place function symbols; and so forth. Similarly,
relation symbols with a superscript 1 (4! ... Z) are one-place relation symbols;
relation symbols with a superscript 2 (42 . .. Z?) are two-place relation symbols; and
so forth. Subscripts merely guarantee that we never run out of symbols of the different
types. Notice that superscripts and subscripts suffice to distinguish all the different
symbols from one another. Thus for example 4 and A! are different symbols—one a
sentence letter, and the other a one-place relation symbol; A1, A}, and A2 are distinct
as well—the first two are one-place relation symbols, distinguished by the subscript,
the latter is a completely distinct two-place relation symbol. In practice, again, we
will not see subscripts very often. (And we shall even find ways to abbreviate away
some superscripts.)

The metalanguage works very much as before. We use script letters #A ... 2
and « ...z to represent expressions of an object language like £4. Again, ‘~’, ‘=,
¥V, ‘=", °(, and ‘)’ represent themselves. And concatenated or joined symbols of
the metalanguage represent the concatenation of the symbols they represent. As
before, the metalanguage lets us make general claims about ranges of expressions
all at once. Thus, where x is a variable, Vx is a universal x-quantifier. Here, ‘Vx’
is not an expression of an object language like £, (Why?) Rather, we have said of
object language expressions that Vx is a universal x-quantifier, Vy, is a universal
y»-quantifier, and so forth. In the metalinguistic expression, ‘Y’ stands for itself, and
‘x’ for the arbitrary variable. Again, as in section 2.2.1, it may help to use maps to see
whether an expression is of a given form. Thus given that x maps to any variable, Vx
and Yy are of the form Vx, but Ve and V £z are not.

Vx Vx Vx Vx

CHE H i |1

Vx Yy ve? v flz

CHAPTER 2. FORMAL LANGUAGES 50

In the leftmost two cases, ¥ maps to itself, and x to a variable. In the next, ‘c’ is a
constant so there is no variable to which x can map. In the rightmost case, there is a
variable z in the object expression, but if x is mapped to it, the function symbol f! is
left unmatched. So the rightmost two expressions are not of the form Vx.

E2.11. Assuming that R! may represent any one-place relation symbol, £2 any
two-place function symbol, x any variable, and ¢ any constant of £, use
maps to determine whether each of the following expressions is (i) of the form,
Vx(R1x — R1c) and then (ii) of the form, Vx(R1x — R1Ah%xc).

*a. Vk(A'k — Ald)

b. Vi(J1h — J'b)

c. Yw(Stw — Slg2wb)
d. Vw(S'w — S'c?xc)

e. VoLlv - L1yh?

2.3.2 Terms

With the vocabulary of a language in place, we can turn to specification of its gram-
matical expressions. For this, in the quantificational case, we begin with ferms.

TR (v) If ¢ is a variable x, then £ is a term.
(c) If # is a constant ¢, then £ is a term.

(f) If A" is an n-place function symbol and % ...%¢, are n terms, then
A1 ... 1, 1S a term.

(CL) Any term may be formed by repeated application of these rules.

TR is another example of a recursive definition. As before, we can use tree diagrams
to see how it works. This time, basic elements are constants and variables. Complex
elements are put together by clause (f). Thus, for example, f1gZhlxc is a term of

Ly.

X c x is a term by TR(v), and ¢ is a term by TR(c)
hlx since x is a term, this is a term by TR(f)
M)
g2hlxe since i'x and c are terms, this is a term by TR(f)

flgZhlxc since g2h!xc is a term, this is a term by TR(f)

CHAPTER 2. FORMAL LANGUAGES 51

Superscripts of a function symbol indicate the number of places that take terms. Thus
x is a term, and h! followed by x to form i !x is another term. But then, given that
h'x and c are terms, g2 followed by i!x and then c is another term. And so forth.
Just as a formula is made up of operator symbols and other formulas, so a complex
term is made of function symbols and other terms. While terms may have other
terms as parts, each stage in the tree counts as a single unit for the next. Thus in the
third row of (M), g2 is followed by the two terms 4!x and ¢. And in the last stage,
f1is followed by the one term g2h!xc. In contrast, neither 4! xc nor f1hlxc are
terms—in each case, the problem is that the one-place function symbol is followed
by two terms: x and c¢ are terms, and i!x and ¢ are terms, but a one-place function
symbol followed by two terms does not form a term. And similarly, g24'x and g2%c
are not terms—the function symbol g2 must be followed by a pair of terms to form a
new term. You will find that there is always only one way to build a term on a tree.
Here is another example:

X c z x these are terms by TR(v), TR(c), TR(v), and TR(v)
(N) hle since ¢ is a term, this is a term by TR(f)
fAxhleczx given the four input terms, this is a term by TR(f)

Again, there is always just one way to build a term by the definition. If you are
confused about the makeup of a term, build it on a tree, and all will be revealed. To
demonstrate that an expression is a term, it is sufficient to construct it, according to
the definition, on such a tree. If an expression is not a term, there will be no way to
construct it according to the rules.

E2.12. For each of the following expressions, demonstrate that it is a term of &3 with
a tree.

a. fle

b. g%yfle
tc. h3cflyx

d. g2h3xyflex

e. B3 f1 flxcg? flza

E2.13. Explain why the following expressions are not terms of &£,. Hint: You may
find that an attempted tree will help you see what is wrong.

a. X

CHAPTER 2. FORMAL LANGUAGES 52
b. g2
c. zc
*d. g2y flxe

e. B3 f1fleg? flza

E2.14. For each of the following expressions, determine whether it is a term of £ ; if
it is, demonstrate with a tree; if not, explain why.
*a. g2g%xyflx
*b. h3cf2yx
c. flg?xh’yf?yc
d. flg>xh’yflyc

e. B3¢ flxcg? flzaf'b

2.3.3 Formulas

With the terms in place, we are ready for the central notion of a formula. Again, the
definition is recursive.

FR (s) If & is a sentence letter, then & is a formula.

(r) If R™ is an n-place relation symbol and #;...#, are n terms, then
R"t1 ... 1y is a formula.

(~) If # is a formula, then ~ is a formula.
(—) If & and @ are formulas, then (# — @) is a formula.
(V) If & is a formula and «x is a variable, then Vx P is a formula.

(cL) Any formula can be formed by repeated application of these rules.

Again, we can use trees to see how it works. In this case, FR(r) depends on which
expressions are terms. So it is natural to split the diagram into two, with applications of
TR above a division, and FR below. Then, for example, Vx(A! f1x — ~VyBZ2cy)
is a formula.

CHAPTER 2. FORMAL LANGUAGES 53

X c y Terms by TR(v), TR(c), and TR(v)
flx Term by TR(f)
..... {

Al flx B2cy Formulas by FR(r)

(0) VYyB2cy Formula by FR(V)
~YyB2cy Formula by FR(~)
(AL f1x - ~VyB2cy) Formula by FR(—)

Vx(Al f1x - ~VyB2cy) Formula by FR(V)

By now, the basic strategy should be clear. We construct terms by TR just as before.
Given that f!x is a term, FR(r) gives us that A! /! x is a formula, for it consists of a
one-place relation symbol followed by a single term; and given that ¢ and y are terms,
FR(r) gives us that B2cy is a formula, for it consists of a two-place relation symbol
followed by two terms. From the latter, by FR(Y), VyBZ?cy is a formula. Then FR(~)
and FR(—) work just as before. The final step is another application of FR(V).

For another example consider tree (P) in the upper box on page 55. By the tree,
Vx~(L — YyB3 flycx) is a formula of £. L is a sentence letter; so it does not
require any terms to be a formula. B3 is a three-place relation symbol, so by FR(r) it
takes three terms to make a formula. After that, other formulas are constructed out of
ones that come before.

If an expression is not a formula, then there is no way to construct it by the rules.
Thus, for example, (A'x) is not a formula of £. A'x is a formula; but the only way
parentheses are introduced is in association with —; the parentheses in (A4!x) are not
introduced that way; so there is no way to construct it by the rules, and it is not a
formula. Similarly, A%x and A2 f2?xy are not formulas; in each case, the problem is
that the two-place relation symbol is followed by just one term. You should be clear
about these in your own mind, particularly for the second case.

Before turning to the official notion of a sentence, we introduce some additional
definitions, each directly related to the trees—and to notions you have seen before.
Again, require that trees branch in the usual way: without extraneous nodes, and
without nodes used more than once. Then where ‘—’, ‘~’, and any Vx is an operator,
a formula’s main operator is the last operator added in its tree. Every formula in the
formula portion of a diagram for &, including P itself, is a subformula of . Notice

CHAPTER 2. FORMAL LANGUAGES 54

that terms are not formulas, and so are not subformulas. An immediate subformula of
& is a subformula to which J is directly connected by lines. A subformula is atomic
iff it contains no operators and so appears in the top line of the formula part of a tree.

Thus with notation from exercises before—bracket for subformulas, star for
atomic subformulas, box for immediate subformulas, and circle for main operator—
tree (Q) in the lower box on the next page identifies the parts from tree (P). The
main operator is Vx, and the immediate subformula is ~(L — YyB3 f1ycx). The
atomic subformulas are L and B3 f ! ycx. The atomic subformulas are the most basic
formulas. Given this, everything is as one would expect from before. In general, if
& and @ are some formulas and x is a variable, then the main operator of VX7 is
the quantifier, and the immediate subformula is #; the main operator of ~% is the
tilde, and the immediate subformula is ?; the main operator of ($ — @) is the arrow,
and the immediate subformulas are J” and @—for you would build these formulas
by getting &, or & and @, and then adding the quantifier, tilde, or arrow as the last
operator. Insofar as they operate on a single immediate subformula, quantifiers and
tilde are unary operators, while — is binary.

Now if a formula includes an operator, that operator’s scope is just the subformula
in which the operator first appears. Though the notion applies generally, we shall
be particularly interested in quantifier scope. Using underlines to indicate quantifier

scope,
z X y
Alz B?xy
VxB2xy The scope of the x-quantifier is VxB2xy
(R)

VyVxB2xy The scope of the y-quantifier is VyVxB2xy

(Alz - YyVxB2xy)

Vz(Alz - VyVxB3xy) The scope of the z-quantifier is the entire formula

A variable x is bound iff it appears in the scope of an x-quantifier, and a variable
is free iff it is not bound. In the above diagram, each variable is bound. The x-
quantifier binds both instances of x; the y-quantifier binds both instances of y; and
the z-quantifier binds both instances of z. In VxR?%x v, however, both instances of x
are bound, but the y is free. An open formula is a formula with free variables. And

CHAPTER 2. FORMAL LANGUAGES 55

y c X Terms by TR(v), TR(c), and TR(v)
f 1 y Term by TR(f)
L B3 flycx Formulas by FR(s), and FR(r)

P) VyB3 flycx Formula by FR(V)

(L — VyB3 flycx) Formula by FR(—)

~(L — VyB3 flycx) Formula by FR(~)

Vx~(L — YyB3 flycx) Formula by FR(Y)

y c X
fly
e L* B3f1ycx*
S
Q@ ¢ VyB? flycx
f
o
r
- (L - YyB3 flycx)
1
a
S
[~(L — VyB? flycx)]
L ~(L — VyB3 flycx)

CHAPTER 2. FORMAL LANGUAGES 56

finally, an expression is a sentence iff it is a formula and it has no free variables. To
determine whether an expression is a sentence, use a tree to see if it is a formula. If it
is a formula, use underlines to check whether any variable x has an instance that falls
outside the scope of an x-quantifier. If it is a formula, and there is no such instance,
then the expression is a sentence. From diagram (R), Vz(A4!z — VyVxB2?xy)isa
formula and a sentence. But as follows, ¥V y(~Q!x — Yx=xy) is not.

X X y
Q 1 X =xy
S) ~0lx Vx=xy The scope of the x-quantifier is Yx=xy

(~0lx — Vx=xy)

Vy(~Q'x - Vx=xy) The scope of the y-quantifier is the entire formula

Recall that ‘=’ is a two-place relation symbol. The expression has a tree, so it is
a formula. The x-quantifier binds the last two instances of x, and the y-quantifier
binds both instances of y. But the first instance of x is free. Since it has a free
variable, although it is a formula, Vy(~Q'x — VYx=xy) is not a sentence. Notice
that VxR?ax, for example, is a sentence as the only variable is x (a being a constant)
and all the instances of x are bound.

E2.15. For each of the following expressions, (i) Demonstrate that it is a formula of
&Lq with a tree. (ii) On the tree bracket all the subformulas, box the immediate
subformulas, star the atomic subformulas, circle the main operator, and indicate
quantifier scope with underlines. Then (iii) say whether the formula is a sentence,
and if it is not, explain why.

a. H'x
*b. (A'x — B2%cf1x)
c. Vx(~=xc — Alg?ay)
d. ~Vx(B?xc — Yy~Alg2ay)

e. (S > ~(YwB? flwhla - ~Vz(H'w — B?za)))

CHAPTER 2. FORMAL LANGUAGES 57

E2.16. Explain why the following expressions are not formulas or sentences of &g .
Hint: You may find that an attempted tree will help you see what is wrong.

a. H!

b. g%ax

*c. VxB?*xg%ax

d. ~(~VaAla - (§ - ~B?zg%xa))

e. Vx(Dax — Vz~K?zg%xa)

E2.17. For each of the following expressions, determine whether it is a formula and
a sentence of £y . If it is a formula, show it on a tree, and exhibit its parts as in
E2.15. If it fails one or both, explain why.

a. ~(L - ~V)
b. Vx(~L — K'h3xb)
c. VzVw(VxR?*wx — ~K?zw) — ~M?zz)
*d. Vz(L'z — (YwR?>wf3axw — YwR? f3azww))

e. ~(Yw)B? flwhla - ~(Vz)(H'w — B?za))

2.3.4 Abbreviations

That is all there is to the official grammar. Having introduced the official grammar,
though, it is nice to have in hand some abbreviated versions for official expressions.
As before, abbreviated forms give us ways to manipulate official expressions without
undue pain. First, for any variable x and formulas & and @,

AB (V) (£ Vv @) abbreviates (~P — @)
(A) (P A @) abbreviates ~(P — ~@)
(<) (P < Q) abbreviates ~((— Q) > ~(Q — P))
(3) Ix P abbreviates ~Vx~P

The first three are as from AB. The last is new. For any variable x, an expression of
the form Jx is an existential quantifier. IxP is read, ‘there exists an x such that 5.

As before, these abbreviations make possible derived clauses to FR. Suppose & is
a formula and «x is a variable; then by FR(~), ~& is a formula; so by FR(V), Vx~&
is a formula; so by FR(~) again, ~Vx~J is a formula; but this is just to say that
dx P is a formula. With results from before, we are thus given,

CHAPTER 2. FORMAL LANGUAGES 58

FR’ (A) If £ and @ are formulas, then (P A Q) is a formula.
(V) If # and @ are formulas, then (& Vv @) is a formula.
(«») If & and @ are formulas, then (£ < @) is a formula.
(3) If &# is a formula and x is a variable, then Ix P is a formula.
The first three are from before. The last is new. And, as before, we can incorporate

these conditions directly into trees for formulas. Thus Ix(~A'x A 3y42yx) is a
formula.

X y X These are terms by TR(v)
........... v 5
Aly A%yx These are formulas by FR(r)
(T) ~Alx AyA%yx These are formulas by FR(~) and FR’(3)
(~Alx AyAZyx) This is a formula by FR’(A)
Ix(~A'x A3yA2yx) This is a formula by FR'(3)

In a derived sense, we carry over additional definitions from before. Thus, where
operators include the derived symbols A, V, <>, and Jx, a formula’s main operator
is the last operator added in its tree, subformulas are all the formulas in the formula
part of the tree, atomic subformulas are the ones in the upper row of the formula
part, and immediate subformulas are the one(s) to which the formula is directly
connected by lines. Thus the main operator of 3x(~A'x A IyA42yx) is the leftmost
existential quantifier and the immediate subformula is (~A'x A3yA?yx). In addition,
a variable is in the scope of an existential quantifier iff it would be in the scope of
the unabbreviated universal one. So it is possible to discover whether an expression
is a sentence directly from diagrams of this sort. Thus, as indicated by underlines,
Jx(~A'x A3yA?yx) is a sentence.

To see what it is an abbreviation for, we can reconstruct the formula on an
unabbreviating tree, one operator at a time.

CHAPTER 2. FORMAL LANGUAGES 59

X y X X y X
........... \/ v
Alx A%yx Alx A%yx
L) ~Alx IyA%yx ~Aly ~Vy~A2yx By AB()
(~Alx ATyA%yx) ~(~Alx = ~~Vy~A2yx) By AB(A)
Ix(~Alx A3yA2yx) ~AVx~~(~A X = A~V y~AZyx) By AB(3)

First the existential quantifier is replaced by the unabbreviated form. Then, where
P and @ are joined by FR'(A) to form (£ A @), the corresponding unabbreviated
expressions are combined into the unabbreviated form, ~(# — ~@). At the last
step the existential quantifier is replaced again. So 3x(~A'x A IyA2yx) abbreviates
~Vx~~(~Alx = ~~Vy~A?yx). Again, abbreviations are nice! Notice that the
resultant expression is a formula and a sentence, as it should be.

As before, it is sometimes convenient to use a pair of square brackets [] in place
of parentheses (). And if the very last step of a tree for some formula is justified
by FR(—), FR/(V), FR/(A), or FR'(<>), we may abbreviate that formula with the
outermost set of parentheses or brackets dropped. In addition, for terms #; and
i2 we will frequently represent the formula =¢;4 as (¢1 = #»). Notice the extra
parentheses. This lets us see the equality symbol in its more usual “infix” form.
When there is no danger of confusion, we will sometimes omit the parentheses and
write, {1 = 1. Also, where there is no potential for confusion, we sometimes omit
superscripts. Thus in £; we might omit superscripts on relation symbols—simply
assuming that the terms following a relation symbol give its correct number of places.
Thus Ax abbreviates A!x; Axy abbreviates A2xy; Axf!y abbreviates A%2xfy;
and so forth. Notice that Ax and Axy, for example, involve different relation symbols.
In formulas of &4, sentence letters are distinguished from relation symbols insofar
as relation symbols are followed immediately by terms, where sentence letters are
not. Notice, however, that we cannot drop superscripts on function symbols in £, —
thus, even given that f and g are function symbols rather than constants, apart from
superscripts, there is no way to distinguish the terms in, say, Afgxyzw.

As a final example, 3y~(c = y) vV VxRxf?2xd is a formula and a sentence.

CHAPTER 2. FORMAL LANGUAGES 60

(c=y) Rxf?xd =cy R%xf2xd
V)

~(c=1y) VxRxf2xd ~=cy VxR%xf2xd

Iy~ =y) ~Yy~~=cy

Ay~(c = y) vV VXRxf2xd (~~Vy~~=cy — YxR2xf2xd)

The abbreviation drops a superscript, uses the infix notation for equality, uses the
existential quantifier and wedge, and drops outermost parentheses. As before, the right-
hand diagram is not a direct demonstration that (~~Vy~~=cy — YxR?x f?xd)
is a sentence. However, it unpacks the abbreviation and we know that the result is an
official sentence insofar as the left-hand tree, with its application of derived rules, tells
us that 3y~(c = y) vV YxRxf2xd is an abbreviation of formula and a sentence, and
the right-hand diagram tells us what that expression is.

E2.18. For each of the following expressions, (i) Demonstrate that it is a formula of
&Lq with a tree. (ii) On the tree bracket all the subformulas, box the immediate
subformulas, star the atomic subformulas, circle the main operator, and indicate
quantifier scope with underlines. Then (iii) say whether the formula is a sentence,
and if it is not, explain why.

a. (A—-~B)«< (AAC)

b. AxFx AVyGxy
tc. IxAflg?ahPzwflx v S

d. VxVyVz([(x = y) A(y = 2)] > (x = 2))

e. Ay[c = y AVxRxflxy]

*E2.19. For each of the formulas in E2.18, produce an unabbreviating tree to find the
unabbreviated expression it represents.

CHAPTER 2. FORMAL LANGUAGES 61

Grammar Quick Reference

VC For any quantificational language &£ the vocabulary consists of,
(p) Punctuation symbols: ()
(o) Operator symbols: ~ — V
(v) A countably infinite collection of variable symbols
(s) A countable collection of sentence letters
(c) A countable collection of constant symbols
(f) For any integer n = 1, a countable collection of n-place function symbols
(r) For any integer n = 1, a countable collection of n-place relation symbols
TR (v) If t is a variable x, then £ is a term.
(c) If ¢ is a constant ¢, then ¢ is a term.
(f) If 4™ is an n-place function symbol and £ ... t, are n terms, then A ¢] ... £, is a term.
(cL) Any term may be formed by repeated application of these rules.
FR (s) If & is a sentence letter, then & is a formula.
(r) If R" is an n-place relation symbol and #1 ... ¢, are n terms, R" ¢] ...t is a formula.
(~) If £ is a formula, then ~% is a formula.
(—) If and @ are formulas, then (P — @) is a formula.
(V) If £ is a formula and «x is a variable, then Vx & is a formula.

(cL) Any formula can be formed by repeated application of these rules.

Subformulas are all the formulas in the tree; atomic subformulas appear in the top formula row;
immediate subformulas are the ones to which a formula is directly connected by lines; the main
operator is the last operator added. An operator’s scope includes just the formula in which it is
introduced; a variable x is bound iff it is in the scope of an x-quantifier and free iff it is not; an open
formula is one with free variables; an expression is a sentence iff it is a formula with no free variables.

AB (V) (P Vv @) abbreviates (~P — Q)
(A) (P A Q) abbreviates ~(P — ~Q)
(«) (P < Q) abbreviates ~((P — Q) > ~(Q — P))
(3) IxP abbreviates ~Vx~P
FR" (A) If # and @ are formulas, then (P A Q) is a formula.
(V) If and @ are formulas, then (P Vv Q) is a formula.
(«») If P and @ are formulas, then (P <> @) is a formula.
(3) If & is a formula and x is a variable, then Ix P is a formula.
The generic language &4 includes the equality symbol ‘=" along with,
Variable symbols: 7 ...z with or without positive integer subscripts
Sentence letters: A ... Z with or without positive integer subscripts
Constant symbols: a ... s with or without positive integer subscripts
Function symbols: for any n = 1, a” ... z" with or without positive integer subscripts

Relation symbols: for any n = 1, A ... Z" with or without positive integer subscripts

CHAPTER 2. FORMAL LANGUAGES 62

*E2.20. For each of the unabbreviated expressions from E2.19, produce a complete
tree to show by direct application of FR that it is an official formula. In each case,
using underlines to indicate quantifier scope, is the expression a sentence? does
this match with the result of E2.18?

2.3.5 Another Language

To emphasize the generality of our definitions VC, TR, and FR, let us introduce
a language like one with which we will be much concerned later in the text. £
is like a minimal language we shall introduce later for number theory. Recall that
VC leaves open what are the variable symbols, constant symbols, function symbols,
sentence letters, and relation symbols of a quantificational language. So far, our
generic language £ fills these in by certain conventions. &£ replaces these with the
standard variables and,

Constant symbol: @

One-place function symbol: S
Two-place function symbols: +, x
Two-place relation symbols: =, <

and that is all. Later we shall introduce a language like £; except without the <
symbol; for now, we leave it in. Notice that &£, uses capitals for sentence letters and
lowercase for function symbols. But there is nothing sacred about this. Similarly,
&4 indicates the number of places for function and relation symbols by superscripts,
where in £; the number of places is simply built into the definition of the symbol. In
fact, £t is an extremely simple language! Given the vocabulary, TR and FR apply
in the usual way. Thus @, S@, and S S? are terms—as is easy to see on a tree. And
<@S S0 is an atomic formula.

As with our treatment for equality, for terms m and n, we often abbreviate official
terms of the sort, +mmn and xmn as (m + n) and (m x n); similarly, it is often
convenient to abbreviate an atomic formula <mmn as (m < n). And we will drop
these parentheses when there is no danger of confusion. Officially, we have not said a
word about what these expressions mean. It is natural, however, to think of them with
their usual meanings, with S the successor function—so that the successor of zero,
S is one, the successor of the successor of zero S S is two, and so forth. But we do
not need to think about that for now.

As an example, we show that VxVy(x = y — [(x + y) < (x + Sy)]) is (an
abbreviation of) a formula and a sentence.

CHAPTER 2. FORMAL LANGUAGES 63

Terms by TR(v)

Terms by TR(f) for 2- and 1-place symbols

Term by TR(f) for 2-place function symbol

(W) x=y [(x+y)<x+Sy)] Formulas by FR(r) for 2-place symbols
(x=y—=>[x+y) <(x+Sy) Formula by FR(—)
Vy(x =y > [(x +y) < (x+ Sy)]) Formula by FR(V)
VaVy(x =y = [(x +y) < (x + Sy)]) Formula by FR(Y)

And we can show what it abbreviates by unpacking the abbreviation in the usual way.
This time, we need to pay attention to abbreviations in the terms as well as formulas.

X y X

X) x=y [(x+y) <(x+Sy)] =xy <+xy+xSy
(x=y—=>[x+y)<x+SyD (=xy — <+xy+xSy)
Vy(x =y =[x +y) < (x+Sy)]) Vy(=xy - <+xy+xSy)
VaxVy(x =y — [(x +) < (x + Sy)]) VxVy(=xy — <+xy+xSy)

The official (Polish) notation on the right may seem strange. But it follows the
official definitions TR and FR. And it conveniently reduces the number of parentheses
from the more typical infix presentation. (You may also be familiar with Polish
notation from certain computer applications.) If you are comfortable with grammar

CHAPTER 2. FORMAL LANGUAGES 64

and abbreviations for this language £, you are doing well with the grammar for our

formal languages.

E2.21. For each of the following expressions, (i) Demonstrate that it is a formula of
L5 with a tree. (ii) On the tree bracket all the subformulas, box the immediate
subformulas, star the atomic subformulas, circle the main operator, and indicate
quantifier scope with underlines. Then (iii) say whether the formula is a sentence,
and if it is not, explain why.

a. ~[S0 = (S0 x SSO)]

b, IxVy(x x y = x)
c. Vx[~(x =) — Ay(y < x)]
d Vy[x <yvx=y)Vy<x]

e. VxVyVz[(x x (¥ +2)) = ((x x ¥) + (x x 2))]

*E2.22. For each of the formulas in E2.21, produce an unabbreviating tree to find the
unabbreviated expression it represents.

E2.23. For each of the following concepts, explain in an essay of about two pages,
so that (high-school age) Hannah could understand. In your essay, you should
(i) identify the objects to which the concept applies, (ii) give and explain the
definition, and give and explicate examples of your own construction (iii) where
the concept applies, and (iv) where it does not. Your essay should exhibit an
understanding of methods from the text.

a. The vocabulary for a quantificational language and then for &4 and £.

b. A formula and a sentence of a quantificational language.

c. An abbreviation for an official formula and sentence of a quantificational

language.

Chapter 3

Axiomatic Deduction

We have not yet said what our sentences mean. This is just what we do in the next
chapter. However, just as it is possible to do grammar without reference to meaning,
so it is possible to do derivations without reference to meaning. Derivations are
defined purely in relation to the syntax of formal expressions. That is why it is crucial
to show that derivations stand in important relations to validity and truth, as we do
in Part III. And that is why it is possible to do derivations without knowing what
the expressions mean. In this chapter we develop an axiomatic derivation system
without any reference to meaning and truth. Apart from relations to meaning and
truth, derivations are perfectly well-defined—counting at least as a sort of puzzle or
game with, perhaps, a related “thrill of victory” and “agony of defeat.” And as with a
game, it is possible to build derivation skills to become a better player. Later, we will
show how derivation games matter.'

Derivation systems are constructed for different purposes. Introductions to mathe-
matical logic typically employ an axiomatic approach. We will see a natural deduction
system in Chapter 6. The advantage of axiomatic systems is their extreme simplicity.
From a practical point of view, when we want to think about logic, it is convenient to
have a relatively simple object to think about. Axiomatic systems have this advantage,
though they can be relatively difficult to apply. The axiomatic approach makes it
natural to build toward increasingly complex and powerful results. However, in the
beginning at least, axiomatic derivations can be challenging!

We will introduce our system in stages: After some general remarks in section 3.1
about what an axiom system is supposed to be, we will introduce the sentential
component of our system (section 3.2). After that, we will turn to the full system
for forms with quantifiers and equality (section 3.3), and finally to a mathematical
application (section 3.4).

IThis chapter has its place to crystallize the point about form. However it is out of order from a
learning point of view. Having developed the grammar of our formal languages, a sensible course in
mathematical logic will skip to Chapter 4 and return only after Chapter 6. You might attempt section 3.1
to get the basic idea. But then compare the box on page 69.

65

CHAPTER 3. AXIOMATIC DEDUCTION 66

3.1 General

Before turning to the derivations themselves, it will be helpful to make a point about
the metalanguage and form. We are familiar with the idea that different formulas may
be of the same form. Thus, for example, where & and @ are formulas, A — B and
A — (B Vv C) are both of the form &> — @—in the one case @ maps to B, and in the
other to (B Vv C). But, similarly, one form may map to another. Thus, for example,
P — @ mapsto A — (B Vv E).

P —aQ

;oo
——
(A) A — (BVE)
SN N

e N e N—
(RAS)—> ((RAT)VU)

And, by a sort of derived map, any formula of the form 4 — (B Vv €) is of the form
&P — @ as well. In this chapter we frequently apply one form to another—depending
on the fact that all formulas of one form are of another.

Given a formal language £, an axiomatic logic AL consists of two parts. There
is a set of axioms and a set of rules. Different axiomatic logics result from different
axioms and rules. For now, the set of axioms is just some privileged collection of
formulas. A rule tells us that one formula follows from some others. One way to
specify axioms and rules is by form. Thus, for example, modus ponens may be
included among the rules.

P—->Q,P

Q
According to this rule, for any formulas & and @, the formula @ follows from — Q
together with J. Thus, as applied to £;, B follows by MP from A — B and A; but
also (B <> D) follows from (A — B) — (B <> D) and (A — B). And for a case
put in the metalanguage, quite generally, a formula of the form (8 Vv €) follows from
A — (B Vv €) and A—for any formulas of the form A — (B v €) and 4 are of
the forms & — @ and & as well. Axioms also may be specified by form. Thus, for
some language with formulas # and @, a logic might include among its axioms all
formulas of the forms,

ANl (PAQ)—->P A2 (PAQ)—>Q A3 P —>(@Q@—>(PAQ))
Then in £;,
(AAB) — A, (AnA) — A (A= B)AC)— (A— B)

MP

are all axioms of form A1l. Insofar as each has indefinitely many instances, A1-A3
are axiom schemas (or schemata). So far, for a given axiomatic logic AL, there are

CHAPTER 3. AXIOMATIC DEDUCTION 67

no constraints on just which formulas will be the axioms, and just which rules are
included. The point is only that we specify an axiomatic logic when we specify some
collection of axioms and rules.

Suppose we have specified some axioms and rules for an axiomatic logic AL. Then
where I' (Gamma) is a set of formulas—taken as the formal premises of an argument,

AV (p) If & is a premise (a member of I'), then & is a consequence in AL of T.
(a) If # is an axiom of AL, then P is a consequence in AL of T".

) If @ ...Q, are consequences in AL of I", and there is a rule of AL such
that & follows from @ . .. &, by the rule, then & is a consequence in AL
of T

(CL) Any consequence in AL of I" may be obtained by repeated application of
these rules.

The first two clauses make premises and axioms consequences in AL of I'. And if,
say, MP is a rule of AL and P — Q and P are consequences in AL of I', then by
AV(r), Q is a consequence in AL of I" as well. If is a consequence in AL of some
premises [, then the premises prove J in AL and equivalently the argument is valid
in AL; in this case we write I' =, &. The = symbol is the single turnstile (to contrast
with a double turnstile = from Chapter 4). If @1 ... @, are the members of I, we
sometimes write @1 ...@, I, & inplace of I' I, P. If I' has no members and
I' |, P, then P is a theorem of AL. In this case we simply write, I-,, P.

Before turning to our official axiomatic system AD, it will be helpful to consider
a preliminary example. Suppose an axiomatic derivation system AP has MP as its
only rule, and just formulas of the forms A1, A2, and A3 as axioms. AV is a recursive
definition like ones we have seen before. Thus nothing stops us from working out its
consequences on trees. Thus we can show that 4 A (B A €) F,,, € A B as follows:

CE>(B—=>(EAB) (BAEC)—-C AA(BAYL) (AA(BAEC) > (BAE) (BAE)— B

\/

BAE
B) e 8
B — (EAB)

CAB

In this case, the only member of T is the premise, A A (B A €). For definition AV,
the basic elements are the premises and axioms. These occur across the top row. Thus,
reading from the left, the first form is an instance of A3. The second is of type AZ2.
The third is the premise. Any formula of the form (A A (B A€)) > (B AE) is

CHAPTER 3. AXIOMATIC DEDUCTION 68

of the form, (A @) — @; so the fourth is of the type A2. And the last is of the
type Al. So by AV(a) and AV(p) they are all consequences in AP of I'. After that,
all the results are by MP, and so consequences by AV(r). Thus for example, in the
second row, (A A (B AE)) —> (BAE)and A A (B A €) are of the sort P — @
and &P, with A A (B A €) for & and (B A €) for @; thus B A € follows from them
by MP. So B A € is a consequence in AP of I by AV(r). And similarly for the other
consequences. Notice that applications of MP and of the axiom forms are independent
from one use to the next. The expressions that count as & or @ must be consistent
within a given application of the axiom or rule, but may vary from one application
of the axiom or rule to the next. If you are familiar with another derivation system,
perhaps the one from Chapter 6, you may think of an axiom as a rule without inputs.
Then the axiom applies to expressions of its form in the usual way.

These diagrams can get messy, and it is traditional to represent the same informa-
tion as follows, using annotations to indicate relations among formulas:

1. AN(BATE) prem(ise)
2. (AA(BAE)—>(BAYE) A2
3. BAE 2,1 MP
4. BAE)—> B Al
(©) 2 B 4,3 MP
. (BArE)>T€ A2
7. € 6,3 MP
8. € — (B—>(EAB) A3
9. B> (€EAB) 8,7 MP
10. €A B 9,5 MP

Each of the forms (1)—(10) is a consequence of A A (B A €) in AP. As indicated
on the right, the first is a premise, and so a consequence by AV(p). The second is
an axiom of the form A2, and so a consequence by AV(a). The third follows by MP
from the forms on lines (2) and (1), and so is a consequence by AV(r). And so forth.
Such a demonstration is an axiomatic derivation. This derivation contains the very
same information as the tree diagram (B), only with geometric arrangement replaced
by line numbers to indicate relations between forms. Observe that we might have
accomplished the same end with a different arrangement of lines. For example, we
might have listed all the axioms first, with applications of MP after. The important
point is that in an axiomatic derivation, each line is either an axiom, a premise, or
follows from previous lines by a rule. Just as a tree is sufficient to demonstrate that
I' I, &, that & is a consequence of I' in AL, so an axiomatic derivation is sufficient
to show the same. In fact, we shall typically use derivations rather than trees to show
thatI' -, P.

Notice that we have been reasoning with sentence forms. Thus we treat both
general forms and particular formulas as “instances” of an axiom scheme. Corre-
spondingly, we have shown that a formula of the form € A B follows in AP from one
of the form #4 A (8B A €). Given this, we freely appeal to results of one derivation

CHAPTER 3. AXIOMATIC DEDUCTION 69

in the process of doing another. Thus, if we were to encounter a formula of the form
A A (B A €) in an AP derivation, we might simply cite the derivation (C) completed
above, and move directly to the conclusion that € A 8. The resultant derivation
would be an abbreviation of an official one which includes each of the above steps to
reach € A B. In this way, derivations remain manageable, and we are able to build
toward results of increasing complexity. (Compare the way theorems build upon one
another from your high school experience of Euclidian geometry.) All of this should
become more clear as we turn to the official and complete axiomatic system, AD.

E3.1. Where AP is as above with rule MP and axioms A1-A3, construct derivations
to show each of the following.
o, AN(BATC) I, B
b. A B, CH,, AAN(BAT)
C.AN(BAC)E, (AANB)AE
d (AANB)A(EAD)E, BAE
e. Fp (AANB) = A)A(AAB) = B)

E3.2. Demonstrate E3.1a by a tree diagram, as for (B) above.

On a course in symbolic logic: Unless you have a special reason for studying
axiomatic systems, or are just looking for some really challenging puzzles, you
should pass over the rest of this chapter until you have completed Chapter 6. At
that stage, you will be better prepared for this one. Chapter 3 is not required for
any of chapters 4-7. It makes sense here to locate derivations in the conceptual
order, and so to underline the point that derivations are defined apart from notions
of validity and truth as we encounter them in Chapter 4—and thus to highlight the
importance of showing that the same arguments come out valid on the different
accounts, as we do in Part I1I. But this chapter is out of order from a learning point
of view. After Chapter 6 you can return to this chapter, while recognizing its place
in the conceptual order (see note 1 on page 65).

3.2 Sentential

We begin by focusing on sentential forms, forms involving just ~ and — (and so A,
V, and <>). The sentential component ADs of our official axiomatic logic AD tells us
how to manipulate such forms, whether they be forms for expressions in a sentential
language like &5, or in a quantificational language like &£;. ADs includes three axiom
forms and one rule:

CHAPTER 3. AXIOMATIC DEDUCTION 70

ADs Al. # - (@ —»> P)
A2. (O — (P —>Q)—>{(0O—P)— (0 Q)
A3. (~Q > ~P) > ((~Q - P) > Q)
MP. @ follows from # — @ and &P

We have already encountered MP. To take some cases to appear immediately below,
the following are both of the sort Al:

A — (A — A) (B—>€) = [A—>(B— 1))

Observe that # and @ need not be different. You should be clear about these cases.
Although MP is the only rule, we allow free movement between an expression and
its abbreviated forms, with justification, ‘abv’. That is it! As above, I' I, & justin
case & is a consequence of I' in ADs. I' I, & justin case there is an ADs derivation
of &# from premises in I'.

The following is a series of derivations where, as we shall see, each may depend
on ones from before. At first, do not worry so much about strategy, as about the

mechanics of the system.

T3.1. by, A — A
1. (A= (A = A] > A)) = (A = [A = A]) = (A —> A)) A2
2. A — (A —> A > A) Al
3. (A > [A > A) > (A A) 1,2 MP
4. A > [A—> A] Al
5. A— A 3,4 MP

Line (1) is an axiom of the form A2 with 4 for O, A4 — A for &, and A for @.
Notice again that @ and @ may be any formulas, so nothing prevents them from being
the same. Line (2) is an axiom of the form Al with A — A for @. Similarly, line (4)
is an axiom of the form A1 with 4 in place of both & and @. The applications of MP
should be straightforward.

T32. A—>B,8B—>C€F,,, A>T

I. [A—> (B —->C)]—>[(A—>B)—> (A>T A2

2. (B—>C) > [A—>(B—0) Al

3. B¢ prem
4. A—>(B—>0) 2,3 MP
5. (A—> B) > (A —>T) 1,4 MP
6. A—> B prem
7. A>T 5,6 MP

Line (1) is an instance of A2 which gives us our goal with two applications of MP—
that is, from (1), A — € follows by MP if we have A — (8 — €) and A — B. But
the second of these is a premise, so the only real challenge is getting A4 — (B8 — ©).

CHAPTER 3. AXIOMATIC DEDUCTION 71

But since 8 — € is a premise, we can use Al to get anything arrow it—and that is
just what we do on lines (2)—(4).

T33. A — (B =€)k, B — (A — €)
[A—> (B —>C)]—>[(A—>B)—> (A1) A2

1.

2. A—>(B—>0C) prem

3. (A—>B)—> (A—>T) 1,2 MP
4, B — (A—> B) Al

5. B> (A—>C) 4,3T3.2

In this case, the first four steps are very much like ones you have seen before. But
the last is not. T3.2 lets us move from A — B and B — € to A — €; it is a sort of
transitivity or “chain” principle which lets us move from a first form to a last through
some middle term. We have 8 — (4 — 8B) on line (4), and (A — B) — (A — €)
on line (3). These are of the form to be inputs to T3.2—with 8 for 4, A — B for
B, and A — € for €. In this case, A — B is the middle term. So at line (5), we
simply observe that lines (4) and (3), together with the reasoning from T3.2, give us
the desired result.

T3.2 is an important principle, of significance comparable to MP for the way you
think about derivations. If you have XX — + and want A, it makes sense to go for X
towards an application of MP. But if you have A — X and want A — B, it makes
sense to go for X — B toward an application of T3.2. And similarly if you have
X — B and want A — B, it makes sense to go for A — X for T3.2. At (3) of the
above derivation we are in a situation of this latter sort, and so obtain (4).

What we have produced above is not an official derivation where each step is a
premise, an axiom, or follows from previous lines by a rule. But we have produced an
abbreviation of one. And nothing prevents us from unabbreviating by including the
routine from T3.2 to produce a derivation in the official form. To see this, first observe
that the derivation for T3.2 has its premises at lines (3) and (6), where lines with the
corresponding forms in the derivation for T3.3 appear at (3) and (4). However, it is a
simple matter to reorder the derivation for T3.2 so that it takes its premises from those
same lines. Thus here is another demonstration for T3.2:

3. B—~>¢€ prem

4. A—> 8B prem

5. [A=> (B —=>E)]—[(A—> B) > (A— O] A2
D) 6. (B—=€) —=[A—(B—1) Al

7. A—>(B—>1C) 6,3 MP

8. (A—>B)—>(A—>TC) 5,7 MP

9. A>T€ 8,4 MP

Compared to the original derivation for T3.2, all that is different is the order of a few
lines, and corresponding line numbers. The reason for reordering the lines is for a
merge of this derivation with the one for T3.3.

CHAPTER 3. AXIOMATIC DEDUCTION 72

But now, although we are after expressions of the form A — B and 8 — €, the
actual forms we want for T3.3 are 8 — (A — B) and (A —> B) — (A — €). But
we can convert derivation (D) to one with those very forms by uniform substituation
of B for every #; (A — B) for every B; and (A — €) for every €—that is, we
apply our original map to the entire derivation (D). The result is as follows:

3. (A—>B)—>(A—>TC) prem

4, B — (A—> B) prem

5. [8B—=> (A—>B)—> (A—>C)] = [(B—>(A—> B) = (B — (A—)] A2
(BE) 6. (4= B) = (A—>E)) > [B— (A— B)— (A— 1)) Al

7. B—> (A—> B)— (A—) 6,3 MP

8. (B— (A—>B) —> (B—(A—>Y) 5,7 MP

9. B—>(A—>0C) 8,4 MP

You should trace the parallel between derivations (D) and (E) all the way through. And
you should verify that (E) is a derivation on its own. This is an application of the point
that our derivation for T3.2 applies to any premises and conclusions of that form. The
result is a direct demonstration that 8 — (A — B), (A = B) — (A =€) F,,,
B — (A —>C).

And now it is a simple matter to merge the lines from (E) into the derivation for
T3.3 to produce a complete demonstration that A — (8 — €) I, B — (A — ©).

1. [A—=> (B —>0C)] = [(A—> B)— (A>T A2
2. A—>(B—>Y) prem
3. (A—>B)— (A—>T) 1,2 MP
4, B - (A—> B) Al

F) 5 B->((A>8)—>(A=>E)]—[(B— (A B)) > (B — (A C))] A2
6. (A—>B)—> (A—>0C) = [B—> (A—> B)— (A—1))] Al
7. B—=> (A= B)— (A—) 6,3 MP
8. (B— (A—>B) —> (B—(A—>Y) 5,7 MP
9. B - (A—>T) 8,4 MP

Lines (1)—(4) are the same as from the derivation for T3.3, and include what are the
premises to (E). Lines (5)—(9) are the same as from (E). The result is a demonstration
for T3.3 in which every line is a premise, an axiom, or follows from previous lines
by MP. Again, you should follow each step. It is hard to believe that we could think
up this last derivation—particularly at this early stage of our career. However, if we
can produce the simpler derivation, we can be sure that this more complex one exists.
Thus we can be sure that the final result is a consequence of the premise in ADs.
That is the point of our direct appeal to T3.2 in the original derivation of T3.3. And
similarly in cases that follow. In general, we are always free to appeal to prior results
in any derivation—so that our toolbox gets bigger at every stage. With this in mind,
you may find the ADs summary on page 78 helpful.

CHAPTER 3. AXIOMATIC DEDUCTION 73

T3.4. Fp (B =€) = [(A— B) > (A—)]
I [A—=(B=>0)]—>[(A>B) > (A>€)] A2

2. (B—=C) > [A—> (B—0)] Al
3. B—>€) > [(A—> B) > (A—C)] 2,1 T3.2

Again we have an application of T3.2. In this case, the middle term (the 8) from T3.2
maps to A — (B — €). Once we see that the consequent of what we want is like
the consequent of A2, we should be “inspired” by T3.2 to go for (2) as a link between
the antecedent of what we want and antecedent of A2. As it turns out, this is easy to
get as an instance of Al. It is helpful to say to yourself in words, what the various
axioms and theorems do. Thus, given some P, Al yields anything arrow it. And T3.2
is a simple transitivity principle.

T3.5. by, (A — B) —> [(B > €) > (A — ©)]

I. (B—>€) > [(A—> B)—> (A—TC)] T3.4
2. (A—>B)—>[(B—>C) > (A>T 1T3.3

T3.5 is like T3.4 except that A — B and B — € switch places. But T3.3 precisely
switches terms in those places—with B — € for A, A — B for B, and A — € for
€. Again, often what is difficult about these derivations is “seeing” what you can
do. Thus it is good to say to yourself in words what the different principles give you.
Once you realize what T3.3 does, it is obvious that you have T3.5 immediately from
T3.4.

T3.6. B.A— (B —>C€) bk, A€

Hint: You can get this in the basic system using just A1 and A2. But you can get
it in just four lines if you use T3.3.

T3.7. =

ADs

(~Ah = A) > A

Hint: This follows in just three lines from A3, with an instance of T3.1.

T3.8. by (~B — ~oh) —> (A — B)

I. (~8 > ~A)— [(~8B — 4) > B] A3

2. [A—> (~B—>A)] = [(~B > A) > B) > (A—> B)] T3.5

3. A—>(~8B > A) Al

4, (~8B > A) > B) > (A —> B) 2,3 MP
5. (8B > ~A) > (A —> B) 1,4T3.2

The idea behind this derivation is that the antecedent of A3 is the antecedent of our goal.
So we can get the goal by T3.2 with (1) and (4). That is, given (~8 — ~#4A) — X,
what we need to get the goal by an application of T3.2 is X — (A — $B). But that

CHAPTER 3. AXIOMATIC DEDUCTION 74

is just what (4) is. The challenge is to get (4). Our strategy uses T3.5 with Al. This
derivation is not particularly easy to see. Here is another approach, which is not all
that easy either:

l. (~B = ~h) > [(~B —> A) > B] A3

2. (~8B—>A) = [(~B - ~A) > B] 1T3.3
(G) 3. A—>(~8B—>A) Al

4. A—>[(~8B —> ~A) > B] 32T3.2

5. (~8 — ~h) = (A — B) 4T33

)

This derivation also begins with A3. The idea this time is to use T3.3 to “swing’
~8B — A out, “replace” it by +A with T3.2 and A1, and then use T3.3 to “swing” A
back in.

T3.9. ks ~A = (A — B)

Hint: You can do this in three lines with T3.8 and an instance of Al.

T3.10. =

ADs

~~A — A

Hint: You can do this in three lines wih instances of T3.7 and T3.9.

T3.11. by, b — ~~oh

Hint: You can do this in three lines with instances of T3.8 and T3.10.

*T312 |_ADS (A —> B) —> (NNCA —> NN£)

Hint: Use T3.5 and T3.10 to get (A — B) — (~~A — B); then use T3.4
and T3.11 to get (~~A — B) > (~~A — ~~B); the result follows easily by
T3.2.

T3.13. by, (A — B) > (~B — ~oh)

Hint: You can do this in three lines with instances of T3.8 and T3.12.

T3.14. b, (~A — B) > (~B — A)

Hint: Use T3.4 and T3.10 to get (~B — ~~A) = (~B — #); the result fol-
lows easily with an instance of T3.13.

T3.15. F,,, (A = ~B) = (B = ~A)
Hint: This time you will be able to use T3.5 and T3.11 with T3.13.

CHAPTER 3. AXIOMATIC DEDUCTION 75

T3.16. k-, (A — B) = [(~A - B) - B]

Hint: Use T3.13 and A3 to get (A — B) — [(~B — A) — B]; then use T3.5
and T3.14 to get [(~B — A) —> B] — [(~A — B) — B]; the result follows
easily by T3.2.

*T3.17. by A = [~B = ~(A — B)]

Hint: Use T3.1 and T3.3 to get A — [(A — B) — B]; then use T3.13 to “turn
around” the consequent. This idea of deriving conditionals in “reversed” form,
and then using one of T3.13-T3.15 to turn them around, is frequently useful for
getting tilde outside of a complex expression.

T3.18. b, A — (A V B)

I. ~A— (A—> B) T3.9
2. A— (~A—> B) 1T3.3
3. A— (AVB) 2 abv

We set as our goal the unabbreviated form. We have this at (2). Then, in the last line,
simply observe that the goal abbreviates what has already been shown.

T3.19. b, A — (B V)

Hint: Go for A — (~8 — +). Then, as above, you can get the desired result in
one step by abv.

T3.20. b, (A A B) —> B

T321. k), (A A B) — A

“T3.22. A — (B — €) by, (AAB) > €

T3.23. (AAB) > € H, A — (B> C)

Ds

T3.24. A A< B, B

Hint: A <> B abbreviates the same thing as (A — B) A (8 — 4A); you may
thus move to this expression from 4 <> B by abv.

T3.25. B, A < B =

ADs

A

CHAPTER 3. AXIOMATIC DEDUCTION 76

T3.26. ~h, A < B, ~B

T327. ~B. A < B H, ~h

*E3.3. Provide derivations for T3.6-T3.7, T3.9-T3.17, and T3.19-T3.27. Again,
as you are working these problems, you may find it helpful to refer to the ADs
summary on page 78.

E3.4. For each of the following, expand derivations to include all the steps from
theorems. The result should be a derivation in which each step is either a premise,
an axiom, or follows from previous lines by a rule. Hint: It may be helpful to
proceed in stages as for (D), (E), and then (F) above.

a. Expand your derivation for T3.7.

*b. Expand the above derivation for T3.4.

E3.5. Consider an axiomatic system A* which takes A and ~ as primitive operators,
and treats &> — @ as an abbreviation for ~(# A ~@). Forms for the axioms and
rule are,

A* Al. P > (P AP)
A2. (PNQ)—> P
A3. (O - P) = [~(PAQA) > ~(QAO)]
MP. ~(P A~Q),P . @ (sothat — @, P F,. @)

Provide derivations for each of the following, where derivations may appeal to
any prior result (no matter what you have done).

a2, A= B, B = €l ~(~C A A) b, Fpw ~(~oA A A)
e by o = A Fpp ~(AAB) = (B > ~A)

e b A=~ f. b (A= B) > (~B — ~A)
g~k > ~B . B A h. A= BF. (EAA) = (BAE)

. A>B,B>CEC>DE, A D jo Epx A — A
k.I—A*(gA/\B)—>(£/\A) I.A—>£,£—>€Ij4*ﬁ—>€
m.~£—>£BI—A*§8 n.iE—>~£|—A*~£

0. Fp (AN B) > B p. A= BE>DE, (ANE) > (BAD)

CHAPTER 3. AXIOMATIC DEDUCTION 7

4 B> Ch. (AAB) > (AAE) LA B A>Ch,A>(BAE)

-

5. Fp [(AAB)AE] = [AA(BAC)] Fp [AA(BAE)] = [(AAB)ATE]

U Ep [A > (B> C)] > [(AAB) - 0)]

<

e (AAB) > €] = [A - (B - T)]
w. A—>(B>C)kF. B> (A>T)). A>BA>(B>CO) L, A>T
Y. Ex A= [B = (AAB)] z. Ep A — (B — A)

Hints: (i): Apply (a) to the first two premises and (f) to the third; then recognize that you
have the makings for an application of A3. (j): Apply Al, two instances of (h), and an
instance of (i) to get A — ((A A A) A (A A A)); the result follows easily with A2 and
@i). (m): ~B — B is equivalent to ~(~B A~B); and ~B — (~B A ~B) is immediate
from A1; you can turn this around by (f) to get ~(~8B A ~8B) — ~~B; then it is easy.
(u): Use abv so that you are going for ~[A A ~~(B A ~€)] = ~[(A A B) A ~€];
plan on getting to this by (f). (v): Structure your proof very much as with (u). (x): Use (u)
to set up a “chain” to which you can apply transitivity.

E3.6. For each of the following concepts, explain in an essay of about two pages,
so that (high-school age) Hannah could understand. In your essay, you should
(i) identify the objects to which the concept applies, (ii) give and explain the
definition, and give and explicate examples of your own construction (iii) where
the concept applies, and (iv) where it does not. Your essay should exhibit an
understanding of methods from the text.

a. The syntactical character of derivation systems.

b. A consequence of T" in some axiomatic logic AL, and then a consequence of
I' in ADs.

3.3 Quantificational

In this section we complete the system AD by introducing a rule and axioms for
quantifies and equality. A1-A3 and MP remain from before. There will be two
axioms and one rule for manipulating quantifiers, and three axioms for features of
equality. As you work through the full system AD, you may find it helpful to refer to
the AD guide on page 84 (as well as the ADs guide on the following page).

3.3.1 Quantifiers

First, ADq extends ADs by the addition of two axioms and one rule for quantified
expressions. To state the new axioms, we need a couple of definitions. First, for

CHAPTER 3. AXIOMATIC DEDUCTION 78

any formula -+, variable x, and term %, say 47 is 4 with all the free instances of
x replaced by ¢. And say £ is free for x in 4 iff all the variables in the replacing
instances of ¢ remain free after substitution in 4%. Thus, for example, where s is
VxRxy V Px,

(H) (YxRxy Vv Px)jy is VxRxyV Py

There are three instances of x in VxRxy Vv Px, but only the last is free; so y is
substituted only for that instance. Since the substituted y is free in the resultant
expression, y is free for x in VxRxy Vv Px. Similarly,

O [Vx(x = y)vRyx]};lx is Vx(x = flx)v Rflxx
Both instances of y in Vx(x = y) vV Ryx are free; so our substitution replaces both.
But the x in the first instance of f!x is bound upon substitution; so f !x is not free

ADs Quick Reference
ADs Al. # - (@ — P)

A2. (0= (£ ->Q)—>((0—>P)—> (0 —>Q)

A3. (~@Q > ~P) > ((~Q = P) —> Q)

MP. @ follows from — @ and P
T3.1 byp A= A T3.15 byp (A = ~B) = (B — ~A)
T32 A>B,B—>CH,p, A>T T3.16 Fyp (A —> B) = [(~A —> B) —> B]
T33 A—>(B—>C)bEp B—>(A>TC) T3.17 byp A = [~B —> ~(A —> B)]
T34 Hip (B =€) = [(A = B) = (A = ©)] T3.18 Fyp A — (A V B)
T35 Hp (A= B) = [(B =€) = (A — ©)] T3.19 Eyp A — (B V A)
T3.6 B,A—>(B—>C) b, A>T T320 Eyp (AAB) —> B
T37 byp (~oh =) = A T321 iy (AAB) = A
T3.8 Fip (B = ~A) = (A — B) T3.22 A—>(B—>C) by (AAB)—>T
T3.9 byp ~A = (A — B) T323 (AAB) > CEp A= (B—>T)
T3.10 byp ~~h = T3.24 A, A< BF,, 8
T3.11 by A = ~~A T3.25 B, A < Bl A
T3.12 byp (A = B) = (~~A = ~~B) T3.26 ~A, A < By, ~B
T3.13 byp (A = B) > (~B = ~A) T3.27 ~B, A < B, ~A
T3.14 kyp (b = B) = (~B — A)

(abv) allows free movement between an expression and its abbveviated forms.

CHAPTER 3. AXIOMATIC DEDUCTION 79

for y in Vx(x = y) V Ryx. In contrast, £z goes into the same places but is free for
yinVx(x =y)V Ryx.

Some quick applications: If x is not free in +4, then replacing every free instance
of x in A with some term results in no change; so if x is not free in +4, then A7 is
. Similarly, A7 is just + itself. Further, any variable x is sure to be free for itself
in a formula A—if every free instance of variable x is “replaced” with x, then the
replacing instances are sure to be free. Similarly variable-free terms (like constants)
are sure to be free for a variable x in a formula +; if a term has no variables, no
variable in the replacing term is bound upon substitution for free instances of x. And
if 4 is quantifier-free then any # is free for variable x in #; if 4 has no quantifiers,
then no variable in ¢ can be bound upon substitution.

Now we are ready for our axioms and rule. For the quantificational version
ADgq of our axiomatic derivation system, we add axioms A4 and A5, and a rule Gen
(Generalization) for the universal quantifier.

ADq Includes the axioms and rule of ADs and,

A4, VxP — P where t is free for x in
AS. Vx(P - Q) - (P —> Vx@Q) where x is not free in P

Gen. Vx & follows from &

Al, A2, A3, and MP remain from before; then ADq adds two axioms and a rule.

A4 is a conditional whose antecedent has an x-quantifier as main operator; the
consequent drops the quantifier, and substitutes term # for each resulting free instance
of variable x—subject to the constraint that ¢ is free for x in §. Thus the first line
below lists instances of A4 but the second does not.

o VxRx - Rx VxRx - Ry VxRx — Ra VxRx — Rflz VxVyRxy — YyRzy
VxVyRxy — YyRyy VxVyRxy — VyRflyy

One the first line, the consequents drop the (main) quantifier and substitute a term

that is free for x. On the second line, we drop the quantifier and substitute as before;

but the substituted terms are not free; so the constraint on A4 is violated, and those

formulas do not qualify as instances of the axiom.

A5 also comes with a constraint. Instances of A5 have antecedent Vx (&P — @)
and consequent (— Vx@) so long as x is not free in . Thus the first cases below
are instances of A5, where the last is not.

Vx(Ry — Sx) - (Ry - VxSx) Vx(Ra — Sx) — (Ra — VYxSx)

(K)
Vx(Rx — Sx) - (Rx — VxSx)

In the first cases, the variable x is not free in &#. In the last, however, x is free in & so
that it fails to be an instance of AS.

CHAPTER 3. AXIOMATIC DEDUCTION 80

Gen is a new rule; it lets you move from a formula to its universal quantification.
So, for example, by Gen you might move from Px to VxPx or from Ay — By to
Yy(Ay — By). Continue to move freely between an expression and its abbreviated
forms with justification, abv. That is it!

Because the axioms and rule from before remain available, nothing blocks rea-
soning with sentential forms as before. Thus, for example, VxRx — VxRXx and,
more generally, Vx4 — Vx4 are of the form A4 — #4, and we might derive them
by exactly the five steps for T3.1 above. Or we might just write them down with
justification, T3.1. Similarly any theorem from ADs is a theorem of the larger ADgq.

Here is a way to get VxRx — VxRx without either Al or A2:

1. VxRx — Rx A4
(L) 2. Vx(VxRx — Rx) 1 Gen

3. Vx(VxRx — Rx) — (VxRx — VxRx) AS

4. VxRx — VxRx 3,2 MP

The x is sure to be free for x in Rx; so (1) is an instance of A4. And the only instances
of x are bound in YxRx; so (3) satisfies the constraint on A5. The reasoning is similar
in the more general case.

T3.28. k,,, VXA — Yv AL where v is not free in Vx4 but free for x in A

1. VxA — A% A4

2. Yo(Vxh — AY) 1 Gen
3. Yo(VxA — A%) = (VxA — Vv AY) A5

4. VxA —> Vo AY 3,2 MP

Given the constraints, this derivation works for exactly the same reasons as before.
If v is free for x in A, then (1) is a straightforward instance of A4. And if v is not
free in Vx4, the constraint on A5 is sure to be met. The result of derivation (L) is an
instance of this more general theorem. The difference is that T3.28 makes room for
variable exchange. A simple instance of T3.28 in &4 is I, ,, VxRx — VYvRuv. If you
are confused about restrictions on the axioms, think about the derivation as applied to
this case. While our quantified instances of T3.1 could have been derived by sentential
rules, T3.28 cannot; Vx4 — VxA has sentential form 4 — +; but when x is not
the same as v, VxA — Vv A7, has sentential form, A — B.

T3.29. A > B+, A — VxB where x is not free in A

ADq
1. A—> 3B prem
2. Vx(A — B) 1 Gen
3. Vx(A — B) - (A — VxB) A5
4. A —> Va8 3,2 MP

From the restriction on the theorem, (3) is an instance of AS.

CHAPTER 3. AXIOMATIC DEDUCTION 81

*T3.30. I—ADq A} — JIxA where 1 is free for x in A

Hint: As in sentential cases, show the unabbreviated form, A} — ~Vx~ and
get the final result by abv. You should find Vx~A — ~A7 to be a useful instance
of A4. Notice that [~-]7 is the same expression as ~[-/7], as all the replacements
must go on inside the A.

T3.31. b, VX(A — B) — (IxA — B) where x is not free in B

Hint: Go for an unabbreviated form, and then get the goal by abv. You will find it
convenient to apply Gen and then A5 to Vx (A — 8B) — (~B8B — ~A).

T3.32. A —> 8 F,,, IxA —> B where x is not free in B.

This is a simple application of T3.31.

With these few examples we complete our presentation of the fragment of AD for both
sentential operators and quantifiers. It remains to add axioms for equality.

*E3.7. Provide derivations for T3.30, T3.31, and T3.32, explaining in words for every
step that has a restriction how you know the restriction is met.

E3.8. Provide derivations to show each of the following.
*a. Vx(Hx — Rx),VYyHy &, VzRz
b. Vy(Fy — Gy) &k, I3zFz — IxGx
*c. Fipy IXYyRxy — VyIxRxy
d. VyVx(Fx — By) k5, Yy@xFx — By)

e. Fup, 3x(Fx — VyGy) — IxVy(Fx — Gy)

E3.9. Some systems have a rule like T3.29 with neither A5 nor Gen. Show that this
is possible by providing derivations to show # I Vx& and, where x is not free
inP,FVx(P - @) »> (P — Yx@) with T3.29 but without A5 or Gen. Hint:
For the first, where T is any theorem without free variables, you will be able to
obtain T — & and apply T3.29 to it. For the second consider uses of T3.22 and
T3.23.

CHAPTER 3. AXIOMATIC DEDUCTION 82

3.3.2 Equality

The full derivation system AD has the axioms and rule from ADs, the axioms and
rule from ADgq, and three axiom forms governing equality. In this case, the axioms
assert particularly simple, or basic, facts. For any variables x; ... x, and ¥, n-place
function symbol 4", and n-place relation symbol R”,

AD Includes the axioms and rules of ADs and ADg and,

A6. (y =y)
A7. (xi=y)—> W"x1... % ... xnp=A"x1...9...xp)
A8 (xi=y) > (R*"1...%...xp > R"x1...% ... %)

From A6, x = x and z = z are axioms. Of course, these are abbreviations for =xx
and =zz. This should be straightforward. The others are complicated only by abstract
presentation. For A7, A"x1...%; ... x, differs from A" x1 ...y ...x, just in that
variable x; is replaced by variable 4. x; may be any of the variables in xj ... x,.
Thus, for example,

(M) x=y— flx=fly x=y— f3wxy = f3wyy

are simple examples of A7. In the one case, we have a “string” of one variable and
replace the only member based on the equality. In the other case, the string is of
three variables, and we replace the second. Similarly, R"xq...x; ...x, differs from
R"x1...y...x, justin that variable x; is replaced by ¥. x; may be any of the
variables in x1 ... x,. Thus, for example,

(N) x=z— (A'x = Alz) z=w— (A%xz — A%xw)

are simple examples of AS.

This completes the axioms and rules of our full derivation system AD. As examples,
let us begin with some fundamental principles of equality. Suppose that », s, and ¢
are arbitrary terms.

T3.33. &, t =1 reflexivity of equality

l. y=y A6
2. Yy(y =) 1 Gen
3. Vy(y=y)—> (t=1) A4
4. 1t =1 3,2 MP

Since y = y has no quantifiers, any term £ is sure to be free for y in it. So (3) is sure
to be an instance of A4. This theorem strengthens A6 insofar as the axiom applies
only to variables, but the theorem has application to arbitrary terms. Thus z = z is an

CHAPTER 3. AXIOMATIC DEDUCTION 83

instance of the axiom; z = z remains an instance of the theorem, but f2xy = f2xy
is an instance of the theorem as well. We convert variables to terms by Gen with A4
and MP. This pattern repeats in the following.

T334. F,, t =38 — s =1t symmetry of equality

. x=y—>(kx=x—>y=Xx) A8

2. x=x A6

3. x=y—>y=x 2,1 T3.6
4, Vy(x =y >y =1x) 3 Gen
5. VaVy(x =y >y =x) 4 Gen
6. VxVy(x =y > y=x)>Vy(t=y >y =1) A4

7. Vy(t=y >y =1) 6,5 MP
8. Vyt=y—->y=t)>(t=9s—>4s=1) A4

9. t=s—>4s=1 8,7 MP

In (1), x = x is (an abbreviation of an expression) of the form =xx, and y = x is
the same but with the first instance of x replaced by y. Thus (1) is an instance of A8.
At line (3) we have symmetry expressed at the level of variables. Then the task is just
to convert from variables to terms as before. (8) is sure to be an instance of A4 insofar
as there is no quantifier in the consequent. For (6), to meet the restriction on A4, we
require that y is not a variable in t—if y does appear in ¢, just uniformly replace y in
this derivation with a different variable.

T335. F,r=6—> (s =1t—>1r=1) transitivity of equality

Hint: Start with y = x — (y = z — x = z) as an instance of A8—being
sure that you see how it is an instance of A8. Then you can use T3.34 to get
x =y — (y =z — x = z), and all you have to do is convert from variables to
terms as above.

T336. r=3,6 =t F, r=1

Hint: This is a mere recasting of T3.35 and follows directly from it.

T337. b pti=s—> A"t ti. .ty =0"11...8.. 1y

Hint: For any given instance of this theorem, you can start with x; = y —
A"Xx1...Xj...Xp = A"Xx1 ...V ... X, as an instance of A7. Then it is easy to
convert X1 ...Xp to £1...4n,and y to 4.

T338. Fpti=8—> (R"1... 4 ...dp—> R ...8 .. 1p)

Hint: As for T3.37, for any given instance of this theorem, you can start with
Xi=y—>(R"1...xi...Xp > R"x1...y...Xp) as an instance of A8. Then
it is easy to convert X ... X, to 41 ... 1, and y to 4.

CHAPTER 3. AXIOMATIC DEDUCTION 84

We will see further examples of AD derivations and especially the equality axioms in
the context of the extended application in the next section.

E3.10. Provide demonstrations for T3.35 and T3.36.

E3.11. Provide demonstrations for the following instances of T3.37 and T3.38. Then,
in each case, say in words how you would go about showing the results for an
arbitrary number of places.

a. b, flx=g%xy - BPzfIxflz = hPzg%xyf1z

b by, (8 =1) > (Ars — Arit)

AD Quick Reference

AD Al. P - (@ - P)
A2. (O=> (P —->@)—>((0—>2)—(0—>Q)
A3 (~Q > ~P) > ((~Q@ > P)—> Q)
A4, VxP — PF where ¢ is free for x in P
A5, V(P - @) »> (P —> VxQ) where x is not free in P
A6. (x = x)
AT. (xi =y)—> (A"x1xp =A"x1...Y%...%Xn)
A8 (xi =y) > (R"™x1..%i...xn > R*x1...%...xn)
MP. @ follows from # — @ and P

Gen. Vx& follows from P

(abv) allows movement between an expression and its abbreviated forms. Then there are all the
theorems listed in the ADs guide and,

T3.28 kyp Vs — VoAl where v is not free in Vx4 but is free for x in 4
T329 A—> Bk, A—>Vx8 where x is not free in 4
T3.30 ky, AF — IxA where # is free for x in A

T331 F,p Vx(A— B) - (IxA — B) where x is not free in B
T332 A—> BE,IxA—> B where x is not free in B
T333 kF,t=1

T334 kFHpt=3—>3=1

T335 kFpr=s—>@B=t—>r=1)

T336 r=s4,6=t,r=1

T337 bpti=s—> A"t i dnp=Hh"11...6.. 1p

T338 bFpti=a—> (R dj...tn > R"1...8...1n)

CHAPTER 3. AXIOMATIC DEDUCTION 85

3.4 Application: PA

We turn now to a substantive application with which we shall be much concerned
in Part IV. If you have postponed this chapter to after Chapter 6, then you have
already encountered Peano Arithmetic. However, we may develop consequences of
the Peano axioms directly in AD. For this, &y is a language like £ introduced
from section 2.3.5 but without <. There is the constant symbol @, the one-place
function symbol S, two-place function symbols +, and X, and the relation symbol
=. Variables are any of a . .. z with or without positive integer subscripts. Let s < #
abbreviate Ju(u + s = 1) and s < ¢ abbreviate Ju(Su + 4 =) where u is some
variable not in 4 or ¢. For all this, see the language of arithmetic reference (page 301).

We will say that a formula & is an AD theorem of Peano Arithmetic just in case
& follows in AD given as premises the following axioms for Peano Arithmetic:

PA 1. ~(Sx = 0)
2. (Sx=8y)—=>(x=y)
3. x+9)=x
4. (x+ Sy) =Sx+y)
5. (xx@) =0
6. (x X Sy) =[(x xy) + x]
1. [Py AVX(P — PE)] — Vx P

In the ordinary case we suppress mention of PA1-PA7 as premises, and simply write
PA I, P to indicate that & is an AD theorem of Peano arithmetic—that there is an
AD derivation of # which may include appeal to any of PA1-PA7. As described in
Chapter 6, these axioms set up basic arithmetic on the non-negative integers. However,
insofar as we are working derivations without reference to meaning and truth, we do
not need to think about that for now.

PAT7 represents the principle of mathematical induction. While PA1-PA6 are
particular formulas, like A1-A8 of AD, PA7 is an axiom schema insofar as indefinitely
many formulas might be of that form. Sometimes it is convenient to have the principle
of mathematical induction in rule form.

T3.39. In an AD derivation from the axioms of PA, Vx & follows from J’g and
V(P — Pg). A derived rule, Ind.

1. Pf prem
2. V(P — PE) prem
3. [PEAVX(P > PE)] > VaP PAT
4. Py — V(P — Pg) — VxP] 3T3.23
5. VX(P — PE) — VP 4,1 MP
6. VxP 5,2 MP

CHAPTER 3. AXIOMATIC DEDUCTION 86

So if we encounter & and Yx (P — £g,) in an AD derivation from the axioms of
PA, we can safely move to the conclusion that Vx.J by this derived rule Ind.

We will have much more to say about the principle of mathematical induction in
Part II. For now, it is enough to recognize its instances. Thus, for example, if 7 is
~(x = Sx), the corresponding instance of PA7 would be,

0) [~@ = S0) AVx(~(x = Sx) > ~(Sx = §5x))] = Vx~(x = Sx)

There is the formula with @ substituted for x, the formula itself, and the formula
with Sx substituted for x. If the entire antecedent is satisfied, then the formula
holds for every x. For the corresponding application of Ind (T3.39) you would
need ~(@ = S@) and Vx[~(x = Sx) - ~(Sx = SSx)] in order to move to the
conclusion that Vx~(x = Sx). You should track these examples through. The
principle of mathematical induction turns out to be essential for deriving many general
results.

As before, if a theorem is derived from some premises, we use the theorem in
derivations that follow. Thus we build toward increasingly complex results. As you
work through these problems you may find the AD Peano reference on page 92 helpful.
Let us start with some simple generalizations of the axioms for application to arbitrary
terms. With a slight complication, the derivations all follow the Gen / A4 / MP pattern
we have seen before. The first is trivial.

T3.40. PA b, ~(St = 0)

. ~(Sx =0) PA1

2. Vx~(Sx = 0) 1 Gen
3. Vx~(Sx = 0) —> ~(St = 0) A4

4. ~(St =0) 3,2 MP

As usual, because there is no quantifier in the consequent, (3) is sure to satisfy the
constraint on A4, no matter what ¢ may be. For the next theorem, let u be a variable
not in .

T3.41. PAF,, (St =S5s) = (1 = 3)

1. Sx=Sy—->x=y PA2
2. Vy(Sx =Sy ->x=y) 1 Gen
3. Vy(Sx =Sy »>x=y) > (Sx =Su —> x =u) A4
4, Sx=Su —>x=u 3,2 MP
5. Yu(Sx = Su—x=u) 4 Gen
6. VxVu(Sx = Su — x =u) 5 Gen
7. VxVu(Sx = Su > x =u) »> Vu(St = Su —> t = u) A4
8. Yu(St=Su—>1t=u) 7,6 MP
9. Vu(St=Su—-it=u)—> (St =8Ss > 1t =14) A4
10. St=8Ss—>1t=3 9,8 MP

CHAPTER 3. AXIOMATIC DEDUCTION 87

Since u is not a variable in #, (7) meets the constraint on A4. PA1 — PAG6 are stated in
terms of the particular variables x and y. We cannot be sure that y is not a variable
in . However, ¢ has at most finitely many variables. So we can be sure that there is
some variable not in ¢£. And the derivation goes through once we have switched y for
it.
T342. PAF,, 1 +90) =1

corollary: PA =, 1 = (¢ + 0)

*T3.43. PAE,, (1 4+ Ss) =St + 3)
corollary: PA &=, S(t 4+ s) = (¢t + S3)

T3.44. PAF,, (1t x0) =0
corollary: PA F-,, @ = (¢ x)

T3.45. PAF,, (t xSs) = [(1 x 3) + %]
corollary: PA &, [(# x) + 1] = (x S3)

In each case, the corollary is immediate from the theorem with T3.34 and MP. We
will not usually distinguish these theorems from their corollaries. And, in general, for
any theorem s = ¢, we will generally assume the corollary + = 4. Notice that ¢ and
4 in these theorems may be any terms. Thus,

P) x4+0=x Gkxy+0=xxy @+x)+0=0+x

are all straightforward instances of T3.42.

Given this much, we are ready for a series of results which are much more
interesting—for example, some general principles of commutativity and associativity.
For a first application of Ind, let &* be (@ + x) = x; then 5 is (@ + @) = @ and Pg,
is(@+ Sx) = Sx.

T3.46. PAb, (@ +1) =1

1. @+09)=90 T3.42
2. [B+x)=x]>[S@+ x) = Sx] T3.37
3. S@+x)=+ Sx) T3.43
4. [S@+x) =@+ Sx)] = [S@+x)=Sx - @+ Sx) = Sx] T3.38
5. S@+x)=Sx—> @+ Sx) = Sx 4,3 MP
6. [(B+x)=x]—[(@+ Sx)=Sx] 2,5T3.2
7. Vx(((@+x) =x] = [(+ Sx) = Sx)]) 6 Gen
8. Vx[(D+ x) =x] 1,7 Ind
9. Vx[@+x)=x]—=>[B+1) =1] A4
10. @+1)=t 9,8 MP

CHAPTER 3. AXIOMATIC DEDUCTION 88

The key to this derivation, and others like it, is bringing Ind into play. The basic
strategy for the beginning and end of these arguments is always the same. In this case,

1. @+0)=0 T3.42
6. [(B+x)=x]—[(@+ Sx)=Sx]

7. Vx((@+x) =x]—>[(+ Sx) = Sx)]) 6 Gen
8. Vx[(@+ x) =x] 1,7 Ind
9. Vx[@+x)=x]—=>[(0+1) =1] Ad
10. @+1)=t 9,8 MP

The goal is automatic by A4 and MP once you have Vx[(# + x) = x] by Ind at
(8). For this, you need & and Vx (P — £¢). We have P at (1) as an instance of
T3.42—and P is almost always easy to get. Vx (P — £) is automatic by Gen
from (6). So the real work is getting (6). Thus, once you see what is going on, the
entire derivation for T3.46 boils down to lines (2)—(6). For this, begin by noticing that
the antecedent of what we want is like the antecedent of (2), and the consequent like
what we want but for the equivalence in (3). We use T3.38 to switch the one term for
the equivalent one we want. The applications of T3.37 and then T3.38 in this theorem
are typical.

T3.47. PAF,, (St +90) =Sk +9)

1. (St+9)=Sz T3.42

2. t=(t+9) T3.42

3. it =@+0)]—[St =St +9)] T3.37

4. St =S8+ 9) 3,2 MP
5. (St+9) =St +9) 1,4 T3.36

In this derivation, both (1) and (2) are instances of T3.42—where the instance on (1)
has S for ¢, and (2) is in the “reversed” corollary form. Then the key to the derivation
is that the left side of (1) is like what we want, and the right side of (1) is like what we
want but for the equality on (2). The goal then is to use T3.37 to switch the one term
for the equivalent one. This result forms the “zero-case” for the one that follows.

T3.48. PAF,, (St +3) =S+ 3)
See the derivation in the upper box on page 90.
The idea behind this longish derivation is to bring Ind into play, where formula % is

(St + x) = S + x). For now, do not worry about how we identified this formula
as J. Given that much, the following setup is automatic:

CHAPTER 3. AXIOMATIC DEDUCTION 89

1. (St+9)=St+9) T3.47

. [(St+x) = S(t +x)] = [(St + Sx) = St + Sx)]
13. Vx([(St+x) = S(t +x)] = [(St + Sx) = S(t + Sx)]) 12Gen

14. Vx[(St+x) =St + x)] 1,13 Ind
15, Vx[(St+x)=SGE+x)] = [(St+3) =St + 4)] A4
16. (St +3) =S+ 3) 15,14 MP

We have the zero-case from T3.47 on (1); the goal is automatic once we have the
result on (12). For (12), the antecedent at (2) is what we want, and the consequent is
right but for the equivalences on (3) and (9). We use T3.38 to substitute terms into the
consequent. The equivalence on (3) is a straightforward instance of T3.43. We had to
work (just a bit) starting again with T3.43 to get the equivalence on (9).

T3.49. PA&,, t + 3 = s+t commutativity of addition

See the derivation in the lower box on the following page.

The pattern of this derivation is very much like ones we have seen before. Where & is
t + x = x + + we have the zero-case at (3), and the derivation effectively reduces to
getting (12). We get this by substituting into the consequent of (4) by means of the
equivalences on (5) and (9).

T3.50. PA,, (r+8)+ 0 =r+ (s + 0)

Hint: Begin with (7 + s) + @ = » 4 4 as an instance of T3.42. The derivation
is then a matter of using T3.42 to replace s in the right-hand side with s 4 0.

*T351. PAE, (r+3)+1t=r+ (s + 1) associativity of addition

Hint: For an application of Ind, let #* be (» + s) + x = » + (s + x). Start with
[(r+s)+x=r4+(G+x)] = [S((*+4) +x) = S*+ (4 +x)] as an
instance of T3.37, and substitute into the consequent as necessary by T3.43 to
reach[(* +4)+x =72+ (s +x)] = [(*+ 3) + Sx = » + (s + Sx)]. The
derivation is longish, but straightforward.

T352. PAb,, O xt =0

Hint: For an application of Ind, let > be @ x x = @; then the derivation reduces
to showing [0 x x = @] — [@ x Sx = @]. This is easy enough if you use T3.42
and T3.45 to show that @ x x = @ x Sx.

T3.53. PAb,, Stx0 = (1t x @)+ 0

Hint: This does not require application of Ind.

CHAPTER 3. AXIOMATIC DEDUCTION

T3.48

1. (St+9)=Sk+9)

2. [(St+x)=St+x)]—>[SSt+x)=SSE + x)]
3. S(St+x)=(St+ Sx)

4. [S(St+x)=(St+ Sx)] —

T3.47
T3.37
T3.43

([S(St+x) = SS(t +x)] = [(St + Sx) = SS(+x)]) T3.38

[(St+x)=St+x)] = [(St+ Sx) =SSk + x)]
St +x) =+ Sx)

[SG+x) =@+ Sx)] = [SS(+x) =S+ Sx)]
SS(t+x)= S+ Sx)

[SS(t+x) =S+ Sx)] —

[S(St +x) = SS(t +x)] = [(St + Sx) = SS(¢ + x)]

4,3 MP
2,5T3.2
T3.43
T3.37
8,7 MP

([(St + Sx) = SS(t + x)] = [(St + Sx) = S(¢ + Sx)]) T3.38

11. [(St+Sx)=SSE+x)] = [(St+ Sx) =S + Sx)]

12. [(St+x) =S +x)] = [(St+ Sx) = St + Sx)]

13. Yx([(St +x) = S(t +x)] = [(St + Sx) = S(t + Sx)])

14. Vx[(St+x) = S + x)]
15. Vx[(St+x) =St +x)] = [(St+3) =S+ 4)]
16. (St+3)=SE+)

T3.49

t+9 =1z

t=0+1

1+90=0+1
[t+x=x4+4]—=[SG&+x)=Skx+2)]
S(t+x)= @+ Sx)

[SG +x) = (¢ + Sx)] -
SG+x)=Sx+)] = [+ Sx)=Sx+ 1))
[St+x)=Skx+1)]—>[(t+Sx) =S+ 1)]
[t +x=x+1] - [t + Sx) = S(x + 2)]
S(x+1)=(Sx+1)
[S(x+2) =(Sx +)] -
([t+Sx=Skx+1)]—[t+ Sx =Sx+ 1))
11, t+Sx=Sx+1)]—>[t+Sx=Sx+ ¢]

12. f+x=x+1]—>[t+Sx=Sx+ 1]

13. Vx(+x=x+1]—>[t+Sx=Sx+1])

14. Vx[t +x = x + ¢]

15. Vx[t+x=x4+4t—>[t+s=3+1]

16. t+s=3s+1

N o

SR CNCORS]

10,9 MP
6,11 T3.2
12 Gen
1,13 Ind
A4

15,14 MP

T3.42
T3.46
1,2 T3.36
T3.37
T3.43

T3.38
6,5 MP
4,7T3.2
T3.48

T3.38
10,9 MP
8,11 T3.2
12 Gen
3,13 Ind
A4

15,14 MP

90

CHAPTER 3. AXIOMATIC DEDUCTION 91

T3.54. PAF,, (t xx)+ (x+S8t) = (1 xSx)+ Sx

Hint: Set x + St = #+ Sx as a prelininary goal. This does not require application
of Ind.

*T3.55. PAb, St xs =(tx3)+ 3

Hint: For an application of Ind, let /> be S¢ x x = (¢ x x) + x. The derivation
reduces to getting [St xx = (¢ xx)+x] = [SixSx = (£ xSx)+ Sx]. For this,
you can start with [Stxx = (1 xx)+x] = [(Stxx)+ St = (¢ xx)+x)+ S#]
as an instance of T3.37, and substitute into the consequent.

T3.56. PA&,, t x s =3 xt commutativity of multiplication

Hint: For an application of Ind, let # be + x x = x X ¢. You can start with
[t xx =xx1] = [(# xx)+ ¢t = (x X t) + £] as an instance of T3.37, and
substitute into the consequent.

We will stop here. With the derivation system ND of Chapter 6, we obtain all these
results and more. But that system is easier to manipulate than what we have so far in
AD. Still, we have obtained some significant results! Perhaps you have heard from
your mother’s knee that a + b = b + a. But this is a sweeping general claim of the
sort that cannot ever have all its instances checked. We have derived it from the Peano
axioms.

*E3.12. Provide derivations to show each of T3.42-T3.45, and T3.50-T3.56.

E3.13. For each of the following concepts, explain in an essay of about two pages,
so that (high-school age) Hannah could understand. In your essay, you should
(i) identify the objects to which the concept applies, (ii) give and explain the
definition, and give and explicate examples of your own construction (iii) where
the concept applies, and (iv) where it does not. Your essay should exhibit an
understanding of methods from the text.

a. Term £ being free for variable x in formula 4 along with the restrictions on
A4 and AS.

b. An AD theorem of Peano arithmetic.

CHAPTER 3. AXIOMATIC DEDUCTION

92

Peano Arithmetic (AD)

PA 1. ~(Sx =0)

(x x 8y) = [(x x y) + x]

[PE AP — PE)] — VP

2. Sx=8y)>(x=y)
3. (x+9)=x

4. (x+8Sy) =S(x +y)
50 (xx@) =40

6.

7.

T3.39 In an AD derivation from the axioms of PA, Vx&% follows from J’g and

V(P — P&). (Ind)
T3.40 PAF,, ~(St = 0)
T3.41 PAF,, (St = S3) = (¢t = 3)
T3.42 PAF,, (+ +0) =1
T3.43 PAF,, (t +S3) =S(t + 3)
T3.44 PAF,, (¢ x0) =0
T3.45 PA K, (1 xSs) = [(1 x 8) + 1]
T3.46 PAF,, B+ 1) =1
T347 PAF,, (St +0) =St +9)
T3.48 PAF,, (St +4) =S+)
T3.49 PAl,, t + 4 =341t commutativity of addition
T3.50 PAl,, (*+3)+ 0 =r+ (s +0)
T3.51 PAkF,, (*+3)+1 =r+(s+1) associativity of addition
T3.52 PAF,, Oxt =0
T3.53 PAF,, Six@=(@x0)+0
T3.54 PAF,, (¢ xx)+ (x+St) = (¢t x Sx) + Sx
T3.55 PAl,, St x s =(tx3)+ 4

T3.56 PAF,, t x s = 6 Xt commutativity of multiplication

Any theorem # = s has corollary s = #.

Chapter 4

Semantics

Having introduced the grammar for our formal languages and even (if you did not
skip the last chapter) done derivations in them, we need to say something about
semantics—about the conditions under which their expressions are true and false. In
addition to logical validity from Chapter 1 and validity in AD from Chapter 3, this
will lead to a third, semantic notion of validity. Again, the discussion divides into the
relatively simple sentential case (section 4.1), and then the full quantificational version
(section 4.2). Recall that we are introducing formal languages in their “pure” form,
apart from associations with ordinary language. Having discussed, in this chapter,
conditions under which formal expressions are true and not, in the next chapter, we
will finally turn to translation, and so to ways formal expressions are associated with
ordinary ones.

4.1 Sentential

For any sentential or quantificational language, starting with a sentence and working
up its tree, let us say that its basic sentences are the first sentences that do not have
an operator from the sentential language (~, —, V, A, <>) as main operator. For a
sentential language, basic sentences are the sentence letters, as the atomics are the
first and only sentences without a main operator from the sentential language. In the
quantificational case, basic sentences may be more complex.' In this section, we treat
basic sentences as atomic. Our initial focus is on forms with just operators ~ and
—. We begin with an account of the conditions under which sentences are true and
not true, learn to apply that account in arbitrary conditions, and turn to validity. The
section concludes with applications to our abbreviations, A, V, and <.

I'Thus the basic sentences of A A B are just the atomic subformulas A and B. However Fa A 3xGx
has atomic subformulas Fa and G x, but basic sentences Fa and 3x G x since the latter does not have an
operator from the sentential language as its main operator.

93

CHAPTER 4. SEMANTICS 94

4.1.1 Interpretations and Truth

Sentences are true and false relative to an inferpretation of basic sentences. In the
sentential case, the notion of an interpretation is particularly simple. For any formal
language £, a sentential interpretation assigns a truth value true or false, T or F, to
each of its basic sentences. Thus, for £; we might have interpretations | and J,

A4 B C D E F G H
T T T T T T T T
(A)
A4 B C D E F G H
T T F F T T F F

These assignments may be made in arbitrary ways. Any assignment of truth values to
the basic sentences counts as a sentential interpretation. When a sentence +4 is T on
an interpretation I, we write I[[4A] = T, and when it is F, we write, I[#] = F. Thus, in
the above case, J[B] =T and J[C] =F.

Truth for complex sentences depends on truth and falsity for their parts. In
particular, for any interpretation I,

ST (~) For any sentence &, I[~] = T iff I[#] = F; otherwise I[~J] = F.

(—) For any sentences and @, I[(P — Q)] =Tiff I[P]=ForI[@]=T (or
both); otherwise I[(# — @)] =F.

Thus a basic sentence is true or false depending on the interpretation. For complex
sentences, ~& is true iff & is not true; and (P — @) is true iff & is not true or @ is.
It is traditional to represent the information from ST(~) and ST(—) in the following
truth tables:

9
2
9

T(~) T(—)

m -
N

From ST(~), we have that if & is F then ~& is T; and if P is T then ~ is F. This is
just the way to read table T(~) from left to right in the bottom row, and then the top
row. Similarly, from ST(—), we have that — @ is T in conditions represented by
the first, third, and fourth rows of T(—). The only way for > — @ to be F is when
& is T and @ is F as in the second row.

ST works recursively. Whether a basic sentence is true comes directly from
the interpretation; truth for other sentences depends on truth for their immediate
subformulas—and can be read directly off the tables. As usual, we can use trees to
see how it works. As we build a formula from its parts to the whole, so now we
calculate truth from parts to the whole. Suppose I[[A] =T, I[B] =F, and I[[C] =F.
Then [[~(A > ~B) - C]=T.

CHAPTER 4. SEMANTICS 95

AM B® c® From |
~BM By T(~), row 2
(B) (4 — ~B)D By T(—), row 1
~(4 > ~B)P By T(~), row 1

~(A—> ~B)—>C® ByT(—),row4

The basic tree is the same as the one that shows ~(A — ~B) — C is a formula.
From the interpretation, A is T, B is F, and C is F. These are across the top. Since B
is F, from the bottom row of table T(~), ~B is T. Since A is T and ~B is T, reading
across the top row of the table T(—), A — ~B is T. And similarly, according to the
tree, for the rest. You should carefully follow each step.

Here is the same formula considered on another interpretation. With the interpre-
tation J on the previous page, J[~(4 — ~B) — C]=F.

AM B(M c® FromJ
~B® By T(~), row 1
© A->~B® By T(—), row 2
~(A — ~B)M By T(~), row 2

~(A > ~B) » C® By T(—),row2

This time, for both applications of ST(—), the antecedent is T and the consequent is F;
thus we are working on the second row of table T(—), and the conditionals evaluate
to F. Again, you should follow each step in the tree.

E4.1. Where the interpretation is J on the preceding page, with J[A] =T, J[B] =T
and J[C] = F, use trees to decide whether the following sentences of £ are T or
F.

CHAPTER 4. SEMANTICS 96

*a. ~A b. ~~C

c. A= C d C— A4

*e. ~(A — A) . (~A — A)

g ~(A—->~C)—>C h. (~4A—->C)—C

*. (A > ~B) > ~(B —> ~A) j.~(B—>~A) — (A— ~B)

4.1.2 Arbitrary Interpretations

Sentences are true and false relative to an interpretation. But whether an argument
is semantically valid depends on truth and falsity relative to every interpretation. As
a first step toward determining semantic validity, in this section, we generalize the
method of the last section to calculate truth values relative to arbitrary interpretations.

First, any sentence has a finite number of basic sentences as components. It is thus
possible simply to list all the possible interpretations of those basic sentences. If an
expression has just one basic sentence -, then on any interpretation whatsoever, that
basic sentence must be T or F.

A
(D) T
F

If an expression has basic sentences -+ and B, then the possible interpretations of its
basic sentences are,

A B

(E)

n- A
— -

F F

B can take its possible values, T and F when «# is true, and 8 can take its possible
values, T and F when 4 is false. And similarly, every time we add a basic sentence,
we double the number of possible interpretations, so that n basic sentences always
have 2" possible interpretations. Thus the possible interpretations for three and four
basic sentences are,

CHAPTER 4. SEMANTICS 97

(F) (&)

e B B N B BE B NN

T AT A

e B B B e B B B B
i Wt o I s e B s e M B R B N R R B R N
i B B B B B B e B e B R B IR R)
M AAMm A4 A AT T AA|C
MmMmAMNnAMATn AT AT AlMmA4TH|®

Extra horizontal lines are added purely for visual convenience. There are 8 = 23
combinations with three basic sentences and 16 = 2* combinations with four. In
general, to write down all the possible combinations for n basic sentences, begin by
finding the total number r = 2" of combinations or rows. Then write down a column
with half that many (r/2) Ts and half that many (r/2) Fs; then a column alternating
half again as many (r/4) Ts and Fs; and a column alternating half again as many (r/8)
Ts and Fs—continuing to the n™ column alternating groups of just one T and one F.
Thus, for example, with four basic sentences, r = 24 = 16; so we begin with a column
consisting of r/2 = 8 Ts and r/2 = 8 Fs; this is followed by a column alternating
groups of 4 Ts and 4 Fs, a column alternating groups of 2 Ts and 2 Fs, and a column
alternating groups of 1 T and 1 F. The result lists all the possible interpretations of the
basic sentences. And similarly in other cases.

Given an expression involving, say, four basic sentences, we could imagine doing
trees for each of the 16 possible interpretations. But, to exhibit truth values for each
of the possible interpretations, we can reduce the amount of work a bit—or at least
represent it in a relatively compact form. Suppose [[A] =T, I[[B] =F, and I[C] = F,
and consider the tree from (B) above, along with a “compressed” version of the same
information.

CHAPTER 4. SEMANTICS 98

AM B c®

~g(M

ABC|~(A—>~B)—>C
TFFIFTTTF TF

H) A—-~pD

~(4 > ~B)P

~(A— ~B)—>Cc®

In the table on the right, we begin by simply listing the interpretation we will consider
in its left-hand part: A is T, B is F, and C is F. Then, under each basic sentence we
put its truth value, and for a non-basic sentence place its truth value under its main
operator. Notice that the calculation must proceed precisely as it does in the tree. It is
because B is F, that we put T under the second ~. It is because Ais T and ~B is T
that we put a T under the first —. It is because (4 — ~B) is T that we put F under
the first ~. And it is because ~(A4 — ~B) is F and C is F that we put a T under the
second —. In effect, then, we work “down” through the tree, only in this compressed
form. Or we might think of truth values from the tree as “squished” up into the one
row. Because there is a T under its main operator, we conclude that the whole formula,
~(A —> ~B) - CisTwhen I[A] =T, I[B] =F, and I[C] = F. In this way, we might
conveniently calculate and represent the truth value of ~(A — ~B) — C for all
eight of the possible interpretations of its basic sentences.

A B ~(A—>~B)—>C
TFFT T
FT

TF
TF

FT
FT
TF
FTTF

@

MM A A A
M A[mm A A
e B e B e B B B R
W s B B s B I R
mmm|H A
4 44|44
e B s B B

FF

e e e e B B B

n

The emphasized column under the second — indicates the truth value of ~(4 —
~B) — C for each of the interpretations on the left—which is to say, for every
possible interpretation of the three basic sentences. So the only way for ~(4A —
~B) — C tobe Fisfor C tobe F, and A and B to be T. Our above tree (H) represents
just the fourth row of this table.

In practice, it is easiest to work these truth tables “vertically.” For this, begin
with the basic sentences in some standard order along with all their possible inter-
pretations in the left-hand column. For &£; let the standard order be alphanumeric
(A, A1,A,...,B,B1,Bs,...,C,...). And repeat truth values for basic sentences

CHAPTER 4. SEMANTICS 99

under their occurrences in the formula (this is not crucial, since truth values for basic
sentences are already listed on the left; it will be up to you whether to repeat values
for basic sentences). This is done in table (J) below.

ABC|~(A— ~B)—>C ABC|~(A— ~B)—>C
TTT T T T TTT T FT T
TTF T T F TTF T FT F
TFT T F T TFT T TF T
@))] TFF T F F (K) TFF T TF F
FTT F T T FTT F FT T
FTF| F T F FTF| F FT F
FFT| F F T FFT| F TF T
FFF| F F F FFF| F TF F

Now, given the values for B as in (J), we are in a position to calculate the values for
~B; so get the T(~) table in you mind, put your eye on the column under B in the
formula (or on the left if you have decided not to repeat the values for B under its
occurrence in the formula). Then fill in the column under the second ~, reversing the
values from under B. This is accomplished in (K). Given the values for A and ~B,
we are now in a position to calculate values for A — ~ B; so get the T(—) table in
your head, and put your eye on the columns under A and ~B. Then fill in the column
under the first —, going with F only when A is T and ~ B is F. This is accomplished
in (L).

On alphanumeric order: 1t is worth asking what happens if basic sentences are
listed in some order other than alphanumeric.

A B B A

; IT: i 'T: All the combinations are still listed, but their locations in a
ET P FT table change.

FF FF

Each of the above tables lists all of the combinations for the basic sentences. But
the first table has the interpretation | with I[A] = T and I[B] = F in the second
row, where the second table has this combination in the third. Similarly, the tables
exchange rows for the interpretation J with J[A] = F and J[B] = T. As it turns out,
the only real consequence of switching rows is that it becomes difficult to compare
tables as, for example, with the Answers to Selected Exercises. And it may matter
as part of the standard of correctness for exercises!

https://tonyroyphilosophy.net/symbolic-logic/

CHAPTER 4. SEMANTICS 100

ABC|~(A—>~B)—C ABC|~(A—>~B)—C
TTT| TFFT T TTTITTFFT T
TTF| TFFT F TTFITTFFT F
TFT| TTTF T TFT|FTTTF T
(Ly TFF| TTTF F M) TFF|[FTTTF F
FTT| FTFT T FTTIFFTFT T
FTF| FTFT F FTFIFFTFT F
FFT| FTTF T FFTIFFTTF T
FFF| FTTF F FFFIFFTTF F

Now we are ready to fill in the column under the first ~. So get the T(~) table in your
head, and put your eye on the column under the first —. The column is completed
in table (M). And the table is finished as in (I) by completing the column under the
last —, based on the columns under the first ~ and under the C. Notice again that the
order in which you work the columns exactly parallels the order from the tree.

As another example, consider these tables for ~(B — A), the first with truth
values repeated under basic sentences, the second without.

A B|~(B > A) A B|~(B > A)
TT TT T
N) T1F O) TF T
FT FT F
FF FF T

We complete the table as before. First, with our eye on the columns under B and
A, we fill in the column under —. Then, with our eye on that column, we complete
the one under ~. For this, first, notice that ~ is the main operator. You would not
calculate ~ B and then the arrow! Rather, your calculations move from the smaller
parts to the larger; so the arrow comes first and then the tilde. Again, the order is
the same as on a tree. Second, if you do not repeat values for basic formulas, be
careful about B — A; the leftmost column of table (O), under A, is the column for the
consequent and the column immediately to its right, under B, is for the antecedent; in
this case, then, the second row under arrow is T and the third is F. Though it is fine to
omit columns under basic sentences, as they are already filled in on the left side, you
should not skip other columns, as they are essential building blocks for the final result.

E4.2. For each of the following sentences of &£, construct a truth table to determine
its truth value for each of the possible interpretations of its basic sentences.

*a, ~~A
b. ~(A — A)
c. (~4A— A

*d, (~B — A) > B

CHAPTER 4. SEMANTICS 101

e. ~(B—>~A) > B
f. (A= ~B) = ~(B — ~A)

9. C = (A — B)

h. [A—(C - B)] > [(4—C)— (4— B)]
#i. (~4 = B) > (~C — D)

j. ~(A—> ~B) > ~(C - ~D)

4.1.3 Validity

As we have seen, sentences are true and false relative to an interpretation. For any
interpretation, a sentence has some definite value. Now consider an argument whose
premises and conclusion are some formal sentences. So, for example, perhaps the
premises are A — B and A and the conclusion is B. A formal argument is sententially
valid depending on all the interpretations of the sentences that are its premises and
conclusion. Suppose a formal argument has premises & . .. $, and conclusion @.
Then,

P ... Py sententially entail @ (P71 ... P, 5 Q) iff there is no sentential inter-
pretation | such that I[[?1] = Tand ... and I[#,] = T but I[@] = F.

Premises entail a conclusion when no interpretation makes all the premises true and
the conclusion false (or, equivalently, when every interpretation is such that it does
not make the premises true and conclusion false). We can put the definition more
generally as follows: Suppose I" (Gamma) is a set of formulas—these are the premises.
Say I[I'] = Tiff I[P] =T for each & in I". Then,

sv T sententially entails @ (I' & @) iff there is no sentential interpretation | such
that I[T'] =T but I[@] =F.

Where the members of I" are £ ... P, this says the same as before. I" sententially
entails @ when there is no sentential interpretation that makes each member of I true
and @ false. ' does not sententially entail @ (I" % @) when there is some sentential
interpretation on which all the members of I are true, but @ is false.”

ZDefinition SV allows any collection of premises, and so relaxes the supposition that an argument
has finitely many premises. However, having made this observation, for the time being we set it to the
side: Any ordinary argument has finitely many premises—and methods from this chapter are restricted
to the finite case.

CHAPTER 4. SEMANTICS 102

Greek Characters

Greek characters frequently appear in logical contexts. In order to read them (as something
besides “funny squiggle”) unique characters and their names are listed here.

o alpha t iota 0,% sigma, Sigma

B beta K kappa T tau

y,I' gamma, Gamma A, A lambda, Lambda v, T upsilon, Upsilon
S, A delta, Delta U mu ¢, ® phi, Phi

€ epsilon v nu X chi

e zeta £ 8 xi, Xi ¥, W psi, Psi

n eta 7,11 pi, Pi w, 2 omega, Omega
0, ® theta, Theta Jo rho

If I sententially entails @ we say the argument whose premises are the members
of I and conclusion is @ is sententially valid. To say that an argument is sententially
valid and that its premises sententially entail its conclusion is to say the same thing
only with a different grammatical subject: an argument is sententially valid just in
case its premises sententially entail the conclusion. We can think of the premises as
constraining the interpretations that matter: For validity it is just the interpretations
where the members of " are all true on which the conclusion @ cannot be false. If
I" has no members then there are no constraints on relevant interpretations, and the
conclusion is valid iff it is true on every interpretation. In the case where there are no
premises, we simply write 5 @, and if @ is valid it is a fautology. Notice the new
double turnstile = for this semantic notion, in contrast to the single turnstile - for
derivations.

Given that we are already in a position to exhibit truth values for arbitrary inter-
pretations, it is a simple matter to determine whether an argument is sententially valid.
Where the premises and conclusion of an argument include basic sentences 8 ... By,
begin by calculating the truth values of the premises and conclusion for each of the
possible interpretations for B ... 8,. Then look to see if any interpretation makes
all the premises true but the conclusion false. If no interpretation makes the premises
true and the conclusion not, then by SV the argument is sententially valid. If some
interpretation does make the premises true and the conclusion false, then it is not
valid.

Thus, for example, suppose we want to know whether the following argument is
sententially valid.

(~A— B)—>C
P B

C
By sv, the question is whether there is an interpretation that makes the premises
true and the conclusion not. So we begin by calculating the values of the premises

CHAPTER 4. SEMANTICS 103

and conclusion for each of the possible interpretations of the basic sentences in the
premises and conclusion.

ABC|(~A—B)—->C B/C
TTT|FTTT TT T T
TTF|FTTT FF T F
TFT|FTTF TT F T
TFF|FTTF FF F F
FTT|TFTT TT T T
FTF|TFTT FF T F
FFT|TFFF TT F T
FFF|TFFF TF F F

Now we simply look to see whether any interpretation makes all the premises true
but the conclusion not. Interpretations represented by the top row, ones that make A,
B, and C all T, do not make the premises true and the conclusion not, because both
the premises and the conclusion come out true. In the second row, the conclusion is
false, but the first premise is false as well; so not all the premises are true and the
conclusion is false. In the third row, we do not have either all the premises true or the
conclusion false. In the fourth row, though the conclusion is false, the premises are
not true. In the fifth row, the premises are true, but the conclusion is not false. In the
sixth row, the first premise is not true, and in the seventh and eighth rows, the second
premise is not true. So no interpretation makes the premises true and the conclusion
false. So by sv, (~4 — B) — C, B K C. Notice that the only column that matters
for a complex formula is the one under its main operator—the one that gives the value
of the sentence for each of the interpretations; the other columns exist only to support
the calculation of the value of the whole.
In contrast, ~[(B — A) — B] K ~(A — B). That is, an argument with

premise, ~[(B — A) — B] and conclusion ~(A4 — B) is not sententially valid.

AB|~[(B—> A) — B] | ~(A— B)

TTIF TTT TT FTTT

Q TF|IT FTT FF TTFF
FT|F TFF TT FFTT
FFIT FTF FF FFTF <«

In the first row, the premise is F. In the second, the conclusion is T. In the third,
the premise is F. However, in the last, the premise is T and the conclusion is F. So
there are interpretations (any interpretation that makes A and B both F) that make the
premise T and the conclusion F. So by sv, ~[(B —- A) - B] K ~(A — B), and
the argument is not sententially valid. All it takes is one interpretation that makes all
the premises T and the conclusion F to render an argument not sententially valid. Of
course, there might be more than one, but one is enough!

As a final example, consider table (I) for ~(A — ~B) — C on page 98 above.
From the table, there is an interpretation where the sentence is not true. Thus, by SV,
K ~(A — ~B) — C. A sentence is valid only when it is true on every interpretation.

CHAPTER 4. SEMANTICS 104

Since there is an interpretation on which it is not true, the sentence is not valid (not a
tautology).

Since all it takes to demonstrate invalidity is one interpretation on which all the
premises are true and the conclusion is false, we do not actually need an entire table to
demonstrate invalidity. You may decide to produce a whole truth table in order to find
an interpretation to demonstrate invalidity. But we can sometimes work “backward”
from what we are trying to show to an interpretation that does the job. Thus, for
example, to find the result from table (Q), we need an interpretation on which the
premise is T and the conclusion is F. That is, we need a row like this:
AB|~[(B—>A) > B] /| ~(A— B)

K F

(R)

In order for the premise to be T, the conditional in the brackets must be F. And in
order for the conclusion to be F, the conditional must be T. So we can fill in this much:
) AB|~[(B—>A) — B] /| ~(A— B)

K F F T

Since there are three ways for an arrow to be T, there is not much to be done with the
conclusion. But since the conditional in the premise is F, we know that its antecedent
is T and consequent is F. So we have:
AB|~[B—> A) - B] | ~(A— B)

T T FF F T

(T)

That is, (B — A) is T and B is F. But now we can fill in the information about B
wherever it occurs. The result is as follows:
AB|~[(B—> A) — B] /| ~(A— B)

L)
FIT FT FF F TF

Since the first B in the premise is F, the first conditional in the premise is T irrespective
of the assignment to A. But, with B false, the only way for the conditional in the
argument’s conclusion to be T is for A to be false as well. The result is our completed
TOW:

AB|~[B—> A) - B] /| ~(A— B)

FFIT FTF FF FFTF

V)

And we have recovered the row that demonstrates invalidity—without doing the entire
table. In this case, the full table had only four rows, and we might just as well have
done the whole thing. However, when there are many rows, this “shortcut” approach
can be attractive. A disadvantage is that sometimes it is not obvious just how to
proceed. In this example, each stage led to the next. At stage (S), there were three
ways to make the conditional subformula in the conclusion true. We were able to
proceed insofar as the premise forced the next step. But it might have been that neither
the premise nor the conclusion forced a definite next stage. In this sort of case, you
might decide to do the whole table, just so that you can can grapple with all the
different combinations in an orderly way.

CHAPTER 4. SEMANTICS 105

Notice what happens when we try this approach with an argument that is not
invalid. Returning to argument (P) above, suppose we try to find a row where the
premises are T and the conclusion is F. That is, we set out to find a row like this:
ABC|(~A—B)—C B/C
T T F

(W)

Immediately, we are in a position to fill in values for B and C:

ABC|(~A—>B)—>C B/C
TF T TF T F

X)

Since the first premise is a true arrow with a false consequent, its antecedent (~A4 —
B) must be F. But this requires that ~A4 be T and that B be F:

ABC|(~A—>B) —>C BI/C

(Y)
TF|T FFTTF T F

And there is no way to set B to F, as we have already seen that it has to be T in order
to keep the second premise true—and no interpretation makes B both T and F. At this
stage, we know, in our hearts, that there is no way to make both of the premises true
and the conclusion false. In Part I we will turn this knowledge into an official mode
of reasoning for validity. However, for now, let us consider a single row of a truth
table (or a marked row of a full table) sufficient to demonstrate invalidity, but require
a full table, exhibiting all the options, to show that an argument is sententially valid.

You may encounter odd situations where premises are never T, where conclusions
are never F, or whatever. But if you stick to the definition, always asking whether
there is any interpretation of the basic sentences that makes all the premises T and the
conclusion F, all will be well.

E4.3. For each of the following, use truth tables to decide whether the entailment
claims hold. Notice that a couple of the tables are already done from E4.2.

*a. A > ~A K ~A

b.~A—>AK ~A

*c. A—> B,~AK ~B

d A—- B,~BEK ~A4

e.~(A—>~B)K B

f 5C—>(A4—B)

‘2 K[A—>(C—>B)]—~>[A4—->C)— (4 B)]

h. (A—- B) > ~(B— A),~A,~BE ~(C - C)
iA—-~B—->~C),B—->(~C—>D)KA—->~(B—~D)
j. ~l(A = ~(B—>~C)) > Dl.~D - AK C

CHAPTER 4. SEMANTICS 106

4.1.4 Abbreviations

We turn finally to applications for our abbreviations. Consider, first, a truth table for
P v @, thatis for ~P — @:

T (V) so that

FF

When P isTand @isT, P V@ isT;when P isTand QisF, £ v @ is T; and so
forth. Thus, when & is T and @ is T, we know that & v @ is T, without going through
all the steps to get there in the unabbreviated form. Just as when J? is a formula and
@ is a formula, we move directly to the conclusion that & Vv @ is a formula without
explicitly working all the intervening steps, so if we know the truth value of J and the
truth value of @, we can move in a tree by the above table to the truth value of v @
without all the intervening steps. And similarly for the other abbreviating sentential
operators. For A:

P A~ (P > ~Q)

TT|T TFFT

T(N) TFIF TTTF so that
FT|F FTFT
FFIF FTTF
And for («>):
PA~(P > Q) > ~(@Q - P)
TT|T TTT FFTTT
T' (<) TFIF TFF TFFTT so that
FTIF FTT TTTFF
FFIT FTF FF FTF

As a help toward remembering these tables, notice that # Vv @ is F only when & is F
and @ isF; # A Qis Tonly when & is T and @ is T; and & <> @ is T only when
and @ are the same, and F when & and @ are different. The tables T'(\), T'(A), and
T’(<>) represent derived additions to the definition for truth.

And nothing prevents direct application of the derived tables in trees. Suppose,
for example, I[A] =T, I[B]=F,and I[C]=T. Then I[(B — A) <> (A A B) v ~C)]
=F.

CHAPTER 4. SEMANTICS 107

B® AM AM B® cM From |
(B —> 4)™M (AnB)® ~Cc® T(—); T/(A), row 2; T(~)
(2)
((AAB)v~C)® T/(V), row 4
(B— A) < (AAB)v ~C)P T/ (<), row 2

We might get the same result by working through the full tree for the unabbreviated
form. But there is no need. When A is T and B is F, we know that (A A B) is F; when
(A A B)isFand ~C is F, we know that ((A A B) v ~C) is F; and so forth. Thus we
move through the tree directly by the derived tables.

Similarly, we can work directly with abbreviated forms in truth tables.

ABC|(B— A) < (AAB)V~C)
TTT|TTT T TTT TFT
TTF| TTT T TTT TTF
TFT|FTT F TFF FFT
(AA) TFF|FTT T TFF TTF
FTT| TFF T FFT FFT
FTF|TFF F FFT TTF
FFT|FTF F FFF FFT
FFF|FTF T FFF TTF

Tree (Z) represents just the third row of this table. As before, we construct the table
“vertically,” with tables for abbreviating operators in mind as appropriate.

Finally, given that we have tables for abbreviated forms, we can use them for evalu-
ation of arguments with abbreviated forms. Thus, for example, A <> B,AK A A B.

Some perspective: There are different ways to understand tables for these new
operators: We have understood them as derived from basic tables T(~) and T(—).
However, as we shall see in Chapter 11, it is possible to take tables for operators
other than ~ and — as basic—say just T(~) and T’(V/), or just T(~) and T'(A)—
and then to abbreviate — in terms of them. Challenge: Find an expression involving
just ~ and V that has the same table as —; find one involving just ~ and A. Another
option introduces all five as basic. Then the task is not showing that the table for v
is TTTF—that is given; rather we simply notice that P Vv @, say, is redundant with
~%P — @. The latter approach avoids abbreviation. The former options abbreviate
non-basic operators but preserve relative simplicity in the basic language.

CHAPTER 4. SEMANTICS 108

AB|(A< B) A/ (AAB)
TTITTT T TTT
(AB) TFI|TFF T TFF
FT|FFT F FFT
FF|FTF F FFF

There is no row where each of the premises is true and the conclusion is false. So the

argument is sententially valid. And, from either of the following rows,
ABCD|B—>AA(KCVD) (A< ~D)A(~D—>B) /B

(AC) FFTT|FTF T FTTT FTFT T FTTF F
FFFT| FTF T TFTT FTFT T FT TF F

we may conclude that (B — A) A (~C Vv D), (A < ~D)A(~D — B) K B. In

this case, the shortcut table is attractive relative to the full version with sixteen rows!

E4.4. For each of the following, use truth tables to decide whether the entailment
claims hold.

a EAv~A4

b A [~A< (AA~A)],A—>~(A< A ~4A—> A
*¢. BV~C K B —C

d ~(AA~B)E ~AV B

e. 5 ~(A< B)< (AA~B)

. AV B,~C - ~A,~(BA~C)K C

g A—>(BvC(C),C < B,~CE~A

h. AN(B—->C)E(AAB)V(AAC)

i. AV(BA~C),~(~BVC)—>~AK ~A <+ ~(CV ~B)

i-AVB,~D > (CVA)E B < ~C

E4.5. Complete the chart below to exhibit and explain step by step how to construct
one or both rows from table (AC).

ABCD|(B>AA(~CVD) (A< ~D)A(~D—>B) /B

1. T T F - premises T, conclusion F
2. F F T T F F - fill in values for B

CHAPTER 4. SEMANTICS 109

Semantics Quick Reference (sentential)

For any formal language &£, starting with a sentence and working up its tree,
the basic sentences are the first sentences that do not have an operator from the
sentential language as main operator. A sentential interpretation assigns a truth
value true or false, T or F, to each basic sentence. Then for any interpretation I,

ST (~) For any sentence P, I[~5] =T iff I[#] = F; otherwise I[~F] =F.
(—) For any sentences & and @, I[(— Q)] =TiffI[P]=Forl[@]=T
(or both); otherwise I[(# — @)] =F.
And for abbreviated expressions,
ST" (A) For any sentences & and @, I[(P A Q)] =Tiff [P]=Tand I[Q] =T;
otherwise I[(A @)] =F.

(V) For any sentences & and @, I[(P v @)]=Tiff IP]=Tor I[[@]=T (or
both); otherwise I[(# v @)] =F.

(«>) For any sentences & and @, I[(P < @)] =T iff I[[P] = I[@]; otherwise
I[(P < @)]=F.

These conditions result in tables as follows:

9

M= 71

P P-4 P

i e |

~~TmT|2
N~~Tn|
LTI IR RS
MMM~ |>
~Tnmn~|?

If T is a set of formulas, I[I'] = T iff I[?] = T for each & in I". Then, where
the members of I" are the formal premises of an argument, and sentence @ is its
conclusion,

sv T sententially entails @ (I' K @) iff there is no sentential interpretation |
such that I[I'] =T but I[@] = F.

When T sententially entails @, the argument with premises I" and conclusion @ is
sententially valid. If T has no members and K @, then @ is a rautology.

We treat a single row of a truth table (or a marked row of a full table) as sufficient
to demonstrate invalidity, but require a full table, exhibiting all the options, to show
that an argument is sententially valid.

CHAPTER 4. SEMANTICS 110

E4.6. For each of the following, use truth tables to decide whether the entailment
claims hold. Hint: The trick here is to identify the basic sentences; after that,
everything proceeds in the usual way.

*a., dxAx — IxBx, ~AxAx E IxBx

b. VxAx — ~3x(Ax AVyBy),Ix(Ax AVyBy) § ~VxAx

E4.7. For each of the following concepts, explain in an essay of about two pages,
so that (high-school age) Hannah could understand. In your essay, you should
(1) identify the objects to which the concept applies, (ii) give and explain the
definition, and give and explicate examples of your own construction (iii) where
the concept applies, and (iv) where it does not. Your essay should exhibit an
understanding of methods from the text.

a. Sentential interpretations and truth for complex sentences.

b. Sentential validity.

4.2 Quantificational

Semantics for the quantificational case work along the same lines as the sentential one.
Sentences are true or false relative to an interpretation; arguments are semantically
valid when there is no interpretation on which the premises are true and the conclusion
is not. But, corresponding to differences between sentential and quantificational
languages, the notion of an interpretation differs. And we introduce a preliminary
notion of a ferm assignment, along with a preliminary notion of satisfaction distinct
from truth, before we get to truth and validity. Certain issues are put off for Chapter 7
at the start of Part II. However, we should be able to do enough to see how the
definitions work. This time, we will say a bit more about connections to English,
though it remains important to see the definitions for what they are, and we leave
official discussion of translation to the next chapter.

4.2.1 Interpretations

Given a quantificational language £, formulas are true relative to a quantificational
interpretation. As in the sentential case, languages do not come associated with any
interpretation. Rather, a language consists of symbols which may be interpreted
in different ways. In the sentential case, interpretations assigned T or F to basic
sentences—and the assignments were made in arbitrary ways. Now assignments are
more complex, but remain arbitrary. In general,

CHAPTER 4. SEMANTICS 111

QI A quantificational interpretation | of language &£ consists of a nonempty set U,
the universe (or domain) of the interpretation, along with,

(s) An assignment of a truth value I[§] to each sentence letter § of £.
(c) An assignment of a member I[c] of U to each constant symbol ¢ of £.

(r) An assignment of an n-place relation I[R"] on U to each n-place relation
symbol R" of £, where |[=] is always assigned {{(0,0) | 0 € U}.

(f) An assignment of a total n-place function I[4"] from U" to U to each
n-place function symbol 4" of £.

The notions of a relation and a function for clauses (r) and (f) come from set theory—if
these are in any way unfamiliar, you should refer now to the set theory reference
on the following page. Conceived literally and mathematically, these assignments
are themselves functions from symbols in the language £ to objects. Each sen-
tence letter is associated with a truth value, T or F—this is no different than before.
Each constant symbol is associated with some element of U. Each n-place relation
symbol is associated with a subset of U"—with a set whose members are of the
sort (ay...an) where ay...a, are elements of U. Each n-place function symbol
is associated with a set whose members are of the sort ((as...an),b), where ev-
ery (a;...a,) € U" is matched to a single b € U. And where U = {a,b,c,...},
I[=] = {(a,a), (b,b), {c,c),...}. Note the (slight) typographical difference between
‘=" 1in the object language and ‘=" we use to express the relation. U may be any
non-empty set, and so need not be countable. Any such assignments count as a
quantificational interpretation.

Intuitively, the universe contains whatever objects are under consideration in a
given context. Thus one may ask whether “everyone” wants anchovies on their pizza,
and have in mind some limited collection of individuals—not literally everyone in
the world. Constant symbols work like proper names: Constant symbol @ names
the object I[.a] with which it is associated. So, for example, in &£, we might set I[b]
to Barack, and I[c] to Michelle. Relation symbols are interpreted like predicates:
Relation symbol R" applies to the n-tuples with which it is associated. Thus in &g,
where U is the set of all people, we might set I[H '] to {o | o is happy},” and I[L?]
to {(m, n) | m loves n}. Then if Barack is happy, H applies to Barack, and if Barack
loves Michelle, L applies to (Barack, Michelle)—though if she happens to be upset
with him, L might not apply to (Michelle, Barack). Function symbols are used to pick
out one object by means of other(s). Thus, when we say that Bill’s father is happy, we
pick out an object (the father) by means of another (Bill). Similarly, function symbols
are like “oblique” names which pick out objects in response to inputs. Such behavior
is commonplace in mathematics when we say, for example that 3 + 3 is even—and we

30r {{o0) |0 is happy }. As from the set theory reference, one-tuples are collapsed into their members.

CHAPTER 4. SEMANTICS 112

Basic Notions of Set Theory

L

II.

III.

Iv.

A set is a thing that may have other things as elements or members. If m is
a member of set s we write m € s. One set is identical to another iff their
members are the same—so order is irrelevant. The members of a set may be
specified by list: {Sally, Bob, Jim}, or by membership condition: {0 |0 is a
student at CSUSB}; read, ‘the set of all objects o such that o is a student at
CSUSB’. Since sets are things, one set may have other sets as members.

Like a set, an n-tuple is a thing with other things as elements or members.
For any positive integer n, an n-tuple has n elements, where order matters.
2-tuples are frequently referred to as “pairs.” An n-tuple may be specified by
list: (Sally, Bob, Jim), or by membership condition, ‘the first 5 people (taken
in order) in line at the Bursar’s window’. Nothing prevents sets of n-tuples, as
{{m, n) | m loves n}; read, ‘the set of all m/n pairs such that the first member
loves the second’. 1-tuples are frequently equated with their members. So,
depending on context, {Sally, Bob, Jim} may be {(Sally), (Bob), (Jim)}.

Set r is a subset of set s iff every member of r is also a member of s. If r is
a subset of s we write r C s. r is a proper subset of s (r C s) iff r C s but
r# s. Thus, for example, the subsets of {m, n, o} are { }, {m}, {n}, {0}, {m, n},
{m, o}, {n, 0}, and {m, n, o}. All but {m, n, o} are proper subsets of {m, n, o}.
Notice that the empty set { } (or @) is a subset of any set s, for it is sure to be
the case that any member of it is also a member of s.

The union of sets r and s is the set of all objects that are members of r or s.
Thus, if r = {m, n} and s = {n, 0}, then the union of r and s, (rUs) = {m, n, o}.
Given a larger collection of sets, S1, S, . . . the union of them all, | J s1, sp, . ..
is the set of all objects that are members of sq, or sp, or.... Similarly, the
intersection of sets r and s is the set of all objects that are members of r and s.
Thus the intersection of rand s, (r N's) = {n}, and (] s1, S, . . . is the set of
all objects that are members of s, and so, and. ...

Let s" be the set of all n-tuples formed from members of s. Then an n-place
relation on set s is any subset of s". Thus, for example, {{m, n) | m is married
to n} is a subset of the pairs of people, and so is a 2-place relation on the set of
people. An n-place function from r" to s is a set of pairs whose first member
is an element of r" and whose second member is an element of s—restricted
so that if ((my...mp),a) € fand ((my...m,),b) € fthen a = b; so no
member of " is paired with more than one member of s. Thus ((1,1),2)
and ((1,2), 3) might be members of an addition function. ((1,1),2) and
({1, 1), 3) could not be members of the same function. A total function from
r" to s is one that pairs each member of r" with some member of s. We think
of the first element of these pairs as an input, and the second as the function’s
output for that input. Thus if {({m, n}, 0) € f we say f(m, n) = o.

CHAPTER 4. SEMANTICS 113

are talking about 6. Thus we might assign {{m, n) | n is the father of m} to one-place
function symbol f and {({m, n}), 0} | m plus n = 0} to two-place function symbol p.

For some examples of interpretations, let us return to the language £g; from
section 2.3.5. Recall that £ includes just constant symbol @; two-place relation
symbols <, =; one-place function symbol S; and two-place function symbols x and
+. Given these symbols, terms and formulas are generated in the usual way. Where
N is the set {0, 1,2, ...} of natural numbers and the successor of any natural number
is the number after it, the standard interpretation N for £ has universe N with,

N N
,n) | m,n € N, and m is less than n}

[
[<]={(m
N[S] = {{m,n) | m,n € N, and n is the successor of m}
[{({m,n),0) | m,n,0 € N, and m plus n equals o}
[(

{m,n),0) |m,n,0 € N, and m times n equals o}

where it is automatic from QI that N[=] is {(0,0), (1, 1), (2,2),...}. These definitions
work just as we expect. Thus,

N[<] = {(0,1),(0,2),(0,3),..., (1,2),(1,8),...}

(0. .2).(2,8),...}
N[+] = {((0,) 0).((0.1).1).((0.2).2)...., ((1,0).1). ((1.1).2)....}
N[x] = {{{0,0),0), {{0,1),0), {{0,2),0)...., ((1,0),0),{(1.1).1)....}
So < is assigned a set of pairs; S a one-place total function, that is {{(0), 1), ({1}, 2),
((2), 3}, ...} but with 1-tuples reduced to their members; and + and x are assigned
two-place total functions. The standard interpretation represents the way you have
understood these symbols since grade school.

But there is nothing sacred about this interpretation. Abbreviating, let Bar(ack)
and Mic(helle) be Barack and Michelle. Then, for example, we might introduce a J
with U = {Bar, Mic} and,

J J[@] = Bar
J[<] = {{Mic, Mic), (Mic, Bar)}
J[S] = {(Bar, Bar), (Mic, Mic)}
J[+] = {{(Bar, Bar), Mic), ((Bar, Mic), Mic), ((Mic, Bar), Mic), ({(Mic, Mic), Mic)}
J[x] = {((Bar, Bar), Mic), ((Bar, Mic), Bar), ((Mic, Bar), Bar), ((Mic, Mic), Bar)}

This assigns a member of the universe to the constant symbol; a set of pairs to the
two-place relation symbol (where the interpretation of = is automatic); a total 1-place
function to S, and total 2-place functions to + and x. So it counts as an interpretation
of £5;. Observe that a total n-place function on an m-membered universe has m"
members—so our 1-place function has 2! = 2 members, and 2-place functions 22 = 4
members.

(AD)

{
{

It is frequently convenient to link assignments with bits of (relatively) ordinary
language. This is a key to translation, as explored in the next chapter. But there is no

CHAPTER 4. SEMANTICS 114

requirement that we link up with ordinary language. All that is required is that we
assign a member of U to each constant symbol, a subset of U" to each n-place relation
symbol, and a total function from U" to U to each n-place function symbol. That is all
that is required—and nothing beyond that is required in order to say what the function
and predicate symbols “mean.” So J counts as a legitimate (though non-standard)
interpretation of £g;. With a language like &£ it is not always possible to specify
assignments for all the symbols in the language. Even so, we can specify a partial
interpretation—an interpretation for the symbols that matter in a given context.”

E4.8. Suppose Barack and Michelle have another child and name her Ama. Where
U = {Bar, Mic, Ama}, give another interpretation K for £3. Arrange your
interpretation so that: (i) K[@] # Bar; (ii) there are exactly five pairs in K[<]; and
(iii) for any m, ({(m, Bar), Ama) and ((Bar, m), Ama) are in K[+]. Include K[=]
in your account.

4.2.2 Term Assignments

In the sentential case, interpretations make assignments to basic sentences; assign-
ments to further expressions derive from them. And similarly here: An interpretation
(supplemented by a “variable assignment”) makes assignments to basic vocabulary;
assignments to complex expressions derive from basic assignments. We begin with
terms.

For some language £, say U = {0 | 0 is a person}, one-place predicate H is
assigned the set of happy people, and constant b is assigned Barack. Perhaps H
applies to Barack. In this case, Hb comes out true. Intuitively, however, we cannot
say that H x is either true or false on this interpretation, precisely because there is no
particular individual that x picks out—we do not know who is supposed to be happy.
However we will be able to say that H x is satisfied or not when the interpretation is
supplemented with a variable (designation) assignment d associating each variable
with some individual in U.

Given a language £ and interpretation |, a variable assignment d associates each
variable of £ with some member of the universe U—a variable assignment is a total
function from the variables of &£ to objects in U. Conceived pictorially, where U =
{01, 02, ...}, d and e are variable assignments:

“4There are alternatives to the (classical) notion of an interpretation developed here. So, for example,
it is possible to drop the assumptions that U is nonempty and that all assignments are to members of U.
Free logic does just this: It sets up “inner” and “outer” domains, allowing that an inner domain U might
be empty, and that not all assignments are to members of it. With our classical approach as background,
free logics are introduced in Priest, Non-Classical Logics. A potential application is to possible worlds
where not every object exists in the universe of every world.

CHAPTER 4. SEMANTICS 115

4 i j k [m n 0 p
\ \ \ \ \ \ \ 2
01 02 03 04 O35 O¢6 07 0g
i Jj k / m n 0 p
e
\ 7 2 2 \ \ \
01 (o)) 03 O4 O3 Oe6 07 0g

Observe that the total function from variables to things assigns some element of U to
every variable of £. But this leaves room for one thing assigned to different variables,
and things assigned to no variable at all. All that is required is that every variable is
associated with some thing. If d assigns o to x we write d[x] = 0. So d[k] = 03 and
elk] = oo. For any assignment d, d(x|o) is the assignment that is just like d except
that o is assigned to x. Thus, d(k|o2) = e. Similarly,

; i j k [m n 0 p
\ V7 N \ \ \
01 07 03 04 O35 O¢6 07 0g

d(k|oz,l|os) = e(l|os) = f. Of course, if some d already has o assigned to x, then
d(x|o) is just d. Thus, for example, f(i|01) is just f itself. We will be willing to say
that H x is satisfied or not satisfied relative to an interpretation supplemented by a
variable assignment.

But before we get to satisfaction, we need the general notion of a term assignment.
In general, a term contributes to a formula by picking out some member of the
universe U—terms act something like names. We have seen that an interpretation |
assigns a member I[c] of U to each constant symbol ¢. And a variable assignment d
assigns a member d[x] to each variable x. But these are assignments just to “basic”
terms. For function symbols an interpretation assigns, not individual members of
U, but certain complex sets. Still an interpretation | supplemented by a variable
assignment d is sufficient to associate a member l4[#] of U with any term ¢ of £.
Where ((a1...an),b) € I[4"], let [[A"](a; ...an) = b; that is, I[A"](a; ...a,) is the
thing the function I[£4"] associates with input (s . ..ap). Thus, for example, from the
interpretations on page 113, N[4+](1, 1) = 2 and J[+](Bar, Mic) = Mic. Then for any
interpretation | and variable assignment d,

TA (c) If ¢ is a constant, then l4[c] = I[¢].

(v) If x is a variable, then I4[x] = d[x].

(f) If 4™ is a function symbol and ¢ ... #, are terms, then l4[#" ¢1 ... in] =
I[A"](la[21] - . . la[2n])-

CHAPTER 4. SEMANTICS 116

The first two clauses take over assignments to constants and variables from | and d.
The last clause is parallel to the one by which terms are formed. The assignment
to a complex term 4”47 ... 1, depends on the interpretation of 4", together with
assignments to £g ... i,.

Again the definition is recursive, and we can see how it works on a tree—in this
case, one with the very same shape as the one by which we see that an expression is
in fact a term. Say the interpretation of £ is J from page 113, and d[x] = Mic; then
Jg[S(Sx x @)] = Bar.

x[Micl @Bar] By TA(v) and TA(c)
S x[Mic] With the input, since (Mic, Mic) € J[S], by TA(f)
(AE)
(Sx x @)Bal With the inputs, since ((Mic, Bar), Bar) € J[x], by TA(f)
S(Sx x @)Bar] With the input, since (Bar, Bar) € J[S], by TA(f)

As usual, basic elements occur in the top row. After that, given the interpretation
of the parts we look to see the interpretation of the whole. In the simplest case,
the assignment to a term £ !¢ is whatever object the interpretation of 4! pairs with
the object assigned to #; so from Jg[x] = Mic and (Mic, Mic) € J[S], Jq[Sx] =
Mic. For A4"%; ... t, we find the object paired with whatever objects are assigned
to 41 ... 4, taken in that order; so given Jq[Sx] = Mic and J4[@] = Bar, with ((Mic,
Bar), Bar) € J[x], we get J4[Sx x @] = Bar. Perhaps the hard part about definition
TA 1is just reading clause (f)—it may be easier to apply in practice than to read. For a
complex term, assignments to terms that are the parts together with the assignment
to the function symbol, determine the assignment to the whole. And this is just what
clause (f) says. For practice, convince yourself that Jg(x[p.)[S(Sx x)] = Mic; and
where N is as above and d[x] = 1, that Ng[S(Sx x @)] = 1.

E4.9. For £ and interpretation N from page 113, let d include,

w X y z

d |+ J+ I
1 2 3 4

and use trees to determine each of the following.
*a. Ng[+xS0]

b. Ng[x + (SS9 x x)]

c. Ng[w x S(@ 4 (y x SSSz))]

#d. Ny(xlay[x + (SS9 x x)]

CHAPTER 4. SEMANTICS 117

e. Nox[1,0[2)[S(x X (SO + Sw))]

E4.10. For £3; and interpretation J from page 113, let d include,

w X y z

d | \ \J \J
Bar Mic Mic Mic

and use trees to determine each of the following.
*a. Ja[+x S0]

b. Ja[x + (S5 x x)]

c. Jglwx S@+ (y x SSSz))]
d. Jg(x[pan [+ (S0 x x)]

€. Ja(x[Bar,wMic) [S (X X (S0 + Sw))]

E4.11. Consider your interpretation K for £; from E4.8. Supposing that d[w] = Bar,
d[y] = Mic, and d[z] = Ama, determine Kq[w x S(@ + (y x S§52))].

E4.12. For & and an interpretation L with universe U = {Amy, Bob, Chris} with,

L L[a] = Amy
L[c] = Chris
L[f1 = {(Amy, Bob), (Bob, Chris), (Chris, Amy)}
[

L[g2] = {{{Amy, Amy), Amy), {(Amy, Bob), Chris), ((Amy, Chris), Bob),
({(Bob, Amy), Chris), ((Bob, Bob), Bob), {((Bob, Chris), Amy),
((Chris, Amy), Bob), ({(Chris, Bob), Amy), {{Chris, Chris), Chris)}

where d[x] = Bob, d[y] = Amy and d[z] = Bob, use trees to determine each of the
following.

a. Lg[f'c]

“b. Lalg?yf ']

c. Lalg?g?axf!c]

d. Ld(xlcmis)[gzgzaxflc]

e. Lax|amy (828282 xyzg? flaf ! c]

CHAPTER 4. SEMANTICS 118

4.2.3 Satisfaction

A term’s assignment depends on an interpretation supplemented by an assignment for
variables, that is, on some lg. Similarly, a formula’s satisfaction depends on both the
interpretation and variable assignment. If a formula & is satisfied on | supplemented
with d, we write 4[] = S; if P is not satisfied on | with d, I4[] = N. For any
interpretation | with variable assignment d,

SF (s) If & is a sentence letter, then I4[8] = S iff [[§] = T; otherwise I4[8] = N.

(r) If R" is an n-place relation symbol and ¢ ... &, are terms, lg[R" 41 . ..
tn] = Siff (lg[t1] ... l4[tn]) € [[R"]; otherwise Ig[R" %1 ... 4n] = N.

(~) If P is a formula, then l4[~P] = S iff 4[] = N; otherwise lg[~P] = N.

(—) If P and @ are formulas, then Il4[(P — @)] = Siff I4[P] =Norly[@] =S
(or both); otherwise I4[(# — @)] = N.

(V) If £ is a formula and x is a variable, then l4[Vx] = S iff for any 0 € U,
la(x|o) [?] = S; otherwise Ig[VxP] = N.

SF(s) and SF(r) determine satisfaction for atomic formulas. Satisfaction for other
formulas depends on satisfaction of their immediate subformulas. SF(s), SF(~), and
SF(—) are closely related to ST from before, though satisfaction applies now to any
formulas and not only to sentences. SF(r) and SF(V) are new.

First, the satisfaction of a sentence letter works just like truth before: a sentence
letter is satisfied on some lq iff it is true on the interpretation . Thus satisfaction
for sentence letters depends only on the interpretation, and not at all on the variable
assignment.

In contrast, to see if R ¢7 ... t, is satisfied, we find out which things are assigned
to the terms, and then see if those objects, taken in order, are in the interpretation of
the relation symbol. It is natural to think about this on a tree like the one by which we
show that the expression is a formula. Thus given interpretation J for £g; from page
113, consider (x x S@) < x; and compare cases with d[x] = Bar, and h[x] = Mic. It
will be convenient to think about the expression in its unabbreviated form, <xxS@x.

[Bar] glBar] [Bar] ¢ [Mic] glBarl ¢ [Mic]

Sg[Bar] S Q[Bar]

Jd . Jh .
xx S gLMic] xx S gBar]

<xxS0x® <xxSaxMN

CHAPTER 4. SEMANTICS 119

Above the dotted line, we calculate term assignments in the usual way. But <xxS@x
is a formula of the sort <t;#,. From the left-hand tree, Jq[xx S @] = Mic, and Jq4[x] =
Bar. So the assignments to #; and ¢, are Mic and Bar. Since (Mic, Bar) € J[<], by
SF(r), Jg[<xxS@x] = S. But from the right-hand tree, Jy[xx S @] = Bar, and Jy[x] =
Mic. And (Bar, Mic) ¢ J[<], so by SF(r), Jh\[<xxS@x] =N. R"1; ... 1 is satisfied
just in case the n-tuple of the thing assigned to #; and ... and the thing assigned to 1,
is in the set assigned to the relation symbol. To decide if R"#; ... i, is satisfied, we
find out what things are assigned to the term or terms, and then look to see whether
the relevant ordered sequence is in the interpretation. The simplest sort of case is
when there is just one term. I4[R!#] = S just in case l4[¢] € I[R']. When there is
more than one term, we look for the objects taken in order.

SF(~) and SF(—) correspond to ST(~) and ST(—). And we could work out their
consequences on trees or tables for satisfaction as before. In this case though, to
accomodate quantifiers, it will be convenient to turn the “trees” on their sides. For
this, we begin by constructing the tree in the “forward direction,” from left to right,
and then determine satisfaction the other way—from the branch tips back to the trunk.
Where the members of U are {m, n, ...}, the branch conditions are as follows:

forward backward
Bis) 3] no branching the tip is S iff I[$] = T
B(r) dlR"1...1n] Dranchesonly the tip is S iff (Ia[t1]. .. la[tn]) € I[R"]
for terms
B(~) l[~7] - lal?] the trunk is S iff the branch is N
la[]
B(—=) l4[(P — Q)] the trunk is S iff the top branch is N or the bottom
7 14[Q] branch is S (or both)
la(x|m) []
Id(x\n) (]
B(Y)
la[¥x] Vx A(;ne branch for the trunk is S iff every branch is S
each member
of U

A formula branches according to its main operator. If it is atomic, it does not branch (or
branches only for its terms). The trees Jq and J,, on the preceding page are examples
of branching for terms, only oriented vertically. If the main operator is ~, a formula
has just one branch; if its main operator is —, it has two branches; and if its main
operator is V it has as many branches as there are members of U. This last condition

CHAPTER 4. SEMANTICS 120

makes it impractical to construct these trees in all but the most simple cases—and
impossible when U is infinite. Still, we can use them to see how the definitions work.
When there are no quantifiers, we should be able to recognize these trees as a
mere “sideways” variant of ones we have seen before. Thus, consider an interpretation
M with U = {Bob, Sue, Jim} and,
M M[A] =T
M[B!] = {Sue}
M[C?2] = {(Bob, Sue), (Sue, Jim)}

and variable assignment d such that d[x] = Bob. Then,

1 2 3

Ma[~A]N Mg[4]®

(AF) Mg[~4 — Bx]®
Mgi~A4 = Bx™> |

Mg[Bx]™) [Bob]

The main operator at stage (1) is —; so there are two branches. Bx on the bottom is
atomic, so the formula branches no further—though we use TA to calculate the term
assignment. On the top at (2), ~A has main operator ~. So there is one branch. And
we are done with the forward part of the tree. Given this, we can calculate satisfaction
from the tips back toward the trunk. Since M[A] = T, by B(s), the top at (3) is S. And
since this is S, by B(~), the top at (2) is N. But since My[x] = Bob, and Bob ¢ M|B],
by B(r), the bottom at (2) is N. And with both the top and bottom at (2) N, by B(—),
the formula at (1) is S. So Myg[~A — Bx] = S. You should be able to recognize that
the diagram (AF) rotated counterclockwise by 90 degrees would be a mere variant
of diagrams we have seen before. And the branch conditions merely implement the
corresponding conditions from SF.

Things are more interesting when there are quantifiers. For a quantifier, there are
as many branches as there are members of U. First, working with a “stripped down”
version of M that has U = {Bob}, consider My[Y y~C xy]. With just one thing in the
universe, the tree branches as follows:

1 2 3 4

Bob

(AG) Mylvy~Cxy® Ma(y1Bob) [~ CX31® My(y oy [Cxy1 M x[[Bobll
: ylbo

The main operator at (1) is the universal quantifier. With one thing in U, there is the one
branch. Notice that the variable assignment d becomes d(y|Bob). The main operator
at (2) is ~. So there is the one branch, carrying forward the assignment d(y|Bob).
The formula at (3) is atomic, so the only branching is for the term assignment. Then,
in the backward direction, My(y|gop) Still assigns Bob to x; and Mgy o) assigns Bob
to y. Since (Bob, Bob) ¢ M[C?], the branch at (3) is N; so the branch at (2) is S. And

CHAPTER 4. SEMANTICS 121

since all the branches for the universal quantifier are S, by B(V), the formula at (1) is
S.

But M was originally defined with U = {Bob, Sue, Jim}. In this case the quantifier
requires not one but three branches, and the tree is as follows:

1 2 3 4
Bob
Ma(y[Boby [~Cxy]® Ma(y[Boby [Cx Y] M- x(Bob]
- ~ - : y[BObI
b
(AH) Mg[Vy~Cxy]™ Myiisug~Cxyl®™ Mygjsug[Cxy]® - x1Bo!
Vy ~ - . SLIC
- yISuel
Bob
Ma(yliim) [~ C Y1 Mgy pgimy [Cxy] N xfBebl
— E— ylim]

The quantifier has one branch for each member of U. Note the modification of d on
each branch, and the way the modified assignments carry forward and are used for
evaluation at the tips. d(y|Sue), say, has the same assignment to x as d, but assigns
Sue to y. And similarly for the rest. This time, not all the branches for the universal
quantifier are S. So the formula at (1) is N. You should convince yourself that it is S
on My, where h[x] = Jim. And it would be S with assignment d as above, but formula
Vy~Cyx.

(AI) on page 123 is an example for Vx[(Sx < x) — Vy((Sy + @) = x)] using
interpretation J from page 113 and £3;. This case should help you to see how all the
parts fit together in a reasonably complex example. It turns out to be helpful to think
about the formula in its unabbreviated form, Vx(<Sxx — Vy=+Sy0x). For this
case notice especially how when multiple quantifiers come off, a variable assignment
once modified is simply modified again for the new variable. If you follow through
the details of this case by the definitions, you are doing well.

A word of advice: Once you have the idea, constructing these trees to determine
satisfaction is a mechanical (and tedious) process. About the only way to go wrong or
become confused is by skipping steps or modifying the form of trees. But, very often,
skipping steps or modifying form does correlate with confusion. So it is best to stick
with the official pattern—and so to follow the way it forces you through definitions
SF and TA.

E4.13. Supplement interpretation L for E4.12 so that U = {Amy, Bob, Chris} and,

L L[a] = Amy

({(Bob, Amy), Chris), ({(Bob, Bob), Bob), {((Bob, Chris), Amy),
((Chris, Amy), Bob), ({Chris, Bob), Amy), ({Chris, Chris), Chris)}

CHAPTER 4. SEMANTICS 122

L[S]=T
L[H1] = {Amy, Bob}
L[L?] = {{Amy, Amy), (Amy, Bob), (Amy, Chris), (Bob, Bob), (Bob, Chris)}

Where d[x] = Amy, and d[y] = Bob, use trees to determine whether the following
formulas are satisfied on L with d.

*a. Hx b. Lxa
c. Hfly d. VxLyx
e. VxLxg2cx *, ~Vx(Hx — ~8)
*g,. Yy~VxLxy h. Vy~VxLyx
i. Vx(Hf'x — Lxx) j. Vx(Hx — ~Vy~Lyx)

E4.14. For the previous problem, what if anything changes with the variable assign-
ment h where h[x] = Chris and h[y] = Amy? Challenge: Explain why differences
in the initial variable assignment cannot matter for the evaluation of (e)—(j).

4.2.4 Truth and Validity

It is a short step from satisfaction to definitions for truth and validity. As we have seen,
formulas are satisfied or not on an interpretation | together with a variable assignment
d. After that, truth runs through satisfaction: a formula is true on an interpretation
when it is satisfied relative to every variable assignment. A consequence is that truth
does not depend on the details of any particular assignment—and formulas are frue
and false relative just to an interpretation .

TI A formula & is true on an interpretation | iff with any d for I, I4[P] = S. & is
false on | iff with any d for |, I4[5] = N.

A formula is true on | just in case it is satisfied with every variable assignment for
I. From (AH), then, we are already in a position to see that Vy~Cxy is not true on
M—for there is a variable assignment d on which it is N; since there is an assignment
on which it is N, it is not satisfied on every assignment, and so is not true. Neither
is Vy~Cxy false on M, insofar as it is satisfied on the h that assigns Jim to x; since
there is an assignment on which it is S, it is not N on every assignment, and so is
not false. In contrast, from (Al), Vx[(Sx < x) — Vy((Sy 4+ @) = x)] is true on
J. For some variable assignment d, the tree shows directly that J4[Vx[(Sx < x) —
Vy((Sy + @) = x)]] = S. But the reasoning for the tree makes no assumptions
whatsoever about d. That is, with any variable assignment, we might have reasoned in
just the same way to reach the conclusion that the formula is satisfied. Since it comes
out satisfied no matter what the variable assignment may be, by T1, it is true.

123

CHAPTER 4. SEMANTICS

Ja(x[Ban [<Sxx]™

Mx_mm: REE_

JuxBany [<Sxx —> Vy=+Sy0x]®

—

Ja(xBan [Yy=+Sy@x]™N

x [Bar]

+SypMicl __sylBarl___ (Bar)
Jd(x|Bar, y Ban [=+ Sy Ox] N -

? [Bar]

ﬂ

x [Bar]

Ja[Vx(<Sxx —
Vy=+Sy0x)]®

VxA

Ja(xIMioy [<Sxx]®

Yy
+SypMicl ___gyMic] y[Mic]

JaxMio [<Sxx — Vy=+Sy0x]®

—

Ja(xMioy [Yy=+Sy0x]®

Jd(x|Bar, y [Mic) T+u€§%zvm /SEE
. x[Barl
§ x[Micl— . [Mic]
x[Mic]

+8ygMic] hiwi‘iwi

Ja(xMic, y|Ban [=+Sy0x]®-

@ [Bar]

:

Mic]

Vy-

Forward: Since there are two objects in U, there are two branches for each
quantifier. At stage (2), for the x-quantifier, d is modified for assignments
(AID) to x, and at lower sections of (4) for the y-quantifier those assignments are
modified again. <Sxx and =4 Sy@x are atomic. Branching for terms

continues at stages (4) and (5) in the usual way.

+>m.u\®ﬁ<:£ Mu\;\:n_‘u\;\:n_

/

Jd(x [Mic, y [Mic) ~H+_m§i@m B

x [Mic]

Backward: For terms, apply the variable assignment from the correspond-
ing atomic formula. So in the top at (5) with d(x|Bar, y|Bar), both x and
y are assigned to Bar. The assignment to § comes from the interpretation.
Then terms and formulas are calculated in the usual way. At (4), recall
that J[=] is automatically {(Bar, Bar), (Mic, Mic)}.

CHAPTER 4. SEMANTICS 124

In general, if a sentence is satisfied on some d for [, then it is satisfied on every d
for I. We shall demonstrate this more formally in Chapter 8. However, we are already
in a position to see the basic idea: In a sentence, every variable is bound; so by the
time you get to formulas without quantifiers at the tips of a tree, assignments are of
the sort, d(x|m, %|n,...) for every variable in the formula; so satisfaction depends
just on assignments that are set on the branch itself, and the initial d is irrelevant to
satisfaction at the tips—and thus to evaluation of the formula as a whole. Adjustments
to the assignment that occur within the tree override the original assignment so that
every starting d gives the same result. So if a sentence is satisfied on some d for |, it is
satisfied on every d for |, and therefore true on I. Similarly, if a sentence is N on some
d for I, it is N on every d for I, and therefore false on I.

In contrast, a formula with free variables may be sensitive to the initial variable
assignment. If variable x is free in formula &, then the value for x at a branch tip
results from the original d[x] rather than by adjustments to the assignment that are
set within the branch. Thus, in the ordinary case, H x is not true and not false: There
may be an assignment d on which x is assigned an object in the interpretation of H
so that H x is satisfied, and an assignment h on which x is assigned an object not in
the interpretation of H so that H x is not satisfied; in this case, H x is neither true nor
false. We have seen this pattern so far in examples and exercises: For formulas with
free variables, there may be variable assignments where they are satisfied, and variable
assignments where they are not. Therefore the formulas fail to be either true or false
by TI. Sentences, on the other hand, are satisfied on every variable assignment if they
are satisfied on any, and not satisfied on every assignment if they are not satisfied on
any. Therefore the sentences from our examples and exercises come out either true or
false.

But a word of caution is in order: Sentences are always true or false on an
interpretation. And, in the ordinary case, formulas with free variables are neither true
nor false. But this is not always so. Thus x = x is true on any I: given the fixed
interpretation of ‘=", for any d and object I4[x], {l4[x], Ig[x]) is sure to be an element
of I[=], so that lg[x = x] =S and I[x = x] = T. Similarly, I[Hx] =Tif [H] = U and
Fif |H] ={}. And ~Vx(x = y) is true on any | with a U that has more than one
member. To see this, suppose for some |, U = {m,n,...}; then for an arbitrary d the
tree is as follows:

1 2 3 4
lagaem [x = y1. - xIm
’““7:< yd[y]
(AT) lyelmlr =1 I

: yd[y]

d~Vx(x =) la[Vx(x = y)] v done branch for

each member of
U

No matter what d is like, exactly one branch at (3) is S. If d[y] = m then the top

CHAPTER 4. SEMANTICS 125

branch at (3) is S and the rest are N. If d[y] = n then the second branch at (3) is S and
the others are N. And so forth. So in this case where U has more than one member,
at least one branch is N for any d. So the universally quantified expression is N for
any d, and the negation at (1) is S for any d. So by Tl it is true. So satisfaction for
an open formula may but need not be sensitive to the particular variable assignment
under consideration. Again, though, a sentence is always true or false depending only
on the interpretation. To show that a sentence is true, it is enough to show that it is
satisfied on some d, from which it follows that it is satisfied on any. For a formula
with free variables, the matter is more complex—though you can show that such a
formula is not true by finding an assignment that makes it N, and not false by finding
an assignment that makes it S.

Given the notion of truth, quantificational validity works very much as before.
Where T is a set of formulas, say I[I'] = T iff I[?] = T for each formula # € I'. Then
for any formula &,

QV T quantificationally entails P iff there is no quantificational interpretation |
such that I[I'] = T but I[P] # T.

I' quantificationally entails # when there is no quantificational interpretation that
makes the premises true and the conclusion not. If I quantificationally entails
we write, [' F £, and say an argument whose premises are the members of I" and
conclusion is & is quantificationally valid. T" does not quantificationally entail
(I' ¥ &) when there is some quantificational interpretation on which all the premises
are true but the conclusion is not true (notice that there is a difference between
being not true, and being false). As before, if @; ... &, are the members of I, we
sometimes write @; ... &, F & in place of I' F . In the case where I" is empty
and there are no premises, we simply write = £. If F £, then £ is a tautology.’
Notice again the double turnstile I, in contrast to the single turnstile - for derivations.

In the quantificational case, demonstrating semantic validity is problematic. In
the sentential case, we could simply /ist all the ways a sentential interpretation could
make basic sentences T or F. In the quantificational case, it is not possible to list all
interpretations. Consider just interpretations with universe N: the interpretation of
a one-place relation symbol & might be {1} or {2} or {3} or...; it might be {1, 2}
or {1,3} or {1,83,5,...}, or whatever. There are infinitely many options for this one
relation symbol—and so at least as many for quantificational interpretations in general.
Similarly, when the universe is so large, by our methods, we cannot calculate even
satisfaction and truth in arbitrary cases—for quantifiers would have an infinite number

>In the quantificational case, ‘tautology’ may be differently defined. Many authors restrict tautolo-
gies to formulas whose form is sententially valid. On this account, Fx — FXx with sentential form
P — P is atautology, while Vx Fx — Fx with form » — @ is not. As we shall see, however, both
E Fx — Fx and F VxFx — Fx—so that, on this alternative account, tautologies are a proper subset
of quantificationally valid formulas.

CHAPTER 4. SEMANTICS 126

of branches. One might begin to suspect that there is no way to demonstrate semantic
validity in the quantificational case. There is a way. And we respond to this concern
in Chapter 7.

For now, though, we rest content with demonstrating invalidity. To show that
an argument is invalid, we do not need to consider all possible interpretations; it is
enough to find one interpretation on which the premises are true and the conclusion is
not. (Compare the invalidity test from Chapter 1 and “shortcut” truth tables in this
chapter.) An argument is quantificationally valid just in case there is no | on which
its premises are true and its conclusion is not true. So to show that an argument is
not quantificationally valid, it is sufficient to produce an interpretation that violates
this condition—an interpretation on which its premises are true and conclusion is not.
And in some cases, including ones considered below, this can be done by very simple
interpretations. This should be enough at least to let us see how the definitions work,
and we postpone the larger question about showing quantificational validity to later.

For now, then, our idea is to produce an interpretation, and then to use trees in
order to show that the interpretation makes premises true but the conclusion not. Thus,
for example, for £; we can show that ~VxPx ¥ ~Pa—that an argument with
premise ~VxPx and conclusion ~Pa is not quantificationally valid. To see this,
consider an | with U= {1,2}, I[P] = {1}, and l[a] = 1. Then ~VxPx is T on I.

1 2 3 4

o P¥® -
(AK) Id[~VxPx](s) N |d[VxPx](N) v :

x

lox(2) [PX]M - .

~Y x P x is satisfied with this d for |; and since it is a sentence it is satisfied with any d
for I. So by Tl it is true on |. But ~ Pa is not true on this I.

1 2 3
~PalN) .
lal~Pal™ _ la[Pal™:

From the tree, l4[~Pa] = N; and since there an assignment on which it is not
satisfied, by TI, I[~Pa] # T. So there is an interpretation on which the premise is
true and the conclusion is not. So by QV, ~VxPx ¥ ~ Pa, and the argument is not
quantificationally valid. Notice that it is sufficient to show that the conclusion is not
true—which is not always the same as showing that the conclusion is false.

Here is another example. We show that ~Vx~Px, ~Vx~Qx ¥ Vy(Py —
Qv). In general, to show that an argument is not quantificationally valid, you want to
think “backward” to see what kind of interpretation you need to make the premises
true but the conclusion not true. In this case, to make the conclusion false, we need

CHAPTER 4. SEMANTICS 127

something that is P but not Q; the premises are true if something is P and something
Q. One way to do this is with an | that has U = {1, 2} where I[P] = {1} and I[Q] = {2}.
Then the premises are true.

1 2 3 4 5

N) ®) .

laeity [~ PV e [P]

(AL) lo[~Vx~Px]® 1g[Vx~Px]™ e

i) [~ PxI® g (PN

<12
o~ an[@™
la[~Vx~Qx]®) Ig[Vx~Qx]™ :
0™ I [02]S -
da O a0

To make ~Vx~Px true, we require that there is at least one thing in I[P]. We
accomplish this by putting 1 in its interpretation. This makes the top branch at stage
(4) S; this makes the top branch at (3) N; so the quantifier at (2) is N and the formula
at (1) comes out S. Since it is a sentence and satisfied on the arbitrary assignment,
it is true. ~Vx~Qx is true for related reasons. For it to be true, we require at least
one thing in I[Q]. This is accomplished by putting 2 in its interpretation. But this
interpretation does not make the conclusion true.

1 2 3 4
aon Py
lacy [Py — 0y1™] :
la (@™ Yl
W[V (Py — 0y)]™ '
dVy(Py — 0y)] Vy -
layi [PYI™N) 2
Py = 031 | :
lap Q1 Y

The conclusion is not satisfied so long as something is in I[P] but not in I[Q]. We
accomplish this by making the thing in the interpretation of P different from the thing
in the interpretation of Q. Since 1 is in I[P] but not in [[Q], there is an S/N pair at (3),
so that the top branch at (2) is N and the formula at (1) is N. Since the formula is not
satisfied, by TI it is not true. And since there is an interpretation on which the premises
are true and the conclusion is not, by QV, the argument is not quantificationally valid.

To show that an argument is not quantificationally valid it is to your advantage
to think of simple interpretations. Remember that U need only be non-empty. So
it will often do to work with universes that have just one or two members. And the
interpretation of a relation symbol might even be empty. It is often convenient to let

CHAPTER 4. SEMANTICS 128

the universe be some set of integers. If there is any interpretation that demonstrates
invalidity, there is sure to be one whose universe is some set of integers—but we will
get to this in Part I11.

E4.15. For language &, consider an interpretation | such that U = {1, 2}, and

I lfa] =1
I[b] =2
4] =T

P =1{1}
ILf1=1(1.2). (2. 1)}

Use interpretation | and trees to show that (a) below is not quantificationally valid.
Then demonstrate that each of the others is invalid by an interpretation I* that
modifies just one assignment (line) from interpretation I. Hint: If you are having
trouble finding the appropriate modified interpretation, try working out the trees
on |, and think about a change to the interpretation that would have the result you
want.

a. Pa F VxPx

b. VxPx ¥ ~Pa

c. ~(Pa — ~Pb) £ VxPx
#d. VXxPflx ¥ VxPx

e. VxPx > A EVx(Px —> A)

E4.16. Find interpretations and use trees to demonstrate each of the following. Be
sure to explain why your interpretations and trees have the desired result.

*a. Vx(Qx — Px) EFVx(Px — 0Ox)
b. Vx(Px — 0x), Yx(Rx - ~Px) FVy(Ry — Qy)
c. ~NVxPx F ~Vx~Px
*d. ~VxPx F Vx~Px
e. VxPx - VxQx, Qb ¥ Pa — VxQx
f. ~(A — VxPx) F Vx(A— ~Px)
g Vx(Px — 0x),~Qa FVx~Px
*h. ~VyVxRxy F Vx~VyRxy
i. VxVy(Rxy — Ryx), Vx~Vy~Rxy ¥ VxRxx
j. VaVyly = flx = ~(x = f1y)] ¥ Vx(Px — Pflx)

CHAPTER 4. SEMANTICS 129

4.2.5 Abbreviations

Finally, we turn to applications for abbreviations. Consider first a tree for (£ A @),
that is for ~(£ — ~@).

1 2 3 4

(AM) la[5]

lg[~(P > ~@)] [P > ~Q]

~ —

W~@) k@]

The formula at (1) is satisfied iff the formula at (2) is not. But the formula at (2) is not
satisfied iff the top at (3) is satisfied and the bottom is not satisfied. And the bottom at
(3) is not satisfied iff the formula at (4) is satisfied. So the formula at (1) is satisfied iff
P is satisfied and @ is satisfied. The only way for (£ A @) to be satisfied on some
| and d is for & and @ both to be satisfied on that | and d. If either & or @ is not
satisfied, then (& A @) is not satisfied. Reasoning similarly for Vv, <>, and 3, we get
the following derived branch conditions:

la[P]
/ P
B'(n) WP A@)] A @ the trunk is S iff both branches are S
d

la[P]
/ D

BMV) bl@Zva) | @ the trunk is S iff at least one branch is S
d

la[]
/ D

B'(<) M I 1 @ the trunk is S iff both branches are S or both are N
d

Id(oc\m) (7]
lagxin) []

I Aolne branch for the trunk is S iff at least one branch is S

each member
of U

The conditions for A, Vv, and <> work like ones from the sentential case. For 3,
consider a tree for ~Vx~J, that is for Ix L.

CHAPTER 4. SEMANTICS 130

1 2 3 4

laexim) [~P] laxgm) [P

(AN) laxln) [~] - la(x|m []

lg[~Va~P] lg[¥x~P '
oV~ P] lalVx]VXA one branch for each

member of U

The formula at (1) is satisfied iff the formula at (2) is not. But the formula at (2) is
not satisfied iff at least one of the branches at (3) is not satisfied. And for a branch at
(3) to be not satisfied, the corresponding branch at (4) has to be satisfied. So Ix P is
satisfied on | with assignment d iff for some o € U, & is satisfied on | with d(x|o); if
there is no such o € U, then Ix & is N on | with d.

Given derived branch conditions, we can work directly with abbreviations in trees
for determining satisfaction and truth. And the definition of validity applies in the
usual way. Thus, for example, IxPx AIxQx ¥ Ix(Px A Qx). To see this, consider
an | with U = {1,2}, I[P] = {1}, and I[Q] = {2}. The premise, IxPx A IxQx is true
on |. To see this, we construct a tree, making use of derived clauses as necessary.

1 2 3 4
laae) [Px]©) S
la[3xPx]®
—————— 3dx 1 N)
la(x]2) [P x] S
(AO) 14[3xPx A3x0x]® N
|d(x|1)[QX](N) ()
Id[EIxQx](S)
3x 1 ®)
la(x|2)[Qx])

The existentials are satisfied because at least one branch is satisfied, and the con-
junction because both branches are satisfied, according to derived conditions B'(3)
and B’(A). So the formula is satisfied, and because it is a sentence, is true. But the
conclusion, 3x(Px A Qx) is not true.

CHAPTER 4. SEMANTICS 131

1 2 3 4
lyGe 1y [P 6] S i)
lain [Px A Q™ :
Lo 1y [0 X1 S i)
la[3x(Px A 0x)|N) .
dx A
o (P . g
laep) [Px A Q]| :
ly(x12)[QX]®) SN

The conjunctions at (2) are not satisfied, in each case because not both branches at
(3) are satisfied. And the existential at (1) requires that at least one branch at (2) be
satisfied; since none is satisfied, the main formula 3x (P x A Qx) is not satisfied, and
so by TI not true. Since there is an interpretation on which the premise is true and the
conclusion is not, by QV, 3xPx A IxQ0x ¥ Ix(Px A Qx). As we will see in the
next chapter, the intuitive point is simple: just because something is P and something
is @, it does not follow that something is both P and Q. And this is just what our
interpretation | illustrates.

E4.17. Produce interpretations to demonstrate each of the following. Use trees, with
derived clauses as necessary, to demonstrate your results. Be sure to explain why
your interpretations and trees have the results they do. Hint: In some cases, it
may be convenient to produce only that part of the tree which is necessary for the
result.

*a. AxPx F Ay(Py A Qy)
*b. IxPx E VyPy

c. IxPx EAyPfly

d. Pa > VxQx F 3IxPx —> VxQx

e. VxdyRxy ¥ AyVxRxy

f. VxPx < VxQ0x,AxAy(Px A Qy) FAy(Py < Qy)
*o. Vx(FyRxy < ~A) F IxRxx Vv A

h. Ax(Px AdyQy) FAxVy(Px A Qy)

i. Vx3y(Px < Qxy),IxPx F VxAyQOxy

jo IxTy~(x = y) B VxVydz(~(x = z2) A~(y = 2))

CHAPTER 4. SEMANTICS 132

Semantics Quick Reference (quantificational)

For a quantificational language £, a quantificational interpretation | consists of a nonempty
set U, the universe of the interpretation, along with,
QI (s) An assignment of a truth value I[§] to each sentence letter § of &£.
(c) An assignment of a member I[¢] of U to each constant symbol ¢ of £.

(r) An assignment of an n-place relation I[R"] on U to each n-place relation symbol
R" of £, where I[=] is always assigned {(0,0) | 0 € U}.

(f) An assignment of a total n-place function I[#"] from U" to U to each n-place
function symbol 4" of £.

Given a language £ and interpretation |, a variable assignment d is a total function from
the variables of &£ to objects in the universe U. Then for any interpretation | and variable
assignment d,
TA (c) If ¢ is a constant, then ly[c] = I[c].
(v) If x is a variable, then ly[x] = d[x].
(f) If 4™ is a function symbol and #; ...%, are terms, then I4[A" %y ... 4,] =
I[A"](la[t1] . . - lal4a])-
SF (s) If & is a sentence letter, then I4[&] = S iff I[&] = T; otherwise I4[8] = N.

(r) If R" is an n-place relation symbol and %1 ..., are terms, then I4[R"#; ...
tn] = Siff (Ig[#1] .. . la[£n]) € I[R"]; otherwise I4[R" %1 ... tx] = N.

(~) If P is a formula, then l4[~P] = S iff I4[P] = N; otherwise I4[~FP] = N.
(—) If P and @ are formulas, then I[(P — @)] = Siff I4[P] =N or 43[{@Q] = S (or
both); otherwise I4[(? — @)] = N.
(V) If 2 is a formula and x is a variable, then l4[VxJ] = S iff for any o € U,
lax|o)[P] = S; otherwise I4[VxP] = N.
SF' (A) If and @ are formulas, then I[(P A Q)] = Siff I4[P] = S and 14[@Q] = S;
otherwise l4[(A @)] =N.

(V) If P and @ are formulas, then I4[(P Vv Q)] = Siff I4[P] =S or I4[@] = S (or
both); otherwise I4[(# v @)] = N.

(«») If # and @ are formulas, then I4[(P < Q)] = S iff I4[P] = 14[@]; otherwise
4[(# < @)] =N.
(3) If &P is a formula and «x is a variable, then lg[3x] = S iff for some 0 € U,
lax|o)[P] = S; otherwise I4[IxP] = N.

TI A formula & is true on an interpretation | iff with any d for I, I5[P] = S. P is false
on | iff with any d for I, 14[] = N.

QV T quantificationally entails (I' E &) iff there is no quantificational interpretation |
such that I[T'] =T but I[P] #T.

If ' E £, an argument whose premises are the members of I" and conclusion is P is
quantificationally valid.

CHAPTER 4. SEMANTICS 133

E4.18. Produce interpretations to demonstrate each of the following (now in £37).
Use trees to demonstrate your results. Be sure to explain why your interpretations
and trees have the results they do. Hint: When there are no premises, all you
need is an interpretation where the expression is not true. You need not use the
standard interpretation. Again, in some cases, it may be convenient to produce
only that part of the tree which is necessary for the result.

a. EVx(x < Sx)
b. ¥ (S0 + S@) = SSY
c. FAx~((x xx) =x)
Ao EVAVy(~(x =y) = (x <y Vy <x))

e. EVxVyVz(x <y Ay <z)—>x<2)

E4.19. On page 129 we say that reasoning similar to that for A results in other branch
conditions. Give the reasoning similar to that for A and 3 to demonstrate from
trees the conditions B(\V) and B(<>).

E4.20. For each of the following concepts, explain in an essay of about two pages,
so that (high-school age) Hannah could understand. In your essay, you should
(i) identify the objects to which the concept applies, (ii) give and explain the
definition, and give and explicate examples of your own construction (iii) where
the concept applies, and (iv) where it does not. Your essay should exhibit an
understanding of methods from the text.

a. Quantificational interpretations.
b. Term assignments, satisfaction, and truth.

¢. Quantificational validity.

Chapter 5

Translation

We have introduced logical validity from Chapter 1, along with validity in an axiomatic
derivation system from Chapter 3, and semantic validity from Chapter 4. But logical
validity applies to arguments expressed in ordinary language, where the other notions
apply to arguments expressed in a formal language. Our guiding idea has been to
use the formal notions with application to ordinary arguments via translation from
ordinary language to formal language. It is to the translation task that we now turn.
After some general remarks in section 5.1, we will take up issues specific to the
sentential (section 5.2), and then the quantificational case (section 5.3).

5.1 General

As speakers of ordinary languages (at least English for those reading this book)
we presumably have some understanding of the conditions under which ordinary
language sentences are true and false. Similarly, we now have an understanding of
the conditions under which sentences of our formal languages are true and false. This
puts us in a position to recognize when the conditions under which ordinary sentences
are true are the same as the conditions under which formal sentences are true. And
that is what we want: Our goal is to translate the premises and conclusion of ordinary
arguments into formal expressions that are true when the ordinary sentences are true,
and false when the ordinary sentences are false. Insofar as validity has to do with
conditions under which sentences are true and false, our translations should thus be
an adequate basis for evaluations of validity.

We can put this point with greater precision. Formal sentences are true and false
relative to interpretations. As we have seen, many different interpretations of a formal
language are possible. In the sentential case, any sentence letter can be true or false—
so that there are 2" ways to interpret any n sentence letters. When we specify an
interpretation, we select just one of the many available options. Thus, for example,
we might set I[B] = T and I[M] = F. But we might also specify an interpretation as
follows:

134

CHAPTER 5. TRANSLATION 135

B: Barack is happy
(A)

M: Michelle is happy
intending B to take the same truth value as ‘Barack is happy’ and M the same as
‘Michelle is happy’. In this case, the single specification might result in different
interpretations, depending on how the world is: depending on how Barack and
Michelle are, the interpretation of B might be true or false, and similarly for M. That
is, specification (A) is really a function from ways the world could be (from maximal
and consistent stories) to interpretations of the sentence letters. It results in a specific
or intended interpretation relative to any way the world could be. Thus, where @
ranges over ways the world could be, (A) is a function |l which results in an intended
interpretation Il corresponding to any such way—thus ll,[B] is T if Barack is happy
at w and F if he is not.

When we set out to translate some ordinary sentences into a formal language,
we always begin by specifying an interpretation function. In the sentential case, this
typically takes the form of a specification like (A). Then for @ any way the world
can be, there is an intended interpretation |l of the formal language. Given this, for
an ordinary sentence o+, the aim is to produce a formal counterpart A’ such that for
any w, ll,[A] = T iff 4 is true at world w. This is the content of saying we want to
produce formal expressions that “are true when the ordinary sentences are true, and
false when the ordinary sentences are false.” In fact, we can turn this into a criterion
of goodness for translation:

CG Given some ordinary sentence <, a translation consisting of an interpreta-
tion function Il and formal sentence A’ is good iff it captures available sen-
tential/quantificational structure and, where w is any way the world can be,
[l [A] = T iff oA is true at w.

If there is a collection of sentences, a translation consisting of an |l and some formal
sentences is good only if each ordinary + of the collection has a formal A’ where
for any w, ll,[A'] = T iff A is true at . Set aside the question of what it is
to capture “available” sentential/quantificational structure, this will emerge as we
proceed. For now, the point is simply that we want formal sentences to be true on
intended interpretations when originals are true at corresponding worlds, and false on
intended interpretations when originals are false. CG says that this correspondence is
necessary for goodness. And, supposing that sufficient structure is reflected, according
to CG such correspondence is sufficient as well.

The situation might be pictured as follows. There is a specification Il which
results in an intended interpretation corresponding to any way the world can be. And
corresponding to ordinary sentences & and @ there are formal sentences &’ and @'.
Then with oval for worlds and box for interpretations built on them,

CHAPTER 5. TRANSLATION 136

llg, [P]=T oy [P]=T llp,[P']=F
llp, [Q]=T llp, [Q] = F llw, [Q] = F
Ina na

The interpretation function results in an intended interpretation corresponding to each
world. The intended interpretations make assignments to basic vocabulary (in the
sentential case, to sentence letters). Then a translation is good only if no matter how
the world is, the values of &’ and @’ on the intended interpretations match the values
of the ordinary 4 and @ at the corresponding worlds or stories.

The premises and conclusion of an argument are some sentences. So the translation
of an argument is good iff the translation of the sentences that are its premises and
conclusion is good. And good translations of arguments put us in a position to use
our machinery to evaluate questions of validity. Of course, so far, this is an abstract
description of what we are about to do. But it should give some orientation, and help
you understand what is accomplished as we proceed.

5.2 Sentential

We begin with the sentential case. Again, the general idea is to recognize when the
conditions under which ordinary sentences are true are the same as the conditions
under which formal ones are true. Surprisingly perhaps, the hardest part is on the
side of recognizing truth conditions in ordinary language. With this in mind, let us
begin with some definitions whose application is to expressions of ordinary language;
after that, we will turn to a procedure for translation, and to discussion of particular
operators.

5.2.1 Some Definitions

In this section, we introduce a series of definitions whose application is to ordinary
language. These definitions are not meant to compete with anything you have learned
in English class. Rather they are specific to our purposes. With the definitions under
our belt, we will be able to say with some precision what we want to do.

First, a declarative sentence is a sentence which has a truth value—a sentence that
is either true or false. ‘Snow is white’ and ‘Snow is green’ are declarative sentences—
the first true and the second false. ‘Study harder!” and “Why study?’ are sentences, but
not declarative sentences. Given this, a sentential operator is an expression containing
“blanks” such that when the blanks are filled with declarative sentences, the result is
a declarative sentence. In ordinary speech and writing, such blanks do not typically

CHAPTER 5. TRANSLATION 137

appear (!) however punctuation and expression typically fill the same role. Examples
are,

John believes that
John heard that
it is not the case that

and

‘John believes that snow is white’, ‘John believes that snow is green’, and ‘John
believes that dogs fly’ are all sentences—some more plausibly true than others. Still,
‘Snow is white’, ‘Snow is green’, and ‘Dogs fly’ are all declarative sentences, and
when we put them in the blank of ‘John believes that _ ’ the result is a declarative
sentence, where the same would be so for any declarative sentence in the blank; so
‘John believes that ___ ’ is a sentential operator. Similarly, ‘Snow is white and dogs
fly’ is a declarative sentence—a false one, since dogs do not fly. And, so long as
we put declarative sentences in the blanks of © and __ ’ the result is always a
declarative sentence. So °__and ___ ’ is a sentential operator. In contrast,

when
is white

are not sentential operators. Though ‘Snow is white’ is a declarative sentence, ‘when
snow is white’ is an adverbial clause, not a declarative sentence. And, though ‘Dogs
fly’ and ‘Snow is green’ are declarative sentences, ‘dogs fly is white snow is green’ is
ungrammatical nonsense. If you can think of even one case where putting declarative
sentences in the blanks of an expression does not result in a declarative sentence, then
the expression is not a sentential operator. So these are not sentential operators.

Now, as in these examples, we can think of some declarative sentences as gen-
erated by the combination of sentential operators with other declarative sentences.
Declarative sentences generated from other sentences by means of sentential opera-
tors are compound, all others are simple. Thus, for example, ‘Bob likes Mary’ and
‘Socrates is wise’ are simple sentences, they do not have a declarative sentence in
the blank of any operator. In contrast, ‘John believes that Bob likes Mary’ and ‘Jim
heard that John believes that Bob likes Mary’ are compound. The first has a simple
sentence in the blank of ‘John believes that __ ’. The second puts a compound in
the blank of ‘Jim heard that .

For cases like these, the main operator of a compound sentence is that operator
not in the blank of any other operator. The main operator of ‘John believes that Bob
likes Mary’ is ‘John believes that __ . And the main operator of ‘Jim heard that
John believes that Bob likes Mary’ is ‘Jim heard that __ ’. The main operator of

CHAPTER 5. TRANSLATION 138

‘It is not the case that Bob likes Sue and it is not the case that Sue likes Bob’ is ©
and ___ ’, for that is the operator not in the blank of any other. Notice that the main
operator of a sentence need not be the first operator in the sentence. Observe also that
operator structure may not be obvious. Thus, for example, ‘Jim heard that Bob likes

Sue and Sue likes Jim’ is capable of different interpretations. It might be, ‘Jim heard

that Bob likes Sue and Sue likes Jim’ with main operator, ‘Jim heard that > and
the compound, ‘Bob likes Sue and Sue likes Jim’ in its blank. But it might be ‘Jim
heard that Bob likes Sue and Sue likes Jim’ with main operator, and ". The

question is what Jim heard, and what the ‘and’ joins. As suggested above, punctuation
and expression often serve in ordinary language to disambiguate confusing cases.
These questions of interpretation are not peculiar to our purposes! Rather they are the
ordinary questions that might be asked about meaning. The underline structure serves
to disambiguate claims, to make it very clear how the operators apply.

We shall want to identify the operator structure of sentences. When faced with a
compound sentence, the best approach is start with the whole, rather than the parts. So
begin with blank(s) for the main operator. Thus, as we have seen, the main operator of
‘It is not the case that Bob likes Sue, and it is not the case that Sue likes Bob’ is ©
and __ ’. So begin with lines for that operator, ‘It is not the case that Bob likes Sue
and it is not the case that Sue likes Bob’ (leaving space for lines above). Now focus

on the sentence in one of the blanks, say the left; that sentence, ‘It is not the case
that Bob likes Sue’ is a compound with main operator, ‘it is not the case that .
So add the underline for that operator, ‘It is not the case that Bob likes Sue and it is
not the case that Sue likes Bob’. The sentence in the blank of ‘it is not the case that
__’issimple. So turn to the sentence in the right blank of the main operator. That
sentence has main operator ‘it is not the case that __ ’. So add an underline. In this
way we end up with, ‘It is not the case that Bob likes Sue and it is not the case that
Sue likes Bob’. Thus a complex problem is reduced to ones that are progressively
simpler. Perhaps this problem was obvious from the start. But this approach will serve
you well as problems get more complex!

We come finally to the key notion of a truth functional operator. A sentential

operator is truth functional iff any compound generated by it has its truth value wholly
determined by the truth values of the sentences in its blanks. We will say that the truth
value of a compound is “determined” by the truth values of sentences in blanks just in
case there is no way to switch the truth value of the whole while keeping truth values
of sentences in the blanks constant.

This leads to a test for truth functionality: We show that an operator is not truth
functional, if we come up with some situation(s) where truth values of sentences in
the blanks are the same, but the truth value of the resulting compounds are not. To
take a simple case, consider ‘John believes that ___ . If things are pretty much as
in the actual world, ‘There is a Santa’ and ‘Dogs fly’ are both false. But if John is a
small child it may be that,

CHAPTER 5. TRANSLATION 139

there is a Santa
dogs fly
T/F F

(B) John believes that

John believes there is a Santa, but knows perfectly well that dogs do not fly. So the
compound is true with one in the blank, and false with the other. Thus the truth value
of the compound is not wholly determined by the truth value of the sentence in the
blank. We have found a situation where sentences with the same truth value in the
blank result in a different truth value for the whole. Thus ‘John believes that s
not truth functional. We might make the same point with a pair of sentences that are
true, say ‘Dogs bark’ and ‘There are infinitely many prime numbers’ (be clear in your
mind about how this works).

As a second example, consider, . because ____’. Suppose ‘You are happy’,
“You understand the material’, ‘There are fish in the sea’, and “You woke up this
morning’ are all true.

You are happy b you understand the material
©) There are fish in the sea ccause you woke up this morning
T T/F T

Still, it is natural to think that the truth value of the compound, ‘You are happy because
you understand the material’ may be true, while ‘There are fish in the sea because
you woke up this morning’ is false. For perhaps understanding the material makes
you happy, but the fish in the sea have nothing to do with your waking up. Thus there
are consistent situations or stories where sentences in the blanks have the same truth
values, but the compounds do not. Thus, by the definition, * because ___ ’is
not a truth functional operator. To show that an operator is not truth functional it is
sufficient to produce some situation of this sort: where truth values for sentences in
the blanks match, but truth values for the compounds do not. Observe that in order
to meet this condition it would be sufficient to find, say, a case where sentences in
the first blank remain T, sentences in the second remain F but the value of the whole
flips from T to F. To show that an operator is not truth functional, any combination on
which the blanks remain constant but the whole flips value will do.

To show that an operator is truth functional, we need to show that no such cases
are possible. For this, we show how the truth value of what is in the blank determines
the truth value of the whole. As an example, consider first,

it is not the case that

(D) F T

T F
In this table, we represent the truth value of whatever is in the blank by the column
under the blank, and the truth value for the whole by the column under the operator.
If we put something true according to a consistent story into the blank, the resultant
compound is sure to be false according to that story. Thus, for example, in the true
story, ‘Snow is white’, ‘2+2 = 4’, and ‘Dogs bark’ are all true; correspondingly, ‘It is

CHAPTER 5. TRANSLATION 140

not the case that snow is white’, ‘It is not the case that 2+ 2 = 4’, and ‘It is not the
case that dogs bark’ are all false. Similarly, if we put something false according to a
story into the blank, the resultant compound is sure to be true according to the story.
Thus, for example, in the true story, ‘Snow is green’ and ‘2 + 2 = 3’ are both false.
Correspondingly, ‘It is not the case that snow is green’ and ‘It is not the case that
2 +2 = 3’ are both true. It is no coincidence that the above table for ‘it is not the case
that __ ’ looks like the table for ~. We will return to this point shortly.

For a second example of a truth functional operator, consider . and
This seems to have table,

>

_and
T T T
(E) T F F
F F T
F F F

Consider a situation where Bob and Sue each love themselves, but hate each other.
Then ‘Bob loves Bob and Sue loves Sue’ is true. But if at least one blank has a
sentence that is false, the compound is false. Thus in that situation, ‘Bob loves Bob
and Sue loves Bob’ is false; ‘Bob loves Sue and Sue loves Sue’ is false; and ‘Bob
loves Sue and Sue loves Bob’ is false. For a compound, * and ___ ’ to be true,
the sentences in both blanks have to be true. And if they are both true, the compound
is itself true. So the operator is truth functional. Again, it is no coincidence that the
table looks so much like the table for A. To show that an operator is truth functional,
it is sufficient to produce the table that shows how the truth values of the compound
are fixed by the truth values of the sentences in the blanks.

For an interesting sort of case, consider the operator ‘according to every consistent

story ’, and the following attempted table:
according to every consistent story
F ? T
F F

Say we put some sentence J” that is false according to a consistent story into the
blank. Then since & is false according to that very story, it is not the case that
according to every consistent story—and the compound is sure to be false. So we
fill in the bottom row under the operator as above. So far, so good. But consider
‘Dogs bark’ and ‘2 + 2 = 4’. Both are true according to the true story. But only the
second is true according to every consistent story—we can tell stories where ‘Dogs
bark’ is true and where it is false, but ‘2 +2 = 4’ is true in every consistent story. So
the compound is false with the first in the blank, true with the second. So ‘according
to every consistent story ___’ is therefore not a truth functional operator. The truth
value of the compound is not wholly determined by the truth value of the sentence in
the blank. Similarly, it is natural to think that . because __ ’ is false whenever
one of the sentences in its blanks is false. It cannot be true that because @ if not-P,

CHAPTER 5. TRANSLATION 141

and it cannot be true that J” because @ if not-@. If you are not happy, then it cannot be
that you are happy because you understand the material; and if you do not understand
the material, it cannot be that you are happy because you understand the material. So

far, then, the table for ° because > is like the table for * and .
because

T ? T
(€)) T F F

F F T

F F F
However, as we saw at (C) above, in contrast to and ’, compounds gener-
ated by ° because ’ may or may not be true when sentences in the blanks are
both true. So, although * and ’ 1s truth functional, ¢ because ’ 1S
not.

Thus the question is whether we can complete a table of the above sort: If there
is a way to complete the table, the operator is truth functional. The test to show an
operator is not truth functional simply finds some case to show that such a table cannot
be completed.

ES.1. For each of the following, (i) say whether it is simple or compound. If the
sentence is compound, (ii) use underlines to exhibit its operator structure, and (iii)
say what is its main operator.

*a. Bob likes Mary.

*b. Jim believes that Bob likes Mary.
c. Itis not the case that Bob likes Mary.

*d. Jane heard that it is not the case that Bob likes Mary.
e. Jane heard that Jim believes that it is not the case that Bob likes Mary.
f. Iron Man is strong, but it is not the case that Tony Stark is strong.

g. Iron Man fights for justice and Thor fights for justice, but it is not the case that
Thanos fights for justice.

*h. Iron Man believes that [ron Man is stronger than Hulk and Iron Man is stronger
than Hulk, but Hulk believes that Hulk is stronger than Iron Man and it is not
the case that Hulk is stronger than Iron Man.

i. Thanos believes that genocide is good, but it is not the case that genocide is
good; and Thanos is an evil being.

j. Iron Man believes that justice is good and Thor believes that justice is good,
but it is not the case that Thanos believes that justice is good.

CHAPTER 5. TRANSLATION 142

ES5.2. Which of the following operators are truth functional and which are not? If
the operator is truth functional, display the relevant table; if it is not, give cases
that flip the value of the compound, with the value in the blanks constant. Explain
your response.

*a. itis a factthat
b. Elmore believes that

*c. but__
d. according to some consistent story
e. although .,

*f. it is always the case that

g. sometimes it is the case that

h. therefore
1. however
J. either or (or both)

Definitions for Translation

DC A declarative sentence is a sentence which has a truth value.

SO A sentential operator is an expression containing “blanks” such that when the blanks
are filled with declarative sentences, the result is a declarative sentence.

CS Declarative sentences generated from other sentences by means of sentential operators
are compound; all others are simple.

MO The main operator of a compound sentence is that operator not in the blank of any
other operator.

TF A sentential operator is truth functional iff any compound generated by it has its truth
value wholly determined by the truth values of the sentences in its blanks.

To show that an operator is not truth functional it is sufficient to produce some situa-
tions where truth values for sentences in the blanks are constant, but truth values for the
compounds are not.

To show that an operator is truth functional, it is sufficient to produce the table that shows
how the truth values of the compound are fixed by truth values of the sentences in the
blanks.

CHAPTER 5. TRANSLATION 143

5.2.2 Parse Trees

We are now ready to outline a procedure for translation into our formal sentential
language. In the end, you will often be able to see how translations should go and to
write them down without going through all the official steps. However, the procedure
should get you thinking in the right direction, and remain useful for complex cases.
To translate some ordinary sentences & . .. P, the basic translation procedure is,

TP (1) Convert the ordinary & ... J, into corresponding ordinary equivalents
exposing truth functional and operator structure.

(2) Generate a “parse tree” for each of & ... &, and specify the interpretation
function Il by assigning sentence letters to sentences at the bottom nodes.

(3) Using sentence letters from Il and equivalent formal expressions, for
each parse tree construct a parallel tree to generate formal P; ... 7,
corresponding to &y

For now at least, the idea behind step (1) is simple: Sometimes all you need to do
is expose operator structure by introducing underlines. In complex cases, this can be
difficult! But we know how to do it. Sometimes, however, truth functional structure
does not lie on the surface. Ordinary sentences are equivalent when they are true
and false in exactly the same consistent stories. And we want ordinary equivalents
exposing truth functional structure. Suppose J# is a sentence of the sort,

(H) Bob is not happy

Is this a truth functional compound? Not officially. There is no declarative sentence in
the blank of a sentential operator; so it is not compound; so it is not a truth functional
compound. But one might think that (H) is short for,

(I) Itis not the case that Bob is happy

which is a truth functional compound. At least (H) and (I) are equivalent in the sense
that they are true and false in the same consistent stories. Similarly, ‘Bob and Carol
are happy’ is not a compound of the sort we have described, with declarative sentences
in the blanks of a sentential operator. However, it is a short step from this sentence to
the equivalent, ‘Bob is happy and Carol is happy’ which is an official truth functional
compound. As we shall see, in some cases, this step can be more complex. But let us
leave it at that for now.

Moving to step (2), in a parse tree we begin with sentences constructed as in step
(1). If a sentence has a truth functional main operator, then it branches downward
for the sentence(s) in its blanks. If these have truth functional main operators, they
branch for the sentences in their blanks; and so forth, until sentences are simple or
have non-truth functional main operators. Then given trees for each of P; ... %,
construct the interpretation function Il by assigning a distinct sentence letter to each
distinct sentence at a bottom node.

CHAPTER 5. TRANSLATION 144

Some simple examples should make this clear. Say we want to translate a collec-
tion of four sentences.

1. Bob is happy

2. Carol is not happy

3. Bob is healthy and Carol is not

4. Bob is happy and John believes that Carol is not healthy

The first is a simple sentence. Thus there is nothing to be done at step (1). And since
there is no main operator, there is no branching and the sentence itself is a completed
parse tree. The tree is just,

@))] Bob is happy

Insofar as the simple sentence is a complete branch of the tree, it counts as a bottom
node of its tree. It is not yet assigned a sentence letter, so we assign it one. B: Bob is
happy. We select this letter to remind us of the assignment.

As it stands, the second sentence is not a truth functional compound. Thus in the
first stage, ‘Carol is not happy’ is expanded to the equivalent, ‘It is not the case that
Carol is happy’. In this case, there is a main operator; since it is truth functional, the
tree has some structure.

It is not the case that Carol is happy

(K)
Carol is happy

The bottom node is simple, so the tree ends. ‘Carol is happy’ is not assigned a letter;
so we assign it one. C;: Carol is happy.

The third sentence is equivalent to, ‘Bob is healthy and it is not the case that Carol
is healthy’. Again, the operators are truth functional, and the result is a structured
tree.

Bob is healthy and it is not the case that Carol is healthy

T

L) Bob is healthy it is not the case that Carol is healthy

Carol is healthy

The main operator is truth functional. So there is a branch for each of the sentences in
its blanks. Observe that underlines continue to reflect the structure of these sentences
(so we “lift” the sentences from their blanks with structure intact). On the left, ‘Bob
is healthy’ has no main operator, so it does not branch. On the right, ‘it is not the

CHAPTER 5. TRANSLATION 145

case that Carol is healthy’ has a truth functional main operator, and so branches. At
bottom, we end up with ‘Bob is healthy’ and ‘Carol is healthy’. Neither has a letter,
so we assign them ones. B,: Bob is healthy; C5: Carol is healthy.

The final sentence is equivalent to, ‘Bob is happy and John believes it is not the
case that Carol is healthy’. It has a truth functional main operator. So there is a
structured tree.

Bob is happy and John believes it is not the case that Carol is healthy

(M) L

Bob is happy John believes it is not the case that Carol is healthy

On the left, ‘Bob is happy’ is simple. On the right, ‘John believes it is not the case
that Carol is healthy’ is compound. But its main operator is not truth functional. So if
does not branch. We only branch for sentences in the blanks of truth functional main
operators. Given this, we proceed in the usual way. ‘Bob is happy’ already has a letter.
The other does not; so we give it one. J: John believes it is not the case that Carol is
healthy.

And that is all. We have now compiled an interpretation function,

Il By: Bob is happy
C1: Carol is happy
B>: Bob is healthy
C,: Carol is healthy
J: John believes it is not the case that Carol is healthy

Of course, we might have chosen different letters. All that matters is that we have
a distinct letter for each distinct sentence. For any way the world can be, our inter-
pretation function yields an interpretation on which a sentence letter is true when its
assigned sentence is true in that world, and false when its assigned sentence is false.
In the last case, there is a compulsion to think that we can somehow get down to
the simple sentence ‘Carol is healthy’. But resist temptation! A non-truth functional
operator “seals off” that upon which it operates, and forces us to treat the compound as
a unit. We do not automatically assign sentence letters to simple sentences, but rather
to parts that are not truth functional compounds. Simple sentences fit this description.
But so do compounds with non-truth functional main operators.

ES5.3. Use our method to expose truth functional structure and produce parse trees
for each of the following. Use your trees to produce an interpretation function for
the sentences. Hint: Pay attention to punctuation as a guide to structure.

a. Bingo is spotted, and Spot can play bingo.

CHAPTER 5. TRANSLATION 146

b. Bingo is not spotted, and Spot cannot play bingo.
c. Bingo is spotted, and believes that Spot cannot play bingo.
*d. It is not the case that: Bingo is spotted and Spot can play bingo.

e. Itis not the case that: Bingo is not spotted and Spot cannot play bingo.

E5.4. Use our method to expose truth functional structure and produce parse trees
for each of the following. Use your trees to produce an interpretation function for
the sentences.

*a. People have rights and dogs have rights, but rocks do not.
b. It is not the case that: rocks have rights, but people do not.

c. Aliens believe that rocks have rights, but it is not the case that people believe
it.

d. Aliens landed in Roswell NM in 1947, and live underground but not in my
backyard.

e. Rocks do not have rights and aliens do not have rights, but people and dogs
do.

5.2.3 Formal Sentences

Now we are ready for step (3) of the translation procedure TP. Corresponding to
each parse tree we construct a parallel tree using the interpretation function and
then equivalent formal expressions to capture the force of ordinary truth functional
operators. An ordinary truth functional operator has a table. Similarly, our formal
expressions have tables. An ordinary truth functional operator is equivalent to some
formal expression containing blanks just in case their tables are the same. Thus
‘~_ ’isequivalent to ‘it is not the case that __ ’. They are equivalent insofar as
in each case, the whole has the opposite truth value of what is in the blank. Similarly,
) A __ ’isequivalentto * and ___ ’. In either case, when sentences in
the blanks are both T the whole is T, and in other cases, the whole is F. Of course,
the complex ‘~(__ — ~__)’ takes the same valuesasthe *_ A __ ’that
abbreviates it. So different formal expressions may be equivalent to a given ordinary
one.

To see how this works, let us return to the sample sentences from above. Again, the
idea is to generate a parallel tree. The parallel tree has exactly one node corresponding
to each node in the parse tree. We begin by using the sentence letters from our
interpretation function for the bottom nodes. The case is particularly simple when the

CHAPTER 5. TRANSLATION 147

tree has no structure. ‘Bob is happy’ has a simple unstructured tree, and we assigned
it a sentence letter directly. Thus our original and parallel trees are,

N) Bob is happy B,

So for a simple sentence, we simply read off the final translation from the interpretation
function. So much for the first sentence.

As we have seen, the second sentence is equivalent to ‘It is not the case that Carol
is happy’ with a parse tree as on the left below. We begin the parallel tree on the other
side.

It is not the case that Carol is happy
©O)
Carol is happy C,

We know how to translate the bottom node. But now we want to capture the force
of the truth functional operator with some equivalent formal expression. For this,
we need a formal expression containing blanks whose table mirrors the table for the
sentential operator in question. In this case, ‘~__’* works fine. That is, we have,

it is not the case that ~_

F T F T

T F TF
In each case, when the expression in the blank is T, the whole is F, and when the
expression in the blank is F, the whole is T. So ‘~__ ’ is sufficient as a translation
of ‘it is not the case that ’. Other formal expressions might do just as well. Thus,
for example, we might go with, ‘~~~__ ’. The table for this is the same as the
table for ‘~_ ’. But it is hard to see why we would do this with ~ so close at hand.
Now the idea is to apply the equivalent expression fo the already translated expression
from the blank. But this is easy to do. Thus we complete the parallel tree as follows:

It is not the case that Carol is happy ~Cq
Carol is happy Cy

The result is the completed translation, ~C7.

The third sentence has a parse tree as on the left below, and resultant parallel
tree as on the right. As usual, we begin with sentence letters from the interpretation
function for the bottom nodes.

CHAPTER 5. TRANSLATION 148

Bob is healthy and it is not the case that Carol is healthy (By A ~C>)
P) Bob is healthy it is not the case that Carol is healthy B, ~C;
Carol is healthy C,

Given translations for the bottom nodes, we work our way up through the tree,
applying equivalent expressions to translations already obtained. As we have seen,
a natural translation of ‘it is not the case that TS ~ ’. Thus, working up

from ‘Carol is healthy’, our parallel to ‘it is not the case that Carol is healthy’ is
~C,. But now we have translations for both of the blanksof © and __ ’. As
we have seen, this has the same table as ‘(__ A)’. So that is our translation.
Again, other expressions might do. In particular, A is an abbreviation with the same
table as ‘~(__ — ~). In each case, the whole is true when the sentences
in both blanks are true, and otherwise false. Since this is the same as for ©* and
__’,either would do as a translation. But again, the simplest thing is to go with
“(A). Thus the final result is (B2 A ~C3). With the alternate translation
for the main operator, the result would have been ~(By — ~~C»).

Our last sentence is equivalent to ‘Bob is happy and John believes it is not the
case that Carol is healthy’. Given what we have done, the parallel tree should be easy
to construct.

Bob is happy and John believes it is not the case that Carol is healthy (B, A J)

© o N\

Bob is happy John believes it is not the case that Carol is healthy B, J

Given that the tree “bottoms out” on both ‘Bob is happy’ and ‘John believes it is not
the case that Carol is healthy’ the only operator to translate is the main operator *_____
and . And we have just seen how to deal with that. The result is the completed
translation, (B; A J).

Again, once you become familiar with this procedure the full method with trees
may become tedious—and we will often want to set it to the side. But notice: the
method breeds good habits! And the method puts us in a position to translate complex
expressions, even ones that are so complex that we can barely grasp what they are
saying. Beginning with the main operator, we break expressions down from complex
parts to ones that are simpler. Then we construct translations, one operator at a time,
where each step is manageable.

Also, we should be able to see why the method results in good translations:
Consider some situation with its corresponding intended interpretation. Truth values
for basic parts are the same just by the specification of the interpretation function.

CHAPTER 5. TRANSLATION 149

And with equivalent tables, parts built out of them must be the same as well, all the
way up to the truth value of the whole. We satisfy the first part of our criterion CG
insofar as the way we break down sentences in parse trees forces us to capture all the
sentential structure there is to be captured.

For a last example, consider, ‘Bob is happy and Bob is healthy and Carol is happy
and Carol is healthy’. This is true only if ‘Bob is happy’, ‘Bob is healthy’, ‘Carol
is happy’, and ‘Carol is healthy’ are all true. But the method may apply in different
ways. We might, at step one, treat the sentence as a complex expression involving
multipleusesof © and ___ ’; perhaps something like,

(R) Bob is happy and Bob is healthy and Carol is happy and Carol is healthy

In this case, there is a straightforward move from the ordinary operators to formal
ones in the final step. That is, the situation is as follows:

Bob is happy and Bob is healthy and Carol is happy and Carol is healthy ((B; A B2) A (C1 A C3))

T T N

Bob is happy and Bob is healthy Carol is happy and Carol is healthy (B; A Bp) (C1 ACr)

/N /N /\

Bob is happy Bob is healthy Carol is happy Carol is healthy By B> C; C

So we use multiple applications of our standard caret operator. But we might have
treated the sentence as something like,

(S) Bob is happy and Bob is healthy and Carol is happy and Carol is healthy

involving a single four-blank operator, and and and ’, which
yields true only when sentences in all its blanks are true. We have not seen anything
like this before, but nothing stops a tree with four branches all at once. In this case,
we would begin,

Bob is happy and Bob is healthy and Carol is happy and Carol is healthy

T N

Bob is happy Bob is healthy Carol is happy Carol is healthy By B, C;

But now we need an equivalent formal expression with four blanks that is true when
sentences in all the blanks are true and otherwise false. Here is something that would
do: “((A) A(A))’. On either of these approaches, then, the
result is ((B; A Bz) A (Cy A Cp)). Other options might result in something like
(((B1 A B2) A C1) A C3). In this way, there is room for shifting burden between
steps one and three. Such shifting explains how step (1) can be more complex than it
was initially represented to be. Choices about expanding truth functional structure in
the initial stage may matter for what are the equivalent expressions at the end. And

CHAPTER 5. TRANSLATION 150

the case exhibits how there are options for different, equally good, translations of the
same ordinary expressions. What matters for CG is that resultant expressions capture
available structure and be true when the originals are true and false when the originals
are false. In most cases, one translation will be more natural than others, and it is
good form to strive for natural translations. If there had been a comma so that the
original sentence was, ‘Bob is happy and Bob is healthy, and Carol is happy and Carol
is healthy’ it would have been most natural to go for an account along the lines of (R).
And it is crazy to use, say, ‘~~~__ ’when ‘~__ ’ will do as well.

*E5.5. Construct parallel trees to complete the translation of the sentences from E5.3
and E5.4. Hint: You will not need any operators other than ~ and A.

E5.6. Use our method to translate each of the following. That is, for each sentence,
generate a parse tree and interpretation function, and then a parallel tree to produce
a formal equivalent.

a. Plato and Aristotle were great philosophers, but Ayn Rand was not.

b. Plato was a great philosopher and everything Plato said was true, but Ayn
Rand was not a great philosopher and not everything she said was true.

*c. Itis not the case that: everything Plato, and Aristotle, and Ayn Rand said was
true.

d. Plato was a great philosopher but not everything he said was true, and Aristotle
was a great philosopher but not everything he said was true.

e. Not everyone agrees that Ayn Rand was not a great philosopher, and not
everyone thinks that not everything she said was true.

ES5.7. Use our method to translate each of the following. That is, for each sentence,
generate a parse tree and interpretation function, and then a parallel tree to produce
a formal equivalent.

a. Bob and Sue and Jim will pass the class.

b. Sue will pass the class, but it is not the case that: Bob will pass and Jim will
pass.

c. Itis not the case that: Bob will pass the class and Sue will not.

d. Jim will not pass the class, but it is not the case that: Bob will not pass and
Sue will not pass.

e. Itis not the case that: Jim will pass and not pass; and it is not the case that:
Sue will pass and not pass.

CHAPTER 5. TRANSLATION 151

5.2.4 Not, And, Or

Our idea has been to recognize when truth conditions for ordinary and formal sentences
are the same. As we have seen, this turns out to require recognizing when tables
for ordinary operators are equivalent to ones for formal expressions. We have had
a lot to say about ‘it is not the case that > and ° and ’. We now turn
to a more general treatment. We will not be able to provide a complete menu of
ordinary operators. Rather, we will see that some uses of some ordinary operators
can appropriately be translated by our symbols. We should be able to discuss enough
cases for you to see how to approach others on a case-by-case basis. The discussion is
organized around our operators, ~, A, V, —, and <>, taken in that order.

First, as we have seen, ‘it is not the case that __ ’ has the same table as ~. And
various ordinary expressions may be equivalent to expressions involving this operator.
Thus, ‘Bob is not married” and ‘Bob is unmarried” might be understood as equivalent
to ‘It is not the case that Bob is married’. Given this, we might assign a sentence letter,
say, M to ‘Bob is married’ and translate ~M . But the second case calls for comment.
By comparison, consider, ‘Bob is unlucky’. Given what we have done, it is natural to
treat ‘Bob is unlucky’ as equivalent to ‘It is not the case that Bob is lucky’; assign L
to ‘Bob is lucky’; and translate ~L. But this is not obviously right. Consider three
situations: (i) Bob goes to Las Vegas with $1,000, and comes away with $1,000,000.
(ii) Bob goes to Las Vegas with $1,000, and comes away with $100, having seen
a show and had a good time. (iii) Bob goes to Las Vegas with $1,000, falls into a
manhole on his way into the casino, and has his money stolen by a light-fingered thief
on the way down. In the first case he is lucky; in the third, unlucky. But, in the second,
one might want to say that he was neither lucky nor unlucky.

(i) Bobis lucky
(i) Bob is neither lucky nor unlucky
(iii)) Bob is unlucky

It is not the case that Bob is lucky

If this is right, ‘Bob is unlucky’ is not equivalent to ‘It is not the case that Bob is
lucky’—for it is not the case that Bob is lucky in both situations (ii) and (iii). Thus
we might have to assign ‘Bob is lucky’ one letter, and ‘Bob is unlucky’ another.'
Decisions about this sort of thing may depend heavily on context, and assumptions
which are in the background of conversation. We will ordinarily assume contexts
where there is no “neutral” state—so that being unlucky is not being lucky, and
similarly in other cases.

Second, as we have seen, . and ____ ’ has the same table as A. As you may
recall from E5.2, another common operator that works this way is °*_ but .
Consider, for example, ‘Bob likes Mary but Mary likes Jim’. Suppose Bob does like

1Or so we have to do in the context of our logic where T and F are the only truth values. Another
option is to allow three values so that the one letter might be T, F, or neither. It is possible to proceed on
this basis—though the two valued (classical) approach has the virtue of relative simplicity. With the
classical approach as background, some such alternatives are developed in Priest, Non-Classical Logics.

CHAPTER 5. TRANSLATION 152

Mary and Mary does like Jim; then the compound sentence is true. Suppose one
of the simples is false, Bob does not like Mary or Mary does not like Jim; then the

compound is false. Thus but ” has the table,
__but_
T T T
(T) T F F
F F T
F F F

and so has the same table as A. So, in this case, we might assign B to ‘Bob likes Mary’
M to ‘Mary likes Jim’, and translate, (B A M). Of course, the ordinary expression
‘but’ carries a sense of opposition that ‘and’ does not. Our point is not that ‘and’ and
‘but’ somehow mean the same, but rather that compounds formed by means of them
have the same truth function. Another common operator with this table is ‘although
, . You should convince yourself that this is so, and be able to find other
ordinary terms that work just the same way.

Once again, however, there is room for caution in some cases. Consider, for
example, ‘Bob took a shower and got dressed’. Given what we have done, it is natural
to treat this as equivalent to ‘Bob took a shower and Bob got dressed’; assign letters
S and D; and translate (S A D). But this is not obviously right. Suppose Bob gets
dressed, but then realizes that he is late for a date and forgot to shower, so he jumps
in the shower fully clothed, and air-dries on the way. Then it is true that Bob took a
shower, and true that Bob got dressed. But is it true that Bob took a shower and got
dressed? If not—because the order is wrong—our translation (S A D) might be true
when the original sentence is not. Again, decisions about this sort of thing depend
heavily upon context and background assumptions. And there may be a distinction
between what is said and what is conversationally implied in a given context. Perhaps
what was said corresponds to the table, so that our translation is right, though there are
certain assumptions typically made in conversation that go beyond. But we need not
get into this. Our point is not that the ordinary ‘and’ always works like our operator
A; rather the point is that some (indeed, many) ordinary uses are rightly regarded as
having the same table.’

The ability to make this point is an important byproduct of our having introduced the formal
operators “as themselves.” Where A and the like are introduced as being direct translations of ordinary
operators, a natural reaction to cases of this sort—a reaction had even by some professional logicians and
philosophers—is that “the table is wrong.” But this is mistaken! Our A operator has its own significance,
which may or may not agree with the shifting meaning of ordinary terms. The situation is no different
than for translation across ordinary languages, where terms may or may not have uniform equivalents.

But now one may feel a certain tension with our account of what it is for an operator to be truth
functional—for there seem to be contexts where the truth values of sentences in the blanks do not
determine the truth value of the whole, even for a purportedly truth functional operator like °_ and
___’. However, we want to distinguish different senses in which an operator may be used (or an
ambiguity as between a bank of a river and a bank where you deposit money)—in this case between
¢ and > and ° and (then) _ ’. The first of these has the usual table, but the second is not

CHAPTER 5. TRANSLATION 153

The operator which is most naturally associated with Vis . or ___ ’. In this
case, there is room for caution from the start. Consider first a restaurant menu which
says that you will get soup or you will get salad with your dinner. This is naturally
understood as ‘You will get soup or you will get salad” where the sentential operator

3

is or ’. In this case, the table would seem to be,

U)

'n'n—|—|‘
MmN~ Te
-n—|-r|—|‘

The compound is true if you get soup, true if you get salad, but not if you get neither
or both. None of our operators has this table.

But contrast this case with one where a professor promises either to give you an
‘A’ on a paper, or to give you very good comments so that you will know what went
wrong. Suppose the professor gets excited about your paper, giving you both an ‘A’
and comments. Presumably, she did not break her promise! That is, in this case, we
seem to have, ‘I will give you an ‘A’ or I will give you comments’ with the table,

or

V)

'I'I—i—l‘
—|'r|—|‘

T
T
T
F FF

The professor breaks her word just in case she gives you a low grade without comments.
This table is identical to the table for Vv. For another case, suppose you set out to buy
a power saw, and say to your friend ‘I will go to Home Depot or I will go Lowe’s’.
You go to Home Depot, do not find what you want, so go to Lowe’s and make your
purchase. When your friend later asks where you went, and you say you went to both,
he or she will not say you lied (!) when you said where you were going—for your

statement required only that you would try at least one of those places.

The grading and shopping cases represent the so-called “inclusive” use of ‘or’—
including the case when both components are T; the menu uses the “exclusive” use
of ‘or’—excluding the case when both are T. Ordinarily, we will assume that ‘or’
is used in its inclusive sense, and so is translated directly by V.> Another operator
that works this way is . unless ___ ’. Again, there are exclusive and inclusive
senses—which you should be able to see by considering restaurant and shopping
examples: ‘You will get soup unless you will get salad’ and ‘I will go to Home Depot

truth functional at all. Again, we will ordinarily assume a context where ‘and’, ‘but’, and the like have
tables that correspond to A.

3 Again, there may be a distinction between what is said and what is conversationally implied in a
given context. Perhaps what is said generally corresponds to the inclusive table, though many uses are
against background assumptions which automatically exclude the case when both are T. But we need
not get into this. It is enough that some uses are according to the inclusive table.

CHAPTER 5. TRANSLATION 154

unless I will go to Lowe’s’. And again, we will ordinarily assume that the inclusive
sense is intended. For the exclusive cases, we can generate the table by means of
complex expressions. Thus, for example ~($ <> @) does the job. You should
convince yourself that this is so.

Observe that ‘either _ or _ ’ has the same table as * or ’; and
‘both and _ ’thesameas‘ and __ ’. So one might think that ‘either’
and ‘both’ play no real role. They do however serve a sort of “bracketing” function:
Consider ‘Neither Bob likes Sue nor Sue likes Bob’. This is naturally understood

as, ‘It is not the case that either Bob likes Sue or Sue likes Bob’ with translation
~(B Vv §). Observe that this division is required: An attempt to parse it to ‘It is not
the case that either Bob likes Sue or Sue like Bob’ results in the fragment ‘either Bob
likes Sue’ in the blank for ‘it is not the case that _ ’. There would be an ambiguity
about the main operator if ‘either’ were missing; but with it there, the only way to
keep complete sentences in the blanks is to make ‘it is not the case that ____’ the
main operator. Similarly, ‘Not both Bob likes Sue and Sue likes Bob’ comes to ‘It is
not the case that both Bob likes Sue and Sue likes Bob’ with translation ~(B A S).
There would be an ambiguity about the main operator if ‘both’ were missing; but with
it there, the only way to keep complete sentences in the blanks is to make ‘it is not the
case that __ ’ the main operator.

And we continue to work with complex forms on trees. Thus, for example,
consider ‘Neither Bob likes Sue nor Sue likes Bob, but Sue likes Jim unless Jim likes
Mary’. This is a mouthful, but we can deal with it in the usual way. The hard part,
perhaps, is just exposing the operator structure.

It is not the case that either Bob likes Sue or Sue likes Bob but Sue likes Jim unless Jim likes Mary

//\

It is not the case that either Bob likes Sue or Sue likes Bob Sue likes Jim unless Jim likes Mary
either Bob likes Sue or Sue likes Bob Sue likes Jim Jim likes Mary
Bob likes Sue Sue likes Bob

Given this, with what we have said above, generate the interpretation function and
then the parallel tree as follows:

CHAPTER 5. TRANSLATION 155

‘Neither nor’ and ‘Not both’

We have given accounts of ‘neither nor > and ‘not both and ’
which treat them as combining ordinary negation with conjunction or disjunction.
However, it is possible to see them as unstructured ordinary operators.

So, for example, we might treat ‘neither nor > as an unstructured senten-
tial operator with a table as in (W) below.
neither _ nor__ P (Q‘w(fP v @)
F T T TTIFTTT
W) F T F X) TFIFTTF
F F T FTIFFTT
T F F FF|ITFFF

Thus ‘Neither Bob likes Sue nor Sue likes Bob’ is true just when ‘Bob likes Sue’
and ‘Sue likes Bob’ are both false, and otherwise the compound is false. No
operator of our formal language has a table which is T just when the components
are both F. Still, we may form complex expressions which work this way. So from
(X), ~(# Vv @) has the same table. In this case, with the natural interpretation
function, the parse and parallel trees are,

Neither Bob likes Sue nor Sue likes Bob ~(BVS)
Bob likes Sue Sue likes Bob B S

As usual, there is one node in the parallel tree for each node in the parse tree.
Effectively, this strategy unpacks ‘neither _ nor ___ ’ in the third stage of TP
rather than the first. Though the resultant tree has a different shape than a tree from
the account of the main text, the result is the same. Another expression with the
same table is ~% A ~@. Either is a good translation of ‘neither nor
conceived as an unstructured operator.

Similarly we might treat ‘not both _ and __ ’ as an unstructured sentential
operator whose table is F just when the components are both T. Again, no operator
of our formal language works this way. But we may form complex expressions that
do the job. So, as from the main discussion, ~(& A @) has the same table. Another
expression that works this way is ~P Vv ~@.

Observe that ~(&P Vv @) for ‘neither nor’ has the same table as ~# A ~@; and
~(P A @) for ‘not both’ the same as ~P v ~@Q. It is thus a mistake to “distribute”
the tilde of ~(P Vv @) to ~P v ~@—this changes from ‘neither nor’ to ‘not both’.
Similarly it is a mistake to distribute the tilde of ~(# A @) to ~P A ~@—this
changes from ‘not both’ to ‘neither nor’. Rather, to preserve equivalence, when ~
goes into a disjunction, V flips to A; and when ~ goes into a conjunction, A flips
to V.

Choices among structured and unstructured approaches to ‘not both’ and ‘neither
nor’ are a matter of taste rather than correctness.

CHAPTER 5. TRANSLATION 156

~BVS)YANJ VM)

B: Bob likes Sue /\

. ~(BVS) (JVvM)
S: Sue likes Bob ‘ /\
J: Sue likes Jim
BvS J M
M: Jim likes Mary /\
B S
Given that ‘or’ and ‘unless’ are equivalent to \ ’, everything works as

before. Again, the complex problem is rendered simple if we attack it one operator at
a time.

E5.8. Using the interpretation function below, produce parse trees and then parallel
ones to complete the translation for each of the following.

B: Bob likes Sue
S: Sue likes Bob
Bi: Bobis cool

S1: Sue is cool

a. Bob likes Sue.
b. Sue does not like Bob.
c. Bob likes Sue and Sue likes Bob.
d. Bob likes Sue or Sue likes Bob.
e. Bob likes Sue unless she is not cool.
*f. Either Bob does not like Sue or Sue does not like Bob.
g. Neither Bob likes Sue, nor Sue likes Bob.
*h. Not both Bob and Sue are cool.
*1. Bob and Sue are cool, and Bob likes Sue but Sue does not like Bob.

j. Although neither Bob nor Sue are cool, either Bob likes Sue or Sue likes Bob.

E5.9. Use our method to translate each of the following. That is, for each sentence,
generate a parse tree and interpretation function, and then a parallel tree to produce
a formal equivalent.

CHAPTER 5. TRANSLATION 157

a. Charlie is not good at baseball.

b. Either Snoopy or Patty is good at baseball.

c. Neither Charlie nor Lucy is good at baseball.
*d. Neither Charlie, nor Lucy, nor Woodstock is good at baseball.

e. Not both Charlie and Snoopy are good at baseball.

f. The team will lose unless Patty plays for them.

g. Charlie is not the best baseball player, however he wishes that he was.
*h. Although guns and knives are illegal in baseball, sliding is not.

i. Either Schroeder wears his mask or his face is not protected, and a pitch to the
face hurts.

j- The Boston Red Sox won the World Series in 2018, but not in 2019, 2020,
2021, or 2022.

5.2.5 If, Iff

The operator which is most naturally associated with — is ‘if _ then .
Consider some fellow, perhaps of less than sterling character, of whom we assert, ‘If
he loves her, then she is rich’—that is, ‘If he loves her, then she is rich’. In this case,
the table begins,

if then_
T T 7

(Z) T F F
F 2 T
F T F

If ‘He loves her’ and ‘She is rich’ are both true, then what we said about him is true.
If he loves her, but she is not rich, what we said was wrong. If he does not love her,
and she is poor, then we are also fine, for all we said was that if he loves her, then she
is rich. But what about the other case? Suppose he does not love her, but she is rich.
There is a temptation to say that our conditional assertion is false. But do not give
in! Notice: we did not say that he loves all the rich girls. All we said was that if he
loves this particular girl, then she is rich. So the existence of rich girls he does not
love does not undercut our claim. For another case, say you are trying to find the car
he is driving and say ‘If he is in his own car, then it is a Corvette’—that is, ‘If he is
in his own car then he is in a Corvette’. You would be mistaken if he has traded his
Corvette for a Yugo. But say the Corvette is in the shop and he is driving a loaner
that also happens to be a Corvette. Then ‘He is in his own car’ is F and ‘He is in a
Corvette’ is T. Still, there is nothing wrong with your claim—:if he is in his own car,
then he is in a Corvette. Given this, we are left with the completed table,

CHAPTER 5. TRANSLATION 158
if then

T
(AA) T
F

N~TH

=
F
T

F F

which is identical to the table for —. With L for ‘He loves her’ and R for ‘She is
rich’, for ‘If he loves her then she is rich’ the natural translation is (L — R). Another
operator which works this wayis * onlyif . You should be able to see this
with examples as above: ‘He loves her only if she is rich’ and ‘He is in his own car
only if he is in a Corvette’. So far, perhaps, so good.

But the conditional calls for special comment. First, notice that the table shifts
with the position of ‘if’. Suppose he loves her if she is rich. Intuitively, ‘He loves her
if she is rich’ says the same as ‘If she is rich then he loves her’. Thus, with the above
table and assignments, we end up with translation (R — L). Notice that the order is
switched around the arrow. This time, we are mistaken if she is rich and he does not
love her. We can make this point directly from the original claim.

He loves her if she is rich

T T T
(AB) T T F
F F T
F T F

The claim is false just in the case where she is rich but he does not love her. The result
is not the same as the table for —. What we need is an expression that is F in the case
when R is T and L is F, and otherwise T. We get just this with (R — L). Of course,
this is just the same result as by intuitively reversing the operator into the regular ‘if
~ then __ ’ form.

In the formal language, the order of the components is crucial. In a true material
conditional, the truth of the antecedent guarantees the truth of the consequent. In
ordinary language this role is played, not by the order of the components, but by
operator placement. In general, if by itself is an antecedent indicator; and only if is a
consequent indicator. That is, we get,

ifPthen@ — (P — Q)
Pif Q = (@ —P)
Ponlyif@ — (£ —Q)
onlyif ?,@ — (Q@—P)

(AC)

‘If, taken alone, identifies what does the guaranteeing, and so the antecedent of our
material conditional; ‘only if” identifies what is guaranteed, and so the consequent.*

It may feel natural to convert ‘% unless @’ to ‘% if not @’ and translate (~Q —). This is fine
and, as is clear from the abbreviated form, equivalent to (€ Vv #). However, with the extra negation and
concern about direction of the arrow, it is easy to get confused on this approach—so the simple wedge is
less likely to go wrong.

CHAPTER 5. TRANSLATION 159

Cause and Conditional

It is important that the material conditional does not directly indicate causal con-
nection. Suppose we have sentences,

S: You strike the match
L: The match will light.

And consider,

(1) If you strike the match then it will light S —>L
(i) The match will light only if you strike it L—>S

with natural translations by our method on the right. Good. But clearly the cause
of the lighting is the striking. So the first arrow runs from cause to effect, and the
second from effect to cause. Why? In (i) we represent the cause as sufficient for
the effect: striking the match guarantees that it will light. In (ii) we represent the
cause as necessary for the effect—the only way to get the match to light, is to strike
it—so if the match lights, it was struck.

There may be a certain fendency to associate the ordinary ‘if” and ‘only if” with
cause, so that we say, ‘if J” then @’ when we think of & as a (sufficient) cause of
@, and say ‘% only if @ when we think of @ as a (necessary) cause of #. But
causal direction is not reflected by the arrow, which comes out ($ — @) either
way. The material conditional indicates guarantee.

This point is important insofar as certain ordinary conditionals seem inextricably
tied to causation. This is particularly the case with “subjunctive” conditionals
(conditionals about what would have been). Suppose after a game of one-on-one
basketball I brag, ‘If I had played LeBron, I would have won’ where this is,

‘If it were the case that I played LeBron then it would have been that I won the game’.
Intuitively, this is false, LeBron would wipe the floor with me. But contrast,
‘If it were the case that I played Lassie then it would have been that I won the game’.

Now, intuitively, this is true; Lassie has many talents but, presumably, basketball is
not among them—and I could take her. But I have never played LeBron or Lassie,
so both ‘I played LeBron’ and ‘I played Lassie’ are false. Thus the truth value of
the whole conditional changes from false to true though the values of sentences in
the blanks remain the same; and ‘if it were the case that _ then it would have
been that _ ’is not even truth functional. Subjunctive conditionals do offer a sort
of guarantee, but the guarantee is for situations alternate to the way things actually
are. So actual truth values do not determine the truth of the conditional.

Conditionals other than the material conditional are a central theme of Priest, Non-
Classical Logics. As usual, we simply assume that ‘if” and ‘only if” are used in
their truth functional sense, and so are given a good translation by —.

CHAPTER 5. TRANSLATION 160

As we have just seen, the natural translation of ‘% if @ is @ — %, and the
translation of ‘% only if @ is » — @. Thus it should come as no surprise that the
translation of ‘% if and only if @’ is (P — @) A (@ — &), where this is precisely
what is abbreviated by (£ <> @). We can also make this point directly. Consider,
‘He loves her if and only if she is rich’. The operator is truth functional with the table,

He loves her if and only if she is rich

T T T
(AD) T F F
F F T
F T F

It cannot be that he loves her and she is not rich, because he loves her only if she is
rich; so the second row is F. And it cannot be that she is rich and he does not love her,
because he loves her if she is rich; so the third row is F. The biconditional is true just
when both she is rich and he loves her, or neither. Another operator that works this
wayis °__ justin case ”. You should convince yourself that this is so. Notice
that ‘if’, ‘only if’, and ‘if and only if’ play very different roles for translation—you
almost want to think of them as completely different words: if, onlyif, and ifandonlyif,
each with its own distinctive logical role. Do not get the different roles confused!

For an example that puts some of this together consider, ‘She is rich if he loves
her, if and only if he is a cad or very generous’. This comes to the following:

She is rich if he loves her if and only if he is a cad or he is very generous

/\

(AE) She is rich if he loves her he is a cad or he is very generous
She is rich he loves her he is a cad he is very generous

We begin by assigning sentence letters to the simple sentences at the bottom. Then
the parallel tree is constructed as follows:

(L — R) < (C Vv G))

R: She is rich
L: He loves her /\

(L = R) (C Vv G)
C: Heisacad /\ /\
G: He is very generous R L C G

Observe that ‘She is rich if he loves her’ is equivalent to (L. — R), not the other way
around. Then the wedge translates or ’, and the main operator has the
same table as <.

Notice again that our procedure for translating, one operator or part at a time, lets
us translate even where the original is so complex that it is difficult to comprehend.

CHAPTER 5. TRANSLATION 161

The method forces us to capture all available sentential structure, and the resultant
translation is good insofar as, given its interpretation function, a formal sentence
comes out true on precisely the intended interpretations that correspond to stories
on which the original is true. It does this because the formal and informal sentences
work the same way. Eventually, you want to be able to work translations without the
trees. (And maybe you have already begun to do so.) In fact, it will be natural to
generate translations simultaneously with a (mental) parse tree. The result produces
translations from the top down, rather than from the bottom up, building the translation
operator-by-operator as you take the sentence apart from the main operator down. But,
of course, the result should be the same no matter how you do it.

From definition AR on page 5, an argument is some sentences, one of which (the
conclusion) is taken to be supported by the remaining sentences (the premises). In
some courses on logic or critical reasoning, one might spend a great deal of time
learning to identify premises and conclusions in ordinary discourse. However, we
have taken this much as given, representing arguments in standard form, with premises
listed as complete sentences above a line, and the conclusion under. Thus, for example,

If you strike the match, then it will light
(AF) The match will not light

You did not strike the match

is a simple argument of the sort we might have encountered in Chapter 1. By the
Chapter 1 validity test VT, this argument is logically valid.

We get the same result by our formal methods: To translate the argument, we
produce a translation for the premises and conclusion, retaining the “standard-form”
structure. Thus we might end up with an interpretation function and translation as
below,

S': You strike the match S—>L
(AG) ~L
L: The match will light S—

The result is an object to which we can apply truth tables and derivations in a straight-
forward way. Thus by a truth table and (Chapter 3) derivation,

LS|S—>L ~L/~S§ . S—L prem
TT| T F F 2. ~L prem
(AH) TF| T F T 3. (S—>L)—> (~L—>~8) T3.13
FT| F T F 4. ~L > ~S 3,1 MP
FF| T T T 5. ~S 4,2 MP
both S - L,~L K ~Sand § — L,~L I, ~S. If you have not yet seen

derivations, do not worry about it for now.
And these results are just what we want. For the table, recall that (i) for any way
a world (consistent story) can be, an interpretation function results in an intended

CHAPTER 5. TRANSLATION 162

interpretation; and (ii) on a good translation, the truth value of an ordinary sentence at
an arbitrary world is the same as its formal counterpart on the corresponding intended
interpretation. For some good formal translation of premises and conclusion: Suppose
an argument is sententially valid; then by SV there is no interpretation on which the
premises are true and the conclusion is false; so no infended interpretation from (i)
makes the premises true and the conclusion is false; so with (ii) no consistent story
makes the premises true and conclusion false; so by LV the original argument is
logically valid. So if an argument is sententially valid, then it is logically valid. We
will make this point again, in some detail, in Part I11.° For now, notice that our formal
methods, derivations and truth tables, apply to arguments of arbitrary complexity. So
we are in a position to demonstrate validity for arguments that would have set us on
our heels in Chapter 1. With this in mind, consider again the butler case (B) from
page 2. Demonstration that the argument is logically valid is entirely straightforward
by a good translation and then a truth table to demonstrate semantic validity.

E5.10. Using the interpretation function below, produce parse trees and then parallel
ones to complete the translation for each of the following.

L: Lassie barks

T: Timmy is in trouble
P: Pa will help

H: Lassie is healthy

a. If Timmy is in trouble, then Lassie barks.

b. Timmy is in trouble if Lassie barks.
*c. Lassie barks only if Timmy is in trouble.

d. If Timmy is in trouble and Lassie barks, then Pa will help.
*e. If Timmy is in trouble, then if Lassie barks Pa will help.

f. If Pa will help only if Lassie barks, then Pa will help if and only if Timmy is
in trouble.

g. Pa will help if Lassie barks, just in case Lassie barks only if Timmy is in
trouble.

h. If Timmy is in trouble and Pa will not help, then Lassie is not healthy or does
not bark.

i. If Timmy is in trouble, then either Lassie is not healthy or if Lassie barks then
Pa will help.

5 And it remains for Part I1I to show how derivations matter for logical validity.

CHAPTER 5. TRANSLATION 163

i

E5.11.

If Lassie neither barks nor is healthy, then Timmy is in trouble if Pa will not
help.

Use our method, with or without parse trees, to produce a translation, including

interpretation function for the following.

a.

b.

E5.12.

If animals feel pain, then animals have intrinsic value.

Animals have intrinsic value only if they feel pain.

. Although animals feel pain, vegetarianism is not right.

Animals do not have intrinsic value unless vegetarianism is not right.

Vegetarianism is not right only if animals do not feel pain or do not have
intrinsic value.

If you think animals feel pain, then vegetarianism is right.
If you think animals do not feel pain, then vegetarianism is not right.

If animals feel pain, then if animals have intrinsic value if they feel pain, then
animals have intrinsic value.

*1. Vegetarianism is right only if both animals feel pain, and animals have intrinsic

value just in case they feel pain; but it is not the case that animals have intrinsic
value just in case they feel pain.

. If animals do not feel pain if and only if you think animals do not feel pain,

but you do think animals feel pain, then you do not think that animals feel
pain.

For each of the following arguments: (i) Produce a good translation, including

interpretation function and translations for the premises and conclusion. Then (i1)
use truth tables to determine whether the argument is sententially valid.

*a.

b.

C.

Our car will not run unless it has gasoline
Our car has gasoline

Our car will run

If Barack is president, then Michelle is first lady
Michelle is not first lady

Barack is not president

Snow is white and snow is not white

Dogs can fly

CHAPTER 5. TRANSLATION 164

d. If Mustard murdered Boddy, then it happened in the library.
The weapon was the pipe if and only if it did not happen in the library, and the
weapon was not the pipe only if Mustard murdered him.

Mustard murdered Boddy.

e. There is evil.
If god is good, there is no evil unless god has morally sufficient reasons for
allowing it.
If god is omnipotent, then god does not have morally sufficient reasons for
allowing evil.

God is not both good and omnipotent.

ES5.13. For those who have studied derivations from at least the sentential portion of
Chapter 3 or Chapter 6: For each of the arguments of E5.12 that is sententially
valid, show that it is also valid in ADs or NDs+, whichever is appropriate.

E5.14. Use a translation and truth table to show that the butler argument (B) from
page 2 is semantically valid.

E5.15. For each of the following concepts, explain in an essay of about two pages,
so that (high-school age) Hannah could understand. In your essay, you should
(i) identify the objects to which the concept applies, (ii) give and explain the
definition, and give and explicate examples of your own construction (iii) where
the concept applies, and (iv) where it does not. Your essay should exhibit an
understanding of methods from the text.

a. Good translations.
b. Truth functional operators.

c. Parse trees, interpretation functions and parallel trees.

5.3 Quantificational

It is not surprising that our goals for the quantificational case remain very much as in
the sentential one. We still want to produce translations—consisting of interpretation
functions and formal sentences—which capture available structure, making a formal
P’ true at intended interpretation ll,, just when the corresponding ordinary J is true
at story w. We do this as before, by assuring that the various parts of the ordinary
and formal languages work the same way. Of course, now we are interested in

CHAPTER 5. TRANSLATION 165

capturing quantificational structure, and the interpretation and formal sentences are
for quantificational languages.

In the last section, we developed a recipe for translating from ordinary language
into sentential expressions, associating particular bits of ordinary language with
various formal symbols. We might proceed in very much the same way here, moving
from our notion of truth functional operators, to that of extensional terms, relation
symbols, and operators. Roughly, an ordinary term is extensional when the satisfaction
of a formula in which it appears depends just on the object to which it refers; an
ordinary relation symbol is extensional when the satisfaction of a formula in which
it appears depends just on the objects to which it applies; and an ordinary operator
is extensional when the satisfaction of a formula in which it appears depends just on
the satisfaction of expressions which appear in its blanks. Clearly the notion of an
extensional operator at least is closely related to that of a truth functional operator.
Extensional terms, relation symbols, and operators in ordinary language work very
much like corresponding ones in a formal quantificational language—where, again,
the idea would be to identify bits of ordinary language which contribute to truth values
in the same way as corresponding parts of the formal language.

However, in the quantificational case, there is no simple recipe for translation. It is
best to work directly with the fundamental goal of producing formal translations that
are true in the same situations as ordinary expressions. To be sure, certain patterns
and strategies will emerge but, again, we should think of what we are doing less as
applying a recipe than as directly using our understanding of what makes ordinary
and formal sentences true to produce good translations. With this in mind, let us
move directly to sample cases, beginning with those that are relatively simple, and
advancing to ones that are more complex.

5.3.1 Elementary Sentences

First, sentences without quantifiers work very much as in the sentential case. Consider
a simple example. Say we are confronted with ‘Bob is happy’. We might begin, as in
the sentential case, with the interpretation function,

B: Bob is happy

and use B for ‘Bob is happy’, ~ B for ‘Bob is not happy’, and so forth. But this is to ig-
nore structure we are now capable of capturing. Thus, in our standard quantificational
language &4, we might let U be the set of all people, and set,

b: Bob
H': {o]o € Uand ois happy}

Then we can use H b for ‘Bob is happy’, ~H b for ‘Bob is not happy’, and so forth.
If Il assigns Bob to b, and the set of happy people to H, then Hb is satisfied and

CHAPTER 5. TRANSLATION 166

true on ll, just in case Bob is happy at w—which is just what we want. Similarly
suppose we are confronted with ‘Bob’s father is happy’. In the sentential case, we
might have tried, F': Bob’s father is happy. But this is to miss structure available to
us now. So we might consider assigning a constant d to Bob’s father and going with
Hd as above. But this also misses available structure. In this case, we can expand the
interpretation function to include,

f1: {{(m,n) |m,n € Uand n is the father of m}

Then for any variable assignment d, lg[b] = Bob and l4[f 1 5] is Bob’s father. So H f b
is satisfied and true just in case Bob’s father is happy. ~H f b is satisfied just in
case Bob’s father is not happy, and so forth—which is just what we want. In these
cases without quantifiers, once we have translated simple sentences, everything else
proceeds as in the sentential case. Thus, for example, for ‘Neither Bob nor his father
is happy’ we might offer, ~(Hb v Hf'b).

The situation gets more interesting when we add quantifiers. We will begin with
cases where a quantifier’s scope includes neither binary operators nor other quantifiers,
and gradually increase complexity. Consider the following interpretation function:

Il U: {o|oisadog}
f1: {{m,n) | m,n € Uand n is the father of m}
W1: {o]o € U and o will have its day}

We assume that there is some definite content to a dog’s having its day, and that every
dog has a father—if a dog “Adam” has no father at all, we will not have specified a
legitimate interpretation. (Why?) Say we want to translate the following sentences:

(1) Every dog will have its day

(2) Some dog will have its day

(3) Some dog will not have its day
(4) No dog will have its day

Assume ‘some’ means ‘at least one’. The first sentence is straightforward. VxWx is
read, ‘for any x, Wx’; it is true just in case every dog will have its day. Suppose I, is
an interpretation | where the elements of U are m, n, and so forth. Then the tree is as
follows:

CHAPTER 5. TRANSLATION 167

1 2 3
Id(x\m)[Wx] L lm
(Al lacem V] -)
lg[VxW.
M Vx - one branch for each
member of U

The formula at (1) is satisfied just in case each of the branches at (2) is satisfied. But
this can be the case only if each member of U is in the interpretation of W—which
given our interpretation function, can only be the case if each dog will have its day. If
even one dog does not have its day, then YxWx is not satisfied, and is not true.

The second case is also straightforward. 3xWx is read, ‘there is an x such that
Wx’; it is true just in case some dog will have its day.

1 2 3
laem) W2)
(AJ) laem V])
lg[@xW
M Jx -4 one branch for each
member of U

The formula at (1) is satisfied just in case at least one of the branches at (2) is satisfied.
But this can be the case only if some member of U is in the interpretation of W —which,
given the interpretation function, is to say that some dog will have its day.

The next two cases are only slightly more difficult. Ix~Wx is read, ‘there is an x
such that not Wx’; it is true just in case some dog will not have its day.

1 2 3 4
laejm) INWRT - e m) [WY])

(AK) laeeim [~Wx] - g [W] Il

lg[@x~W
M Jx 4 one branch for each

member of U

The formula at (1) is satisfied just in case at least one of the branches at (2) is satisfied.
And a branch at (2) is satisfied just in case the corresponding branch at (3) is not
satisfied. So Ix~Wx is satisfied and true just in case some member of U is not in the
interpretation of W—just in case some dog does not have its day.

The last case is similar. Yx~Wx is read, ‘for any x, not Wx’; it is true just in
case every dog does not have its day.

CHAPTER 5. TRANSLATION 168

1 2 3 4
locelm W] laGem V] - g
(AL) b W] e
Ig[Vx~W.
M Vx 4 one branch for each
member of U

The formula at (1) is satisfied just in case all of the branches at (2) are satisfied. And
this is so just in case none of the branches at (3) are satisfied. So Vx~Wx is satisfied
and true just in case none of the members of U are in the interpretation of W—just in
case no dog has its day.

Perhaps it has already occurred to you that there are other ways to translate
these sentences. The following lists what we have done, with “quantifier switching’
alternatives on the right:

bl

Every dog will have its day VxWx ~Ix~Wx
(AM) Some dog will have its day IxWx ~Vx~Wx

Some dog will not have its day Ix~Wx ~VxWx

No dog will have its day Vx~Wx ~IxWx

There are different ways to think about these alternatives. First, in ordinary language,
beginning from the bottom, no dog will have its day just in case not even one dog
does. Similarly, moving up the list, some dog will not have its day just in case not
every dog does. Some dog will have its day just in case not every dog does not. And
every dog will have its day iff not even one dog does not. These equivalences may be
difficult to absorb at first but, if you think about them, each should make sense.

Next, we might think about the alternatives purely in terms of abbreviations.
Notice that, in a tree, ly[~~&] is always the same as l4[&P]—the tildes “cancel each
other out.” But then, in the top case, ~3x~Wx abbreviates ~~Vx~~Wx which is
satisfied just in case Vx Wx is satisfied. In the second case, 3x Wx directly abbreviates
~Vx~Wx. In the third, 3x~Wx abbreviates ~Vx~~Wx which is satisfied just in
case ~VxWx is satisfied. And, in the last case, ~3IxWx abbreviates ~~Vx~Wx,
which is satisfied just in case Vx~Wx is satisfied. So, again, the alternatives are true
under just the same conditions.

Finally, we might think about the alternatives directly, based on their branch
conditions. Taking just the last case,

CHAPTER 5. TRANSLATION 169

1 2 3 +
laeem (WX] - g
. el
la[~3 la[3
d[~3xWx] - lg[3xWx] Jx 4 one branch for each
member of U

The formula at (1) is satisfied just in case the formula at (2) is not. But the formula
at (2) is not satisfied just in case none of the branches at (3) is satisfied—and this
can only happen if no dog is in the interpretation of W, where this is as it should be
for ‘No dog will have its day’. In practice, there is no reason to prefer Vx~J over
~3JxP—the choice is purely a matter of taste. It would be less natural to use, say,
~Jx~F in place of Vx I, or ~Vx~P in place of IxP. And it is a matter of good
form to pursue translations that are natural. At any rate, all of the options satisfy CG.
(But notice that we leave further room for alternatives among good answers, thus
complicating comparisons with, for example, the Answers to Selected Exercises.)

Observe that variables are mere placeholders for these expressions so that choice
of variables also does not matter. Thus, in tree (AN) immediately above, the formula
is true just in case no dog is in the interpretation of W. But we get the exact same
result if the variable is y.

1 2 3 4
lagpim VYT m
(AO) laom WYL
lg[~IyW la[Fy W
a[~3y Wyl ~ a3y Wyl dy 4 one branch for each
member of U

In either case, what matters in the end is whether the objects are in the interpretation
of the relation symbol: whether m € I[W], and so forth. If none are, then the formulas
are satisfied. Thus the formulas are satisfied under exactly the same conditions. And
since one is satisfied iff the other is satisfied, one is a good translation iff the other is.
So the choice of variables is up to you.

Given all this, we continue to treat truth functional operators as before—and we
can continue to use underlines to expose truth functional structure. The difference
is that what we would have seen as “simple” sentences have structure we were not
able to expose before. So, for example, ‘Either every dog will have its day or no
dog will have its day’ gets translation, VxWx v Vx~Wx; ‘Some dog will have its
day and some dog will not have its day’, gets, IxWx A Ix~Wx; and so forth. If
we want to say that some dog is such that its father will have his day, we might try
Ix W f 1 x—there is an x such that the father of it will have its day.

https://tonyroyphilosophy.net/symbolic-logic/

CHAPTER 5. TRANSLATION 170

ES.16. Given the following partial interpretation function for &4, complete the trans-
lation for each of the following. Assume Phil 300 is a logic class with Ninfa and
Harold as members in which each student is associated with a unique homework
partner.

U: {o| ois a student in Phil 300}
a: Ninfa

h: Harold

p': {{(m,n) | m,n € Uand n is the homework partner of m}

G!': {o|o € Uand o gets a good grade}
H?: {{m,n) |m,n € Uand m gets a higher grade than n}

*a. Ninfa and Harold both get a good grade.
b. Ninfa gets a good grade, but her homework partner does not.
c. Ninfa gets a good grade only if both her homework partner and Harold do.
d. Harold gets a higher grade than Ninfa.

*e. If Harold gets a higher grade than Ninfa, then he gets a higher grade than her
homework partner.

f. Nobody gets a good grade.

*g. If someone gets a good grade, then Ninfa’s homework partner does.
h. If Ninfa does not get a good grade, then nobody does.

*1. Nobody gets a grade higher than their own grade.

j- If no one gets a higher grade than Harold, then no one gets a good grade.

E5.17. Produce a good quantificational translation for each of the following. In this
case you should provide a single interpretation function with application to all the
sentences. Let U be the set of famous philosophers and, assuming that each has a
unique successor, implement a successor function.

a. Plato is a good philosopher.
*b. Plato is better than Aristotle.

c. Neither Plato is better than Aristotle, nor Aristotle is better than Plato.
*d. If Plato is good, then his successor and successor’s successor are good.

e. No philosopher is better than his successor.

CHAPTER 5. TRANSLATION 171

f. Not every philosopher is better than Plato.

g. If all philosophers are good, then Plato and Aristotle are good.

h. If neither Plato nor his successor are good, then no philosopher is good.
*1. If some philosopher is better than Plato, then Aristotle is.

j. If every philosopher is better than his successor, then no philosopher is better
than Plato.

E5.18. On page 168 we say that we may show directly, based on branch conditions,
that the alternatives of table (AM) have the same truth conditions, but show it only
for the last case. Use trees to demonstrate that the other alternatives are true under
the same conditions. Be sure to explain how your trees have the desired results.

5.3.2 Complex Quantifications

With a small change to our interpretation function, we introduce a new sort of com-
plexity into our translations. Suppose U includes not just all dogs, but all physical
objects, so that our interpretation function Il has,

Il U: {o] ois a physical object}
W1: {o|o € U and o will have its day}
D': {o]o € Uandoisadog}

Thus the universe includes more than dogs, and D is a relation symbol with application
to dogs. We set out to translate the same sentences as before.°

(1) Every dog will have its day

(2) Some dog will have its day

(3) Some dog will not have its day
(4) No dog will have its day

This time, VxWx does not say that every dog will have its day. Vx Wx is true just
in case everything in U, dogs along with everything else, will have its day. So it might
be that every dog will have its day even though something else, for example my left
sock, does not. So YxWx is not a good translation of ‘Every dog will have its day’.

6Sentences of the sort, ‘all & are @, ‘no P are @’, ‘some P are @’, and ‘some S are not @’ are,
in a tradition reaching back to Aristotle, often associated with a “square of opposition” and called A4,
E, I, and O sentences (see, for example, Chapter 4 of Hurley, A Concise Introduction to Logic). In
a context with the full flexibility of quantifier languages, there is little point to the special treatment,
insofar as our methods apply to these as well as to ones that are more complex.

CHAPTER 5. TRANSLATION 172

We do better with Vx(Dx — Wx). Vx(Dx — Wx) is read, ‘for any x if x is a
dog, then x will have its day’; it is true just in case every dog will have its day. Again,
suppose ll,, is an interpretation | such that the elements of U are m,n,

1 2 3 4

Icl(xlm) [Dx] L lm]

Id(x\m)[Dx — Wx]] .
Id(xlm)[Wx] E—x[m]
(AP) Id(x|n)[Dx] :7 x[n]

lg[Vx(Dx — Wx)] v la(eny [Dx — Wx] N .

X |

Id(xln)[Wx] 7 [}

one branch for each ‘

member of U

The formula at (1) is satisfied just in case each of the branches at (2) is satisfied. And
all the branches at (2) are satisfied just in case there is no S/N pair at (3). This is so
just in case nothing in U is a dog that does not have its day; that is, just in case every
dog has its day. It is important to see how this works: There is a branch at (2) for
each thing in U. The key is that branches for things that are not dogs are “vacuously”
satisfied just because the things are not dogs. It Vx(Dx — Wx) is true, however,
whenever a branch is for a thing that is a dog—so that a top branch of a pair at (3) is
satisfied—that thing must be one that will have its day. If anything is a dog that does
not have its day, there is a S/N pair at (3), and Yx(Dx — Wx) is not satisfied and
not true.

It is worth noting some expressions that do not result in a good translation.
Vx(Dx A Wx) is true just in case everything is a dog that will have its day. To make
it false, all it takes is one thing that is not a dog, or one thing that will not have its
day—but this is not what we want. If this is not clear, work it out on a tree. Similarly,
VxDx — VxWx is true just in case if everything is a dog, then everything will have
its day. To make it true, all it takes is one thing that is not a dog—then the antecedent
is false, and the conditional is true; but again, this is not what we want. In the good
translation, Vx(Dx — Wx), the quantifier picks out each thing in U, the antecedent
of the conditional identifies the ones we want to talk about, and the consequent says
what we want to say about them.

Moving on to the second sentence, Ix(Dx A Wx) is read, ‘there is an x such that
x is a dog, and x will have its day’; it is true just in case some dog will have its day.

CHAPTER 5. TRANSLATION 173

1 2 3 4
laeim)[PX])
la(x)m)[Dx A W] :
" Ald(xlm)[Wx] : [m]
s X
(AQ) Id(xln) [Dx] :7 x[n]
lg[Fx(Dx A Wx)] Id(x\n)[Dx A Wx] :
W Nlaeim W] - n]
Laxmr 7 o
one branch for each .
member of U

The formula at (1) is satisfied just in case one of the branches at (2) is satisfied. A
branch at (2) is satisfied just in cases both branches in the corresponding pair at (3)
are satisfied. And this is so just in case something is a dog that will have its day.

Again, it is worth noting expressions that do not result in good translation. 3x D x A
dxWx is true just in case something is a dog, and something will have its day—where
these need not be the same; so IxDx A Ix Wx might be true even though no dog has
its day. Ax(Dx — Wx) is true just in case something is such that if it is a dog, then
it will have its day.

1 2 3 4

Id(xlm) [Dx] :—x[m]

la(x)m)[Dx — W] o] .
Id(xlm)[Wx] Lyl
(AR) Id(x|n)[Dx] :7 X[n]

lg[Ix (Dx — Wx)] . Id(x‘n)[Dx — Wx] . :

X |

laGx iy [Wx] S

one branch for each .

member of U

The formula at (1) is satisfied just in case one of the branches at (2) is satisfied; and a
branch at (2) is satisfied just in case there is a pair at (3) in which the top is N or the
bottom is S. So all we need for 3x(Dx — Wx) to be true is for there to be even one
thing that is not a dog—for example, my sock—or one thing that will have its day. So
Ax(Dx — Wx) can be true though no dog has its day.

The cases we have just seen are typical. Ordinarily, the existential quantifier
operates on expressions with main operator A. If it operates on an expression with
main operator —, the resultant expression is satisfied just by virtue of something that
does not satisfy the antecedent. And, ordinarily, the universal quantifier operates on
expressions with main operator —. If it operates on an expression with main operator
A, the expression is satisfied only if everything in U has features from both parts of the
conjunction—and it is uncommon to say something about everything in U, as opposed

CHAPTER 5. TRANSLATION 174

to all the objects of a certain sort. Again, when the universal quantifier operates on
an expression with main operator —, the antecedent of the conditional identifies the
objects we want to talk about, and the consequent says what we want to say about
them.

Once we understand these two cases, the next two are relatively straightforward.
Ax(Dx A ~Wx) is read, ‘there is an x such that x is a dog and x will not have its
day’; it is true just in case some dog will not have its day. Here is the tree without
branches for the (by now obvious) term assignments:

1 2 3 4

laxim) [DX]
Id(x‘m)[Dx A NWX] A

laejmy [~ W] Jaemy W]

(AS) la(x|m [DX]

lg[3x(Dx A ~Wx)] la(xny [Dx A ~Wx]
dx A

Lo Wl laem W]

one branch for each
member of U

The formula at (1) is satisfied just in case some branch at (2) is satisfied. A branch at
(2) is satisfied just in case the corresponding pair of branches at (3) is satisfied. And
for a lower branch at (3) to be satisfied, the corresponding branch at (4) has to be
unsatisfied. So for Ix(Dx A ~Wx) to be satisfied, there has to be something that is a
dog and does not have its day. In principle, this is just like ‘Some dog will have its
day’. We set out to say that some object of sort J has feature @. For this, we say that
there is an x that is of type &, and has feature @. In ‘Some dog will have its day’, @
is the simple Wx. In this case, @ is the slightly more complex ~Wx.

Finally, Vx(Dx — ~Wx) is read, ‘for any x, if x is a dog, then x will not have
its day’; it is true just in case every dog will not have its day—that is, just in case no
dog will have its day.

1 2 3 4

Id(xlm)[Dx]
la(x|m) [Dx — ~Wx]
N

laejm) [NWXT Ty pm) (W]

(AT) la(x|m [Dx]

lg[Vx(Dx — ~Wx)] v laxjny [Dx — ~Wx]
x

— 4

lae) [~WX] -y (W]

one branch for each
member of U

CHAPTER 5. TRANSLATION 175

The formula at (1) is satisfied just in case every branch at (2) is satisfied. Every branch
at (2) is satisfied just in case there is no S/N pair at (3); and for this to be so there
cannot be a case where a top at (3) is satisfied, and the corresponding bottom at (4)
is satisfied as well. So Vx(Dx — ~Wx) is satisfied and true just in case nothing is
a dog that will have its day. Again, in principle, this is like ‘Every dog will have its
day’. Using the universal quantifier, we pick out the class of things we want to talk
about in the antecedent, and say what we want to say about the members of the class
in the consequent. In this case, what we want to say is that things in the class will not
have their day.

As before, quantifier-switching alternatives are possible. In the table below,
alternatives to what we have done are listed on the right.

Every dog will have its day Vx(Dx — Wx) ~Ix(Dx A ~Wx)
(AU) Some dog will have its day Ax(Dx A Wx) ~Vx(Dx — ~Wx)

Some dog will not have its day ~ Ix(Dx A ~Wx) ~Vx(Dx — Wx)

No dog will have its day Vx(Dx - ~Wx) ~3dx(Dx A Wx)

Beginning from the bottom, if not even one thing is a dog that will have its day, then
no dog will have its day. Moving up, if it is not the case that everything that is a dog
will have its day, then some dog will not. Similarly, if it is not the case that everything
that is a dog will not have its day, then some dog does. And if not even one thing
is a dog that does not have its day, then every dog will have its day. Again, choices
among the alternatives are a matter of taste, though the bottom alternatives may be
more natural than ones above. If you have any questions about how the alternatives
work, work them through on trees.

Before turning to some exercises, let us generalize what we have done a bit.
Include in our interpretation function,

H': {0|o € U and o is happy}
C!: {o|oeUandoisacat}

Suppose we want to say, not that every dog will have its day, but that every happy
dog will have its day. Again, in principle this is like what we have done. With
the universal quantifier, we pick out the class of things we want to talk about in
the antecedent—in this case happy dogs—and say what we want about them in the
consequent. Thus Vx[(Dx A Hx) — Wx] is true just in case everything that is both
happy and a dog will have its day, which is to say, every happy dog will have its day.
Similarly, if we want to say that every dog will or will not have its day, we might try,
Vx[Dx — (Wx v ~Wx)]. Or putting these together, for ‘Every happy dog will or
will not have its day’, Vx[(Dx A Hx) — (Wx Vv ~Wx)]. We consistently pick out the
things we want to talk about in the antecedent, and say what we want about them with
the consequent. Similar points apply to the existential quantifier. Thus ‘Some happy
dog will have its day’ has natural translation, Ax[(Dx A Hx) A Wx]—something is a

CHAPTER 5. TRANSLATION 176

happy dog and will have its day. ‘Some happy dog will or will not have its day’ gets,
Ax[(Dx A Hx) A (Wx v ~Wx)]. And so forth.

It is tempting to treat ‘All dogs and cats will have their day’ similarly with
translation Vx[(Dx A Cx) — Wx]. But this would be a mistake. We do not want to
say that everything which is a dog and a cat will have its day—for nothing is both
a dog and a cat! Rather, good translations are Vx(Dx — Wx) AVx(Cx - Wx)—
all dogs will have their day and all cats will have their day, or the more elegant
Vx[(Dx v Cx) — Wx]—each thing that is either a dog or a cat will have its day.
In the happy dog case, we needed to restrict the class under consideration to include
just happy dogs; in this dog and cat case, we are not restricting the class, but rather
expanding it to include both dogs and cats. The disjunction Dx Vv Cx applies to things
in the broader class which includes both dogs and cats.

This dog and cat case brings out the point that we do not merely “cookbook” from
ordinary language to formal translations, but rather want truth conditions to match.
And we can make the conditions match for expressions where standard language does
not lie directly on the surface. Thus consider ‘Only dogs will have their day’. This
does not say that all dogs will have their day. Rather it tells us that anything that has
its day is a dog, Vx(Wx — Dx). Similarly, ‘Leaving out the happy ones, no dogs
will have their day’, tells us that dogs other than the happy ones do not have their
day, Vx[(Dx A ~HXx) — ~Wx]. ‘Except’ has a similar effect as in, ‘Excepting the
happy ones, no dogs will have their day’. It is tempting to add that the happy dogs
will have their day, but it is not clear that this is part of what we have actually said;
‘except’ seems precisely to except members of the specified class from what is said.’

Further, as in the dog and cat case, sometimes surface language is positively
misleading compared to standard readings. Consider, for example, ‘If some dog is
happy, it will have its day’. It is tempting to translate, 3x[(Dx A Hx) — Wx]—but
this is not right. All it takes to make this expression true is something that is not a
happy dog (for example, my sock); if something is not a happy dog, then a conditional
branch is satisfied, so that the existentially quantified expression is satisfied. But we
want rather to say something about all dogs—if some (arbitrary) dog is happy it will
have its day—so that no matter what dog you pick, if it is happy then it will have its
day; thus the correct translation is Vx[(Dx A Hx) — Wx]. Or again, consider ‘If any
dog is happy, then they all are’. It is tempting to translate by the universal quantifier.
But the correct translation is rather, 3x (Dx A Hx) — Vx(Dx — H x)—if some dog
is happy, then every dog is happy. The best way to approach these cases is to think
directly about the conditions under which the ordinary expressions are true and false,
and to produce formal translations that are true and false under the same conditions.
For these last cases however, it is worth noting that when there is “pronominal” cross
reference as, ‘if some/any & is @ then it has such-and-such features’ the statement

7Tt may be that we conventionally use ‘except’ in contexts where the consequent is reversed for the
excepted class, for example, ‘I like all foods except brussels sprouts’—where I say it because I do not
like brussels sprouts. But, again, it is not clear that I have actually said whether I like them or not.

CHAPTER 5. TRANSLATION 177

translates most naturally with the universal quantifier. But when such cross-reference
is absent as, ‘if some/any & is @ then so-and-so is such-and-such’ the statement
translates naturally as a conditional with an existential antecedent. The point is not
that there are no grammatical cues! But cues are not so simple that we can always
simply read from ‘some’ to the existential quantifier, and from ‘any’ to the universal.
Perhaps this is sufficient for us to move to the following exercises.

ES5.19. Given the following partial interpretation function for &g, complete the transla-
tion for each of the following. (Perhaps these sentences reflect residual frustration
over a Mustang the author owned in graduate school.)

U: {o|oisacar}
T!: {o]o € Uandoisa Toyota}
F': {o]o € Uandois aFord}
E': {o]o € U and o was built in the eighties}
J1: {o|o e Uand o is a piece of junk}
R': {o|o € Uand o is reliable}
a. Some Ford is a piece of junk.
*b. Some Ford is an unreliable piece of junk.
¢. Some Ford built in the eighties is a piece of junk.
d. Some Ford built in the eighties is an unreliable piece of junk.
e. Any Ford is a piece of junk.
f. Any Ford is an unreliable piece of junk.
*g. Any Ford built in the eighties is a piece of junk.
h. Any Ford built in the eighties is an unreliable piece of junk.
i. No reliable car is a piece of junk.
j- No Toyota is an unreliable piece of junk.
*k. If a car is unreliable, then it is a piece of junk.
1. If some Toyota is unreliable, then every Ford is.
m. Only Toyotas are reliable.

n. Not all Toyotas and Fords are reliable.

CHAPTER 5. TRANSLATION 178

0.

E5.20.

Any car, except for a Ford, is reliable.

Given the following partial interpretation function for &4, complete the transla-

tion for each of the following. Assume that Bob is married, and that each married
person has a unique “primary” spouse in case of more than one.

U: {o| ois a person who is married}

b: Bob

s': {{(m,n) | m,n € Uand n is the (primary) spouse of m}
A': {o] o € U and o is having an affair}

E': {o]o € U and ois employed}
H': {o|o € Uand o is happy}

L?: {{m,n) | m,n € Uand m loves n}

M?: {{(m,n) | m,n € Uand m is married to n}

a.
b,
C.

d.

Bob’s spouse is happy.
Someone is married to Bob.
Anyone who loves their spouse is happy.

Nobody who is happy and loves their spouse is having an affair.

. Someone is happy just in case they are employed.

Someone is happy just in case someone is employed.

. Some happy people are having an affair, and some are not.

*h. Anyone who loves and is loved by their spouse is happy, though some are not

employed.

. Only someone who loves their spouse and is employed is happy.
. Anyone who is unemployed and whose spouse is having an affair is unhappy.

. If someone is both unemployed and unhappy, then their spouse is having an

affair.

*1. Anyone married to Bob is happy if Bob is not having an affair.

. If anyone married to Bob is happy then Bob is employed and is not having an

affair.

. If Bob is having an affair, then everyone married to him is unhappy, and

nobody married to him loves him.

CHAPTER 5. TRANSLATION 179

0. Only unemployed people and unhappy people have affairs, but if someone
loves and is loved by their spouse, then they are happy unless they are unem-
ployed.

E5.21. Produce a good quantificational translation for each of the following. You
should produce a single interpretation function with application to all of the
sentences. Let U be the set of all animals.

a. Not all animals make good pets.

b. Dogs and cats make good pets.

c. Some dogs are ferocious and make good pets, but no cat is both.
d. No ferocious animal makes a good pet, unless it is a dog.

e. No ferocious animal makes a good pet, unless Lassie is both.

f. Some, but not all good pets are dogs.

g. Only dogs and cats make good pets.

h. Not all dogs and cats make good pets, but some of them do.

i. If Lassie does not make a good pet, then the only good pet is a cat that is
ferocious, or a dog that is not.

j- A dog or cat makes a good pet if and only if it is not ferocious.

E5.22. Use trees to show that the quantifier-switching alternatives from (AU) are true
and false under the same conditions as their counterparts. Be sure to explain how
your trees have the desired results.

5.3.3 Overlapping Quantifiers

The full power of our quantificational languages emerges only when we allow one
quantifier to appear in the scope of another.® So let us turn to some cases of this sort.
First, let U be the set of all people, and suppose the intended interpretation of L? is
{{m,n) | m,n € U, and m loves n}. Say we want to translate,

(1) Everyone loves everyone.

(2) Someone loves someone.

8 Aristotle’s categorical logic is capable of handling simple A, E, I, and O sentences—consider
experience you may have had with “Venn diagrams.” But you will not be able to make his logic, or such
diagrams, apply to the full range of cases that follow (see note 6 on page 171).

CHAPTER 5. TRANSLATION 180

(3) Everyone loves someone.
(4) Everyone is loved by someone.
(5) Someone loves everyone.
(6) Someone is loved by everyone.

First, you should be clear how each of these differs from the others. In particular, it
is enough for (3) ‘Everyone loves someone’ that each person loves some person—
perhaps their mother (or themselves); but for (6) ‘Someone is loved by everyone’ we
need some one person, say Elvis, that everyone loves. Similarly, it is enough for (4)
‘Everyone is loved by someone’ that for each person there is a lover of them—perhaps
their mother (or themselves); but for (5) ‘Someone loves everyone’ we need some
particularly loving individual, say Mother Theresa, who loves everyone.

The first two are straightforward. VxVyLxy is read, ‘for any x and any y, x
loves y’; it is true just in case everyone loves everyone.

1 2 3
Id(x\m,ylm) [Lxy]

lae)m) [YYLxy] vy laCx|m, y) [LXY]
(AV)
Id(x\n,y\m) [Lxy]

lg[VxVyLxy] la(x|m [YyLxy] laGxln, y[m [LxY]
Vx vy

The branch at (1) is satisfied just in case all of the branches at (2) are satisfied. And all
of the branches at (2) are satisfied just in case all of the branches at (3) are satisfied.
But every combination of objects appears at the branch tips. So VxVyLxy is satisfied
and true just in case for any pair (m,n) € U2, (m,n) is in the interpretation of L.
Notice that the order of the quantifiers and variables makes no difference: for a given
interpretation |, VxVyLxy, VxVyLyx, VyVxLxy, and YyVxLyx are all satisfied
and true under the same condition—just when every (m, n) € U? is a member of I[L].

The case for the second sentence is similar. Ax3yLxy is read, ‘there is an x and
there is a y such that x loves y’; it is true just in case some (m,n) € U? is a member
of I[L]—just in case someone loves someone. The tree is like (AV) above, but with 3
uniformly substituted for V. Then the formula at (1) is satisfied iff a branch at (2) is
satisfied; iff a branch at (3) is satisfied; iff someone loves someone. Again the order
of the quantifiers does not matter.

The next cases are more interesting. Yx3yLxy is read, ‘for any x there is a y
such that x loves y’; it is true just in case everyone loves someone.

CHAPTER 5. TRANSLATION 181

1 2 3
Id(x\m,ylm) [Lxy]

la(xjmy By Lxy] 3y laGxm,y|m [LXY]
(AW)
ld(x\n,y\m) [Lxy]

lg[Vx3yLxy] laeny By Lxy] laGxln, y|n [LxY]
Vx dy

The branch at (1) is satisfied just in case each of the branches at (2) is satisfied. And a
branch at (2) is satisfied just in case at least one of the corresponding branches at (3)
is satisfied. So Vx3dyLxy is satisfied just in case, no matter which o you pick, there is
some p such that such that o loves p—so that everyone loves someone. This time, the
order of the of the variables makes a difference: Thus Yx3yLyx translates sentence
(4), ‘Everyone is loved by someone’. The picture is like the one above, with Lyx
uniformly replacing Lxy. This expression is satisfied just in case no matter which o
you pick, there is some p such that such that p loves 0—so that everyone is loved by
someone.

Finally, 3xVyLxy is read, ‘there is an x such that for any y, x loves y’; it is
satisfied and true just in case someone loves everyone.

1 2 3
Id(x\m,ylm) [Lxy]

laxe|m) Yy Lxy] vy laCx|m, y iy [LXY]
(AX)
Id(x\n,y\m) [Lxy]

l4[AxVYyLxy] laCx|m [YyLxy] la(x|n, iy [LxY]
Ix vy

The branch at (1) is satisfied just in case some branch at (2) is satisfied. And a branch
at (2) is satisfied just in case each of the corresponding branches at (3) is satisfied. So
dxVyLxy is satisfied and true just in case there is some o € U such that, no matter
what p € U you pick, (o, p) € I[L]—just when there is someone who loves everyone.
If we switch Lyx for Lxy, we get a tree for 3xV yLyx; this formula is true just when
someone is loved by everyone. Switching the order of the quantifiers and variables
makes no difference when quantifiers are the same. But it matters crucially when
quantifiers are different!

CHAPTER 5. TRANSLATION 182

Let us see what happens when, as before, we broaden the interpretation function
so that U includes all physical objects.

Il U: {o| ois a physical object}
P': {o|o € Uand o is aperson}

L?: {(m,n) |m,n € U, and m loves n}

Let us set out to translate the same sentences as before.

For ‘Everyone loves everyone’, where we are talking about people, VxVyLxy
will not do. VxVyLxy requires that each member of U love all the other members of
U—but then we are requiring that my left sock love my computer, and so forth. What
we need is rather, VxVy[(Px A Py) — Lxy]. With the last branch tips omitted, the
tree is as follows:

1 2 3 4

ld(x|m. y1m)
[Px A Py]

la(x|m, yIm)
[(Px A Py) — Lxy]
S — B Id(x\m.y\m)

[Lxy]

ldxim. v In)

Id(le) |d(x\m.y\n) M

[Vy((Px A Py) — Lxy)] v [(Px A Py) — Lxy]
y

= Hla(xim,yIn)
[Lxy]
(AY)
ld(xIn,yIm)

[Px A Py]

ld(xIn, v Im)

[(Px A Py)— Lxy]
— > Ald(x\n‘y\m)
[Lxy]

la(xIn. v In)

la(x|n) la(xIn.yIn) M

4[VxVy((Px A Py) — Lxy)] v [Vy((Px A Py) — Lxy)] v [(Px A Py) — Lxy]
x y

= laxin, yin
[Lxy]

The formula at (1) is satisfied iff all the branches at (2) are satisfied; all the branches
at (2) are satisfied just in case all the branches at (3) are satisfied. And, for this to
be the case, there can be no pair at (4) where the top is satisfied and the bottom is
not. That is, there can be no o and p such that o and p are people, o, p € I[P], but o
does not love p, (0, p) ¢ I[L]. The idea is very much as before: With the universal
quantifiers, we select the things we want to talk about in the antecedent, we make sure
that x and y pick out people, and then say what we want to say about the things in the
consequent.

The case for ‘Someone loves someone’ also works on close analogy with what
has gone before. In this case, we do not use the conditional. If the quantifiers in
(AY) were existential, all we would need is one branch at (2) to be satisfied, and one
branch at (3) satisfied. And, for this, all we would need is one thing that is not a

CHAPTER 5. TRANSLATION 183

person—so that the top branch for the conditional is N, and the conditional is therefore
S. On the analogy with what we have seen before, what we want is something like,
Ax3y[(Px A Py) A Lxy]. There are some people x and y such that x loves y.

1 2 3 4
la(xim, v m)
|d(x\m‘y\m) M
[(Px A Py)A Lxy]
——————— A Alaxim.yim)
[Lxy]
ld(xIm, v n)
la(x|m) la(xim, yIn) M
[Fy((Px A Py) A Lxy)] [(Px A Py)A Lxy]
dy laceim, y Iy
[Lxy]
(AZ)
la(x|n. yIm)
laCxIn. yIm) Px APyl
[(Px APy)A Lxy]
—— q |d(x\n‘y|m)
[Lxy]
ld(xIn. v In)
la(xin) ld(xin, v In) M
13[3x3y((Px A Py) A Lxy)] [Fy((Px A Py) A Lxy)] [(Px A Py)A Lxy]
dx Jy A qldcxin,yin
[Lxy]

The formula at (1) is satisfied iff at least one branch at (2) is satisfied. At least one
branch at (2) is satisfied just in case at least one branch at (3) is satisfied. And for this
to be the case, we need some branch pair at (4) where both the top and the bottom
are satisfied—some 0 and p such that o and p are people, o, p € I[P], and o loves p,
(0.p) €I[L].

In these cases, the order of the quantifiers and variables does not matter. But
order matters when quantifiers are mixed. Thus for ‘Everyone loves someone’,
Vx[Px — 3y(Py A Lxy)] is good—if any thing x is a person, then there is some y
such that y is a person and x loves y.

1 2 3 4

la(x|m) [Px]

ld(xlm) lg [Py A Lxy]
[Px — 3y(Py A Lxy)] lacxim.yim [Py A Lxy]
N

1 |d(x\m)
[Fy(Py A Lxy)] 5 laxim,yim [Py A Lxy]
y

(BA)
lacxim [P x]

lacx|ny la(xn,ylm [PY A Lxy]
14[Vx(Px — 3y(Py A Lxy))] [Px — 3y(Py A Lxy)] —
Vx -

1 |d(x\n)
[Fy(Py A Lxy)] 3 laxin.yim [Py A Lxy]
y

The formula at (1) is satisfied just in case all the branches at (2) are satisfied. All the

CHAPTER 5. TRANSLATION 184

branches at (2) are satisfied just in case no pair at (3) has the top satisfied and the
bottom not. If x is assigned to something that is not a person, the branch at (2) is
satisfied trivially. But where the assignment to x is some o that is a person, a bottom
branch at (3) is satisfied just in case at least one of the corresponding branches at
(4) is satisfied—just in case there is some p such that p is a person and o loves p.
Notice, again, that the universal quantifier is associated with a conditional, and the
existential with a conjunction. Similarly we translate ‘Everyone is loved by someone’,
Vx[Px — 3y(Py A Lyx)]. The tree is as above, with Lxy uniformly replaced by
Lyx.

For ‘Someone loves everyone’, Ax[Px A Vy(Py — Lxy)] is good—there is an
x such that x is a person, and for any y, if y is a person, then x loves y.

1 2 3 4

|d(x|m)[Px]

ld(xIm) lax [Py — Lxy]
[Px AVy(Py — Lxy)] Xim.yim
A

Tlacximy
[Vy(Py — Lxy)] v lacxim.yim [Py — Lxy]
y

(BB)

la(xim [P X]

lacxin) lacxin,yim [Py = Lxy]
I3[x(Px AVy(Py — Lxy))] [Px AVy(Py — Lxy)]
Ix A

Ald()cln)
[Vy(Py — Lxy)] v lacxin,yim [Py = Lxy]
y

The formula at (1) is satisfied just in case some branch at (2) is satisfied. A branch at
(2) is satisfied just in case the corresponding pair at (3) is satisfied. The top of such
a pair is satisfied when the assignment to x is some o € |[P]; the bottom is satisfied
just in case all of the corresponding branches at (4) are satisfied—just in case any p
is such that if it is a person, then o loves it. So there has to be a person o that loves
every person p. Similarly, you should be able to see that Ax[Px A Vy(Py — Lyx)]
is good for ‘Someone is loved by everyone’.

Again, it may have occurred to you already that there are other options for
these sentences. This time natural alternatives are not for quantifier switching, but
for quantifier placement. For ‘Someone loves everyone’ we have given, Ix[Px A
Vy(Py — Lxy)] with the universal quantifier on the inside. However, 3xVy[Px A
(Py — Lxy)] would do as well. As a matter of strategy, it is best to keep quantifiers
as close as possible to that which they modify. However, we can show that, in this case,
pushing the quantifier across that which it does not bind leaves the truth condition
unchanged. Let us make the point generally. Say @ (v) is a formula with variable v
free, but & is one in which v is not free. We are interested in the relation between
P AVYvQ(v) and Yv (P A Q(v)). Here are the trees:

CHAPTER 5. TRANSLATION 185

1 2 3
la(o|m) [
la(r|m) [P A Q(v)] N
Id(v\m) [@Q(v)]
(BO) -
Id(v\n)[?]
l4[Vv (P A Q(v))] v lao) [P A Q(v)] N
v lawlm [Q(v)]
and,
4 5 6
la[5] la(o|m) (@ (v)]

(BD) la[P AV @Q(v)] .

Talvo@)] vy i [@)]

The key is this: Since J has no free instances of v, for any o € U, I4[] is satisfied
justin case ly(y|o)[] is satisfied; for if v is not free in &, then d’s assignment to v
makes no difference to the evaluation of #. In (BC), the formula at (1) is satisfied
iff each of the branches at (2) is satisfied; and each of the branches at (2) is satisfied
iff each of the branches at (3) is satisfied. In (BD) the formula at (4) is satisfied iff
both branches at (5) are satisfied; and the bottom at (5) requires that all the branches
at (6) are satisfied. But the branches at (6) are just like the bottom branches from
(3) in (BC); and given the equivalence between ly[] and ly(yy|o)[], the top at (5) is
satisfied iff each of the tops at (3) is satisfied. So all the branches at (3) are satisfied
iff the top at (5) and all the branches at (6) are satisfied; so the one formula is satisfied
iff the other is as well. Notice that this only works because v is not free in & and
l4[P] = lg(rr|o)[#?]. You can move the quantifier past the J” only if it does not bind a
variable free in #!

Parallel reasoning would work for any combination of V and 3, with A, Vv, and —.
That is, supposing that v is not free in J, each of the following pairs is equivalent.
Yo (P A Q(v)) AV Q(v)

v (P A Qv)) AJv@(v)
Yo (P Vv Q1)) VVr@(v)
v (P v QA(v)) v IvQ(v)
Yo (P — @(v)) — Yv@(v)
v (P — Q1)) — Fv@(v)

(BE)

IR RN

The comparison between Vy[Px A (Py — Lxy)] and [Px A Vy(Py — Lxy)]
is an instance of the first pair. In effect, then, we can “push” the quantifier into the
parentheses across a formula to which the quantifier does not apply, and “pull” it
out across a formula to which the quantifier does not apply—without changing the
conditions under which the formula is satisfied.

CHAPTER 5. TRANSLATION 186

But we need to be more careful when the order of & and @ (v) is reversed. Some
cases work the way we expect. Consider Vv (Q(v) A #) and Vv Q(v) A P.

1 2 3
la(o|m) [(v)]
la(o|m) [@(v) A P] N
la(o|m) [
(BF) -
Id(v\n) [@(v)]
la[Yv (Q(v) A P)] laqun) [@(v) A P]
Vv A A
laqo) [P]
and,
4 5 6
Id(1f|m) [Q(v)]
(BG) la[Vv@(v)] Vo la () [Q (V)]

WYv@w) AP

la[5]

In this case, the reasoning is as before. In (BF), the formula at (1) is satisfied iff all
the branches at (2) are satisfied; and all the branches at (2) are satisfied iff all the
branches at (3) are satisfied. In (BG), the formula at (4) is satisfied iff both branches
at (5) are satisfied; and the top at (5) is satisfied iff all the branches at (6) are satisfied.
But the branches at (6) are like the tops at (3); and given the equivalence between
I4[#?] and Iy, o) [], the bottom at (5) is satisfied iff the bottoms at (3) are satisfied.
So all the branches at (3) are satisfied iff the bottom at (5) and all the branches at (6)
are satisfied; so, again, the formulas are satisfied under the same conditions. And
similarly for different combinations of the quantifiers V or 3 and the operators A or V.
Thus our table extends as follows:

YVor(Qo) AP) <= YrQw)AP

W @Q)AP) <= FvQWw)AP

Vr(Qv) v P) << VYvQww)Vv P

@)V P) — Fw@Ww)VvyP

(BH)

We can push a quantifier “into” the front part of a parenthesis or pull it out as above.
But the case is different when the inner operator is —. Consider trees for
Vv (@(v) — #) and, noting the quantifier switch, for 3v @ (v) — L.

CHAPTER 5. TRANSLATION 187

1 2 3
la(wim [@(v)]
loom (@) = P] |
Id(v\m)[?]
(BD _—
lawin (@]
l4[Vv (@Q(v) — P)] Vo lawn[@(v) = P] |
and
4 5 6
(B)) la[FvQ(v)] - la(w|m [€(v)]

lg[vQ(v) - P] N

la[5]

Starting with (BJ), the formula at (4) is satisfied so long as at (5) the upper branch
is N or bottom is S; and the top is N iff no branch at (6) is S; thus the formula at (4)
is satisfied so long as none of the branches at (6) are S or the bottom at (5) is S; or,
put the other way around, the formula at (4) is N iff one of the branches at (6) is S
and the bottom at (5) is N. The formula at (1) is satisfied iff all the branches at (2) are
satisfied; and all the branches at (2) are satisfied iff there is no S/N pair at (3); so the
formula at (1) is N iff there is an S/N pair at (3). But, as before, the tops at (3) are the
same as the branches at (6); and given the match between Iq[#?] and ly(,|o)[]. the
bottoms at (3) are the same as the bottom at (5). So there is an S/N pair at (3) iff some
branch at (6) is S and the bottom at (5) is N. So Vv (Q(v) — &#) and v Q(v) — P
are (not) satisfied under the same conditions. By similar reasoning, we are left with
the following equivalences to complete our table:

Yr(Qv) - P) <— FIvlw)—>7L

(BK) Q) > P) < VYvQw)—> L,

When a universal goes into the antecedent of a conditional, it flips to an existential.
And when an existentitial quantifier goes in to the antecedent of a conditional, it flips
to a universal.

Here is an explanation for what is happening: The universal quantifier of Vv (Q(v)
— &) requires that each inner conditional branch be satisfied; with tips for & the
same, this requires either that every antecedent tip be N or the consequent be S. But
once the quantifier is pushed in, the resultant conditional A — J is satisfied only
when the antecedent is N or the consequent is S; so the original requirement that all
the antecedent tips be N or J be S is matched by the requirement that an existential

CHAPTER 5. TRANSLATION 188

A be N or £ be S. Similarly, the existential quantifier of 3v (@ (v) — &) requires
that some inner conditional branch be satisfied; with tips for & the same, this requires
either that some antecedent tip be N or the consequent be S. But once the quantifier is
pushed in, the resultant conditional 4 — J is satisfied when the antecedent is N or
the consequent is S; so the original requirement that some antecedent tip be N or
be S is matched by the requirement that a universal 4 be N or & be S. These cases
differ from others insofar as an inner conditional branch is S when its antecedent tip
is N. In the standard cases, a branch is S when the tip remains S—and the quantifiers
go in as one would expect. The place for caution is when a quantifier comes from or
goes into the antecedent of a conditional.”

Return to ‘Everybody loves somebody’. We gave as a translation, Vx[Px —
dy(PyALxy)]. ButVx3y[Px — (Py A Lxy)] does as well. To see this, notice that
the immediate subformula, [Px — 3y(Py A Lxy)]is of the form [P — FvQ(v)]
where & has no free instance of the quantified variable v. The quantifier is in
the consequent of the conditional, so [Px — 3Jy(Py A Lxy)] is equivalent to
dy[Px — (Py A Lxy)]. So the larger formula Vx[Px — 3Jy(Py A Lxy)] is
equivalent to Vx3y[Px — (Py A Lxy)]. And similarly in other cases. Officially,
there is no reason to prefer one option over the other. Informally, however, there is less
room for confusion when we keep quantifiers relatively close to the expressions they
modify. One reason is that we continue to associate ¥V with — and 3 with A. In so
doing, we avoid unexpected results from quantifier flipping. On this basis, Vx[Px —
dy(Py A Lxy)] is to be preferred. To illustrate the point, consider ‘Everyone is
such that if someone loves them then they love themselves’. The natural translation
is Vx[Px — (3y(Py A Lyx) — Lxx)]|. By our principles, this is equivalent to
Vx[Px — Yy((Py A Lyx) — Lxx)] and then VxVy[Px — ((Py A Lyx) —
Lxx)]. Again, the first is preferable relative to the others, with their unintuitive use of
the universal y-quantifier outside parentheses.'"

If you have followed this discussion, you are doing well—and should be in a good
position to think about the following exercises.

ES5.23. Given the following partial interpretation function for &4, complete the trans-
lation for each of the following. (The last generates a famous paradox—can a
barber shave himself?)

9By similar reasoning, we should expect quantifier flipping when pushing into expressions Vv (£ |
Q(v)) or Vv (Q(v) | L) with a neither-nor operator true only when both sides are false. And this is
just so: The universal expression is satisfied only when all the inner branches are satisfied; and all the
inner branches are satisfied just when all the tips are not. And this is like the condition from the existential
quantifierin # |, v @ or Iv @ | P. Observe also that we get results as above by previously established
equivalences: Vv (Q(v) — P) =Vo(~Q()VP) =Vor~Q(v)VL =~FvQ(v)VL =FvQ — P.
The universal goes into the disjunction as we expect, but the negation flips it to existential. And similarly
for other cases.

10And Vx3y[Px — ((Py A Lyx) — Lxx)] is a mistake: It goes to Vx[Px — 3y((Py A Lyx) —
Lxx)]and then Vx[Px — (Yy(Py A Lyx) — Lxx)|—‘Everyone is such that if everything is a person
that loves them then they love themselves’.

CHAPTER 5. TRANSLATION 189

U: {o|oisaperson}

b: Bob

B': {o]o e Uandois a barber}
M?': {o]o € Uandoisaman}

S2: {{m,n) | m,n € Uand m shaves n}

a. Bob shaves himself.
b. Everyone shaves everyone.
c. Someone shaves everyone.
d. Everyone is shaved by someone.
e. Someone is shaved by everyone.
f. Not everyone shaves themselves.
*g. Any man is shaved by someone.
h. Some man shaves everyone.
i. No man is shaved by all barbers.
*j. Any man who shaves everyone is a barber.
k. If someone shaves all men, then they are a barber.
1. If someone shaves everyone, then they shave themselves.
*m. A barber shaves anyone who does not shave themselves.
*n. A barber shaves only people who do not shave themselves.

0. A barber shaves all and only people who do not shave themselves.

E5.24. Produce a good quantificational translation for each of the following. In this
case you should provide an interpretation function for the sentences. Let U be the
set of people and, assuming that each has a unique best friend, implement a best
friend of function.

a. Bob’s best friend likes all New Yorkers.
b. Some New Yorker likes all Californians.

c. No Californian likes all New Yorkers.

CHAPTER 5. TRANSLATION 190

d. Any Californian likes some New Yorker.

e. Californians who like themselves, like at least some people who do not.
f. New Yorkers who do not like themselves, do not like anybody.

g. Nobody likes someone who does not like them.

h. There is someone who dislikes every New Yorker, and is liked by every
Californian.

i. Anyone who likes themselves and dislikes every New Yorker, is liked by every
Californian.

j- Everybody who likes Bob’s best friend likes some New Yorker who does not
like Bob.

ES5.25. (1) Use trees to explain the fourth (3 / V) equivalence in table (BE). (ii) Use
trees to explain an equivalence in (BH) for an operator other than A. Then (iii)
use trees to explain the second equivalence in (BK). Be sure to explain how your
trees justify the results.

E5.26. Explain why we have not listed quantifier placement equivalences matching
Vo (P < Q(v)) with (P < Yv@(v)). Hint: Consider Vv (P <« @Q(v)) as
an abbreviation of Vv [(P — @(v)) A (Q(v) — P)]; from trees, you can see
that this is equivalent to [Vv (£ — @(v)) A Vv (@Q(v) — &)]. Now, what is
the consequence of quantifier placement difficulties for —? Would it work if the
quantifier did not flip?

5.3.4 Equality

We complete our discussion of translation by turning to some important applications
for equality. Adopt as an interpretation function,
I U: {o]|oisaperson}
b: Bob
c: Bob
f1: {(m,n) | m,n e U,andn is the father of m}
H': {o]o e Uandois ahappy person}
(Maybe Bob’s friends call him “Cronk.”) The simplest applications for = assert the

identity of individuals. Thus, for example, on any intended interpretation |, b = c is
satisfied insofar as (l3[b], lg[c]) € I[=]. Similarly, Ax(b = f'x) is satisfied just in

CHAPTER 5. TRANSLATION 191

case Bob is someone’s father. And, on the standard interpretation of £, Ax[(x+x) =
(x x x)] is satisfied insofar as, say, (Nd(x|2) [x + x], Nd(x|2) [x x x]) € N[=]—that i,
(4,4) e N[=]. If this last case is not clear, think about it on a tree.

We get to an interesting class of cases when we turn to quantity expressions. Thus,
for example, we can easily say ‘At least one person is happy’, 3xH x. But notice
that neither 3xH x A IyHy nor AxIy(H x A Hy) work for ‘At least two people are
happy’. For the first, it should be clear that each conjunct is satisfied, so that the
conjunction is satisfied, so long as there is at least one happy person. And similarly
for the second. To see this in a simple case, suppose Bob, Sue, and Jim are the only
people in U. Then the existentials for Ix3y(H x A Hy) result in nine branches of the
following sort:

1 2

(BL) laxlm,yn) [X] éix[m]

Id(xlm,yln)[Hx A Hy] A

ToceimymlHY1:

for some individuals m and n. Just one of these branches has to be satisfied in order
for the main sentence to be satisfied and true. Clearly none of the tips are satisfied
if none of Bob, Sue, or Jim is happy; then the branches are N and 3x3y(Hx A Hy)
is N as well. But suppose just one of them, say Sue, is happy. Then on the branch
for d(x|sue,y|sue) Poth Hx and Hy are satisfied. Thus the conjunction is satisfied, and
the existential is satisfied as well. So 3x3y(H x A Hy) does not require that at least
two people are happy. The problem, again, is that the same person might satisfy both
conjuncts at once.

But this case points the way to a good translation for ‘At least two people are
happy’. We get the right result with, 3x3y[(Hx A Hy) A ~(x = y)]. Now, in our
simple example, the existentials result in nine branches as follows:

1 2 3
laceim. yim [H x]]

|d(x\m,y\n)[Hx A Hy] A

(BM) laximy [HY] - e
laceimyin [(Hx A Hy) A ~(x = y)] . :

x[m]

lacxim, yim [~(x = »)] lacxim,yim [x = ¥]-

y[n]
The sentence is satisfied and true if at least one such branch is satisfied. Now in
the case where just Sue is happy, on the branch with d(x|sye,y|sue) POth H x and Hy
are satisfied as before, so that the top at (2) is satisfied. But x = y is satisfied; so
~(x = y) is not, and the branch as a whole fails. But suppose both Bob and Sue are
happy. Then on the branch with d(x|gob, y|sue) POth Hx and Hy are satisfied; but this
time, x = y is not satisfied; so ~(x = y) is satisfied, and the branch is satisfied, so

CHAPTER 5. TRANSLATION 192

that the whole sentence, x3Ay[(Hx A Hy) A ~(x = y)] is satisfied and true. That is,
the sentence is satisfied and true just when the happy people assigned to x and y are
distinct—just when there are at least two happy people. On this pattern, you should
be able to see how to say there are at least three happy people, and so forth.

Now suppose we want to say, ‘At most one person is happy’. We have, of course,
learned a couple of ways to say nobody is happy, Vx~H x and ~3xH x. But for
‘at most one’ we need something like, Vx[Hx — Vy(Hy — (x = y))]. For
this, in our simplified case, the universal quantifier yields three branches of the sort,
la(xjm)[Hx — Yy(Hy — (x = y))]. The beginning of the branch is as follows:

1 2 3

|d(x|m)[Hx] xIm]

laxim [Hx — Yy(Hy — (x = y))] laCxlm. v By [HY = (x = »)]

(BN) —

laxim [VY (Hy = (x = y))] vy laxim. yisue) [HY = (x = »)]

laxim. yinim [HY = (x = »)]

The universal Vx[Hx — Vy(Hy — (x = y))] is satisfied and true if and only if all
the conditional branches at (1) are satisfied. And the branches at (1) are satisfied so
long as there is no S/N pair at (2). This is, of course, true if nobody is happy so that the
top at (2) is never satisfied. But suppose m is a happy person, say Sue, and the top at
(2) is satisfied. Then the bottom comes out S so long as Sue is the only happy person.
If Sue is the only happy person, when y is assigned to objects other than Sue, Hy is
N and so the conditionals are S; and when y is assigned to Sue, the equality is S and
so the conditional is S. So there is no S/N pair. But suppose Jim, say, is also happy;
then on the very bottom branch at (3), Hy is S and x = y is N; so the conditional is
N; so the universal at (2) is N; so the conditional at (1) is N; and the entire sentence
is N. Suppose x is assigned to a happy person; in effect, Vy(Hy — (x = y)) limits
the range of happy things, telling us that anything happy is it. We get ‘At most two
people are happy’ with VxVy[(Hx A Hy) —» Vz(Hz — (x = z VvV y = z))]—if
some things are happy, then anything that is happy is one of them. And similarly in
other cases.

To say ‘Exactly one person is happy’, it is enough to say at least one person is
happy, and at most one person is happy. Thus, using what we have already done,
AxHxAVx[Hx — Yy(Hy — (x = y))] does the job. But we can use the “limiting”
strategy with the universal quantifier more efficiently. Thus, for example, if we want
to say ‘Bob is the only happy person” we might try Hb A Vy[Hy — (b = y)]—Bob
is happy, and every happy person is Bob. Similarly, for ‘Exactly one person is happy’,
Ax[Hx AVy(Hy — (x = y))] is good. We say that there is a happy person, and
that all the happy people are identical to it. For ‘Exactly two people are happy’,

CHAPTER 5. TRANSLATION 193

AxAy[(Hx AN Hy) A~(x = y)) AVz(Hz — [(x = z) vV (y = z2)])] does the
job—there are at least two happy people, and anything that is a happy person is
identical to one of them.

Phrases of the sort “the such-and-such” are definite descriptions. Perhaps it is
natural to think “the such-and-such is so-and-so” fails when there is more than one
such-and-such. Similarly, phrases of the sort “the such-and-such is so-and-so” seem
to fail when nothing is such-and-such. Thus, for example, neither ‘The desk at
CSUSB is wobbly’ nor ‘The present king of France is bald’ seem to be true—the
first because the description fails to pick out just one object, and the second because
the description does not pick out any object. Of course, if a description does pick
out just one object, then the predicate must apply. So, for example, as I write, ‘The
president of the USA is a woman’ is not true. There is exactly one object which is
the president of the USA, but it is not a woman. And ‘The president of the USA
is a man’ is true. In this case, exactly one object is picked out by the description,
and the predicate does apply. Thus, in “On Denoting,” Bertrand Russell famously
proposes that a statement of the sort ‘the J” is @ is true just in case there is exactly
one & and it is @. On Russell’s account, then, where J”(x) and @ (x) have variable x
free, and & (v) is like & (x) but with free instances of x replaced by a new variable
v, IX[(P(x) A VO (P(v) - x = v)) A Q(x)] is good—there is a P, it is the
only &, and it is @. Thus, for example, with the natural interpretation function,
Ax[(Px AVYy(Py — x = y)) A Wx] translates ‘The president is a woman’. In a
course on philosophy of language, one might spend a great deal of time discussing
definite descriptions. But in ordinary cases we will simply assume Russell’s account
for translating expressions of the sort, ‘the & is @’.

Finally, notice that equality can play a role in exception clauses. This is particularly
important when making general comparisons. Thus, for example, if we want to say
that zero is least of the natural numbers, with the standard interpretation N of £.5,
Vx(9 < x) is a mistake. This formula is satisfied only if zero is less than zero! What
we want is rather, Vx[~(x = @) — (0 < x)]. Similarly, if we want to say that there
is a tallest person, we would not use 3xVyT xy where Txy when x is taller than
y. This would require that the tallest person be taller than herself. What we want is
rather, IxVy[~(x = y) - Txy].

Observe that relations of this sort may play a role in definite descriptions. Thus it
seems natural to talk about the least natural number, or the tallest person. We might
therefore additionally assert uniqueness with something like, Ix[x is taller than every
other A Vz(z is taller than every other — x = z)].!' However, we will not usually
add the second clause, insofar as uniqueness follows automatically in these cases
from the initial claim, IxV y[~(x = y) — T xy] together with the premise that taller
than (less than) is asymmetric, that VxVy(Txy — ~Tyx). For arbitrary relation R,
AxVy[~(x = y) > Rxy] does not require uniqueness—it says only that there is an

11Elx[‘v’y(w(x =y) > Txy)AVzVy(~(z=y) > Tzy) »> x = 2)].

CHAPTER 5. TRANSLATION 194

object that stands in relation R to every other. Given the additional premise that R is
asymmetric, however, it follows that just one thing has R to all the others: If m has R
to everything other than itself, and n has R to everything other than itself, but m # n,
then Rmn and RKnm, so that R is not asymmetric; thus, put the other way around, if
R is asymmetric, no distinct objects m, n are such that each has R to all the others.
Thus for “The tallest person is happy’ it is sufficient to conjoin ‘An object with 7" to
every other is happy’ with asymmetry,

Ax[Vy(~(x =y) > Txy) NHx] AVxVy(Txy — ~Tyx)

Taken together, these imply all the elements of Russell’s account. And similarly in
other cases.

E5.27. Given the following partial interpretation function for &g, complete the trans-
lation for each of the following.

U: {o|ois a snake in my yard}

a: Aaalph
G!: {o]o € Uand o is in the grass}
D': {o|o € Uand o is deadly}

B2: {{(m,n) | m,n € Uand m is bigger than n}

a. There is at least one snake in the grass.
b. There are at least two snakes in the grass.

*c. There are at least three snakes in the grass.

d. There are no snakes in the grass.
e. There is at most one snake in the grass.

*f. There are at most two snakes in the grass.
g. There are at most three snakes in the grass.
h. There is exactly one snake in the grass.

*1. There are exactly two snakes in the grass.
j- There are exactly three snakes in the grass.

*k. The snake in the grass is deadly.

1. The deadly snake is in the grass.

CHAPTER 5. TRANSLATION 195

*m.

n.

0.

E5.28.

Aaalph is the biggest snake.
The biggest snake is in the grass.

The biggest snake in the grass is deadly.

Given &£ and the standard interpretation N as below, complete the translation

for each of the following.'”

*e.

k.

N

Z€1o

{{m,n) | m,n € N, and n is the successor of m}

X T s c

{{{m,n),0) | m,n,0 € N, and m plus n equals o}
{{{m,n
(

{{m,n) | m,n € N, and m is less than n}

),0) | m,n,0 € N, and m times n equals o}

A

. Any number is equal to itself (identity is reflexive).

. If a number « is equal to a number b, then b is equal to a (identity is symmet-

ric).

. If a number « is equal to a number b and b is equal to ¢, then « is equal to ¢

(identity is transitive).

. No number is less than itself (less-than is irreflexive).

If a number a is less than a number b, then b is not less then a (less-than is
asymmetric).

. If a number a is less than a number b and b is less than ¢, then a is less than ¢

(less-than is transitive).

. There is no largest number.
“h. Four is even (a number such that two times something is equal to it).
. Three is odd (such that two times something plus one is equal to it).

*j. Any odd number is the sum of an odd and an even.

Any even number other than zero is the sum of one odd with another.

12This exercise translates some truths of arithmetic. Notice that these are necessary truths. It is easy
enough to cook up stories where nobody loves anybody, where everybody loves everybody, and anything
between. However there is no consistent story where one plus one is other than two—and, as translations,
any tautology would seem to satisfy CG. Still, as a sort of addendum to our criterion of goodness, it is
natural to proceed as though ‘plus’, ‘times’ and the like might apply in arbitrary ways. In fact, this will
be the way you naturally approach these exercises.

CHAPTER 5. TRANSLATION 196

The sum of one odd with another odd is even.

There is no even number greater than every other even number.

*n. Three is prime (a number divided by no number other than one and itself—

E5.29.

though you will have to put this in terms of multipliers).

Every prime except two is odd.

For each of the following arguments: (i) Produce a good translation, including

interpretation function and translations for the premises and conclusion. Then (ii)
for each argument that is not quantificationally valid, produce an interpretation
(trees optional) to show that the argument is not quantificationally valid.

a.

E5.30.

Only citizens can vote
Hannabh is a citizen

Hannah can vote

. All citizens can vote

If someone is a citizen, then their father is a citizen
Hannah is a citizen

Hannah’s father can vote

*c. Alice is taller than everyone else

Only Alice is taller than everyone else

. Alice is taller than everyone else

The taller than relation is asymmetric

Only Alice is taller than everyone else

. There is a dog

At most one dog is pursuing a cat
At least one cat is being pursued (by some animal)

Some dog is pursuing a cat

For those who have studied derivations from Chapter 3 or Chapter 6: For each

of the arguments of E5.29 that is not quantificationally invalid, show that it is
valid in AD or ND+, whichever is appropriate.

E5.31.

For each of the following concepts, explain in an essay of about two pages,

so that (high-school age) Hannah could understand. In your essay, you should
(i) identify the objects to which the concept applies, (ii) give and explain the

CHAPTER 5. TRANSLATION 197

definition, and give and explicate examples of your own construction (iii) where
the concept applies, and (iv) where it does not. Your essay should exhibit an
understanding of methods from the text.

a. Quantifier switching.
b. Quantifier placement.

c. Quantity expressions and definite descriptions.

Chapter 6

Natural Deduction

Natural deduction systems are so-called because their rules formalize patterns of
reasoning that occur in relatively ordinary “natural” contexts. Thus, initially at least,
the rules of natural deduction systems are easier to motivate than the axioms and rules
of axiomatic systems. By itself, this is sufficient to give natural deduction a special
interest. As we shall see, natural deduction is also susceptible to proof strategies in
a way that (primitive) axiomatic systems are not. If you have had another course in
formal logic, you have probably been exposed to natural deduction. So, again, it may
seem important to bring what we have done into contact what you have encountered
in other contexts. After some general remarks about natural deduction in section 6.1,
we turn to the sentential part of our natural derivation system NDs (section 6.2), then
the full version with quantifiers and equality ND (section 6.3), and finally consider
some applications to arithmetic (section 6.4).

6.1 General

This section develops some concepts required for NDs and ND. The first part develops
a “toy” system to introduce the very idea of a derivation and a derivation rule. We
then turn to some concepts required for the particular rules of ND.'

6.1.1 Derivations as Games

Derivations can be seen as a kind of game—with the aim of getting from a starting
point to a goal by rules. In their essential nature, these rules are defined in terms of
form: the forms of expressions authorize “moves” in the game. Given this, there is
no immediate or obvious connection between derivations and semantic validity or
truth. All the same, even though the rules are not defined by a relation to validity and

IParts of this section are reminiscent of section 3.1 and, especially if you skipped over that section,
you may want to look it over now as additional background.

198

CHAPTER 6. NATURAL DEDUCTION 199

truth, ultimately we shall be able to establish relations between the derivation rules
and these notions.

We begin introducing natural derivations purely in their essential nature as games.
Thus, for example, consider a preliminary system NP with the following rules:

Rl - Q,P R2 #va@ R3 £ AQ R4 P

Q Q P Pva
In this system, R1: given formulas of the form # — @ and &, you may move to @;
R2: given a formula of the form & v @, you may move to @; R3: given a formula of
the form & A @, you may move to &#; and R4: given a formula # you may move to
& v @ for any €. For now, at least, the game is played as follows: You begin with
some starting formulas and a goal. The starting formulas are like “cards” in your hand.
You then apply the rules to obtain more formulas, to which the rules may be applied
again and again. You win if you eventually obtain the goal formula.

Let us consider some examples. At this stage, do not worry about strategy, about
why we do what we do, as much as about how the rules work and the way the game
is played. A game always begins with starting premises at the top, and goal on the
bottom.

1.|A—- (BAC) P(remise)
2.1 A P(remise)

NP

(A)

Bv D (goal)

The formulas on lines (1) and (2) are of the form & — @ and &, where & maps to A
and @ to (B A C); so we are in a position to apply rule R1 to get the @.

1.|A— (BAC) P(remise)

2.1 A P(remise)
3.|BAC 1,2R1
Bv D (goal)

The justification for our move—the way the rules apply—is listed on the right; in this
case, we use the formulas on lines (1) and (2) according to rule R1 to get B A C; so
that is indicated by the notation. Now B A C is of the form # A @. So we can apply
R3 to it in order to obtain the &, namely B.

I.|A—= (BAC) P(remise)

2.1 A P(remise)
3.|BAC 1,2R1
4.| B 3R3

Bv D (goal)

Notice that one application of a rule is independent of another. It does not matter what
formula was & or @ in a previous move for evaluation of this one. Finally, where J
is B, B v D is of the form # v @. So we can apply R4 to get the final result.

CHAPTER 6. NATURAL DEDUCTION 200

1.|A—- (BAC) P(remise)
2.1 A P(remise)
3.]BAC 1,2R1

4. | B 3R3
5./|BvD 4 R4 Win!

Notice that R4 leaves the @ unrestricted: Given some £, we can move to & v @ for
any @. Since we reached the goal from the starting sentences, we win! In this simple
derivation system, any line of a successful derivation is either given as a premise, or
justified from lines before it by the rules.

Here are a couple more examples, this time of completed derivations. First:

L.LIAAC P
2.|(AvB)—D P

(B) 3.14 1 R3
4. |AV B 3R4
5.|D 2,4R1
6.|DV(R—YS) 5 R4 Win!

A A C is of the form 2 A @. So we can apply R3 to obtain the #, in this case A.
Then where P is A, we use R4toaddona Btoget AV B. (AVB) - Dand AV B
are of the form # — @ and J; so we apply R1 to get the @, that is D. Finally, where
Dis P, D v (R — S)is of the form # Vv @; so we apply R4 to get the final result.
Notice again that the @ may be any formula whatsoever.

Here is another example:

1.|(AAB)A D P

2.|(AAB)—>C P

3.]A— (C - (BAD)) P

4lAnB 1R3
© 5. ¢ 24 RI1

6.4 4R3

7.1 C = (B A D) 3,6RI

8.|BAD 75R1

9.| B 8 R3 Win!

You should be able to follow the steps. In this case, we use A A B on line (4) twice;
once as part of an application of R1 to get C, and again in an application of R3 to get
the A. Once you have a formula in your “hand” you can use it as many times and
whatever way the rules will allow. Also, the order in which we worked might have
been different. Thus, for example, we might have obtained A on line (5) and then
C after. You win if you get to the goal by the rules; how you get there is up to you.
Finally, it is tempting to think we could get B from, say, A A B on line (4). We will
able to do this in our official system. But the rules we have so far do not let us do so.
R3 lets us move just to the left conjunct of a formula of the form P A @.

When there is a way to get from the premises of some argument to its conclusion
by the rules of derivation system N, the premises prove the conclusion in system N. In

CHAPTER 6. NATURAL DEDUCTION 201

this case, where I is the set of premises and J the conclusion, we write I" I, 7. If
I' i, & the argument is valid in derivation system N. Notice the distinction between
this “single turnstile” - and the double turnstile = associated with semantic validity.
As usual, if @1 ... @, are the members of I', we sometimes write @1 ... @&, 5, & in
place of " I, &. If I' has no members then we simply write I, &. In this case, P is
a theorem of derivation system N.

One can imagine setting up many different rule sets, and so many different games
of this kind. In the end, we want our game to serve a specific purpose. That is, we
want to use the game in the identification of valid arguments. In order for our games
to be an indicator of validity, we would like it to be the case that I' I, P iff ' E P,
that I proves & iff " entails . In Part 111 we will show that our official derivation
games have this property. For now, we can at least see how this might be: Roughly,
we impose the following condition on rules: We require of our rules that the inputs
always semantically entail the outputs. Then if some premises are true, and we make
a move to a formula, the formula we move to must be true; and if the formulas in our
“hand” are all true, and we add some formula by another move, the formula we add
must be true; and so forth for each formula we add until we get to the goal, which will
have to be true as well. So if the premises are true, the goal must be true as well.

Notice that our rules R1, R3, and R4 each meet the proposed requirement on rules,
but R2 does not.

R1 R2 R3 R4
PA|P—>Q P/Q | PVvVQ/Q | PrAQIP | P /IPVA

o IT T T T T T T T | T T
TF F T F T F F T | T T
F T T F T T T F F | F T
FF T F F F F F F | F F

R1, R3, and R4 have no row where the input(s) are T and the output is F. But for R2,
the second row has input T and output F. So R2 does not meet our condition. This
does not mean that one cannot construct a game with R2 as a part. Rather, the point is
that R2 will not help us accomplish what we want to accomplish with our games. So
long as rules meet the condition, a win in the game always corresponds to an argument
that is semantically valid.

Thus for example, from table (F) on the following page, derivation (C), in which
R2 does not appear, corresponds to the result that (A A B) A D, (A A B) - C,
A — (C — (B A D)) K B. The table has no row where the premises are T and the
conclusion is F. So the argument is sententially valid. As the number of rows goes up,
we may decide that the games are dramatically easier to complete than the tables. And
similarly for the quantificational case, where we have not yet been able to demonstrate
semantic validity at all.

E6.1. Show that each of the following is valid in NP. Complete (a)—(d) using just
rules R1, R3, and R4. You will need an application of R2 for (e).

CHAPTER 6. NATURAL DEDUCTION 202

*a. (ANB)ANC b, A

b. (ANB)AC,A—- (BAC)H, B

c.(ANB) > (BANA),ANBK, BVA
d R [RVISVT)—>Sk,SvT

e. AR, A—C

*E6.2. (i) For each of the arguments in E6.1, use a truth table to decide if the argument
is sententially valid. (ii) To what do you attribute the fact that a win in NP is not a
sure indicator of semantic validity?

6.1.2 Auxiliary Assumptions

Having introduced the idea of a derivation by our little system NP, we now turn to
some additional concepts that are background to the rules of our official derivation
system ND. So far, our derivations have had the following form:

a. | A P(remise)
(E) b. :‘B P(remise)
c.| 9 (goal)

We have some premise(s) at the top, and a conclusion at the bottom. The premises are
against a line which indicates the range or scope over which the premises apply. In

(AABYAD (AAB)—-C A—-(C—>(BAD) /B

—
—
—
—

(F)

i B B B B B B B I I I I R I R S
e W e I B T Y s W e o B I B B BE
e e B I s W B B T xR B s s B B Q)
e W e I s e M B I ey B B R B s B B B B R

NSNS (4NNSH4YNS TN
NSNS (ASNSNSHAYTMM (NN

b T e e e e e e T A R IR |
MMM AMMMAMM (MMM TN
b e T e e e e e e I (R I |
44|44 A|ldA 4[4 4T
M T T M| M AT |7 T T |7 -
MMM (AN SS (TN IS~

CHAPTER 6. NATURAL DEDUCTION 203

each case, the line extends from the premises to the conclusion, indicating that the
conclusion is derived from them. It is always our aim to derive the conclusion under
the scope of the premises alone. But our official derivation system will allow appeal
to certain auxiliary assumptions in addition to premises. Any such assumption comes
with a scope line of its own—indicating the range over which it applies. Thus, for
example, derivations might be structured as follows:

a. | A P(remise)
a. | A P(remise)
b.| B P(remise)
b.| B P(remise) »
— c. ;6 A(ssumption)
(G) c.||€ A(ssumption) (H) d. D Alssumption)
e.
d.
f.
e.| g (goal)
|9 (goal)

In each, there are premises # through B at the top and goal § at the bottom. As indi-
cated by the main leftmost scope line, the premises apply throughout the derivations,
and the goal is derived under them. In case (G), there is an additional assumption at
(c). As indicated by its scope line, that assumption applies from (c)—(d). In (H), there
are a pair of additional assumptions. As indicated by the associated scope lines, the
first applies over (¢)—(f), and the second over (d)—(e). We will say that an auxiliary
assumption, together with the formulas that fall under its scope, is a subderivation.
Thus (G) has a subderivation on (c)—-(d). (H) has a pair of subderivations, one on
(c)—(f), and another on (d)—(e). A derivation or subderivation may include various
other subderivations. Any subderivation begins with an auxiliary assumption. In
general we cife a subderivation by listing the line number on which it begins, then a
dash, and the line number on which its scope line ends.

In contexts without auxiliary assumptions, we have been able freely to appeal to
any formula already in our “hand.” Where there are auxiliary assumptions, however,
we may appeal only to accessible subderivations and formulas. A formula is accessible
at a given stage when it is obtained under assumptions all of which continue to apply.
But scope lines indicate the range over which assumptions apply. In practice then,
for justification of a formula at line number i we can appeal only to formulas which
appear immediately against scope lines extending as far as i —these are the formulas
obtained under assumptions that continue to apply. Thus, for example, with the scope
structure as in (I) below, in the justification of line (6),

CHAPTER 6. NATURAL DEDUCTION 204

1. 1. | P
2. 2.

3. 3. |

4. B 4. B

5. 5.

6. 6.

@ 7. | (@) 7. | A

8. 8.

9 9
10. 10. A
11. 11.
12. 12.

we could appeal only to formulas at (1), (2), and (3), for these are the only ones
immediately against scope lines extending as far as (6). To see this, notice that scope
lines extending as far as (6) are ones cut by the arrow at (6). Formulas at (4) and (5)
are not against a line extending that far. Similarly, as indicated by the arrow in (J),
for the justification of (11), we could appeal only to formulas at (1), (2), and (10).
Formulas at other line numbers are not immediately against scope lines extending as
far as (11). The accessible formulas are ones derived under assumptions all of which
continue to apply.

It may be helpful to think of a completed subderivation as a sort of “box.” So long
as you are under the scope of an assumption, the box is open and you can “see” the
formulas under its scope. However, once you exit from an assumption, the box is
closed, and the formulas inside are no longer available.

1. 1.

2. 2.
3. 3.
4. a []
5 5
6. ko= 6.
/ / N
() 7.) 7.
10. 10.
11. 11.
12. 12.

Thus, again, at line (6) of (I') the formulas at (4)—(5) are locked away so that the only
accessible lines are (1)—(3). Similarly, at line (11) of (J') all of (3)—(9) is unavailable.

CHAPTER 6. NATURAL DEDUCTION 205

Our aim is always to obtain the goal against the leftmost scope line—under
the scope of the premises alone—and if the only formulas accessible for the goal’s
justification are also against the leftmost scope line, it may appear mysterious why
we would ever introduce auxiliary assumptions and subderivations at all. What is
the point of auxiliary assumptions, if formulas under their scope are inaccessible for
justification of the formula we want? The answer is that though the formulas inside a
box are unavailable the box may still be useful. Some of our rules will appeal to entire
subderivations (to the boxes), rather than to the formulas in them. A subderivation
is accessible at a given stage when it is obtained under assumptions all of which
continue to apply. In practice, what this means is that for a formula at line i, we can
appeal to a box (to a subderivation) only if it (its scope line) is against a line which
extends down to i.

Thus at line (6) of (I'), we would not be able to appeal to the formulas on lines (4)
and (5)—they are inside the closed box. However, we would be able to appeal to the
box on lines (4)—(5), for it is against a scope line cut by the arrow. Similarly, at line
(11) of (J') we are not able to appeal to formulas on any of the lines (3)—(9), for they
are inside the closed boxes. Similarly, we cannot appeal to the boxes on (4)—(5) or
(7)—(8) for they are locked inside the larger box. However, we can appeal to the larger
subderivation on (3)—(9) insofar as it is against a line cut by the arrow. Observe that
one can appeal to a box only after it is closed—so, for example, at (11) of (J') there
is not (yet) a closed box at (10)—(11) and so no available subderivation to which one
may appeal. When a box is closed, its assumption is discharged.

So we have an answer to our question about the point of subderivations for
reaching a conclusion: In our example, the justification for the conclusion at line (12)
might appeal to the formulas on lines (1) and (2) or to the subderivations on lines
(3)-(9) and (10)—(11). Again line (12) does not have access to the formulas inside the
subderivations from lines (3)—(9) and (10)-(11). So the subderivations are accessible
even where the formulas inside them are not.

First rule of NDs. All this will become more concrete as we turn now to the rules
of our official system ND and its initial fragment NDs. Let us set aside rules of the
preliminary system NP and begin rules of NDs from scratch. We can reinforce the
point about accessibility of formulas by introducing the first, and simplest, rule of
NDs. If a formula & appears on an accessible line a of a derivation, we may repeat it
by the rule reiteration, with justification a R.
a. | P
R
P aR

It should be obvious why reiteration satisfies our basic condition on rules. If & is true,
of course P is true. So this rule could never lead from a formula that is true to one
that is not. Observe, though, that the line a must be accessible. Given scope lines

CHAPTER 6. NATURAL DEDUCTION 206

as in (I) and leaving aside assumption lines (which are always justified ‘A’), if the
assumption at line (3) were a formula &, we could conclude & with justification 3 R
at lines (5), (6), (8), or (9). We could not obtain & with the same justification at (11)
or (12) without violating the rule, because (3) is not accessible for justification of (11)
or (12). You should be clear about why this is so.

*E6.3. Consider a derivation with the following structure:
1. P

2. A
3.

7.
8.

For each of the lines (3), (6), (7), and (8) which lines are accessible? which
subderivations (if any) are accessible? That is, complete the following table:

accessible lines | accessible subderivations

line 3

line 6

line 7

line 8

*E6.4. Suppose in a derivation with structure as in E6.3 we have obtained a formula
J on line (3). (i) On what lines could we conclude + by 3 R? Suppose there is

Definitions for Auxiliary Assumptions

SD An auxiliary assumption, together with the formulas that fall under its scope, is a
subderivation.

FA A formula is accessible at a given stage when it is obtained under assumptions all of
which continue to apply.

SA A subderivation is accessible at a given stage when it (as a whole) is obtained under
assumptions all of which continue to apply.

In practice, what this means is that for justification of a formula at line i we can appeal to
another formula only if it is immediately against a scope line extending as far as i.

And in practice, for justification of a formula at line 7, we can appeal to a subderivation
only if its whole scope line is itself immediately against a scope line extending as far as i.

CHAPTER 6. NATURAL DEDUCTION 207

a formula B on line (4). (ii) On what lines could we conclude B by 4 R? Hint:
This is just a question about accessibility, asking where it is possible to use lines
(3) and (4).

6.2 Sentential

We introduced the idea of a derivation by the preliminary system NP. We have
introduced notions of accessibility. And, setting aside the rules of NP, we have seen
the first rule R of NDs. We now turn to the rest of the rules of NDs, including rules
for arbitrary sentential forms—for arbitrary forms involving ~ and — (and so A, V,
and <>). Of course expressions of a quantificational language may have sentential
forms, and if this is so the rules apply to them. For the most part, though, we simply
focus on expressions of our sentential language £;. In a derivation, each formula
is either a premise, an auxiliary assumption, or is justified by the rules. In addition
to reiteration, NDs includes two rules for each of the five sentential operators—for
a total of eleven rules. For each of the operators, there is an ‘I’ or introduction rule,
and an ‘E’ or exploitation rule.” As we will see, this division helps structure the way
we approach derivations. There are sections to introduce the rules (6.2.1-6.2.3), for
discussion of strategy (6.2.4), and for an extended system NDs+ (6.2.5).

6.2.1 — and A

Let us start with the I- and E-rules for — and A. We have already seen the exploitation
rule for —. Itis R1 of system NP. If formulas > — @ and J and appear on accessible
lines a and b of a derivation, we may conclude @ with justification a,b —E.

—E

e

a,b -E

Intuitively, if it is true that if & then @ and it is true that J, then @ must be true as
well. And on table (D) we saw that if both » — @ and & are true, then @ is true.
Notice that we do not somehow get the & from & — @. Rather, we exploit # — @
when, given that J also is true, we use J together with > — @ to conclude @. So
this rule requires two input “cards.” The &> — @ card sits idle without a & to activate
it. The order in which # — @ and J appear does not matter so long as they are
both accessible. However, you should cite them in the standard order—Iline for the
conditional first, then the antecedent. As in the axiomatic system from Chapter 3, this
rule is sometimes called modus ponens.

Here is an example. We show, L, L — (A A K), (AANK) - (L — P) 5, P.

2I- and B-rules are often called introduction and elimination rules. This can lead to confusion as
E-rules do not necessarily eliminate anything.

CHAPTER 6. NATURAL DEDUCTION 208

1.| L P
2.|L - (AAK) P
3.] (AANK) > (L —> P P

© (AAK)—> (L P)
4. |ANK 2,1 -E
5.|L—> P 3,4 —E
6.| P 5,1 -E

L — (AAK) and L and are of the form & — @ and & where L is the ? and AAK is
@. So we use them to conclude A A K by —E on (4). But then (AA K) — (L — P)
and A A K are of the form — @ and £, so we use them to conclude @, in this
case, L — P, online (5). Finally L. — P and L are of the form — @ and &, and
we use them to conclude P on (6).

Notice that,

L.|(A—=B)AC P
(L) 2.14 P
3.|B 1,2—E !Mistake!

misapplies the rule. (A — B) A C is not of the form &> — @—the main operator
being A, so that the formula is of the form A @. The rule —E applies just to
formulas with main operator —. If we want to use (4 — B) A C with A to conclude
B, we would first have to isolate A — B on a line of its own. We introduce a rule for
this just below (and we might have done it in NP). But we do not yet have the required
rule in NDs.

—1 is our first rule that requires a subderivation. Once we understand this rule,
the rest are mere variations on a theme. —1I takes as its input an entire subderivation.
Given an accessible subderivation which begins with assumption & on line a and
ends with @ against the assumption’s scope line at b, one may conclude > — @ with
justification a-b —1.

a.| | P A (@, =D a.| | P A (g, =D
Ty lle or bl @
P —Q a-b —I P —Q a-b —I

So £ — @ is justified by a subderivation that begins with assumption & and ends
with @. Note that the auxiliary assumption comes with a parenthetical exit strategy:
In this case the exit strategy includes the formula @ with which the subderivation is
to end, and an indication of the rule (—1I) by which exit is to be made. We might
write out the entire formula inside the parentheses as indicated on the left. In practice,
however, this is tedious, and it is easier just to write the formula at the bottom of the
scope line where we will need it in the end. Thus in the parentheses on the right ‘g’ is
a simple pointer to the goal formula at the end of the scope line. Note that the pointer
is empty unless there is a formula to which it points, and the exit strategy therefore
is not complete unless the goal formula is stated. In this case, the strategy includes

CHAPTER 6. NATURAL DEDUCTION 209

the pointer to the goal formula, along with the indication of the rule (—1) by which
exit is to be made. Again, at the time we make the assumption, we write the @ down
as part of the strategy for exiting the subderivation. But this does not mean the @ is
justified! The @ is rather introduced as a new goal. Notice also that the justification
a-b —1 does not refer to the formulas on lines a and b. These are inaccessible. Rather,
the justification appeals to the subderivation which begins on line a and ends on line
b—where this subderivation is accessible even though the formulas in it are not. So
there is a difference between the comma and the dash, as they appear in justifications.

For this rule, we assume the antecedent, reach the consequent, then discharge the
assumption and conclude to the conditional by —I. Intuitively, if an assumption &
leads to @ then we know that if & then @. On truth tables, if there is a sententially
valid argument from some premises #j ..., and & to conclusion @, then there
is no row where A1 ... A, are true and & is true but @ is false—but this is just to
say that there is no row where 4 ... A, are true and » — @ is false; so Ap ... Ay
entail — @.

For an example, suppose we are confronted with the following:

1.|A— B P

2.|B>C P
M)

A—C

In general, we use an introduction rule to produce some formula—typically one
already given as a goal. —1I generates > — @ given a subderivation that starts with
the & and ends with the @. Thus to reach A — C, we need a subderivation that starts
with A and ends with C. So we set up to reach A — C with the assumption A and
an exit strategy to produce A — C by —1. For this we set the consequent C as a
subgoal.

1.lA— B P
2.|B—>C P

3. |4 A (g, —T)

C
A—-C 3-_ —lI

Again, we have not yet reached C or A — C. Rather, we have assumed A and set
C as a subgoal, with the strategy of terminating our subderivation by an application
of —1. This much is stated in the exit strategy. We are not in a position to fill in the
entire justification for A — C, but there is no harm filling in what we can, to remind
us where we are going. As it happens, the new goal C is easy to get.

CHAPTER 6. NATURAL DEDUCTION 210

1.lA— B P
2.|B—>C P

3.1 | A A (g, =D
. B 1,3 —E
5. |C 24 —-E

A—C 3-_ —lI

Having reached C, and so completed the subderivation, we are in a position to execute
our exit strategy and conclude 4 — C by —1.

1.lA— B P
2.|B—C P

3.1 | A A(g,—D
4.1 | B 1,3 —E
5.1 |C 24 —>E

6.l4A—~C 3-5 =1

We appeal to the subderivation that starts with the assumption of the antecedent, and
reaches the consequent. Notice that the —1 setup is driven, not by the premises, but by
where we want to get. We will say something more systematic about strategy once we
have introduced all the rules. But here is the fundamental idea: think goal directedly.
We begin with A — C as a goal. Our idea for producing it leads to C as a new goal.
And the new goal is relatively easy to obtain.

Here is another example, one that should illustrate the above point about strategy
as well as the rule. Say we want to show 4 I, B — (C — A).

1.|A P
~N
B — (C — A)
Since the goal is of the form & — @, we set up to get it by —1.
1. :1 P
2.| | B A(g. =D
C—> A

B — (C = A) 2-_ —I1

We need a subderivation that starts with the antecedent and ends with the consequent.
So we assume the antecedent, and set the consequent as a new goal. In this case, the
new goal C — A has main operator —, so we set up again to reach it by —1.

CHAPTER 6. NATURAL DEDUCTION 211

1.|A P
2.| |B A(g, =D
3. o A(g,—D
A
C— A 3-_ =1
B — (C — A) 2-_ —I

The pointer g in an exit strategy points to the goal formula at the bottom of its scope
line. Thus g for assumption B at (2) points to C — A at the bottom of its line, and g
for assumption C at (3) points to A at the bottom of ifs line. Again, for the conditional,
we assume the antecedent, and set the consequent as a new goal. And this last goal is
particularly easy to reach. It follows immediately by reiteration from (1). Then it is a
simple matter of executing the exit strategies with which our auxiliary assumptions
were introduced.

1.| A P

2.1 | B A(g, =D
3. Cc A(g, =D
4. A 1R

50/ |C—= A 3-4 -1
6.|B— (C— A4 2-5 =1

The subderivation which begins on (3) and ends on (4) begins with the antecedent
and ends with the consequent of C — A. So we conclude C — A on (5) by 3-4 —1.
The subderivation which begins on (2) and ends at (5) begins with the antecedent and
ends with the consequent of B — (C — A). So we reach B — (C — A) on (6) by
2-5 —I. Notice again how our overall reasoning is driven by the goals, rather than
the premises and assumptions. It is sometimes difficult to motivate strategy when
derivations are short and relatively easy. But this sort of thinking will serve you well
as problems get more difficult!

Given what we have done, the E- and I-rules for A are completely straightforward.
First the exploitation rule: If # A @ appears on some accessible line a of a derivation,
then you may move to the & or to the @ with justification a AE.

a|PA@ a|PA@
AE
P aAE Q aAE

Either qualifies as an instance of the rule. The left-hand case was R3 from NP.
Intuitively, AE should be clear. If & and @ is true, then J is true. And if & and @ is
true, then @ is true. We saw a table for the left-hand case in (D). The other is similar.
The A introduction rule is equally straightforward. If 2 and @ appear on accessible
lines a and b of a derivation, then you may move to P A @ with justification a,b Al.

CHAPTER 6. NATURAL DEDUCTION 212

ISE
8

NI
PAQ a,b Al

The order in which # and @ appear is irrelevant, though you should cite them in the
specified order, line for the left conjunct first, and then for the right. If & is true and
@ is true, then & and @ is true. Similarly, on a table, any line with both / and @
true has & A @ true.

Here is a simple example, demonstrating the associativity of conjunction.

1.|AA(BAC) P

2.1 A 1 AE

3./|BAC 1 AE
O) 4.|B 3 AE

5.1C 3 AE

6.|ANB 2,4 AL

7./ (AANB)AC 6,5 AL

Notice that we could not get the B alone or the C alone without first isolating B A C
on (3). As before, our rules apply just to the main operator. In effect, we take apart
the premise with the E-rule, and put the conclusion together with the I-rule. Of course,
as with —1I and —E, rules for other operators do not always let us get to the parts and
put them together in this simple and symmetric way.

A final example brings together all of the rules so far (except R).

1.|A—>C P
2. |AAB INCES))
3.1 1A 2 AE

(P) 4. C 1,3 —-E
5.| | B 2 AE
6.| | BAC 5,4 Al
7./ (AAB)— (BAC) 2-6 —>1

We set up to obtain the overall goal by —1. This generates B A C as a subgoal. We
get B A C by getting the B and the C.

Here is our guiding idea for strategy (which may now seem obvious): As you
focus on a goal, to generate a formula with any main operator, consider producing
it by the corresponding introduction rule. Thus if the main operator of a goal or
subgoal is —, consider producing the formula by —I; if the main operator of a goal
is A, consider producing it by Al You make use of a formula with main operator
— by —E and of a formula with main operator A with AE. This much should be
sufficient for you to approach the following exercises. As you approach these and
other derivations, you may find the NDs quick reference on page 225 helpful. As you

CHAPTER 6. NATURAL DEDUCTION 213

work the derivations, it is good simply to leave plenty of space on the page for your
derivation as you state goal formulas, and let there be blank lines if room remains.”

Words to the wise:

e A common mistake made by beginning students is to assimilate other rules
to AE and Al—moving, say, from — @ alone to & or @, or from P
and @ to — Q. Do not forget what you have learned! Do not make this
mistake! The A rules are particularly easy. But each operator has its own
special character. Thus —E requires two “cards” to play. And —1 takes a
subderivation as input.

e Another common mistake is to assume a formula J” merely because it would
be nice to have access to P. Do not make this mistake! An assumption
always comes with an exit strategy, and is useful only for application of the
exit rule. At this stage, then, the only reason to assume 4 is to produce a
formula of the sort — @ by —1.

e Our little system NP introduced the idea of a derivation game. But we
are introducing ND from scratch. At this stage, then, the only rules for
derivations in NDs are R, —1, —E, Al and AE.

E6.5. Complete the following derivations in NDs by filling in justifications for each
line. Hint: It may be convenient to print or xerox the problems, and fill in your
answers directly on the copy.

a. L.|(AAB)—C
2.|BAA

B
A
ANB
C

S kW

J(R—=>LYA[(SVR)— (T < K)]
.iR—)L)—)(SVR)

o -

R— L
SVR
A (S VR)— (T <+ K)
T < K

o vk w

3Typing on a computer it is easy to push lines down if you need more room. It is not so easy
with pencil and paper, and worse with pen. If you are not already using it, the Symbolic Logic
APPlication (SLAPP) available from https://tonyroyphilosophy.net/slapp/ is an electronic
option including both checking and help. (See also Chapter 13, page 676 note 12.)

https://tonyroyphilosophy.net/slapp/

CHAPTER 6. NATURAL DEDUCTION

10.

N

o N

(98]

N o v e

O 0NNk

oW kW

B

.iA—>B)—>(B—>(L/\S))

A
g
A— B
B— (LAS)
LAS
S
L

SAL

.|AANB

c

A

ANC

C - (ANC)
C

B
BAC

| C—>(BAC)
10.

[C—>AANCO)AC—(BAC)

.iA/\S)—>C

A

S

ANS
C
S—>C

JA—=> (S —>C)

214

E6.6. The following are not legitimate NDs derivations. In each case, explain why.

ta.

.iA/\B)A(C—)B) P

A 1 AE

JUAABYAC >4 P

C P

A 12 —-E

JRASA(C 2 P

2.|C— A4 1 AE

A 2 —>E

CHAPTER 6. NATURAL DEDUCTION 215

d 1.|A—-B P

2. F/\C A (g, =)

A 2 AE
4.| B 1,3 ->E

e. 1./A—B P

2.1 |[AAC A (g, —D
3.1 14 2 AE

4.1 | B 1,3 —E
5.1 C 2 AE

6.| |BAC 4,5 Al

Hint: This last problem (e) does not break any derivation rule. However, it still
fails to derive B A C from the premise. Explain why.

E6.7. Provide derivations to show each of the following.
a. ANBh,, BAA
*b. ANB,B - C k,, C
c. AN(A— (AANB)) Hp, B
d ANB,B— (CAD)R, AND
*¢. A—>(A— B),, A— B

f. A,(AANB) - (C AD) kK,

'Ds

B —C

g C—>A,C—>(A— Bk,

'Ds

C > (AAB)
*h. A= B,B - Chk,,, (ANK)—>C

i. A— B

NDs

(ANC)— (BAC)
. DAE,(D— F)A(E = G)Fyp, FAG

k. 0> B,B—>S,S—>Lk, 0—L

*. A—> B H

NDs

(C - A)— (C - B)
mA—-(B—->C)k,, B—(A4—C)
nA—-B—->C),D—>BhK,, A— (D —C)

0oA— Bk, A— (C - B)

CHAPTER 6. NATURAL DEDUCTION 216

6.2.2 ~andvV

Now let us consider the I- and E-rules for ~ and V. The two rules for ~ are quite
similar to one another. Each appeals to a single subderivation. For ~I, given an
accessible subderivation which begins with assumption J” on line a, and ends with a
formula of the form @ A ~@ against its scope line on line b, one may conclude ~
by a-b ~I1. For ~E, given an accessible subderivation which begins with assumption
~& on line a, and ends with a formula of the form @ A ~@ against its scope line on
line b, one may conclude & by a-b ~E.

a.| | P A (c, ~]) a.| | ~P A (¢, ~E)
b.| |@A~Q b.| | @A~Q
~P a-b ~I P a-b ~E

~I introduces an expression with main operator tilde, adding tilde to the assumption
&. ~E exploits the assumption ~J, with a result that takes the tilde off. For these
rules, the formula @ may be any formula, so long as ~@ is it with a tilde in front.
Because @ may be any formula, when we declare our exit strategy for the assumption,
we might have no particular goal formula in mind. So, where g always points to
a formula written at the bottom of a scope line, c¢ is not a pointer to any particular
formula. Rather, when we declare our exit strategy, we merely indicate our intent to
obtain some contradiction, and then to exit by ~I or ~E.

Intuitively, if an assumption leads to a result that is false, the assumption is wrong.
So if the assumption & leads to both @ and ~@ and so to @ A ~@, then we can
discharge the assumption and conclude ~&; and if the assumption ~& leads to @
and ~@ and so @ A ~@, then we discharge the assumption and conclude &. On
tables, there can be no row where both @ and ~@ are true; so if every row where
premises A ... A, and & are true would have to make both @ and ~@ true, there is
no row where ... A, and & are true; so on a row where A1 ..., are true ~J
is true. Similarly when the assumption is ~J”, a row where premises A ... /A, are
true has P true.

Here are some examples of these rules. Notice that, again, we introduce subderiva-
tions with the overall goal in mind.

1.|A—> B P

2.|A— ~B P

3.1 |A A(c, ~])
Q 4.1 | B 1,3 —E

5.1 |~B 2,3 —E

6.| | BA~B 4,5 A1

7.|~A 3-6 ~1I

We begin with the goal of obtaining ~A. The natural way to obtain this is by ~I. So
we set up a subderivation with that in mind. Since the goal is ~A, we begin with A

CHAPTER 6. NATURAL DEDUCTION 217

and go for a contradiction. In this case, the contradiction is easy to obtain by a couple
applications of —E and then AL
Here is another case that may be more interesting:

1.|~A P

2.|B— A P

3./ |[LAB A (¢, ~)
R) 4.1 | B 3 AE

5. A 24 —E

6.| |AN~A 5,1 AL

7.~(LAB) 3-6~I

This time, the original goal is ~(L A B). It is of the form ~J, so we set up to
obtain it with a subderivation that begins with the &, that is, L A B. In this case, the
contradiction is A A ~A. Once we have the contradiction, we simply apply our exit
strategy.

A simplification. For any sentential or quantificational language £ let L (bottom)
abbreviate some sentence of the form Z A ~Z—for £; let L justbe Z A ~Z. Adopt
arule _LI as on the left below,

1.1@Q
a.| @ 2.1 ~@
b.| ~@ |
1I (S) 3.0 [~L A (c, ~E)
1 ab LI 4.1 |@A~@Q 1,2 Al
5.0 L 3-4 ~E

Given @ and ~@ on accessible lines, we move directly to L by _LI. This is an example
of a derived rule. For given @ and ~@, we can always derive L as in (S) on the
right. Thus we allow ourselves to shortcut the routine by introducing LI as a derived
rule. We will see examples of additional derived rules in section 6.2.5. For now, the
important thing is that since L abbreviates Z A ~Z we operate with L as we might
operate with Z A ~Z. Especially, given this abbreviation, our ~I and ~E rules appear

in forms,
a.| | P A (c, ~I) a.| |~P A (¢, ~E)
~1 ~E
b.| | L b.| | L
~P a-b ~I P a-b ~E

Since L is (abbreviates) Z A ~Z, the subderivations for ~I and ~E are appropriately
concluded with L.* With L as their last line, subderivations for ~I and ~E have a

41 is often introduced as a primitive symbol. We have chosen not to extend the primitives, and so
to treat it as an abbreviation. On the above account, then, one might derive L from Z and ~Z by Al; or
use AE to conclude Z or ~Z from L.

CHAPTER 6. NATURAL DEDUCTION 218

particular goal sentence very much like —1. However, the €@ and ~@ required to
obtain L by _LI are the same as would be required for @ A ~@ on the original form of
the rules. For this reason, we declare our exit strategy with a ¢ rather than g any time
the goal is L. At one level, this simplification is a mere notational convenience: having
obtained @ and ~@, we move to L, instead of writing out the complex conjunction
@ A ~@. However, there are contexts where it will be convenient to have a particular
contradiction as goal. Thus this is the standard form in which we use these rules.

Here is an example of the rules in this form, this time for ~E.

I.|~~4 P
2.l [~4 A, ~E)
(D)
3. L 2,1 11
4.4 23~E

It is no surprise that we can derive A from ~~A. This is how to do it in NDs. Again,
we begin from the goal. In this case the goal is A, and we can get it with a subderivation
that starts with ~A, by a ~E exit strategy. In this case the @ and ~@ for LI are ~A4
and ~~A—that is ~A and ~A with a tilde in front of it. Though very often (at least
in the beginning) an atomic and its negation will do for your contradiction, @ and
~@ need not be simple. Observe that ~E is a strange and powerful rule: Though an
E-rule, effectively it can be used in pursuit of any goal whatsoever—to obtain formula
& by ~E, all one has to do is obtain a contradiction from the assumption of & with a
tilde in front. As in this last example (T), ~E is particularly useful when the goal is an
atomic formula, and thus without a main operator, so that there is no straightforward
way for regular introduction rules to apply. In this way, it plays the role of a sort of
“backdoor” introduction rule.

The VI and VE rules apply methods we have already seen. For VI, given an
accessible formula & on line a, one may move to either v @ or to @ Vv & for any
formula @, with justification a V1.

a. | P a.| P
vI
Pva aVvl Qvey aVvl
The left-hand case was R4 from NP. Table (D) exhibits the left-hand case. And the
other side should be clear as well: Any row of a table where J is true has both & v @
and @ Vv P true.
Here is a simple example:

1.| P P

2.|(PvO)—>R P
L)

et

PvQ 1vI
4.|R 2,3 —-E

It is easy to get R once we have P v Q. And we build P v Q directly from
the P. Note that we could have done the derivation as well if (2) had been, say,

CHAPTER 6. NATURAL DEDUCTION 219

(PV[KA(L < T)]) — Rand we used VIto add [K A (L <> T)] to the P all at
once.

The inputs to VE are a formula of the form # v @ and two subderivations. Given
an accessible formula of the form & Vv @ on line a, with an accessible subderivation
beginning with assumption & on line » and ending with conclusion € against its
scope line at ¢, and an accessible subderivation beginning with assumption @ on line
d and ending with conclusion € against its scope line at e, one may conclude € with
justification a,b-c,d-e VE.

a|PVva
P A (g,avE)
c.| |€
VE
d||@ A (g, aVvE)
e.| | €
€ a,b-c,d-e VE

Given a disjunction & Vv @, one subderivation begins with &, and the other with
@; both conclude with €. This time our exit strategy includes markers for the new
subgoals, along with a notation that we exit by appeal to the disjunction on line @ and
VE. Intuitively, if we know it is one or the other, and both lead to some conclusion, then
the conclusion must be true. Here is an example a student gave me near graduation
time: She and her mother were shopping for a graduation dress. They narrowed it
down to dress A or dress B. Dress A was expensive, and if they bought it, her mother
would be mad. But dress B was ugly and if they bought it the student would complain
and her mother would be mad. Conclusion: her mother would be mad—and this
without knowing which dress they were going to buy! On a truth table, if rows where
&P is true have € true, and rows where @ is true have € true, then any row with £ v @
true must have one of J or @ true and so € true as well.

Here are a couple of examples. The first is straightforward, and illustrates both
the VI and VE rules.

1.|AVv B P
2.]4A—-C P

3. |4 A (g, 1VE)

C 2,3 —-E

V) 5./|BvC 4 vI
6.| | B A (g, 1VE)

7.1 |BvC 6 VvI
8.|BvC 1,3-5,6-7 VE

We have the disjunction A Vv B as premise, and original goal B v C. And we set up to
obtain the goal by VE. For this, one subderivation starts with A and ends with B v C,

CHAPTER 6. NATURAL DEDUCTION 220

and the other starts with B and ends with B v C. As it happens, these subderivations
are easy to complete.

Very often, beginning students resist using \VE—no doubt because it is relatively
messy. But this is a mistake—VE is your friend! In fact, with this rule, we have a
case where it pays to look at accessible formulas for general strategy. If you have an
accessible line of the form J v @, go for your goal, whatever it is, by VE. Here is
why: As you go for the goal in the first subderivation, you have whatever sentences
were accessible before, plus J; and as you go for the goal in the second subderivation,
you have whatever sentences were accessible before plus @. So you can only be better
off in your quest to reach the goal. In many cases where an accessible formula has
main operator V, there is no way to complete the derivation except by VE. The above
example (V) is a case in point.

Here is a relatively messy example, which should help you be sure you understand
the Vv rules. It illustrates the associativity of disjunction.

1.|Av(BVvC) P
2.1 | A A (g, 1VE)
3.] |AV B 2 VI
(AvB)vC 3vI
5./ |BvC A (g, 1VE)
(W) 6. *B A (g, 5VE)
7. AV B 6 VI

8. (AvB)vC 7 V1

9. Cc A (g,5VE)
10. (AvB)vC 9 VI
11.| ((AvB)vC 5,6-8,9-10 VE
12.{(AvB)vC 1,2-4,5-11 VE

The premise has main operator V. So we set up to obtain the goal by VE. This gives
us subderivations starting with A and B Vv C, each with (4 v B) v C as goal. The
first is easy to complete by a couple instances of V1. But the assumption of the second,
B v C has main operator V. So we set up to obtain its goal by VE. This gives us
subderivations starting with B and C, each again having (A v B) v C as goal. Again,
these are easy to complete by application of V1. The final result follows by the planned
applications of VE. If you have been able to follow this case, you are doing well!

E6.8. Complete the following derivations by filling in justifications for each line.
Hint: Begin by identifying the exit strategy for auxiliary assumptions; then the
rest will be straightforward.

CHAPTER 6. NATURAL DEDUCTION

w

® Nk

.| ~B
.l~A\/C)—>(B/\C)

~A

~Av C
BAC
B
L
A

IR
2. ~(8 Vv T)

R— S

S
SvT
1

N ok

N

10.
11.
12.

10.

S kW

A~(R—=S)

.iR/\S)V(K/\L)

RAS

R

S

S AR
(SAR)V(LAK)

KAL

K

L

LAK
(SAR)V(LAK)
SAR)V(LAK)

.|AV B

(A— B)— B
(A—- B)— B

221

CHAPTER 6. NATURAL DEDUCTION

10.
11.
12.
13.

~B

~A

AV B

|~4 > (AvB)

222

E6.9. The following are not legitimate NDs derivations. In each case, explain why.

a.

1.

AV B

P

1 VE

A (c, ~I)

2,3 ->E
34 ~1

A (¢, ~I)
A (¢, ~E)
13 11
3-4 ~E
2-5 ~1

P

A (g, 1VE)

2R

A (g, IVE)

3R
1,2-3,4-5 VE

CHAPTER 6. NATURAL DEDUCTION

E6.10.

A

.AVB,A— B,B— AHK

.A—>B,(BVvC)—>D,D - ~AH

.(AANB)—> ~AHK

L.JAv B P

2. :1 A (g, 1VE)
3.1 |4 2R

4. ll A (g, —D

s.|||B A (g, 1VE)

b

6. 4R
7.0 |A 4R
8. 14 1,2-3,5-6 VE

Produce derivations to show each of the following.

. ~A by, ~(A A B)

NNA

NDs

*c. ~A— B,~B bk, A

NDs

A= Bh, ~(AA~B)

.~A—B,B—> Ak, A

NDs

.AANBF, (R< S)VvB
‘2. AV(AAB)), A

.S, (BVC) = ~Sky, ~B

ANB

NDs

NDs

.AVBHk,, BVA

NDs

1. A= ~Bhk, B—~A

A— ~B

NDs

.AV~~BHF,, AV B

NDs

. AV B,~BH, A

NDs

~A

223

CHAPTER 6. NATURAL DEDUCTION 224

623 <

We complete our presentation of rules for NDs with the rules <>E and <>1. Given that
P <> @ abbreviates the same as (P — @) A (@ — &), it is not surprising that rules
for <> work like ones for arrow, but going two ways. For <>E, if formulas & < @
and J appear on accessible lines a and b of a derivation, we may conclude @ with
justification a,b <>E; and similarly but in the other direction, if formulas # < @
and @ appear on accessible lines a and b of a derivation, we may conclude & with
justification a,b <>E.

a|P < @ a|P < Q@
b. | P b.| @
<E
Q@ ab<E P ab <E

& <« @ thus works like either » — @ or @ — &. Intuitively given & if and only
if @, then if & is true, @ is true. And given & if and only if @, then if @ is true &
is true. On tables, if < @ is true, then &P and @ have the same truth value. So if
P < @ is true and P is true, @ is true as well; and if P < @ is true and @ is true,
P is true as well.

Given that & <> @ can be exploited like > — @ or @ — £, it is not surprising
that introducing # <« @ is like introducing both » — @ and @ — . The
input to <1 is two subderivations. Given an accessible subderivation beginning with
assumption J on line @ and ending with conclusion @ against its scope line on b, and
an accessible subderivation beginning with assumption @ on line ¢ and ending with
conclusion & against its scope line on d, one may conclude & <> @ with justification,
a-b,c-d <1.

a.| | P A (g, <)
b.||@

<l el la A (g, <T)
d.| | P

P < Q a-b,c-d <1

Intuitively, if an assumption & leads to @ and the assumption @ leads to &, then we
know that & only if @, and P if @—which is to say that & if and only if @. On truth
tables, if there is a sententially valid argument from premises #; ... /4, and & to
conclusion @, then there is no row where 47 ... A, are true and & is true and @ is
false; and if there is a sententially valid argument from +; . .. 4, and @ to conclusion
&, then there is no row where A ... A, are true and @ is true and & is false; so on
rows where 4 ..., are true, it is not the case that one of & or @ is true and the
other is false; so the biconditional & <> @ is true.

CHAPTER 6. NATURAL DEDUCTION 225

NDs Quick Reference

R (reiteration) ~I (negation intro) ~E (negation exploit)
a. | P a.| | P A,~I) a | |~FP A (c, ~E)
€D
P aR b| |@A~@(L) b| |@A~@(L)
~P a-b ~I P a-b ~E
Al (conjunction intro) AE (conjunction exploit) AE (conjunction exploit)
a.| P a|PA@ a|PA@
b.| @
P a AE Q aAE
PAA a,b Al
VI (disjunction intro) VI (disjunction intro) VE (disjunction exploit)
a.| P a. | P a.|Pva
b.| | P A (g,aVvE)
Pva avl Qv ey avl
c.
—1 (conditional intro) —E (conditional exploit) d. Q A (g, aVE)
a.| | P A (g, —]) a|P —> Q@
b.| P e.| |€
b.| @ € a,b-c,d-e VE
Q ,b —>E
P —Q a-b -1 b=
<1 (biconditional intro) <E (biconditional exploit) <E (biconditional exploit)
a.| | P A (g, <D a|P < Q a|P < Q
b.| P b. | @
b.
Q ab <E P ab <E
c.| | @ A(g, <D
dl |2 LI (bottom intro)
P < Q a-b,c-d <1 ala

derived rule: b. | ~Q

1 ab Ll

CHAPTER 6. NATURAL DEDUCTION 226

Here are a couple of examples. The first is straightforward, and exercises both the
<>l and <>E rules. We show, A <> B, B <> C 5, A < C.

1.|A< B P
2.|B < C P
3.1 |14 A (g, <]
| |B 1,3 <E
X) 5./ |C 24 <E
6.| |C A (g, <D
B 2,6 <E
1A 1,7 <E
9.]A< C 3-5,6-8 <1

Our original goal is A <> C. So it is natural to set up subderivations to get it by <>1.
Once we have done this, the subderivations are easily completed by applications of
<E.

Here is an interesting case that again exercises both rules. We show, 4 <> (B <«
C),ChH,, A< B.

NDs

.| A< (B~ C) P

2.1C P

3.0 |4 A(g, <D
4. |B < C 1,3 <E

5.1 | B 42 E

6.| | B A (g, <)

(Y) 7.1 | B A (g, <))

8 C 2R

9. C A (g, <)
10. B 6R
11.| |BoC 7-8,9-10 <1
12.] | 4 1,11 <E
13.|4A < B 3-5,6-12 <1

We begin by setting up the subderivations to get A <> B by <>1. The first is easily
completed with a couple applications of <>E. To reach the goal for the second by
means of the premise (1) we need B < C as our second “card.” So we set up to
reach that. As it happens, the extra subderivations at (7)—(8) and (9)—(10) are easy
to complete. Again, if you have followed so far, you are doing well. We will be in a
better position to create such derivations after our discussion of strategy.

So much for the rules of NDs. Before we turn in the next section to strategy, let
us note a couple of features of the rules that may so-far have gone without notice.

CHAPTER 6. NATURAL DEDUCTION 227

First, premises are not always necessary for NDs derivations. Thus, for example,

Fps A = A.
1.] |4 A(g,—D)
2 2.1 14 IR
A—A4 (goal) 3A—-4 1251

If there are no premises, do not panic! Begin in the usual way. In this case, the original
goal is A — A. So we set up to obtain it by —I. And the subderivation is particularly
simple. Notice that our derivation of A — A corresponds to the fact from truth tables
that § A — A. And we need to be able to derive A — A from no premises if there
is to be the right sort of correspondence between derivations in NDs and semantic
validity—if we are to have I' & P iff I' |, P.

Second, observe again that every subderivation comes with an exit strategy. The
exit strategy says whether you intend to complete the subderivation with a particular
goal or by obtaining a contradiction, and then how the subderivation is to be used
once complete. There are just five rules which appeal to a subderivation: —1, ~I, ~E,
VE, and <1. You will complete the subderivation, and then use it by one of these
rules. So these are the only rules which may appear in an exit strategy. If you do not
understand this, then you need to go back and think about the rules until you do.

Finally, it is worth noting a strange sort of case, with application to rules that can
take more than one input of the same type. Consider a simple demonstration that
A, AN A. We might proceed as in (AA) on the left,

NDs
1.1 4 P

1.1 A

(AA) 2|4 IR (AB) %

2.|ANA
3.]JANA 1,2 AL

P

1,1 AI

We begin with A, reiterate so that A appears on different lines, and apply Al. But we
might have proceeded as in (AB) on the right. The rule requires an accessible line
on which the left conjunct appears—which we have at (1)—and an accessible line on
which the right conjunct appears which we also have on (1). So the rule takes an input
for the left conjunct and an input for the right—they just happen to be the same thing.
A similar point applies to rules VE and <> which take more than one subderivation
as input. Suppose we want to show AV A -, A

NDs

1.|lAva P

2. F A (g, 1VE) .lAva P

3. 14 2R o | 14 Ao, IVE
(AC) (AD) (g. 1VE)

4114 A (g, 1VE) 3.0 |4 2R

5.0 14 4R 4.0 1,2-32-3 VE

6.4 1,2-34-5 VE

5T am reminded of a character in Groundhog Day (film, 1993) who repeatedly asks, “Am I right or
am I right?” If he is right or he is right, it follows that he is right.

CHAPTER 6. NATURAL DEDUCTION 228

In (AC), we begin in the usual way to get the main goal by VE. This leads to the
subderivations (2)—(3) and (4)—(5), the first moving from the left disjunct to the goal,
and the second from the right disjunct to the goal. But the left and right disjuncts are
the same. So we might have simplified as in (AD). VE still requires three inputs: First
an accessible disjunction, which we find on (1); second an accessible subderivation
which moves from the left disjunct to the goal, which we find on (2)—(3); third a
subderivation which moves from the right disjunct to the goal—but we have this
on (2)—(3). So the justification at (4) of (AD) appeals to the three relevant facts, by
appeal to the same subderivation twice. Similarly one could imagine a quick-and-dirty

demonstration that I, A < A.

E6.11. Complete the following derivations by filling in justifications for each line.

a. 1.|A< B

A
'_

2 A
3.0 || ~4

4.0 L

5.0 | ~4

6.| 4

7.0 L

8. | ~(4 < ~A)

CHAPTER 6. NATURAL DEDUCTION

d.

1.| |4
2. ~A
3. A
4. ~A— A
5] |~A—> A
6. ~A
7. A
8. 1
9.1 |4
10. | A < (~4A — A)
1.|~A
2.|~B
3.
4. ~B
1
B
7.1 | B
8. ~A
9. 1
10.] | A
11.|A< B

229

E6.12. The following are not legitimate NDs derivations. In each case, explain why.

a.

A P
B P

.|A < B 1,2 <1

A— B P
B P
A 1,2 -E
A< B P
A 1 <E

CHAPTER 6. NATURAL DEDUCTION

d.

E6.13. Produce derivations to show each of the following.
*a.
b.

C.

1.|B P

2.1 | A A (g, <l
3.| | B 1R

4.1 | B A(g, <D
5.1 14 2R
6.|A< B 2-3,4-5 <1
1.|~A P

2.1 | B A (g, =D
3. ~A A (g, <]
4, B 2R

5 B 2R
6.|B— B 2-5 >I

7 B A (g, <]
8 ~A 1R
9.|~A < B 3-4,7-8 <1

(AANB) <> AR, A— B
A< (AVvB)H, B— A
A< B,B<C,C < D,~Ak,, ~D

NDs

A< BH

NDs

(A— B)A (B — A)
A< (BAC), B, A< C
(A—- B)A(B—> A+, A< B

NDs

g A= (B < C) by, (AAB) < (AAC)

A< B,C < Dbk, (ANC) < (BAD)
l_

NDs

A< A

. s (AAB) < (BAA)

l_

NDs

~~A < A

s (A< B) = (B < A)

(AAB) < (ANC)H, A— (B« C)

NDs

~A—- B, A—-~BhkK, ~A< B

A, Bk, ~A<~B

230

CHAPTER 6. NATURAL DEDUCTION 231

6.2.4 Strategy

It is natural to introduce derivation rules, as we have, with relatively simple cases.
And you may or may not have been able to see from the start in some cases how
derivations would go. But derivations are not always simple, and it is beyond human
power always to see how they go. Perhaps this has already been an issue! However,
as with chess or other games of strategy, it is possible to say a good deal about how to
approach problems effectively. We have said quite a bit already. In this section, we
pull together some of the themes and present the material more systematically.

In doing derivations there are two fundamentally different contexts. In the one
case, you have some accessible lines, and want a definite goal sentence. In the other,
there are some accessible lines, and you want a contradiction.

a.| A a. | A
b.| B b.| B

g (goal sentence) 1 (contradiction)

The different contexts motivate separate strategies for a goal and strategies for a
contradiction. In the first case, strategies for a goal help reach a known goal formula.
But in the other case you want some @ and ~@, where it may not be clear what this
@ should be; thus strategies for a contradiction help find the formula you need. First,
strategies for a goal.

Strategies for a Goal

For natural derivation systems, the overriding strategy is to work goal directedly.
What you do at any stage is directed primarily, not by what you have, but by where
you want to be. Suppose you are trying to show that I" I, #. You are given & as
your goal. Perhaps it is tempting to begin by using E-rules to “see what you can get”
from the members of I". There is nothing wrong with a bit of this in order to simplify
your premises (like arranging the cards in your hand into some manageable order),
but the main work of doing a derivation does not begin until you focus on the goal.
This is not to say that your premises play no role in strategic thinking. Rather, it is to
rule out doing things with them which are not purposefully directed at the end. In the
ordinary case, applying the strategies for your goal dictates some new goal; applying
strategies for this new goal dictates another; and so forth, until you come to a goal
that is easily achieved.
The following strategies for a goal are arranged in rough priority order:

SG 1. If accessible lines contain explicit contradiction, use ~E to reach goal.
2. Given an accessible formula with main operator V, use VE to reach goal.

3. If goal is “in” accessible lines (set goals and) attempt to exploit it out.

CHAPTER 6. NATURAL DEDUCTION 232

4. To reach goal with main operator %, use xI (careful with V).

5. Try ~E (especially for atomics and sentences with Vv as main operator).

If a high priority strategy applies, use it. If one does not apply, simply “fall through”
to the next. The priority order is not necessarily a frequency order. The frequency will
likely be something like SG4, SG3, SG5, sG2, SG1. But high priority strategies are
such that you should adopt them if they are available—even though most often you
will fall through to ones that are more frequently used. I take up the strategies in the
priority order.

SG1. Ifaccessible lines contain explicit contradiction, use ~E to reach goal. For
goal 8, with an explicit contradiction accessible, you can simply assume ~8B, use
your contradiction, and conclude 3.

a. | A
a. | A
b. | ~A
given b | ~A use c. Fi)’ A (¢, ~E)
B (goal) d.| L ab 11
B c-d ~E

That is it! No matter what your goal is, given an accessible contradiction, you can
reach that goal by ~E. Since this strategy always delivers, you should jump on it
whenever it is available. As an example, try to show, 4, ~A H,, (RAS) — T. Your
derivation need not involve — 1. (This section will be most valuable if you do work

these examples, and so think through the steps.) Here it is in two stages:

1.] 4 P 1.4 P
2.|~4 P 2. ~A P
(AE) 3.||~[(RVS)—>T] A(c,~E) 3. |~[(RVS)—>T] A, ~E)
4.1 12 11
(RVS)—>T 3-_ ~E 5/(RvS)—>T 3-4 ~E

As soon as we see the accessible contradiction, we assume the negation of our goal,
with a plan to exit by ~E. This is accomplished on the left. Then it is a simple matter
of applying the contradiction, and going to the conclusion by ~E.

For this strategy, it is not required that accessible lines “contain” a contradiction
only when you already have @ and ~@ for _L1. However, the intent is that there should
be some straightforward way to obtain them from accessible lines. If you can do this,
then your derivation is over: assume the opposite, extract the contradiction, and apply
~E to reach the goal. If there is no simple way to obtain a contradiction, fall through
to the next strategy.

CHAPTER 6. NATURAL DEDUCTION 233

SG2. Given an accessible formula with main operator V, use VE to reach goal.
As suggested above, you may prefer to avoid VE. But this is a mistake—VE is your
friend! Suppose you have some accessible lines including a disjunction #4 Vv 8 with
goal €. If you go for that very goal by VE, the result is a pair of subderivations
with goal €—where, in the one case, all those very same accessible lines and 4 are
accessible, and in the other case, all those very same lines and 3B are accessible. So,
in each subderivation, you can only be better off in your attempt to reach €.

a.|AVB
A A (g,aVvE)
a.|AVSB c.||e (goal)
given use
€ (goal) d. :@’ A (g, avE)
e.| | € (goal)
€ a,b-c,d-e VE

As an example, try to show, A — B, AV (A A B) b, A A B. Try showing it
without \VE! Here is the derivation in two stages:

1.|A— B P 1.|A— B P
2.|AV(AAB) P 2.|AV(AAB) P
3.1 |4 A (g,2VE) 3.1 |14 A (g,2VE)
|| B 1,3 —>E
(AF) AANB 5.| |AAB 3,4 Al
AANB A (g, 2VE) 6.| |AAB A (g,2VE)
AANB 7. AANB 6 R
ANB 2,3-_,_ VE 8.|AAB 2,3-5,6-7 VE

When we start, there is no accessible contradiction. So we fall through to SG2. Since
a premise has main operator V, we set up to get the goal by VE. This leads to a pair of
simple subderivations. Once we do this, we treat the disjunction as effectively “used
up” so that SG2 does not apply to it again. Notice that there is almost nothing one
could do except set up this way—and that once you do, it is easy!

SG3. Ifgoalis “in” accessible lines (set goals and) attempt to exploit it out. In most
derivations, you will work toward goals which are successively closer to what can be
obtained directly from accessible lines. And you finally come to a goal which can be
obtained directly. If it can be obtained directly, do so! In some cases, however, you
will come to a stage where your goal exists in accessible lines but can be obtained
only by means of some other result. In this case, you can set that other result as a new
goal. A typical case is as follows:

CHAPTER 6. NATURAL DEDUCTION 234

Al 3 a|A—> B
iven use
g 3 (goal) b. | A (goal)
oa
& 3 ab —E

The B exists in the premises. You cannot get it without the 4. So you set 4 as a
new goal and use it to get the B. This strategy applies whenever the complete goal
exists in accessible lines, and can be obtained by reiteration, by an E-rule, or by an
E-rule with some new goal. Observe that the strategy would not apply in case you
have A — B and are going for A. Then the goal exists as part of a premise all right.
But there is no obvious result such that obtaining it would give you a way to exploit
A — B to getthe A.

As an example, let us try to show (4 — B)A (B — C), A < (L < §),

(L < S) A H k,,, C. Here is the derivation in four stages:

1.|(A— B)A(B—C) P 1.|(A—> B)A(B—C) P
2.|A< (L<+S) P 2.|A< (L<S) P
3./ (L< S)ANH P 3./ (L S)YANH P
4.|B—C 1 AE 4.|B—>C 1 AE
(AG) 5.4 B 1 AE
A
B B 5,_ —E
C 4, —E C 4, —E

The original goal C exists in the premises, as the consequent of the right conjunct of
(1). It is easy to isolate the B — C, but this leaves us with the B as a new goal to
get the C. B also exists in the premises, as the consequent of the left conjunct of (1).
Again, it is easy to isolate A — B, but this leaves us with A as a new goal.

.|l(A—=> B)A(B—>C) P I.|(A= B)A(B—=C) P

2.|A< (L<S) P 2.|A< (L<S) P

3./ (L« S)ANH P 3./ (L< S)ANH P

4. |B—>C 1 AE 4 |B—>C 1 AE

5.|A— B 1 AE 5.|A— B 1 AE
LS 6.|L < S 3AE
A 2,_<E 7.1A4 2,6 <E
B 5,_ —E 8. |B 5,7 —-E
C 4, —E 9.1C 4.8 -E

But A also exists in the premises, at the left side of (2); to get it, we set L <> S asa
goal. But L < § exists in the premises, and is easy to get by AE. So we complete
the derivation with the steps that motivated the subgoals in the first place. Observe
the way we move from one goal to the next, until finally there is a stage where SG3
applies in its simplest form, so that L. <> S is obtained directly. Another example

CHAPTER 6. NATURAL DEDUCTION 235

of this strategy is derivation (Y) above where we needed A to complete the second
subderivation and so set B <> C as goal.

SG4. To reach goal with main operator =, use I (careful with V). This is the
most frequently used strategy, the one most likely to structure your derivation as a
whole. ~E to the side, the basic structure of I-rules and E-rules in NDs gives you just
one way to generate a formula with main operator x, whatever that may be. In the
ordinary case, then, you can expect to obtain a formula with main operator * by the
corresponding I-rule. Thus, for a typical example,

a. | | A A (g, =D

given use
A —> B (goal) bl |8 (goal)
A —> B a-b —I

And this is not the only context where SG4 applies. It makes sense to consider it
for formulas with any main operator. Be cautious, however, for formulas with main
operator V. There are cases where it is possible to prove a disjunction, but not to
prove it by VI—as one might have conclusive reason to believe the butler or the maid
did it, without conclusive reason to believe the butler did it, or conclusive reason to
believe the maid did it (perhaps the butler and maid were the only ones with means
and motive). You should consider the strategy for V. But it does not always work.

As an example, let us show D H, A — (B — (C — D)). Here is the
derivation in four stages:

L|D P 1.|D P
2.0 14 A (g, —I) 2.0 14 A(g,—D
3. B A (g, =D
(AH)
C—->D
B — (C — D) B — (C = D) 3-_ >l
A—(B—(C—>D) 2-_-lI A= (B— (C > D)) 2-_—I

Initially, there is no contradiction or disjunction in the premises, and neither do we
see the goal. So we fall through to strategy SG4 and, since the main operator of the
goal is —, set up to get it by —1. This gives us B — (C — D) as a new goal. Since
this has main operator —, and it remains that other strategies do not apply, we fall
through to sG4, and set up to get it by — 1. This gives us C — D as a new goal.

CHAPTER 6. NATURAL DEDUCTION 236
1 *D P 1. *D P
2 ll A (g, =D 2. ;4 A (g, =D
3 B A (g, =) 3. B A (g, =)
4. C A (g, —D 4. C Ag,—D
D 5. D 1R
C —>D 4-_ -1 6. C —>D 4-5 -1
B — (C — D) 3-_ =1 7.| | B—>(C - D) 3-6 —»1
A— (B — (C - D)) 2-_ —I 8.|4— (B— (C — D)) 2-7 -1

As before, with C — D as the goal, there is no contradiction on accessible lines,
no accessible formula has main operator V, and the goal does not itself appear on
accessible lines. Since the main operator is —, we set up again to get it by — 1. This
gives us D as a new subgoal. But D does exist on an accessible line. Thus we are
faced with a particularly simple instance of strategy SG3. To complete the derivation,
we simply reiterate D from (1), and follow our exit strategies as planned.

SG5. Try ~E (especially for atomics and sentences with Vv as main operator). The
previous strategy has no application to atomics, because they have no main operator,
and we have suggested that it is problematic for disjunctions. This last strategy applies
particularly in those cases. So it is applicable in cases where other strategies seem not

to apply.

a.l|~A A, ~E)

given
b.| L

A a-b ~E

A (goal)

It is possible to obtain any formula by ~E, by assuming its negation and going for
a contradiction. So this strategy is generally applicable. It cannot hurt: If you could
have reached goal 4 anyway, you can still obtain + under the assumed ~# and use
the resultant contradiction to reach # outside of the subderivation. And it may help:
As for VE, all the lines from before plus the new assumption are accessible; in many
cases, the assumption puts you in a position to make progress you would not have
been able to make before.

As a simple example of the strategy, try showing ~4 — B, ~B I, A. Here is
the derivation in two stages:

1.|~A—> B P l.|~A— B P
2.|~B P 2.|~B P
(AT) 3. |~A A (c, ~E) 3 ~A A (c, ~E)
4.1 | B 1,3 —>E
1L 5.0 | L 42 11
A 3-_~E 6. A 3-5~E

CHAPTER 6. NATURAL DEDUCTION 237

There is no contradiction in the premises, no formula has main operator Vv and, though
~A is the antecedent of (1), there is no obvious way to exploit the premise to isolate
the A. The goal A has no operators, so it has no main operator and strategy SG4 does
not apply. So we fall through to strategy SG5, and set up to get the goal by ~E. In this
case, the subderivation is particularly easy to complete.

Sometimes the occasion between this strategy and SG1 can seem obscure (and,
in the end, it may not be all that important to separate them). However, for the
first strategy, accessible lines by themselves are sufficient for a contradiction and so
motivate the assumption. In this example, from the premises we have ~ B, but cannot
get the B and so do not have a contradiction from the premises alone. So SG1 does
not apply. For SGS5, in contrast to SG1, the contradiction becomes available only after
you make the assumption.

Here is an extended example which combines a number of the strategies considered
so far. We show that BV A I, ~A4 — B. You want especially to absorb the strategy-
based mode of thinking as a way to approach exercises.

1.|BVA P
(AT)
~A— B
There is no contradiction in the premise; so strategy SG1 is inapplicable. Strategy SG2
tells us to go for the goal by VE. Another option is to fall through to SG4 and go for

~A — B by —1 and then apply VE to get the B, but —1I has lower priority and let us
follow the official procedure.

1.|BVv A P
2.| | B A (g, 1VE)
~A — B Given an accessible line with main operator Vv,
4 A (g, IVE) use VE to reach goal.
~A— B
~A— B 1,2-_,_ VE

Having set up for VE on line (1), we treat B Vv A as effectively “used up” and so out
of the picture. Concentrating, for the moment, on the first subderivation, there is no
contradiction on accessible lines; neither is there another accessible disjunction; and
the goal is not in accessible lines. So we fall through to SG4.

CHAPTER 6. NATURAL DEDUCTION 238

.|BVA

~A
B
~A— B

A

~A — B
~A —> B

P
A (g, 1VE)

A(g.—D

3. I To reach goal with main operator —, use —1.

A (g, 1VE)

1,2-_,_ VE

In this case, the subderivation is easy to complete. The new goal, B exists as such on
an accessible line. So we are faced with a simple instance of SG3, and so can complete
the subderivation.

1.
2.
3.

Bv A

~A— B
~A— B

P

A (g, 1VE)

A (g, —])

7R The first subderivation is completed by reiter-

3-4 1 ating B from line (2), and following the exit

strategy.
A (g. 1VE)

1,2-5,6-_ VE

For the second main subderivation lines (2)—(5) are inaccessible. Tick off in your
head: there is no accessible contradiction; neither is there another accessible formula
with main operator Vv; and the goal is not in accessible lines. So we fall through to
strategy SG4.

1.
2.
3.

BvA

B
~A
B

~A— B

A

~A

~A— B
~A— B

P
A (g, 1VE)
A (g, =D

2R
3-4 —1

To reach goal with main operator —, use —1.
A(g, IVE)

A(g,—D

T-_ =1
1,2-5,6-_ VE

CHAPTER 6. NATURAL DEDUCTION 239

But this time there is an accessible contradiction at (6) and (7). So SG1 applies, and
we are in a position to complete the derivation as follows:

1.|BvA P
2.| | B A (g, 1VE)
3. ~A A (g, =D
4. B 2R
5./ |~A— B 3-4 -1
6.1 14 A (g, 1VE) If accessible lines contain explicit contradiction,
B use ~E to reach goal.
7. ~A A (g, =D
8. ~B A (¢, ~E)
9. € 6,7 L1
10. B 8-9~E
11.| |~A— B 7-10 =1
12.|~A— B 1,2-5,6-11 VE

This derivation is fairly complicated! But we did not need to see how the whole thing
would go from the start. Indeed, it is hard to see how one could do so. Rather it was
enough to see, at each stage, what to do next. That is the beauty of our goal-oriented
approach.

A brief remark before we turn to exercises: In going for a contradiction, as from
SG4 or SGS5, the new goal is not a definite formula—any contradiction is sufficient for
the rule and for a derivation of L. But each of our strategies for a goal presupposes a
known goal sentence. In going for a contradiction there is no definite goal formula—so
this presupposition is not met, and strategies for a goal do not apply. This motivates
the “strategies for a contradiction” of the next section. For now, I will say just this: If
there is a contradiction to be had, and you can reduce formulas on accessible lines to
atomics and negated atomics, the contradiction will appear at that level. So one way
to go for a contradiction is simply by applying E-rules to accessible lines, to generate
what atomics and negated atomics you can.

Proofs for the following theorems are left as exercises. You should not start them
now, but wait for the assignment in E6.16. The first three may remind you of axioms
from Chapter 3 and the fourth has an application in Part IV. The others foreshadow
rules from the system NDs+, which we will see shortly.

T6.1. by, P — (Q — P)

T6.2. byp, (O = (P = Q) — (0 > P) > (0 — Q))

*T6.3. 5

wps (@ —> ~P) = (~Q - P) > Q)

CHAPTER 6. NATURAL DEDUCTION

T6.4.

T6.5.

T6.6.

T6.7.

T6.8.

T6.9.

T6.10.

T6.11.

T6.12.

*T6.13.

T6.14.

T6.15.

T6.16.

T6.17.

T6.18.

T6.19.

T6.20.

A>(B—>€),D—>(€—->86),D—>8H, A—>(D—>E)

NDs

A—> B, ~BH

NDs

~A

A—>B,B->Ch, A>T

AV B, ~A, B

AV B, ~B

NDs

A

A B, ~A

NDs

~B

A< B,~B H

NDs

~ A
Fops (A A B) < (B A A)

Fvps (A < B) < (B < A)

s (AV B) < (B vV A)

Faps (A = B) © (~B — ~A)

Faps [A = (B = €)] < [(AAB) —> €]
Fvps [A A (B AC)] < [(AAB)ATC]
Fups b < ~~oh

Fops b < (A A)

Fups < (A V A)

s [AV (B VE)] < [(AV B)VE]

240

CHAPTER 6. NATURAL DEDUCTION 241

E6.14. For each of the following, (i) which goal strategy applies? and (ii) what is the
next step? If the strategy calls for a new subgoal, show the subgoal; if it calls for a
subderivation, set up the subderivation. In each case, explain your response. Hint:
Each goal strategy applies once.

*a. 1.|~AVB P
2.1A4 P

B

b. 1.|lJAS P
2.8 > K P

*c. 1.|~A < B P

B < ~A

d. 1.|A< ~B P

e. 1.|AAB P

KvJ

E6.15. Produce derivations to show each of the following. If you get stuck, you will
find strategy hints in the Answers to Selected Exercises.

“a. A (A= B) by, A — B

*». (AvB)—> (B« D),Bk, BAD

*c. ~(ANC),~(ANC) < BhH, AV B
*d. AN(C A~B),(AV D) > ~E &, ~E
*e.A—>B,B—>Chk,,, A—C

“f. (AN B) > (C AD) h

'Ds

[(AA B) — C]A[(AA B) — D]

9. A>(B—->C),(AAND)—>E,C—>DHK

NDs

(AAB)—> E

https://tonyroyphilosophy.net/symbolic-logic/

CHAPTER 6. NATURAL DEDUCTION 242

*h,

*n.

*0.

*s,

%t

.

*y,

*i,.A—> (B —->C),D — Bk

.(AAN~B) > ~A

(A->B)A(B—-C),(DVE)VH]—> A, ~(DVE)ANH &, C

i. A= (BAC),~C Ky, ~(AAD)

A— (D —C)

NDs

*k. A= (B — C) Hp, ~C = ~(AAB)

A— B

NDs

~A

NDs

A— B

~B < A,C > B, ANCH

NDs

~K

~A < ~Bbk, A< B

NDs

(AvB)vC,B<CH, CvA

NDs
Fups A = (A V B)
Fups A = (B — A)

Hps (A <> B) > (A — B)

yps (AAN~A) — (BA~B)

Fps (A = B) = [(C — A) = (C — B)]
Fps [(A — B) A~B] — ~A

Fps A = [B — (A — B)]

X. Fyps ~A = [(B A A) — C]

Fups (A = B) = [~B — ~(A A D)]

*E6.16. Produce derivations to demonstrate each of T6.1-T6.20. These are a mix—
some repetitious, some challenging. But when we need the results later, we will

be glad to have done them now. Hint: Do not worry if one or two get a bit longer
than you are used to—they should!

CHAPTER 6. NATURAL DEDUCTION 243

Strategies for a Contradiction

We come now to our second set of strategies. Each of our strategies for a goal
presupposes a known goal sentence—the strategies for a goal say how to go about
reaching this goal or that. In going for a contradiction, however, the @ and ~@ may
not be known. Where the goal is unknown, our strategies for a goal do not apply. This
motivates strategies for a contradiction. Again, the strategies are in rough priority
order.

SC 1. Break accessible formulas down into atomics and negated atomics.
2. Given an available disjunction, go for L by VE.

3. Set as goal the opposite of some negation (something that cannot itself be
broken down); then apply strategies for a goal to reach it.

4. For some & such that both & and ~& lead to contradiction: Assume
(~&), obtain the first contradiction, and conclude ~P (J); then obtain
the second contradiction—this is the one you want.

Again, the priority order is not the frequency order. The frequency is likely to be
something like SC1, sC3, sc4, sc2. Also sometimes, but not always, SC3 and SCc4
coincide: in deriving the opposite of some negation, you end up assuming a & such
that * and ~J lead to contradiction.

Sc1. Break accessible formulas down into atomics and negated atomics. As we
have already said, if there is a contradiction to be had, and you can break accessible
formulas into atomics and negated atomics, the contradiction will appear at that level.
Thus, for example,

1.|AAB P 1.|AAB P
2.|C > ~B P 2.|C - ~B P
3.1 |C A (c, ~I) 3.1 |C A (c, ~I)
(AK) 4.| |~B 23 >E
5.1 14 1 AE
6.| | B 1 AE
L 7.0 | L 6,4 L1
~C 3-_~1 8. | ~C 3-7~1

Our strategy for the main goal is SG4 with an application of ~I. Then the aim is
to obtain a contradiction. And our first thought is to break accessible lines down
to atomics and negated atomics. Perhaps this example is too simple. And you may
wonder about the point of getting A at (5)—there is no need for A at (5). But this
merely illustrates the point: If you can get to atomics and negated atomics (“randomly”
as it were) the contradiction will appear in the end.

CHAPTER 6. NATURAL DEDUCTION 244

As another example, try showing AAN(BA~C),~F — D,(AAD) — C K, F.
Here is the derivation completed in two stages:

1.|AAN(BA~C) P 1.|AAN(BA~C) P
2.|~F =D P 2.|~F =D P
3.]/(AAND) > C P 3.]/(AAND) > C P
4. |~F A (¢, ~E) 4. |~F A (¢, ~E)
5.1 | D 2,4 —-E
(AL) 6. A4 1 AE
7.1 |AAND 6,5 AL
8.1 |C 3,7—>E
9.| | BA~C 1 AE
10.| | ~C 9 AE
L 11.] | L 8,10 LI
F 4-_ ~E 12.|F 4-11 ~E

This time, our strategy for the goal falls through to SG5. After that, again, our goal is
to obtain a contradiction—and our first thought is to break accessible formulas down
to atomics and negated atomics. The assumption ~F gets us D with (2). We can get
A from (1), and then C with the A and D together. Then ~C follows from (1) by a
couple applications of AE. You might proceed to get the atomics in a different order,
but the basic idea of any such derivation is likely to be the same.

SC2. Given an available disjunction, go for 1 by VE. In many cases, you will have
applied VE by SG2 prior to setting up for ~E or ~I. Then the disjunction is “used
up” and unavailable for this strategy. Sometimes, however, a disjunction remains or
becomes available inside a subderivation for a tilde rule. In any such case, SC2 has
high priority for the same reasons as SG2: You can only be better off in your attempt
to reach a contradiction inside the subderivations for VE than before. So the strategy
says to take the 1 you need for ~E or ~I, and go for it by VE.

a.| | P A (c, ~I)
b.| |AVSB
c. A A (¢, bVE)
a.| | P A (¢, ~I) I
_ b.||AVSB d. 1 (goal)
given use
1L e. j)’ A (¢, bVE)
~P a-_ ~I
f. L (goal)
g | |L b,c-d,e-f VE
~P a-g ~I

We go for L in each of the subderivations for VE. Since the subderivations for VE
have goal _L, they have exit strategy c rather than g.

CHAPTER 6. NATURAL DEDUCTION 245

Here is an example. We show ~4 A ~B k. ~(A Vv B). The derivation is in
four stages.

1.|~AA~B P l.|~AA~B P
2.0 |avB A(c, ~I) 2.| |[AvB A(c,~)
3.4 A (c, 2VE)
(AM) +
B A (¢, 2VE)
1
1 1 23-_,_VE
~(AV B) 2-_~I ~(AV B) 2-_~1

In this case, our strategy for the goal is SG4. We might obtain ~A and ~B from (1),
but after that there are no more atomics or negated atomics to be had. However the
assumption line is itself a disjunction available for VE. So SC2 applies, and we set up
with L as the goal for VE.

1.|~AA~B P 1.|~AA~B P
2.| |AV B A (¢, ~I) 2.| |AV B A (c, ~I)
3. A A (¢, 2VE) 3. A A (¢, 2VE)
4. ~A 1 AE 4. ~A 1 AE
5. 1 3411 5. 1 3411
6. B A (c,2VE) 6. B A (c,2VE)
. ~B 1 AE
1L 8. 1L 6,7 11
1L 2,3-5,6-_ VE 9.1 | L 2,3-5,6-8 VE
~(AV B) 2-_ ~1 10. | ~(A Vv B) 2-9 ~1

With L as goal, strategies for a contradiction continue to apply. The first subderivation
is easily completed from atomics and negated atomics. And the second is completed
the same way. Observe that it is only because of our assumptions for VE that we
are able to get the contradictions at all. And we expose another advantage of our
standard use of L: While L is a particular sentence, we obtained it by A and ~A in
one subderivation and B and ~ B in the other. VE would not apply to subderivations
concluding with different contradictions A A ~A and B A ~B. But once we have
obtained L in each, we are in a position to exit by VE in the usual way and so to apply
~IL

SC3. Set as goal the opposite of some negation (something that cannot itself be
broken down); then apply strategies for a goal to reach it. You will find yourself using

CHAPTER 6. NATURAL DEDUCTION 246

this strategy often. In the ordinary case, if accessible formulas cannot be broken into
atomics and negated atomics, it is because complex forms are “sealed off”” by main
operator ~. The tilde blocks SC1 or SC2. But you can turn this lemon to lemonade:
Taking the complex ~@ as one half of a contradiction, set @ as goal. For some
complex @,

@ a. | ~Q
b A A (eo~T) b.| | A A (c, ~I)
given use
1 c.| | @ (goal)
d.| | L c,a Ll
~A L b ~A bd~l

We are after a contradiction. Supposing that we cannot break ~@ into its parts, our
efforts to apply other strategies for a contradiction are frustrated. But SC3 offers an
alternative: Set @ itself as a new goal and use this with ~@ to reach L. Then strategies
for the new goal take over. If we reach the new goal, we have the contradiction we
need.

As an example, try showing B, ~(4 — B) k,,, ~A. Here is the derivation in
four stages:

1.|B P 1.| B P
2.|~(A— B) P 2.|~(A— B) P
3.1 |A A (c, ~I) 3.1 |4 A (c, ~I)
(AN)
A— B
1 1L 211
~A 3-_~1 ~A 3-_ ~I

Our strategy for the goal is SG4; for main operator ~ we set up to get the goal by
~I. So we need a contradiction. In this case, there is nothing to be done by way of
obtaining atomics and negated atomics, and there is no disjunction. So we fall through
to strategy SC3. ~(A — B) on (2) has main operator ~, so we set A — B as a new
subgoal with the idea to use it for contradiction.

1.|B P 1.| B P
2.|~(A— B) P 2.|~(A— B) P
3.1 |14 A (c, ~I) 3.1 |14 A (c, ~I)
4. A A (g, -0 4. A A (g, =D
B 5 B 1R
A— B 4-_ —I1 6 A— B 4-5 -1
1L 211 7.0 | L 6,2 L1
~A 3-_~I 8. | ~A 3-7 ~1

CHAPTER 6. NATURAL DEDUCTION 247

Since A — B is a definite subgoal, we proceed with strategies for the goal in the
usual way. The main operator is — so we set up to get it by —1. The subderivation
is particularly easy to complete. And we finish by executing the exit strategies as
planned.

scd. For some P such that both P and ~P lead to contradiction: Assume &P
(~&), obtain the first contradiction, and conclude ~P (P); then obtain the second
contradiction—this is the one you want.

a. A A (c, ~I)
b|||® A, ~D
alla A, ~D
given use c. 1
1L ~&P b-c ~I
~h a-_ ~I
d.||L
~h a-d ~I

The essential point is that both J* and ~J somehow lead to contradiction. Given this,
you can assume one of them and use the first contradiction to obtain the other; and
once you have obtained this other formula, the desired contradiction results from it.
The intuition behind this strategy is like that for the VE rule: & has to be one way
or the other; if both ways lead to contradiction, contradiction follows. The strategy
shows how to extract that contradiction—and is often a powerful way of making
progress when none seems possible by other means.

Letus try to show A <> B, B <> C, C <> ~A I, K. Here is the derivation in
four stages:

1|4« B P 1|4+ B P
2.1BoC P 2.|B<«C P
3.]C & ~A P 3.]C & ~A P
4. [~K A (e, ~E) 4. |~k A (¢, ~E)
50114 A (e, ~I)
(AO)
L
~A 5 ~1
1 L
K 4-_ ~E K 4-—~E

Our strategy for the goal falls through to SG5 (or we might see it as an obscure instance
of SG1). We assume the negation of the goal, and go for a contradiction. In this case,
there are no atomics or negated atomics to be had, there is no disjunction, and no
formula is itself a negation such that we could build up to the opposite. So we fall

CHAPTER 6. NATURAL DEDUCTION 248

through to sc4. This requires a formula such that both it and its negation lead to
contradiction. Finding such a formula can be difficult! However, in this case, A does
the job: Given A we can use <>E to reach ~A and so contradiction; and given ~A
we can use <>E to reach A and so contradiction. So, following SC4, we assume one
of them to get the other.

1.|A< B P 1.| A< B P
2.|B < C P 2.|B <« C P
3.]C < ~A P 3.]C < ~A P
4.1 | ~K A (c, ~E) 4.| | ~K A (¢, ~E)
5 A A (c, ~) 5. A A (c, ~I)
6. B 1,5 <E 6. B 1,5 <E
7. C 2,6 <E 7. C 2,6 <E
8. ~A 3,7 <E 8. ~A 3,7 <E
9. 1 5,8 11 9. L 5,8 11
10.| |~A 5-9 ~1 10.| | ~A 5-9 ~1
11.| | C 3,10 <E
12.| | B 2,11 <E
13.] | A4 1,12 <E
i 4.1 | L 13,10 LI
K 4-_ ~E 15.| K 4-14 ~E

The first contradiction appears easily at the level of atomics and negated atomics. This
gives us ~A. And with ~ A4, the second contradiction also comes easily, at the level
of atomics and negated atomics.

Though it can be useful, as we have said, this strategy is often difficult to see. And
there is no obvious way to give a strategy for using the strategy! The best thing to say
is that you should look for it when the other strategies seem to fail.

Let us consider an extended example which combines some of the strategies. We
show that ~4 — B, B Vv A.

NDs
1.|~A— B P
(AP)
BvA

To start, there is a definite goal. We do not see a contradiction in the premises; there is
no formula with main operator V in the premises; and the goal does not appear in the
premises. So we might try going for the goal by VI in application of SG4. This would
require getting a B or an A. It is reasonable to go this way, but it turns out to be a
dead end. (You should convince yourself that this is so.) Thus we fall through to SGS.

CHAPTER 6. NATURAL DEDUCTION 249

l.|~A— B P

2.1 [~(BVA) Ale,~E) Especially considering our goal has main opera-

tor Vv, set up to get the goal by ~E.
1

BV A 2-_~E

Now we need a contradiction. For this, our first thought is to go for atomics and
negated atomics. But there is nothing to be done. Similarly, there is no formula with
main operator V. So we fall through to SC3 and continue as follows:

1.|~A— B P

2| |[~(BVA) Al ~E) Given a negation that cannot be broken down,

set up to get the contradiction by building up to

BvA the opposite.
1 211
BV A 2-_~E

It might seem that we have made no progress, since our new goal is no different
than the original! But there is progress insofar as we have an accessible formula not
available before (more on this in a moment). At this stage, we can get the goal by VI.
Either side will work, but it is easier to start with the A. So we set up for that.

l.|~A— B P
2.| |~(BvA) A, ~E)

For a goal with main operator V, go for the goal

A by VI
BV A _ vl
1L _21I

BV A 2-_~E

Now the goal is atomic. Again, there is no contradiction or formula with main operator
Vv on accessible lines. The goal is not on accessible lines in any form we can hope to
exploit. And the goal has no main operator. So, again, we fall through to SG5.

1.|~A— B P
2.| | ~(BV A) A (¢, ~E)
3. ~A A (c,~E)
Especially for atomics, go for the goal by ~E
L

A 3-_~E

BV A _ VI

1 _2 11

BvA 2-_~E

Again, to obtain the contradiction, our first thought is to get atomics and negated
atomics. We can get B from lines (1) and (3) by —E. But that is all. So we will not

CHAPTER 6. NATURAL DEDUCTION 250

get a contradiction from atomics and negated atomics alone. There is no formula with
main operator V. However, the possibility of getting a B suggests that we can build
up to the opposite of line (2). That is, we complete the subderivation as follows, and
follow our exit strategies to complete the whole.

l.[~A— B P
2.| |~(BVA A (c,~E)
3. ~A A (c,~E)
4. B 13 —E Get the contradiction by building up to the oppo-
5. BvA 4vI . . .
site of an existing negation.
6. 1 5211
7.1 A 3-6 ~E
8.||BVvA AY!
9.1 L 8211
10.|BVv A 2-9~E

A couple of comments: First, observe that we build up to the opposite of ~(B Vv A)
twice, coming at it from different directions. First we obtain the left side B and use VI
to obtain the whole, then the right side A and use VI to obtain the whole. This “double
use” is typical with negated disjunctions. Second, note that this derivation might be
reconceived as an instance of SC4. ~A gets us B, and so B VvV A, which contradicts
~(B Vv A). But A gets us B v A which again contradicts ~(B Vv A). So both A and
~ A lead to contradiction; so we assume one (~A), and get the first contradiction; this
gets us A, from which the second contradiction follows.

The general pattern of this derivation is typical for goal formulas with main
operator V. For # v @ we may not be able to prove either J? or @ from scratch—so
that the formula is not directly provable by V1. However, it may be indirectly provable.
If it is provable at all, it must be that the negation of one side forces the other. So it
must be possible to get the & or the @ under the additional assumption that the other
is false. This makes possible an argument of the following form:

a| |~(PVvQ) A (¢, ~E)
b. ~P A (¢, ~E)
c. Q

(AQ) d. PVvAa c VI
e. 1 da LI
f.||P b-e ~E
g |Pva fvl
h.| | L ga Ll
il Pva a-h ~E

The “work” in this routine is getting from the negation of one side of the disjunction
to the other. Thus if from the assumption ~& it is possible to derive @, all the rest

CHAPTER 6. NATURAL DEDUCTION 251

is automatic. We have just seen an extended example (AP) of this pattern. It may be
seen as an application of SC3 or SC4 (or both). Where a disjunction may be provable
but not provable by VI, it will work by this method. Observe that VI still plays an
essential role—only not as the main strategy. In difficult cases when the goal is a
disjunction, it is wise to think about whether you can get one side from the negation
of the other. If you can, set up as above. (And reconsider this method when we get to
a simplified version in the extended system NDs+.)

This example was fairly difficult! You may see some longer, but you will not see
many harder. The strategies are not a cookbook for performing all derivations—doing
derivations remains an art. But the strategies will give you a good start, and take you
a long way through the exercises that follow. The theorems immediately below again
foreshadow rules of NDs+.

T6.21. b5y AV ~A principle of excluded middle

$T76.22. Fyp, ~(A A B) < (~AV ~B)

T6.23. by, ~(AV B) < (~h A ~B)

T6.24. b5, (~A — B) < (A V B)

T6.25. by, (4 — B) < (~h Vv B)

T6.26. Hp, [AA(BVE)] < [(AAB)V (AAT)]

T6.27. Hyp [AV (B AE)] < [(AV B)A(AVIE)

T6.28. I, (A < B) < [(A = B) A (B — A)]

T6.29. by (A <> B) < [(A A B) V (~h A ~B)]

T6.30. Hp, [A < (B < €)] < [(A < B) < €]

E6.17. Each of the following begins with a simple application of ~I or ~E. Complete
the derivations, and explain your use of strategies for a contradiction. Hint: Each
of the strategies for a contradiction is used at least once.

CHAPTER 6. NATURAL DEDUCTION

E6.18

*a. A > ~(BANC),B—>Chy, A—~B
*b,

2

kc

.|AAB P
A~AANC) P
C Ac,~D
1
~C 3-_~1

J(~Bv~4)>D P

| C A~D P
~B A (¢, ~E)
1L
B 3-_~E
.|AAB P
~AvV ~B A (c, ~I)
1L

~(~AV~B) 2-_~1

A< ~A P
B A (c, ~T)
L
~B 2-_ ~1

. Produce derivations to show each of the following.

Fups ~(A — A) - A

. AV B kK, ~(~AA~B)

*d. ~(AAB),~(AAN~B) k5, ~A

ES

€

. By AV ~A

252

CHAPTER 6. NATURAL DEDUCTION 253

. Fyps AV (A — B)

*g. AV ~B,~AV ~B 5, ~B

*h. A< (~BVvC),B—Ch, A

. A< B, (C < A) < (C < B)

. A< ~(B < ~C),~(AV B) K, C

*)k. [CV(AVB)AC - E),A—->D,D—~AkK,,, CVB

1. ~(A > B),~(B — C)

'Ds

~D

*m. C — ~A,~(BAC)H,

Ds

(AV B) = ~C

*n. ~(A < B) R, ~4A < B

Ds
*0. A< B, B < ~C 5, ~(4 < C)

*p. AVB,~BVvC,~Ch, A

*q. (~\AvC)vD,D—-~Blk, (AANB)—>C

. AVD,~D <> (EVC),(CAB)V[CAF - C)h, A

*s. (AVB)V(CAD), (A< E)YAN(B— F),G < ~(EVF),C— Bk, ~G

“. (AV ByA~C,~C — (D A~A), B — (AVE)H, EVF

*E6.19. Produce derivations to demonstrate each of T6.21-T6.29. Note that demon-

stration of T6.30 (from left to right) is left for E6.20e.

E6.20. Produce derivations to show each of the following. These are particularly

challenging. If you can get them, you are doing very well!
a (AVB) = (AVvC)Rp, AV (B = C)

b.A—> (BVC)h,

'Ds

(A—>B)v((A4A—->0C)

c. (A< B) < (C < D),

'Ds

(A<~ C)—>(B—>D)
d ~(A < B),~(B < C),~(C < A) Hp, ~K

e. Ao (B C)hp, (A< B)«C

'Ds

CHAPTER 6. NATURAL DEDUCTION 254

6.2.5 The System NDs+

We turn now to some derived rules that will be useful for streamlining derivations.
NDs+ includes all the rules of NDs, with some additional inference rules and new
replacement rules. It is not possible to derive anything in NDs+ that cannot already be
derived in NDs. Thus the new rules do not add extra derivation power. They are rather
“shortcuts” for things that can already be done in NDs. This is particularly obvious in
the case of the inference rules.

We have already seen LI as a first example of a derived rule. As described on
page 217 it is possible to derive | from any @ and ~@. It is possible also to introduce
a companion LE as below and justified by the derivation on the right.

1.1 L P
a. | L
2. ~P A (c,~E
LE (AR) (€. ~E)
P alE 3.0 | L 1R
4. | P 2-3 ~E

From a contradiction, one can derive anything.® Again, the justification for this rule is
that it does not let you do anything that you could not already do in NDs. In contexts
where SG1 applies, this rule shortcuts a step, and cleans out a distracting subderivation.

For other new rules, suppose in an NDs derivation we have > — @ and ~@ and
want to reach ~J#. No doubt, we would proceed as follows:

1.l —>@Q P
2. | ~@ P

(AS) 3. |2 A (c, ~T)
4.11@ 1,3 ->E
5.1 |L 42 11
6. | ~P 3-5~1

We assume &, get the contradiction, and conclude by ~I. Perhaps you have done
this so many times that you can do it in your sleep. In NDs+ you are given a way
to shortcut the routine, and go directly from an accessible — @ on «, and an
accessible ~@ on b to ~& with justification a,b MT (modus tollens).

alP —>@Q

MT b|~@

~P a,b MT

Again, the justification for this is that the rule does not let you do anything that you
could not already do in NDs. So if the rules of NDs preserve truth, this rule preserves
truth. And, as a matter of fact, we already demonstrated that — @, ~Q H,, ~&
in T6.5.

This rule is sometimes known as ex falso quodlibet, which translates, “from falsehood anything
(follows).”

CHAPTER 6. NATURAL DEDUCTION 255

a|P < Q@ alP < Q
b|~P b|~@Q
NB
~@ a,b NB ~P a,b NB

NB (negated biconditional) lets you move from a biconditional and the negation of
one side, to the negation of the other. It is like MT, but with the arrow going both
ways. The parts are justified in T6.9 and T6.10.

alPva a|lPva
b|~P bl ~
DS J Q
Q a,b DS P a,b DS

DS (disjunctive syllogism) lets you move from a disjunction and the negation of one
side, to the other side of the disjunction. The two parts are justified by T6.7 and T6.8.

al@ — P

HS b| P — @

0 —aQ a,b HS

HS (hypothetical syllogism) is a principle of transitivity by which you may string a
pair of conditionals together into one. It is justified by T6.6.

Each of these rules should be clear and easy to use. Here is an example that puts
most of the new rules together into one derivation:

1.|a< B p
2.|~B P
3.|Av(C D) P
4D B p
5.0 04 A (g,3VE)
1.|A< B P I
5 g P 6.|||c A (e, ~1)
3.]Av(C —- D) P B 1,5 «<E
AT) 4.|D B P 8. ||L 72 11
(5.0~4 12 NB 9.1 |~C 6-8 ~1
6./C > D 3,5DS 10.| |lc b A (g.3VE)
7.lc > B 6,4 HS =
8. [~C 72 MT e A, ~D
IPARED)) 10,11 >E
13.] | | B 412 >E
14.] | |L 132 11
15.] [~C 11-14 ~1
16. | ~C 3,5-9,10-15 VE

We can do it by our normal methods purely with the rules of NDs as on the right.
But it is easier with the shortcuts from NDs+ as on the left. It may take you some

CHAPTER 6. NATURAL DEDUCTION 256

time to “see” applications of the new rules when you are doing derivations, but the
simplification makes it worth getting used to them.

The replacement rules of NDs+ are different from ones we have seen before in
two respects. First, replacement rules go in two directions. Consider the following
simple rule:

DN P <a> ~~P

According to DN (double negation), given & on an accessible line a, you may move
to ~~ with justification a DN; and given ~~& on an accessible line @, you may
move to & with justification a DN. This two-way rule is justified by T6.17, in which
we showed b, <> ~~F. Given & we could use the routine from one half of the
derivation to reach ~~/, and given ~~& we could use the routine from the other
half of the derivation to reach #.

But further, we can use replacement rules to replace a subformula that is just a
proper part of another formula. Thus, for example, in the following list, we could
move in one step by DN from the formula on the left to any of the ones on the right,
and from any of the ones on the right to the one on the left.

~~[AN (B — C)]

~~AAN(B—C)
(AU) AN(B —C) AN~~(B — C)

AA(~~B — C)

AN (B — ~~C)
The first application is of the sort we have seen before, in which the whole formula is
replaced. In the second, the replacement is between the subformulas A and ~~A. In
the third, between the subformulas (B — C) and ~~(B — C). The fourth switches
B and ~~ B, and the last C and ~~C . Thus the DN rule allows the substitution of
any subformula & with one of the form ~~, and vice versa.

The application of replacement rules to subformulas is not so easily justified as
their application to whole formulas. A complete justification that NDs+ does not let
you go beyond what can be derived in NDs will have to wait for Part III. Roughly,
though, the idea is this: Given a complex formula, we can take it apart, do the
replacement, and then put it back together. Here is a very simple example from above:

I.|IAAN(B = C) P
2.14 1 AE
(AV) 4.1 | ~(B—C) A(c, ~I)
2.|AAN~~(B—C) 1 DN
5.1 1L 34 11
6. | ~~(B = C) 4-5 ~1
T.|AAN~~(B—C) 2,6 Al

On the left, we make the move from A A (B — C)to A A ~~(B — C) in one
step by DN. On the right, using ordinary inference rules, we begin by taking off the

CHAPTER 6. NATURAL DEDUCTION 257

A. Then we convert B — C to ~~(B — C), and put it back together with the A.
Though we will not be able to show that this sort of thing is generally possible until
Part 111, for now I will continue to say that replacement rules are “‘justified” by the
corresponding biconditionals. As it happens, for replacement rules, the biconditionals
play a crucial role in the demonstration that I' I, P iff I' b5, . P.
The rest of the replacement rules work the same way.

PAQ > QAP
Com PVQa>QveP

Peo@ >QoP
Com (commutation) lets you reverse the order of formulas in a conjunction, disjunc-
tion, or biconditional. By Com you could go from, say, A A (BV C)to (BV C) A A,
switching the order around A, or from A A (B v C) to A A (C Vv B), switching the
order around V. You should be clear about why this is so. The different forms are
justified by T6.11, T6.13, and T6.12.

ONEPAQ) > (OAP)ANQ
Assoc Ov(Pva « (Ovr)va

O« (PoQ) > (0P)Q
Assoc (association) lets you shift parentheses for conjunctions, disjunctions, and
biconditionals. The different forms are justified by T6.16, T6.20, and T6.30.

P <> PAP

P <> PVP

Idem

Idem (idempotence) exposes the equivalence between J and & A P, and between P
and & Vv &. The two forms are justified by T6.18 and T6.19.

Impl P—->Q > ~PVvaQ

~P—-Q > PVva

Impl (implication) lets you move between a conditional and a corresponding disjunc-
tion. Thus, for example, by the first form of Impl you could move from A — (~BVvC)
to ~A Vv (~B v C), using the rule from left to right, orto A — (B — C), using the
rule from right to left. As we will see, this rule can be particularly useful. The two
forms are justified by T6.24 and T6.25.

Trans P—-Q > ~Q—>~P

Trans (transposition) lets you reverse the antecedent and consequent around a condi-
tional—subject to the addition or removal of negations. From left to right, this rule
should remind you of MT, as Trans plus —E has the same effect as one application of
MT. Trans is justified by T6.14.

~(PAQ) <> ~PV~Q

~(P VA > ~PA~E

DeM

DeM (DeMorgan) should remind you of equivalences we learned in Chapter 5, for
not both (the first form) and neither nor (the second form). This rule also can be very
useful. The two forms are justified by T6.22 and T6.23.

CHAPTER 6. NATURAL DEDUCTION 258

Exp O—>(P—->Q > (OAP)—>AQ

Exp (exportation) is another equivalence that may have arisen in translation. It is
justified by T6.15.

P > (P>QN@Q—>P)

Equiv
Po@Q > (PAQV(~PA~Q)

Equiv (equivalence) converts between a biconditional and the corresponding pair
of conditionals, or converts between a biconditional and a corresponding pair of
conjunctions. The two forms are justified by T6.28 and T6.29.

OANPVA) <> (OAP)V(OANQ)

OV(PAQ) > (OVPIANOVQA)

Dist

Dist (distribution) works something like the mathematical principle for multiplying
across a sum. In each case, moving from left to right, the operator from outside
attaches to each of the parts inside the parenthesis, and the operator from inside
becomes the main operator. The two forms are justified by T6.26 and T6.27.

Thus end the rules of NDs+. They are a lot to absorb at once. But you do not need
to absorb all the rules at once. Again, the rules do not let you do anything you could
not already do in NDs. For the most part, you should proceed as if you were in NDs. If
an NDs+ shortcut occurs to you, use it. You will gradually become familiar with more
and more of the special NDs+ rules. Perhaps, though, we can make a few observations
about strategy that will get you started. First, again, do not get too distracted by
the extra rules! You should continue with the overall goal-directed approach from
NDs. There are, however, a few contexts where special rules from NDs+ can make a
substantive difference. I comment on three.

First, as we have seen, in NDs formulas with V can be problematic. VE is awkward
to apply, and VI does not always work. In simple cases, DS can get you out of VE. But
this is not always so, and you will want to keep VE among your standard strategies.
More importantly, Impl can convert between awkward goal formulas with main
operator V and more manageable ones with main operator —. Although a disjunction
may be derivable, but not by VI, if a conditional is derivable, it is derivable by —1.
Thus to reach a goal with main operator Vv, consider going for the corresponding —,
and converting with Impl.

a| | ~A A(g, =D
given use b.| | B (goal)
c.|~A—> B a-b —I
AV B (goal) AV B ¢ Impl

And the other form of Impl may be helpful for a goal of the sort ~4A v B. Here is a
quick example:

CHAPTER 6. NATURAL DEDUCTION

259

Inference Rules:

LI (bottom intro)

a. | @
b. | ~@

1L ab LI

MT (Modus Tollens)

alP > @

b|~@

~P a,b MT

DS (Disjunctive Syllogism)

a|Pva
b|~P

Q a,b DS

Replacement Rules:

DN P <> ~~P

DeM
Dist

Equiv

~(PAQ) a> ~P Vv ~Q
~(P VA a> ~P A~Q

NDs+ Quick Reference

NDs+ includes all the rules of NDs and,

LE (bottom exploit)
a. | L

P alE

NB (Negated Biconditional)
alP o @
b|~P

~Q@ a,b NB

DS (Disjunctive Syllogism)

alPVva@
b|~@

P a,b DS

Idem

ONPAQ) <> (OANP)ANQ
Assoc Ov(Pva) <> 0OvP)va Com
O« (PoQ) > (0P)Q

Exp O—>(P—->Q <> (OANP)—Q Trans

Impl

OANPVA) > (OAP)V(OAQ)
OV(PAQ) > (OVP)A(OVQ)

P > (P>QA@Q—>P)
PoQ@ > (PAQV(~PA~Q)

NB (Negated Biconditional)
alP < Q

b|~@

~P a,b NB

HS (Hypothetical Syllogism)

al@ —> P
b|P—> Q@

0—-aQ a,b HS

P <> PAP
P <> PVvP

ANQ <> QAP
v@Q <> vy
< Q<> QP

VIR

P —-Q <> ~Q—>~P

P —->Q <> ~PVA
~P > <> PVA

CHAPTER 6. NATURAL DEDUCTION 260

1| [~(AV ~A) A (¢, ~E)
2 A A (c, ~I)
1| |~4 A(g, =D
3. AV ~A 2 vI
(AW) 2. ~A 1R 4. 1 3,1 LI
3.|~4A —>~A 1-2 >I 5.0 [~4 2-4 ~1
4. |Av ~A 3 Impl 6.1 lAv~A 3vI
7.1 | L 6,1 LI
8.|Av~A 1-7 ~E

The derivation on the left using Impl is completely trivial, requiring just a derivation
of ~A — ~A. But the derivation on the right is not. It falls through to SG5, and then
requires a challenging application of SC3 or SC4. This proposed strategy replaces or
simplifies the pattern (AQ) for disjunctions described on page 250. Observe that the
work—getting from the negation of one side of a disjunction to the other—is exactly
the same. It is only that we use the derived rule to simplify away the distracting and
messy setup.

Second, among the most useless formulas for exploitation in NDs are ones with
main operator ~. But the combination of DeM, Impl, Equiv, and DN let you “push”
negations into arbitrary formulas. Thus you can convert formulas with main operator
~ into a more useful form. To see how these rules can be manipulated, consider the
following sequence:

I.|~(A—B) P

(AX) 2.|~(~AV B) 1 Impl
3.|~~AA~B 2 DeM
4. 1AN~B 3DN

We begin with the negation as main operator, and end with a negation only against
an atomic. This sort of thing is often very useful. For example, in going for a
contradiction, you have the option of “breaking down” a formula with main operator
~ rather than automatically building up to its opposite, according to SC3.

Finally, observe that derivations which can be conducted entirely be replacement
rules are “reversible.” Thus, for a simple case,

1.| | ~(AA~B) A (g, <)

2.1 |~AV ~~B 1 DeM

3.| |~AV B 2 DN

4| |A— B 3 Impl
(AY) s.| |4 B A(g, <D

6.| |~AV B 5 Impl

7.1 |~AV ~~B 6 DN

8. | | ~(AA~B) 7 DeM

9.|~(AA~B) < (A— B) 1-4,5-8 <1

CHAPTER 6. NATURAL DEDUCTION 261

We set up for <> in the usual way. Then the subderivations work by precisely the
same steps, DeM, DN, Impl, but in the reverse order. This is not surprising since
replacement rules work in both directions. Notice that reversal does not generally
work where regular inference rules are involved.

The rules of NDs+ are not a “magic bullet” to make all difficult derivations go
away! Rather, with the derived rules, we set aside a certain sort of difficulty that
should no longer worry us, so that we are in a position to take on new challenges
without becoming overwhelmed by details.

E6.21. Produce derivations to show each of the following.
*a. (HANG)—-> (LVK),GAH,,, KVL
*b. Fyps, (AN B) = (BAA)]A[~(AAB) — ~(B A A)]
. [(KAJ)VIIV~Y, Y AUV K)—= Flhp, FVN

*d, ~LV(~ZVv~U), UANG)VH,ZL

NDs+

L— H

*e. F—>(~GVH),F—>G~HVI) K, F—J

'Ds+

#, F - (G — H),~I - (FVH),F -Gk

NDs+

IV H

g.G—> (HA~K),H < (LAI),~IVEKE

NDs

+NG

h ~(ZV~X)V(~X >~Y),X >Z,Z—>Yhk, X<V

i Hp, [AV(BVC)] < [CV (BV A)

J Bpgy [A—= (B < O)] & (A= [(~B Vv C) A(~C V B)])
K. Fypsy (AV[B = (A — B)]) < (AV[(~AV ~B) Vv B)])
L Hypy, [MA = (~B = C)] = [(AV B) V (~~B v C)]
m. b, (A4 < ~A) < [~(~4 = A) < (A — ~A)]

n. Hyp,, (A= B) V(B —C)

0. B, [(A— B) > A] = A

E6.22. For each of the following, produce a good translation including interpretation
function. Then use a derivation to show that the argument is valid in NDs+. The
first two are suggested from the history of philosophy; the last is our familiar case
from page 2.

CHAPTER 6. NATURAL DEDUCTION 262

E6.23.

. We have knowledge about numbers.

If Platonism is true, then numbers are not in spacetime.
Either numbers are in spacetime, or we do not interact with them.
We have knowledge about numbers only if we interact with them.

Platonism is not true.

. There is evil.

If god is good, then there is no evil unless god has morally sufficient reasons
for allowing it.

If god is both omnipotent and omniscient, then god does not have morally
sufficient reasons for allowing evil.

God is not good, omnipotent, and omniscient.

. If Bob goes to the fair, then so do Daniel and Edward. Albert goes to the fair

only if Bob or Carol go. If Daniel goes, then Edward goes only if Fred goes.
But not both Fred and Albert go. So Albert goes to the fair only if Carol goes
too.

. If I think dogs fly, then I am insane or they have really big ears. But if dogs do

not have really big ears, then I am not insane. So either I do not think dogs fly,
or they have really big ears.

. If the maid did it, then it was done with a revolver only if it was done in the

parlor. But if the butler is innocent, then the maid did it unless it was done in
the parlor. The maid did it only if it was done with a revolver, while the butler
is guilty if it did happen in the parlor. So the butler is guilty.

For each of the following concepts, explain in an essay of about two pages,

so that (high-school age) Hannah could understand. In your essay, you should
(i) identify the objects to which the concept applies, (ii) give and explain the
definition, and give and explicate examples of your own construction (iii) where
the concept applies, and (iv) where it does not. Your essay should exhibit an
understanding of methods from the text.

a.

b.

C.

d.

€.

Derivations as games, and the condition on rules.
Accessibility, and auxiliary assumptions.

The rules VI and VE.

The strategies for a goal.

The strategies for a contradiction.

CHAPTER 6. NATURAL DEDUCTION 263

6.3 Quantificational

Our full system ND includes all the rules for NDs, along with new I- and E-rules for
quantifiers and equality—so it includes reiteration, with I- and E-rules for ~, —, <,
A, V, and then I- and E-rules for V, 3, and =. Thus ND completes the basic structure
of I- and E-rules. We leave aside derived rules from NDs+ (except _LI) until they are
included again with ND+. After some quick introductory remarks, there are sections
for the quantifier rules (6.3.1, 6.3.2), for discussion of strategy (6.3.3), then for the
equality rules (6.3.4), and for the extended system ND+ (6.3.5).

First, we do not sacrifice any of the NDs rules we have so far. All these rules
apply to formulas of quantificational languages as well as to formulas of sentential
ones. Thus, for example, Fx — VxFx and Fx are of the form > — @ and &. So
we might move from them to Vx Fx by —E as before. And similarly for other rules.
Here is a short example:

1.|VxFx A3IxVy(Hx Vv Zy) P

2.| | Kx A (g, —1
3.1 |VxFx 1 AE
4. | Kx - VxFx 2-3 =1

The goal is of the form &> — @; so we set up to get it in the usual way. And the
subderivation is particularly simple. Notice that formulas of the sort Vx(Kx — Fx)
and Kx are not of the form #» — @ and &. The main operator of Vx(Kx — FXx)
is Vx, not —. So —E does not apply. That is why we need new rules for the
quantificational operators.

For our quantificational rules, we need a couple of notions already introduced in
Chapter 3. Again, for any formula s, variable x, and term ¢, say A7 is 4 with all the
free instances of x replaced by #. And # is free for x in 4 iff all the variables in the
replacing instances of ¢ remain free after substitution in 4% . Thus, for example,

(BA) (VxRxyV Px); is VxRxyV Py

There are three instances of x in VxRxy Vv Px, but only the last is free; so y is
substituted only for that instance. Since the substituted y is free in the resultant
expression, y is free for x in VxRxy Vv Px. Similarly,

(BB) [Vx(x=y)V Ryx]fy,lx is Vx(x = flx)v Rf'xx

Both instances of y in Vx(x = y) vV Ryx are free; so our substitution replaces both.
But the x in the first instance of f!x is bound upon substitution; so f !x is not free
for y in Vx(x = y) V Ryx. In contrast, f!z goes into the same places but is free for
yinVx(x = y)V Ryx.

Some quick applications: If x is not free in +4, then replacing every free instance
of x in A with some term results in no change; so if x is not free in +4, then A7 is

CHAPTER 6. NATURAL DEDUCTION 264

A. Similarly, AY is just + itself. Further, any variable x is sure to be free for itself
in a formula A—if every free instance of variable x is “replaced” with x, then the
replacing instances are sure to be free. Similarly variable-free terms (like constants)
are sure to be free for a variable x in a formula +; if a term has no variables, no
variable in the replacing term is bound upon substitution. And if +4 is quantifier-free
then any # is free for variable x in #; if 4 has no quantifiers, then no variable in #
can be bound upon substitution.

With these concepts, we are ready to turn to our rules. We begin with the easier
ones, and work from there.

6.3.1 VE and 31

VE and I are straightforward. For the former, for any variable x, given an accessible
formula Vx& on line a, if term # is free for x in J#, one may move to #; with
justification, a VE.

a.| VxP
VE provided ¢ is free for x in &

Pr aVE

VE removes a quantifier and substitutes a term # for resulting free instances of x,
so long as £ is free in the resulting formula. We sometimes say that variable x is
instantiated by term #. Thus, for example, Yx3yLxy is of the form Vx5, where J is
dyLxy. So by YE we can move from Vx3yLxy to dyLay, removing the quantifier
and substituting a for x. And similarly, since the complex terms f'a and g?zbh
are free for x in AyLxy, VE legitimates moving from Yx3yLxy to AyLflay or
3yLg?zby. What we cannot do is move from Vx3yLxy to AyLyy or 3yLf1yy.
These violate the constraint insofar as a variable of the substituted term is bound by a
quantifier in the resulting formula.

Intuitively, the motivation for this rule is clear: If & is satisfied for every assign-
ment to variable x, then it is sure to be satisfied for the thing assigned to #, whatever
that thing may be. Thus, for example, if everyone loves someone, Vx3yLxy, it is sure
to be the case that Al, and Al’s father love someone—that 3yLay and 3yL f lay. But
from everyone loves someone, it does not follow that anyone loves themselves, that
3yLyy, or that anyone is loved by their father AyLf!yy. Though we know Al and
Al’s father loves someone, we do not know who that someone might be. We therefore
require that the replacing term be independent of quantifiers in the rest of the formula.

Here are some examples. Notice that we continue to apply bottom-up goal-oriented
thinking.

CHAPTER 6. NATURAL DEDUCTION 265

1.|VxVyHxy P

2.| Hef?ab — VzKz P
(BC) 3.|VyHcy 1 VE

4. |Hef2ab 3VE

5.|VzKz 24 —E

6.| Kb S5VE

Our original goal is Kb. We could get this by VE if we had VzKz. So we set that
as a subgoal. This leads to Hcf2ab as another subgoal. And we get this from (1)
by two applications of VE. The constant ¢ is free for x in VyH xy so we move from
VxVyHxy to YyHcy by VE. And the complex term f2ab is free for y in Hcy, so
we move from VyHcy to Hc f?ab by VE. And similarly, we get Kb from VzKz by
VE.

Here is another example, also illustrating strategic thinking:

1.|VxBx P

2.|Vx(Cx - ~Bx) P

3.1 |Ca A (c, ~I)
(BD) 4.1 |Ca — ~Ba 2 VE

5.| | ~Ba 43 —E

6.| | Ba 1 VE

7 L 6,5 11

8.|~Ca 3-7~1

Our original goal is ~Ca; so we set up to get it by ~I. And our contradiction appears at
the level of atomics and negated atomics. The constant a is free for x in Cx — ~Bx.
So we move from Yx(Cx — ~Bx) to Ca — ~Ba by VE. And similarly, we move
from VxBx to Ba by YE. Notice that we could use VE to instantiate the universal
quantifiers to any terms. We pick the constant a because it does us some good in the
context of our assumption Ca—itself driven by the goal ~Ca. And it is typical to
“swoop” in with universal quantifiers to put variables on terms that matter in a given
context.

I is also straightforward. For variable x, given an accessible formula &} on line
a, where term ¢# is free for x in formula 4, one may move to Ix &, with justification,
a dL
a. | PF
= provided ¢ is free for x in
Ix P adl

So for example one might move from Fa to 3x Fx. Note that the statement of this
rule is somewhat in reverse from the way one expects it to be: Supposing that # is free
for x in &, when one removes the quantifier from the result and replaces every free
instance of x with ¢ one ends up with the start. A consequence is that one starting
formula might legitimately lead to different results by 3I. Thus if J is any of Fxx,
Fxa, or Fax, then £} is Faa. So 3l allows a move from Faa to any of 3xFxx,

CHAPTER 6. NATURAL DEDUCTION 266

dxFax, or 3x Fxa. In doing a derivation, there is a sense in which we replace one
or more instances of a in Faa with x, and add the quantifier to get the result. But
then notice that not every instance of the term need be replaced. Officially the rule
is stated the other way: Removing the quantifier from the result and replacing free
instances of the variable yields the initial formula. Be clear about this in your mind.
The requirement that # be free for x in & prevents moving from YyLyy or VyLf!yy
to 3xVyLxy. The term from which we generalize must be free in the sense that it
has no bound variable!

Again, the motivation for this rule is clear. If & is satisfied for the individual
assigned to £, it is sure to be satisfied for some individual. Thus, for example, if Al or
Al’s father love everyone, ¥ yLay or YyLflay, it is sure to be the case that someone
loves everyone 3xVyLxy. But from the premise that everyone loves themselves
VyLyy, or that everyone is loved by their father VyL f!yy it does not follow that
someone loves everyone. Again, the constraint on the rule requires that the term on
which we generalize be independent of quantifiers in the rest of the formula.

Here are a couple of examples. The first is relatively simple. The second illustrates
the “duality” between VE and dI.

1.| Ha P
2./3yHy — VxJx P
3.13yHy 141

(BE) 4| VxJx 23 >E
5.1 Ja 4 VE
6.| Ha N Ja 1,5 AL
7. Ix(Hx A JXx) 63l

Ha A Jais (Hx A Jx)} sowe can get Ix(Hx A Jx) from Ha A Ja by 31. Ha is
already a premise, so we set Ja as a subgoal. Ja comes by VE from VxJ x, and to
get this we set 3y Hy as another subgoal. And Iy Hy follows directly by 3l from Ha.
Observe that, for now, the natural way to produce a formula with main operator 3 is
by l. You should fold this into your strategic thinking.

For the second example, recall from translations that ~¥Yx~& is equivalent to
dx P, and ~Ix~FP is equivalent to Vx & . Given this, it turns out that we can use the
universal rule with an effect something like 31, and the existential rule with an effect
like VE. The following pair of derivations illustrate this point:

1.| Pa P 1.| ~3dx~Px P
2.| |Vx~Px A (c, ~I) 2.| | ~Pa A (c, ~E)
(BF) 3.| | ~Pa 2 VE (BG) 3.| [Ix~Px 24l
1 1,3 11 4.1 | L 3,1 11
5.|~Vx~Px 2-4 ~1 5.1 Pa 2-4 ~E

By 31 we could move from Pa to 3xP x in one step. In (BF) we use the universal
rule to move from the same premise to the equivalent ~Vx~Px. Indeed, IxP x
abbreviates this very expression. Similarly, by YE we could move from VxPx to Pa

CHAPTER 6. NATURAL DEDUCTION 267

in one step. In (BG), we move to the same result from the equivalent ~3x~ P x by the
existential rule. Thus there is a sense in which, in the presence of rules for negation,
the work done by one of these quantifier rules is very similar to, or can substitute for,
the work done by the other.

E6.24. Complete the following derivations by filling in justifications for each line.
Then for each application of VE or dI, explain how the “free for” constraint is
met.

1.|Vx(Ax — Bxflx)
2. |VxAx

W

Afle
Aflc—>BfICf1f1€
5.0 Bfleflfle

&

*b. 1.|Gaa

2.|3yGay
3.|IxIyGxy

C. 1.|Vx(RxAJx)

Rk AN Jk
Rk
Jk
Jk AN Rk

3y(Jy ARy)

AN

d. 1.|3x(Rx A Gx) —> VyFy
2.|VzGz
Ra

Ga

Ra A Ga
dx(Rx A Gx)
VyFy
Fg2ax

(98]

® Nk

e. 1.|~3zFglz
2.| | VxFx
Fglk
IzFglz
4L
~VxFx

S »n kW

CHAPTER 6. NATURAL DEDUCTION 268

E6.25. The following are not legitimate ND derivations. In each case, explain why.

a. 1. ijx <~ Gx P
2.| Fj < Gj 1 VE
*b. 1. ijInyy P
2.13yGyy 1VE
c. 1 jy(Fay—)Gy) P
2.|Fay - Gf1b 1 VE
d. 1. ijfzxyy P

2.|IxVyGxy 14l

e. 1.|Gj P

2.|3xGflx 1131

E6.26. Provide derivations to show each of the following.
*a. VxFx b, Fa A Fb
*b. VxVyFxy b, Fab A Fba
c. VX(Gflx — VyAyx), Gf bk, Af'lch
d. VxVy(Hxy — Dyx),~Dab =, ~Hba
e. yp [VXVYFxy AVx(Fxx — A)] - A
f. Fa, Ga I, 3Ix(Fx A Gx)
*o. Gaflz b, 3xTyGxy
h. &, (Fav Fb) — 3xFx
i. Gaa b, IxJy(Kxx — Gxy)
j- VxFx, Ga b, 3y(Fy A Gy)
*k. Vx(Fx - Gx),3yGy — Ka k5, Fa — 3xKx
l. VxVyHxy b, 3y3dxHyx
m. Vx(~Bx — Kx), ~Kf!x bk, Bf'x
n. VxVy(Fxy - ~Fyx) b, 3z~Fzz

o. Vx(Fx — Gx), Fa 5, 3x(~Gx — Hx)

CHAPTER 6. NATURAL DEDUCTION 269

6.3.2 VIand3JE

In parallel with YE and 31, rules for VI and JE are a linked pair. VI is as follows: For
variables v and x, given an accessible formula &)} at line a—where v is free for x
in &, v is not free in any undischarged assumption, and v is not free in Vx—one
may move to Vx4 with justification a VI.

DX
VI a | Py provided (i) v is free for x in &, (ii) v is not free in any undis-
charged auxiliary assumption, and (iii) v is not free in Vx &
\ aVvl g Y P (iit)

The form of this rule is like 31 with ¢ a variable: Instead of going from #/ to the
existential quantification 3x 5, we move from) to the universally quantified Vx .
The underlying difference is in the special constraints.

First, constraints (i) and (iii) are automatically met when v is x. For x is sure to
be free for x in &; and x is not free in VxJ. And when v is other than x, constraints
(i) and (iii) together require that x and v appear free in just the same places of & and
Py If v is free for x in P, then v is free in & everywhere x is free in . If v is
not free in Vx ., then v is free in P} only where x is free in —put the other way
around, if &) has free instances of v in addition to ones that replace instances of
x, then P itself has some free instances of v, so that those instances remain free in
Vx & and the third condition fails. This two-way requirement is not present for 3I.
Thus, for an example, Avyv and Axyx have x and v free in just the same places; by
3l one could move from Avyv to IxAxyv, AxAvyx, or IxAxyx; but only a move
to VxAxyx satisfies constraints (i) and (iii) of the universal rule.

In addition, v cannot be free in an auxiliary assumption still in effect when V1 is
applied. Recall that a formula is true when it is satisfied on every variable assignment.
As it turns out (and we shall see in detail in Part II), the truth of a formula with a free
variable is therefore equivalent to the truth of its universal quantification. But this
is not so under the scope of an assumption in which the variable is free. Under the
scope of an assumption with a free variable, we effectively constrain the range of
assignments under consideration to ones where the assumption is satisfied. Thus under
any such assumption, the move to a universal quantification is not justified. However
outside the scope of an assumption in which v is free, assignments are unconstrained
and the move from &) to Vx.J is justified. Again, observe that no such constraint is
required for 31, which depends on satisfaction for just a single individual, so that any
assignment and term will do.

Once you get your mind around them, these constraints are not difficult. Somehow,
though, managing them is a common source of frustration for beginning students.
However, there is a simple way to be sure that the constraints are met. Suppose you
have been following the strategies, along the lines from before, and come to a goal of
the sort Vx . It is natural to expect to get this by VI from &}. You will be sure to
satisfy the constraints if you set f as a subgoal, where v does not appear elsewhere
in the derivation. If v does not otherwise appear in the derivation, (i) there cannot

CHAPTER 6. NATURAL DEDUCTION 270

be any v-quantifier in J, so v is sure to be free for x in . If v does not otherwise
appear in the derivation, (ii) v cannot appear in any assumption, and so be free in
an undischarged assumption. And if v does not otherwise appear in the derivation,
(iii) it cannot appear at all in YVx ., and so cannot be free in VxJ. It is not always
necessary to use a new variable in order to satisfy the constraints, and sometimes it is
possible to simplify derivations by clever variable selection. However, we shall make
it our standard procedure to do so.

Here are some examples. The first is very simple, but illustrates the basic idea
underlying the rule.

1.|Vx(Hx A MXx) P

—

Vx(Hx A Mx) P

(BH) 2.|Hj AMj 1VE
Hj 3.1 Hj 2 AE
VyHy _ VI 4. |VyHy 3VI

The goal is VyHy. So, picking a variable new to the derivation, we set up to get this

by VI from Hj. This goal is easy to obtain from the premise by VE and AE. If every

x is such that both Hx and M x, it is not surprising that every y is such that Hy.

The general content from the quantifier is converted to the form with free variables,

manipulated by ordinary rules, and converted back to quantified form. This is typical.
Another example has free variables in an auxiliary assumption.

1. |Vx(Ex — Sx) P 1.|Vx(Ex — Sx) P
2.1Vz(Sz > K=z) P 2. jz(Sz — Kz) P
3] | £ A(g. 1)
4. | |Ej - Sj 1VE
D 5.018) 43 —-E
6.||Sj—>Kj 2 VE
T | Kj 6,5 —E
B =K 8. Ej — Kj 371
Vx(Ex — Kx) - VI 9.|Vx(Ex — Kx) 8 VI

Given the goal Vx(Ex — Kx), we immediately set up to getitby VI from Ej — K.
At this stage, j does not appear elsewhere in the derivation and we can therefore be
sure that the constraints will be met when it comes time to apply V1. The derivation is
completed by the usual strategies. Observe that j appears in an auxiliary assumption
at (3). This is no problem insofar as the assumption is discharged by the time VI is
applied. Inside the subderivation, however, we would not be able to conclude, say,
VxSx from (5) or VxKx from (7), since at that stage the variable j is free in the
undischarged assumption. But, of course, given the strategies there should be no
temptation whatsoever to do so. For when we set up for VI, we set up to do it in a way
that is sure to satisfy the constraints.

A last example introduces multiple quantifiers and, again, emphasizes the impor-
tance of following the strategies. Insofar as the conclusion merely exchanges variables

CHAPTER 6. NATURAL DEDUCTION 271

with the premise, it is no surprise that there is a way for it to be done.

.| ¥x(Gx — VyFyx) P L|Vx(Gx — VyFyx) P
2.| | Gj A(g, =D
BJ .
(BJ) Fkj
VxFxj _ VI
Gj — VxFxj Gj — VxFxj 2-_ 1
Vy(Gy - VxFxy) _VI Vy(Gy — VxFxy) _ VI

First, we setup to get Vy(Gy — VxFxy) from Gj — VxFxj. The variable j does
not appear in the derivation, so we expect that the constraints on VI will be satisfied.
But our new goal is a conditional, so we set up to go for it by —1I in the usual way.
This leads to Vx F xj as a goal, and we set up to get it from Fkj, where k does not
otherwise appear in the derivation. Observe that we have at this stage an undischarged
assumption in which j appears free. However, our plan is to generalize on k. Since
k is new at this stage, we are fine. Of course, this assumes that we are following the
strategies so that our new variable automatically avoids variables free in assumptions
under which this instance of VI falls. This goal is easily obtained and the derivation
completed as follows:

1.| Vx(Gx — VyFyx) P

2.| | Gj A(g, —D
3. |Gj - VyFyj 1 VE

4.| |VyFyj 32 —E
5.| | Fkj 4VE

6.| | VxFxj 5VI
7.|Gj — VxFxj 2-6 —1
8.|Vy(Gy — VxFxy) 7 VI

When we apply VI the first time, we replace k with x and add the x-quantifier. When
we apply VI the second time, we replace each instance of j with y and add the
y-quantifier. This is just how we planned for the rules to work.

JE appeals to both a formula and a subderivation. For variables v and x, given an
accessible formula 3x# at a, and an accessible subderivation beginning with) at b
and ending with @ against its scope line at c—where v is free for x in &, v is free in
no undischarged assumption, and v is not free in Ix & or in @—one may move to @,
with justification a,b-c JE.

a. | IxP
Py A (g, adE) provided (i) v is free for x in &, (ii) v is not free in
JE any undischarged auxiliary assumption, and (iii) v is not
c.| @ free in Ix P or in @

Q@ a,b-c dE

CHAPTER 6. NATURAL DEDUCTION 272

Notice that the assumption comes with an exit strategy as usual. We can think of this
rule on analogy with VE. A universally quantified expression is something like a big
conjunction: if Vx4, then this element of U is & and that element of U is & and. ...
And an existentially quantified expression is something like a big disjunction: if Ix P,
then this element of U is & or that element of U is J or.... As though it were a
massive VE, then, we have that something is &, and need to show that @ follows
no matter which thing it happens to be. The constraints guarantee that our reasoning
works for any individual to which the assumption applies. Given this, we are in a
position to conclude that @.

Again, if you are following the strategies, a simple way to guarantee that the
constraints are met is to use a variable new to the derivation for the assumption.
Suppose you are going for goal @. In parallel with v, when presented with an
accessible formula with main operator 3, it is wise to go for the entire goal by JE.

a. | P a | IP
Px A (g, adE)
(BK)
c.| | @ (goal)
Q (goal) Q ab-c IE

Observe that v is free in assumption (b); this is no problem for the requirement (ii)
that v is not free in an undischarged auxiliary assumption, insofar as 3E is applied
only after the assumption is discharged. And if v does not otherwise appear in the
derivation, then (i) there is no v-quantifier in & and v is sure to be free for x in
&. If v does not otherwise appear in the derivation (ii) v does not appear in any
other assumption and so is not free in any undischarged auxiliary assumption. And
if v does not otherwise appear in the derivation (iii) v does not appear in either
dx P or in @ and so is not free in IxP or in @. Thus we adopt the same simple
expedient to guarantee that the constraints are met. Of course, this presupposes we
are following the strategies enough so that other assumptions are in place when we
make the assumption for JE, and that we are clear about the exit strategy, so that we
know what @ will be. The variable is new relative to this much setup.

Here are some examples. The first is particularly simple, and should seem intu-
itively right. Notice again that given an accessible formula with main operator 3, we
go directly for the goal by JE.

l.|Ix(Fx A Gx) P l.|Ix(Fx A Gx) P
2.| | Fj AGj A (g, 19E) 2.| | Fj AGj A (g, 19E)
(BL) 3.1 | Fj 2 AE
dxFx 4.| |IxFx 341
dxFx 1,2-_ JE 5.|dxFx 1,2-4 JE

Given an accessible formula with main operator 3, we go for the goal by JE. This
gives us a subderivation with the same goal, and our assumption with the new variable.

CHAPTER 6. NATURAL DEDUCTION 273

As it turns out, this goal is easy to obtain, with instances of AE and 31. We could not
do VI to introduce Vx F x under the scope of the assumption with j free. But 3l is not
so constrained. So we complete the derivation as above. If some x is such that both
Fx and Gx then of course some x is such that F'x. Again, we are able to take the
quantifier off, manipulate the expressions with free variables, and put the quantifier
back on.

Observe that the following is a mistake. It violates the third constraint that the
variable v to which we instantiate the existential is not free in the formula @ that
results from JE.

l.|Ix(Fx A Gx) P
2.1 | Fj AGj A (g, 19E)
(BM) 3.0 | Fj 2 AE
4.| Fj 1,2-33E !Mistake!
5.|3xFx 441

If you are following the strategies, there should be no temptation to do this. In the
above example (BL), we go for the goal 3x F x by JE. At that stage, the variable of
the assumption j is new to the derivation and so does not appear in the goal. So all is
well. This case (BM) does not introduce a variable that is new relative to the goal of
the subderivation, and so runs into trouble.

Very often, a goal from JE is existentially quantified—for introducing an exis-
tential quantifier may be a way to bind the variable from the assumption, so that it is
not free in the goal. In fact, we do not have to think much about this, insofar as we
explicitly introduce the assumption by a variable not in the goal. However, it is not
always the case that the goal for JE is existentially quantified. Here is a simple case
of that sort:

1.|IxFx P 1.|IxFx P
2.|Vz(AyFy — Gz) P 2.|Vz(AyFy — Gz) P
3.1 | Fj A (g, 19E) 3.1 | Fj A (g, 19E)
(BN) 4.| |IyFy — Gk 2 VE
5. | IyFy 341
6.| | Gk 4,5 -E
VxGx 7. |VxGx 6 VI
VxGx 1,3-_ 3JE 8. |VxGx 1,3-73E

Again, given an existential premise, we set up to reach the goal by JE, where the
variable in the assumption is new. In this case, the goal is universally quantified, and
illustrates the point that any formula may be the goal for JE. In this case, we reach the
goal in the usual way. To reach VxGx set Gk as goal; at this stage, k is new to the
derivation, and so not free in any undischarged assumption. So there is no problem
about VI. Then it is a simple matter of exploiting accessible lines for the result.

Here is an example with multiple quantifiers. It is another case which makes sense
insofar as the premise and conclusion merely exchange variables.

CHAPTER 6. NATURAL DEDUCTION 274

1.|3x(Fx A3yGxy) P L 3x(Fx AdyGxy) P
2.| | Fj A3yGjy A (g, 13B) 2.| |[FjA3TyGjy A (g, 13E)
B 3.1 |3yGjy 2 AE
(BO) 4. Gjk A (g, 33E)

Jy(Fy A 3xGyx)
y(Fy A3xGyx) Jy(Fy A3dxGyx) 3,4-_3E
Iy(Fy A3xGyx) 1,2-_ 3E 3y (Fy A3IxGyx) 12-_ 3E

The premise is an existential, so we go for the goal by JE. This gives us the first
subderivation, with the same goal and new variable j substituted for x. But just a bit
of simplification gives us another existential on line (3). Thus, following the standard
strategies, we set up to go for the goal again by JE. At this stage, j is no longer new,
so we set up another subderivation with new variable k substituted for y. Now the
derivation is reasonably straightforward.

1.|Ix(Fx AdyGxy) P

2.| | Fj A3yGjy A (g, 19E)
3.1 |3yGjy 2 AE

4. Gjk A (g, 33E)
5. IxGjx 441

6. Fj 2 AE

7. Fj AN3xGjx 6,5 AL

8. dy(Fy A 3IxGyx) 731

9.1 |Fy(Fy AIxGyx) 34-8 3E
10. | y(Fy A IxGyx) 1,2-9 3E

3l applies in the scope of the subderivations. And we put Fj and 3xGjx together so
that the outer quantifier goes on properly, with y in the right slots.

Finally, observe that VI and 31 also constitute a dual to one another. The deriva-
tions to show this are relatively difficult to create. But to not worry about that. It is
enough to understand the steps. For the parallel to VI, suppose the constraints are met
for a derivation of VxP x from Pj. And for the parallel to JE, suppose it is possible
to derive Q by JE from Jx P x; so from application of that rule, in a subderivation,
we can get Q from Pj.

CHAPTER 6. NATURAL DEDUCTION 275

.| ~Vx~Px P
2.1 | ~0 A (¢, ~E)
1.|Pj P |
— 3. Pj Ale,~D)
2.1 |Ix~Px A (c, ~I)
3. ~Pj A (c,23E)
(BP) (BQ) 4. [0 (somehow)
4. 1 1,3 LI 5. 1 4,2 11
5.0 | L 2,3-4 3E 6.| | ~Pj 3-5~1
6.| ~Ix~Px 2-5~1 7.| |Vx~Px 6 VI
8. | | L 7,1 11
9.10 2-8 ~E

Where Pj is a premise, it would be possible to derive Vx P x in one step by V1. But
in (BP) from the same start we derive the equivalent ~3x~ P x by the existential rule.
Because conditions for the universal rule apply, j is not free in any undischarged
assumption, j is free for x in ~Px, and j is not free in Ix~ Px; in addition, it
matters that L abbreviates a sentence and so includes no free instance of j. So the
constraints on JE are satisfied. (The variable j of the assumption at (3) is not new—
still, constraints are met insofar as j appears only in the premise.) Similarly, if it is
possible to derive Q by JE from 3x P x, we would set up a subderivation starting with
Pj, derive QO and use JE to exit with the Q. In (BQ) we begin with the equivalent
~Vx~ P x and, supposing it is possible in a subderivation to derive Q from P, use
the universal rule to derive Q. Again, because conditions for the existential rule apply,
j is free for x in ~Px, j is not free in Vx~Px, and j is not free in ~Q or other
undischarged assumptions. So the constraints on VI are satisfied. Thus, again, there is
a sense in which in the presence of rules for negation, the work done by one of these
quantifier rules is very similar to, or can substitute for, the work done by the other.

E6.27. Complete the following derivations by filling in justifications for each line.
Then for each application of VI or JE show that the constraints are met by running
through each of the three requirements.

a. 1.|Vx(Hx — Rx)

.|VyHy

o -

Hj — Rj
Hj

Rj

VzRz

S kW

CHAPTER 6. NATURAL DEDUCTION

b,

w

R

N

Now e W

© 0N oL e

| Vy(Fy — Gy)
.| JzFz

Fj

Fj — Gj
Gj
IxGx

.| IxGx

.| AxVyVzHxyz

VyVzHjyz

VzHjfVkz
Hjflkflk
IxHxflkflk
VydxHxflyfly

AVyIxHxflyfly

| VyVx(Fx — By)

dxFx
Fj
Vx(Fx — Bk)
Fj — Bk
Bk
Bk

.|3xFx — Bk
.|Vy(3xFx — By)

| Ix(Fx —> VyGy)

Fj - VyGy

Fj

vyGy

Gk
Fj — Gk
Vy(Fj — Gy)
AxVy(Fx — Gy)

.| IxVy(Fx — Gy)

276

E6.28. The following are not legitimate ND derivations. In each case, explain why.

1.

2.

Gjy — Fjy P
Vz(Gzy — Fjy) 1VI

b.

CHAPTER 6. NATURAL DEDUCTION
1. EIxVyByx P
2.| |VyByy A (g, 19E)
3.| | Baa 2VE
4.| Baa 1,2-3 3E

E6.29.

1.|IxByx P

2.| | Byy A (g, 13E)

3.1 |3yByy 24l
4.|3yByy 1,2-33E
1.|Vx3yLxy P
2.|3yLjy 1 VE

3. | Ljk A (g, 23E)
4.1 | VxLxk 3VI

5.| | dyVxLxy 441
6.|3IyVxLxy 2,3-53E

l.|Vx(Hx — Gx) P

2. |dxHx P

3.1 | Hj A (g,29E)
4.| | Hj — Gj 1VE

5.1 |Gj 43 —>E
6.|Gj 2,3-53E
7.1VxGx 6 VI

Provide derivations to show each of the following.
VxKxx b, VzKzz

IxKxx b, IzKzz

Vx~Kx, Vx(~Kx — ~8Sx) 5, Yx(Hx v ~Sx)
b YXHf'x — VxHf'glx

VxVy(Gy — Fx) b, Yx(VyGy — Fx)

dyByyy b Ix3y3zBxyz

Vx[(Hx A ~Kx) — Ix],3y(Hy A Gy), Yx(Gx A ~Kx) b, 3y(Iy A Gy)

Vx(Ax — Bx) K, 3zAz — 3zBz

. 3x~(Cx v ~Rx) K, Ix~Cx

Ix(Nx Vv Lxx), Vx~Nx b, IyLyy

277

CHAPTER 6. NATURAL DEDUCTION 278

*k. VxVy(Fx — Gy) k5, Yx(Fx = VyGy)

L. Vx(Fx - VyGy) k, YxVy(Fx — Gy)

m. Ix(Mx A ~Kx),y(~0y AWy) b, IxTy(~Kx A ~Oy)

n. Vx(Fx — 3yGxy) b, Vx[Fx — 3y(Gxy vV ~Hxy)]

o. Ix(Jxa ACb),Ix(Sx A Hxx), Vx[(Cb A Sx) = ~Ax] b, Iz(~Az AN Hzz)

6.3.3 Strategy

Our strategies remain very much as before. They are modified only to accommodate
the parallels between A and V, and between Vv and 3. I restate the strategies in their
modified form, and give some examples of each. As before, we begin with strategies
for reaching a determinate goal.

SG 1.
2.

If accessible lines contain explicit contradiction, use ~E to reach goal.

Given an accessible formula with main operator 3 or Vv, use 3E or VE to
reach goal (watch “screened” variables).

. If goal is “in” accessible lines (set goals and) attempt to exploit it out.

To reach goal with main operator *, use %I (careful with Vv and 3).

. Try ~E (especially for atomics and formulas with V or 3 as main operator).

And we have strategies for reaching a contradiction.

SC 1
2.

Break accessible formulas down into atomics and negated atomics.

Given an available existential or disjunction, go for L by JE or VE (watch
“screened” variables).

. Set as goal the opposite of some negation (something that cannot itself be

broken down); then apply strategies for a goal to reach it.

. For some £ such that both & and ~& lead to contradiction: Assume 5

(~&), obtain the first contradiction, and conclude ~P (); then obtain
the second contradiction—this is the one you want.

As before, these are listed in priority order, though the frequency order may be
different. If a high priority strategy does not apply, simply fall through to one that
does. In each case, you may want to refer back to the corresponding section in the
sentential case for further discussion and examples.

CHAPTER 6. NATURAL DEDUCTION 279

SG1.
statement is unchanged from before. If accessible lines contain an explicit contra-
diction, we can assume the negation of our goal, bring the contradiction under the
assumption, and conclude to the original goal. Since this always works, we want to
jump on it whenever it is available. The only thing to add for the quantificational case
is that accessible lines might “contain” a contradiction that is just a short step away
buried in quantified expressions. Thus, for example,

If accessible lines contain explicit contradiction, use ~FE to reach goal. The

Ll VxFx P 1.|VxFx P
2.|Vy~Fy P 2.|Vy~Fy P
3.1 | ~Gz A (c, ~E)
(BR) 4.| | Fx 1 VE
5.0 | ~Fx 2 VE
6.] | L 4,5 11
Gz 7.1 Gz 3-6 ~E

Though Vx Fx and Vy~ Fy are not themselves an explicit contradiction, they lead
by VE directly to expressions that are. Given the analogy between A and V, it is as if
we had both Fa A ... A Fband ~Fa A ... A ~Fb in the premises. In this case, we
would not hesitate to go for the goal by ~E. And similarly here.

SG2. Given an accessible formula with main operator 3 or Vv, use E or VE to reach
goal (watch “screened” variables). What is new for this strategy is the existential
quantifier. Motivation is the same as before: With goal @, and an accessible line
with main operator 3, go for the goal by JE. Then you have all the same accessible
formulas as before, with the addition of the assumption. So you will (typically) be
better off in your attempt to reach @. We have already emphasized this strategy in
introducing the rules. Here is an example:

l.|IxFx P l.|IxFx P
2.13yGy P 2.13yGy P
3.|3zFz - VyFy P 3.|3zFz - VyFy P
4.| | Fj A (g, 13E) 4.| | Fj A (g, 19E)
5. Gk A (g,23E) 5. Gk A (g,23E)
(BS) 6. ||3zF:z 431
7. VyFy 3,6 >E
8. Fk 7 VE
9. Fk A Gk 8,5 Al
Ix(Fx A Gx) 10. Ix(Fx A Gx) 941l
Ix(Fx A Gx) 2,5-_3E 11.| [Ix(Fx A GXx) 2,5-10 3E
Ax(Fx A Gx) 1,4-_3JE 12. | Ix(Fx A Gx) 1,4-11 3E

The premise at (3) has main operator — and so is not existentially quantified. But
the first two premises have main operator 3. So we set up to reach the goal with two

CHAPTER 6. NATURAL DEDUCTION 280

applications of JE. It does not matter which we do first as, either way, we end up with
the same accessible formulas to reach the goal at the innermost subderivation. Once
we have the subderivations set up, the rest is straightforward.

Given what we have said, it might appear mysterious how one could be anything
but better off going directly for a goal by JE or VE. But consider the derivations
below:

1.| Vx3yFxy P 1.|Vx3dyFxy P

2.|VxVy(Fxy — Gxy) P 2. |VxVy(Fxy — Gxy) P

3.13yFjy 1 VE 3.13yFjy 1 VE

4.1 | Fjk A (g, 33E) 4.1 | Fjk A (g, 33E)
(BT) 5.| | Yy(Fjy — Gjy) 2 VE BU) 5.| | Yy(Fjy — Gjy) 2VE

6.| | Fjk — Gjk SVE 6.| | Fjk - Gjk SVE

7.1 | Gjk 6,4 —E 7.1 | Gjk 6,4 —E

8| [JyGjy 731 8.1 |3yGjy 731

9.1 | Vx3dyGxy !Mistake! 9.13yGjy 3,4-8 3E

10. | Vx3yGxy 3,49 3E 10. | Vx3yGxy 9 VI

In derivation (BT), we isolate the existential on line (3) and go for the goal, Vx3y Gxy
by JE. But something is in fact lost when we set up for the subderivation—the variable
j, that was not in any undischarged assumption and therefore available for VI, gets
“screened off” by the assumption and so lost for universal generalization. So at step
(9), we are blocked from using (8) and VI to reach the goal. The problem is solved
in (BU) by letting variable j pass into the subderivation and back out, where it is
available again for V1. We pass over our second strategy for a goal until we have a
new goal in which j is free. This way there is no call to generalize on j under the
scope of the assumption. The restriction on JE blocks a goal in which £ is free, but
there is no problem about ;.

SG3. Ifgoalis “in” accessible lines (set goals and) attempt to exploit it out. The
statement of this strategy is the same as before. The only thing to add is that we
should consider the instances of a universally quantified expression as already “in”
the expression (as if it were a big conjunction). Thus, for example,

1.|Ga — VxFx P 1.|Ga — VxFx P
2.1 VxGx P 2.|VxGx P
(BV) 3.| Ga 2 VE
VxFx 4. |VxFx 1,3 —>E
Fa _VE 5.| Fa 4 VE

The original goal Fa is “in” the consequent of (1), VxFx. So we set VxFx as a
subgoal. This leads to Ga as another subgoal, and we find this “in” the premise at (2).

Here is a more complicated case. When extracting a goal that involves multiple
quantifiers and terms it can sometimes help to pencil a “map” for how quantifiers are
to be applied.

CHAPTER 6. NATURAL DEDUCTION 281

a b 1.|VxVyWxby P
1.|VxVyWxby P

abb ba 2. ijyVZ(nyz — RzXx) P
2. j’xVsz(nyz—> Rzx) P 3.| VyWaby | VE
(BW) 4.| Wabb 3VE
5.|VyVz(Wayz — Rza) 2 VE
6.|Vz(Wabz — Rza) 5VE
7.| Wabb — Rba 6 VE

Rba 8. | Rba 74 >E

Working back from the goal, we want Rba from the consequent of (2); this tells us
how to instantiate z and x in (2); then in order to connect with (1) we instantiate y to
b. From this x and y in (1) go to a and b. Then the plan is easily executed.

SG4. To reach goal with main operator =, use xI (careful with v and 3). As before,
this is your “bread-and-butter” strategy. You will come to it over and over. Of new
applications, the most automatic is for V. For a simple case,

1.|VxGx P 1.|VxGx P
2.|VyFy P 2.|VyFy P
(BX) 3.1Gj 1 VE
4.| Fj 2 VE
FjAGj 5.1 Fj AGj 4,3 AL
Vz(Fz AGz) _ VI 6.|Vz(Fz AG2) 5VI

Given a goal with main operator V, we immediately set up to get it by V1. This leads
to F'j A Gj with the new variable j as a subgoal. After that, completing the derivation
is easy. Observe that this strategy does not always work for formulas with main
operators V and 3.

SGS. Try ~FE (especially for atomics and formulas with V or 3 as main operator).
Recall that atomics now include more than just sentence letters. Thus this strategy
applies to goals of the sort Fab or Gz. And, just as one might have good reason
to accept that & or @ without having good reason to accept that &, or that @, so
one might have reason to accept that 3x without having reason to accept that
any particular individual is J>—as one might be quite confident that someone did
it, without evidence sufficient to convict any particular individual. Thus there are
contexts where it is possible to derive x5 but not possible to reach it directly by 3I.
SG5 has special application in those contexts. Thus consider the following example:

CHAPTER 6. NATURAL DEDUCTION 282

1.| ~VxAx P L | ~VxAx p
2. |~3x~A4x A(c, ~E) 2.| [~Ax~Ax A(c,~E)
(BY) 4. dx~Ax 341
5. 1 42 11
6. | Aj 3-5~E
7. VxAx 6 VI
L 8.| | L 7,1 11
Fx~Ax 2-—~E 9. | Jx~Ax 2.8 ~E

Our initial goal is 3x~Ax. There is no contradiction; there is no disjunction or
existential; we do not see the goal in the premise; and attempts to reach the goal by 3l
are doomed to fail. So we fall through to SGS5, and set up to reach the goal by ~E.
As it happens, the contradiction is not easy to get! We can think of the derivation as
involving applications of either SC3 or SC4. We take up this sort of case below. For
now, the important point is just the setup on the left.

Where strategies for a goal apply in the context of some determinate goal, strate-
gies for a contradiction apply when the goal is just some contradiction—and any
contradiction will do. Again, there is nothing fundamentally changed from the senten-
tial case, though we can illustrate some special quantificational applications.

SC1. Break accessible formulas down into atomics and negated atomics. This works
just as before. The only point to emphasize for the quantificational case is one we made
for SG1 above, that relevant atomics may be “contained” in quantified expressions. So
going for atomics and negated atomics may include “shaking” quantified expressions
to see what falls out. Here is a simple example:

1.|~Fa P 1.|~Fa P
2.1 |Vx(Fx AGx) A (c, ~D) 2.1 |Vx(Fx AGx) A (c, ~D)
(BZ) 3.| | Fa A Ga 2 VE
4. | Fa 3AE
1 5.0 | L 4,1 11
~Vx(Fx A Gx) 2-_ ~1 6. | ~Vx(Fx AGx) 2-5 ~1

Our strategy for the goal is SG4. For an expression with main operator ~, we go for
the goal by ~I. We already have ~ Fa toward a contradiction at the level of atomics
and negated atomics. And Fa comes from the universally quantified expression by
VE.

SC2. Given an available existential or disjunction, go for 1 by E or VE (watch
“screened” variables). As before, in many cases you will have applied JE or VE by
SG2 prior to setting up for ~E or ~I. Then the existential or disjunction is “used up”
and unavailable for this strategy. However it may be that an existential or disjunction

CHAPTER 6. NATURAL DEDUCTION 283

becomes or remains available inside a subderivation for a tilde rule. In any such case,
this strategy has high priority for the same reasons as before: In your attempt to reach
a contradiction, you have all the same accessible formulas as before, with the addition
of the assumption. So you will (typically) be better off in your attempt to reach a
contradiction. Here is an example:

1. | Vx~Ax P 1. jwax P
2.| [3xAx A (e, ~I) 2.| [FxAx A (e, ~I)
3. Aj A (¢, 23E)
(CA)
1
L 1 2,3-_3E
~dxAx 2-_ ~1 ~TAxAx 2~

We set up to reach the main goal by ~I. This gives us an existentially quantified
expression at (2), where the goal is a contradiction. SC2 tells us to go for L by
JE. Observe that, because the goal is L, the exit strategy is ¢ rather than g. But by
application of SC1, this subderivation is easy.

1. | Vx~Ax P

2. |dxAx A (c, ~I)
3. Aj A (c,23E)
4 ~Aj 1VE

5. 1 34 11

6. | L 2,3-53E
7. | ~AxAx 2-6 ~1

The contradiction results with Aj on line (3) and ~Aj “contained” on line (1). But
as occurs with the parallel goal-directed strategy, the contradiction would not even
have been possible without the assumption A; for JE.

As can occur with applications of SG2, it is wise to be careful about applications
of this strategy when assumptions for JE or VE *“screen off” variables that would
otherwise be available for VI. Here is an example to illustrate the point:

CHAPTER 6. NATURAL DEDUCTION 284

1.| ~Vx3yGxy P 1.| ~Vx3yGxy P

2.|VxVy(Fxy — Gxy) P 2.|VxVy(Fxy — Gxy) P

3. | Vx3yFxy A (e, ~I) 3. | Vx3yFxy A(c, ~I)

4.1 | IyFjy 3VE 4.1 | yFjy 3VE

5. Fjk A (c,43E) 5. Fjk A (g, 43E)
(CB) 6. Vy(Fjy — Gjy) 2VE (CC) 6. Vy(Fjy — Gjy) 2VE

7. Fjk — Gjk 6 VE 7. Fjk — Gjk 6 VE

8. Gjk 7,5 -E 8. Gjk 7,5 -E

9. 3yGjy 83l 9. 3yGjy 83l

10. Vx3yGxy 'Mistake! 10.| |3y Gjy 4,5-9 3E

11. L 10,1 LI 11.| | Vx3yGxy 10 VI

12.] | L 4,5-11 3E 12.] | L 11,1 L1

13. | ~Vx3AyFxy 3-12 ~1 13. | ~Vx3AyFxy 3-12 ~1

In derivation (CB), we isolate the existential on line (4) and set up to go for contradic-
tion by JE. But something is in fact lost when we set up for the subderivation—the
variable j, that was not in any undischarged assumption and therefore available for
VI, gets “screened off”” by the assumption and so lost for universal generalization.
So at step (10), we are blocked from using (9) and VI to reach the goal. Again, the
problem is solved in (CC) by letting variable j pass into the subderivation and back
out, where it is available for VI. As before, we pass over the second strategy for a
contradiction until we have a new goal in which j is free. And we apply JE for it.

SC3. Set as goal the opposite of some negation (something that cannot itself be
broken down); then apply strategies for a goal to reach it. In principle, this strategy is
unchanged from before, though of course there are new applications for quantified
expressions. Here is a quick example:

1. | ~3xAx P 1. | ~3dxAx P
2.1 | Aj A (c, ~I) 2.1 | Aj A (c, ~I)
(CD) 3.| [3IxAx 241
1 4.1 | L 3,1 11
~Aj 2-_ ~1 5.| ~Aj 2-4 ~1
Vx~Ax _ VI 6. | Vx~Ax 5VI

Our strategy for the goal is SG4. We plan on reaching Vx~Ax by VI. So we set ~Aj
as a subgoal. Again the strategy for the goal is SG4, and we set up to get ~Aj by
~I. Other than the assumption itself, there are no atomics and negated atomics to be
had. There is no available existential or disjunction. But the premise is a negated
expression. So we set IxAx as a goal. And this is easy, as it comes in one step by Jl.
(CC) above is another example of this. Needing a contradiction, we build up to the
opposite of the formula on line (1).

CHAPTER 6. NATURAL DEDUCTION 285

SC4. For some P such that both P and ~P lead to contradiction: Assume P
(~P), obtain the first contradiction, and conclude ~J (#); then obtain the second
contradiction—this is the one you want. As in the sentential case, this strategy often
coincides with SC3—in building up to the opposite of something that cannot be
broken down, one assumes a & such that both & and ~ result in contradiction. Cor-
responding to the pattern with Vv, this often happens when some accessible expression
is a negated existential. Here is a challenging example:

1. | Vx(~Ax — Kx) P 1. | Vx(~Ax — Kx) P
2. | ~VyKy P 2. | ~VyKy P
3. | ~TFwAw A (¢, ~E) 3. :EIwAw A (c,~E)
4. Aj A (c, ~D)
5 JwAw 491
(CE) 6.0 ||L 53 11
AREYY 4-6 ~1
8 ~Aj — Kj 1 VE
9.1 | Kj 8,7 —>E
10.| | VyKy 9 VI
L 11.] | L 10,2 L1
FwAw 3-_~E 12. | FwAw 311 ~E

Once we decide that we cannot get the goal directly by dI, the strategy for a goal
falls through to SG5. And, as it turns out, both Aj and ~Aj lead to contradiction.
So we assume one and get the contradiction; this gives us the other which leads
to contradiction as well. The decision to assume Aj may seem obscure! But it
is a common pattern: Given ~3x$, assume an instance &, for some variable v,
or at least something that will yield #). Then I gives you Ix., and so the first
contradiction. So you conclude ~Jf—and this outside the scope of the assumption,
where VI and the like might apply for v. In effect, you come with an instance of the
existential “underneath” its negation, this leads to contradiction and so to a negation
of the instance—which has some chance to give you what you want. For another
example of this pattern, see (BY) above.

Notice that such cases can also be understood as driven by applications of SC3.
In (CE), we set the opposite of the formula on (2) as goal. This leads to Kj and
then ~Aj as subgoals. To reach ~Aj, we assume A/, and get this by building to the
opposite of ~JwAw. And similarly in (BY).

Again, these strategies are not a cookbook for performing all derivations—doing
derivations remains an art. But the strategies will give you a good start, and take you
a long way through the exercises that follow, including derivation of the theorems
immediately below.

For derivation of the following theorems, as a matter of notation, let @ (x), @(x, %)
and such indicate that €@ may have instances of the indicated variables free—and, in
context, @ without the parenthetical notation that the variables are not free. Then @ ()

CHAPTER 6. NATURAL DEDUCTION 286

is @(x)%. This will let you “track” substituted terms in the usual way. So for T6.31
you show Vx & (x) — & (&), and for T6.34a, V(P A Q(x)) < (P A VxQ(x)).

Observe that, unless explicitly stated, we cannot be sure that an arbitrary ¢ is free
for x in @(x). However, as always, x is free for (free instances of) x in @. (And,
more generally, # must be free for x in @ if it has no variable beyond x.) It turns out
that this is sufficient for demonstration of the following theorems, which you will be
able to work without variable exchange (when you get to them in E6.33).

*T6.31. b, VX&P — PF where term £ is free for variable x in formula &

*T6.32. by VXVYP < VyVa P

T6.33. b, IxTYy P < IyIxP

T6.34. Where «x is not free in &,

*@) yp VX(P A Q) < (P AVXQ)
(b) Hyp IX(P A Q) < (P AIxQ)
©) Hp VX(@QAP) < (YxQ A P)
d) Hp XK(@AP) > (FTxQAP)

*e) bp YX(P VA) < (P VVxQ)
) Hp (P VA) < (PVIXQ)
(@) FHp Yx(@Q V P) < (VxQ Vv P)
(h) by (@ V P) < (FIxQ VvV P)
() lp VX (P = Q) < (P — VxQ)
*(J) Fyp IX(P = @) < (P — IxQ)
k) Hp Vx(Q — P) < (IxQ — P)

D) Hp H(Q = P) < (VxQ — P)

T6.35. Hp I(P VvV Q) < (IxP v IxQ)

T6.36.), VX(P A Q) < (VxP AVxQ)

CHAPTER 6. NATURAL DEDUCTION 287

T6.37. | ~VxP < Ix~P

T6.38. by ~IxP < Vx~P

E6.30. For each of the following, (i) which strategies for a goal apply? and (ii) what
are the next two steps? If the strategies call for a new subgoal, show the subgoal;
if they call for a subderivation, set up the subderivation. In each case explain your
response. Hint: Each of the strategies for a goal is used at least once.

*a. 1.|3x3y(Fxy A Gyx) P

dxIyFyx

b. 1.|Vy[(Hy A Fy) — Gy] P
2.|VzFz A ~VxKxb P

Vx(Hx — Gx)

C. 1.[VxVy(Gy — Rxy) P

2.|Vx(Hx — Gx) P
3.|Hb P
Rab

d. 1.|VxVy(Rxy — ~Ryx) P
2.| Raa P

Az3ySyz

€. 1.|~Vx(FxvVvA) P

dx~Fx

E6.31. Each of the following sets up an application of ~I or ~E for SG4 or SGS5.
Complete the derivations, and explain your use of strategies for a contradiction.
Hint: Each of the strategies for a contradiction is used at least once.

CHAPTER 6. NATURAL DEDUCTION

*a. 1.|~3x(Fx A Gx)
2.1 | Fj
3. Gj
1
~Gj
Fj — ~Gj

Vx(Fx — ~Gx)

b. 1.|Vx(Fx = Vy~Fy)

2.| |IxFx
1
~3dxFx

C. 1.|Vx(Fx —> VyRxy)
2.|~Rab

3.1 | Fa
1
~Fa

d. 1.|~VxFx
2.| | ~3x(~Fx Vv A)

1
Ax(~Fx Vv A)
€. 1.||3Ix(Ax & ~Ax)

1
~Ix(Ax <> ~Ax)

P
A (g, —I)
A (c, ~I)

A (c, ~)

2-_ ~1

A (c, ~)

288

E6.32. Produce derivations to show each of the following. Though no full answers
are provided, strategy hints are available for the first problems. If you get the last

few on your own, you are doing very well!

*a. Vx(~Bx — ~Wx),IxWx H,, IxBx

*b. VxVyVzGxyz b, VxVyVz(Hxyz — GzyXx)

“c. Vx[Ax — Vy(~Dxy <> Bf! f1y)], Vx(Ax A ~Bx) b, VxDf1xf1x

CHAPTER 6. NATURAL DEDUCTION 289

*d. Vx(Hx — YyRxyb), VxVz(Razx — Sxzz) b, Ha — IxSxcc

*e. ~Vx(Fx A Abx) < ~VxKx,Vy[3x~(Fx A Abx) A Ryy] b, ~VxKx

. VxVy(Dxy — Cxy), VxIyDxy, VxVy(Cyx — Dxy) b, IxIy(Cxy A Cyx)
*g. VxVy[(Ry v Dx) - ~Ky], Vx3dy(Ax — ~Ky), Ix(Ax vV Rx) 5, Ix~Kx

*h. Yy(My — Ay), Ix3Ay[(Bx A Mx) A (Ry A Syx)], IxAx — VyVz(Syz — Ay)
Fp 3x(Rx A Ax)

. VxVy[(Hby N Hxb) - Hxy],Vz(Bz — Hbz),3x(Bx A Hxb)
Fp 3z[Bz AVy(By — Hzy)]

*. YxAyRxy, VxVy(Rxy — Ryx) b, Yx3y(Rxy A Ryx)

k., Vx((Fx A ~Kx) — Ay[(Fy A Hyx) A ~Ky]),
Vx[(Fx AVY[(Fy A Hyx) — Ky]) > Kx] - Ma 5, Ma

. VxVy[(Gx AGy) - (Hxy — Hyx)], VxVyVz([(Gx A Gy) A Gz] —
[(Hxy n Hyz) - Hxz]) b, Yw(Gw A3z(Gz A Hwz)] - Hww)

*m. YVxVy[(Ax A By) — Cxy], 3y[Ey A Yw(Hw — Cyw)], VxVyVz[(Cxy A
Cyz) — Cxz], Vw(Ew — Bw) k5, VzVw[(Az A Hw) — Czw)]

*n. Vx3yVz(Axyz v Bzyx), ~dxAy3zBzyx b, VxdyVzAxyz
*0. A = IxFx b, Ix(A — Fx)
p. YXFx - A, 3x(Fx — A)

qg- Vx(Fx - Gx),VxVy(Rxy — Syx), VxVy(Sxy — Syx)
B YX[Ey(Fx A Rxy) — 3y(Gx A Sxy)]

r. AyVxRxy, Vx(Fx — 3ySyx), VxVy(Rxy — ~Sxy) b5, Ix~Fx
s. xVY[(FxvGy) > Vz(Hxy — Hyz)),3zVx~Hxz b, 3yVx(Fy - ~Hyx)
t. VxVy[3zHyz — Hxy] b, IxIyHxy — VxVyHxy

u. Ix(Fx AVy[(Gy A Hy) — ~Sxy]), VxVy([((Fx A Gy) A Jy] — ~Sxy),
VxVy([(Fx A Gy) A Rxy] = Sxy), 3x(Gx A (Jx vV Hx))
Fop 3x3y((Fx A Gy) A ~RxYy)

v. xVy[Az(Fzy — IwFyw) — Fxy] bk, 3xFxx
w. byp IXVy(Fx — Fy)
X. Fyp IX3yFy — Fx)

y. bap VXA Vz[AwTxyw — JIwT xzw)

*E6.33. Produce derivations to demonstrate each of the results from T6.31-T6.33,
T6.34a,b,e, and T6.35-T6.38. For the first five, for each application of a quantifier
rule explain how its restrictions are met. Challenge: finish the results of T6.34.

CHAPTER 6. NATURAL DEDUCTION 290

6.3.4 =Iand =E

We complete the system ND with I- and E-rules for equality. Strictly, = is not an
operator; it is a two-place relation symbol. However, because its interpretation is
standardized across all interpretations, it is possible to introduce rules for its behavior.

The =I rule is particularly simple. At any stage in a derivation, for any term £,
one may write down ¢ = ¢ with justification =I.

=]
t=1 =I

Strictly, without any inputs, this is an axiom schema of the sort we encountered in
Chapter 3—a form whose instances may be asserted at any stage in a derivation.
Motivation should be clear. Since for any m in the universe U, (m, m) is in the
interpretation of =, + = 1 is sure to be satisfied, no matter what the assignment to #
might be. Thus, in £4,a = a, x = x, and f?az = f?az are formulas that might be
justified by =L.

=E is more interesting and, in practice, more useful. Say an arbitrary term is
free in a formula iff every variable in it is free. And say $?/; is & where some, but
not necessarily all, free instances of term # are replaced by term s. Then, given an
accessible formula & on line a and the atomic formula # = s or 4 = £ on accessible
line b, one may move to %/, where s is free for all the replaced instances of ¢ in &,
with justification a,b =E.

a. | P a | P
bl = ’ provided that term s is free
| E=4 b.|s =1
=E for all the replaced instances of
P ab=E P/, ab =E term ¢ in formula &

If the assignment to some terms is the same, this rule lets us replace free instances of
the one term by the other in any formula. Again, the motivation should be clear. On
trees, the only thing that matters about a term is the thing to which it refers. So if &
with term £ is satisfied, and the assignment to £ is the same as the assignment to 4,
then J with s in place of # should be satisfied as well. When a term is not free, it is
not the assignment to the term that is doing the work, but rather the way it is bound.
So we restrict ourselves to contexts where it is just the assignment that matters!

Because we need not replace all free instances of one term with the other, this rule
has some special applications that are worth noticing. Consider the formulas Raba
and a = b. The following lists all the formulas that could be derived from them in
one step by =E.

CHAPTER 6. NATURAL DEDUCTION 291

1.| Raba P
2.la=b P
3.| Rbba 1,2=E
(CF) 4.| Rabb 1,2 =E
5.| Rbbb 1,2=E
6.| Raaa 1,2 =E
T.la=a 2,2 =E
8.1b=> 2,2 =E

(3) and (4) replace one instance of a with b. (5) replaces both instances of a with
b. (6) replaces the instance of b with a. We could reach, say, Raab, but this would
require another step—which we could take from any of (4), (5), or (6). You should be
clear about why this is so. (7) and (8) are different. We have a formula a = b, and an
equality @ = b. In (7) we use the equality to replace one instance of b in the formula
with a. In (8) we use the equality to replace one instance of ¢ in the formula with b.
Of course (7) and (8) might equally have been derived by =I. Notice also that =E is
not restricted to atomic formulas, or to simple terms. Thus, for example,

1.|Vy(Rag'x A Kf2 f2azy) P

2. | glx = f2az P
(CG)
3.|Vy(Raf?az n Kf? f2azy) 1,2 =E
4. |Vy(Rag'x A Kf?glxy) 1,2 =E
ND Quick Reference

ND includes all the rules of NDs and,

VE (universal exploit) I (existential intro)
a. | VxP a. | Pr provided ¢# is free for x in
Pr aVvVE IxP adl
VI (universal intro) 3E (existential exploit)
provided (i) v is free for x in
a. | Py a. | P PR . .
&, (i) v is not free in any
b.| | P A (g, adE) . .
v undischarged auxiliary assump-
VxP aVvI . . .
tion, and (iii) v is not free in
c.| | @ VxP/3xP orin @
Q@ a,b-c 3E
=I (equality intro) =E (equality exploit)
al P P provided that term s is free
=1 —I ble=s s =1 for all the replaced instances of

term ¢ in formula &
P P a,b =E

CHAPTER 6. NATURAL DEDUCTION 292

lists steps that are legitimate applications of =E to (1) and (2). If the second premise
were g!x = f2ay, however, we could not use it with (1) to reach say, Vy(Raf2ay A
Kf?f2?azy), since f2ay is not free for glx in Vy(Rag'x A Kf? f2azy). And
of course, we could not replace either y or f2 f2azy in Vy(Rag'x A Kf? f2azy)
since they are not free.

There is not much new to say about strategy, except that you should include =E
among the stock of rules you use to identify what is “contained” in accessible lines.
It may be that a goal is contained in accessible lines, when terms only need to be
switched by some equality. Thus, for goal Fa, with Fb explicitly available, it might
be worth setting @ = b as a subgoal, with the intent of using the equality to switch the
terms.

Rather than dwell on strategy as such, let us proceed directly to a few substantive
applications. First, you should find derivation of the following theorems straightfor-
ward. Thus, for example, T6.39 and T6.42 take just one step (and none require more
than five lines). The first three may remind you of axioms from Chapter 3. The others
represent important features of equality.

T6.39. k5, x = x

*T6.40. by (6 =y) = (A"x1...xi o o.xp = A" %1 .. Y ... Xp)
T64l. Hp (xi =y) > (R"x1.. % ... %0 = R"x1 ... Y ... %)
T6.42. I, t =1t reflexivity of equality

T643. , (t =) = (6 =1) symmetry of equality

T6.44. I (r =9) = [(s = 1) = (r = 1)) transitivity of equality

Note that with symmetry, given s = # it follows that + = 4. So that reasoning goes
both waysand b, t = 6 <> 5 = 1.

Here is reasoning of a frequently-encountered type. Suppose we want to show
that the following is valid in ND:

Ax[(Dx AVy(Dy — x = y)) A Bx] The dog is barking
(CH) 3Ix(Dx ACx) Some dog is chasing a cat

Ax[Dx A (Bx A Cx)] Some dog is barking and chasing a cat

Using the methods of Chapter 5, this might translate something like the argument on
the right. We set out to do the derivation in the usual way.

CHAPTER 6. NATURAL DEDUCTION 293

1. [3x[(Dx AVy(Dy — x = y)) A Bx] P

2. Ix(Dx A Cx) P
3.0 [(F AYYDy > j = AB] A 13D)
4. Dk A Ck A (g, 23E)

Dj A (Bj ACj)

Ax[Dx A (Bx A Cx)] _dI
Ax[Dx A (Bx A Cx)] 24-_3E
Ax[Dx A (Bx A Cx)] 1,3-_3E

Given two existentials in the premises, we set up to get the goal by two applications
of JE. And if we had Dj A (Bj A Cj) we could reach the goal by 1. Dj and Bj
are easy to get from (3). But we do not have Cj. What we have is rather Ck. The
existentials in the assumptions are instantiated to different (new) variables—and they
must be so instantiated if we are to meet the constraints on JE. From 3x# and IxQ
it does not follow that any one thing is both & and @. In this case, however, we are
given that there is just one dog. And we can use this to force an equivalence between
j and k. Then we get the result by =E.

1. | Ax[(Dx AVy(Dy — x = y)) A Bx] P
2.|3Ix(Dx A Cx) P

3. iDj/\Vy(Dy—>j =Yy)) A Bj A (g, 19E)
4. Dk A Ck A (g,23E)
5 Bj 3 AE

6. Dj AVy(Dy — j =y) 3AE

7.1 | | pj 6 AE

8 Vy(Dy — j =y) 6 AE

9. Dk — j =k 8 VE

10. Dk 4 AE

11. j=k 9,10 —E
12. Ck 4 AE

13. Cj 12,11 =E
14.| | | Bj ACj 5,13 Al
15.| | | Dj A (Bj ACj) 7,14 AI
16. Ax[Dx A (Bx A Cx)] 1531

17.] | 3x[Dx A (Bx A Cx)] 2,4-16 9E
18. | x[Dx A (Bx A Cx)] 1,3-17 3E

Though there are a few steps, the work to get it done is simple. This is a very common
pattern: Arbitrary individuals are introduced as if they were distinct. But uniqueness
clauses let us establish an identity between them. Given this, facts about the one
transfer to the other by =E.

*E6.34. Produce derivations to show T6.39-T6.44. Hint: It may help to begin with
concrete versions of the theorems and then move to the general case. Thus, for

CHAPTER 6. NATURAL DEDUCTION 294

example, for T6.40, show that I, (y = j) — (g3xyz = g3xjz). Then you
will be able to show the general case.

E6.35. Produce derivations to show each of the following.
*a. Hyp Yx3y(x = y)
b. by, YxIy(flx =)
C. FHyp YXVY[(Fx A~Fy) = ~(x = y)]
d. Vx(Rxa — x =c), VXx(Rxb — x =d),3x(Rxa AN Rxb) 5, c =d
e. Fyp YX[~(f1x = x) > Vy((f1x = y) = ~(x = y))]
f. b VXVYI(fIx =y A fly=x) = f1flx =4]

*o. AxAyHxy,VyVz(Dyz <> Hzy), VxVy(~Hxy VXx = y)
Fvp 3X(Hxx A Dxx)

h. VxVy[(Rxy A Ryx) — x = y], YxVy(Rxy — Ryx)
Fp YX[Fy(Rxy V Ryx) — Rxx]

i. IxVy(x =y < Fy), Vx(Gx — Fx) k5, YxVy[(Gx A Gy) = x = y]

j. VX[Fx — 3y(Gyx A ~Gxy)], VxVy[(Fx A Fy) —> x = y]
Fvp VX(Fx — 3y~Fy)

6.3.5 The System ND+

We conclude this section with some final derived rules. Again, it is not possible to
derive anything with the extra rules that cannot already be derived in ND. Thus the
new rules do not add extra derivation power. They are rather “shortcuts” for things
that can already be done in ND. The full system ND+ includes all the rules of ND, all
the derived rules of NDs+, and some additional derived rules.

First, Sym (symmetry) reverses the order of terms in an equality.

Sym t=4 <> s=1

This form is justified by T6.43 which, although it is not a biconditional, is symmetrical
(D) so that given one equality we can reverse the terms to obtain the other.

Next some quantifier rules. First, QS (quantifier switch) switches the order of a
pair of universal quantifiers, or of a pair of existential quantifiers.

QS VxVyP <> VyVxP Iy P <> IyIxP

These forms are justified by T6.32 and T6.33. Notice that switching applies only
where quantifiers are the same.

CHAPTER 6. NATURAL DEDUCTION 295

Then QD (quantifier distribution) distributes the universal quantifier over A, and
the existential over V.

QD V(P AQ) <> VxP AVxQ (P VA «> IxP Vv IxQ

These forms are justified by T6.35 and T6.36. Observe that distribution does not work
for Vx over Vv, or dx over A.

Next, QP (quantifier placement) collectes a series of principles like ones we saw
in Chapter 5. Where x is not free in &,

Vx(P AQ) <> P AVx@Q (P AQ) > P AIx@
V(@A P) <> VXQ AP I(@QAP) > IXQ AP
QP Vx(P V@) x> Pvyx@ (P VvaAQ <> PvVvIxQ
Vx(Q Vv P) <> Vx@Q vV P @V P) > IQ VP
Vx(P - @) > P — VxQ I(P - Q) <> P — @
Vx(@ - P) <> Ix@Q — P (@ —> P) <> VxQ - P

Notice the quantifier flip in the bottom line. These principles are justified by the
results of T6.34.

In practice, QS, QD, and QP do not apply all that frequently—still it is good
to recognize when expressions are equivalent but for the order and placement of
quantifiers. Much more common is a very useful replacement rule:

QN ~VYxP <> Ix~P

~IxP <> Vx~P
QN (quantifier negation) is another principle we encountered in Chapter 5. It lets
you push or pull a negation across a quantifier, with a corresponding flip from one
quantifier to the other. The forms are justified by T6.37 and T6.38.

Again, with DeM, Impl, and Equiv, QN lets you “push” a main operator ~ to the
inside of a formula. This can be especially useful. So, for example, given a negated
universal on some accessible line, you can go directly to the (high priority) strategies
SG2 or SC2: Push the negation through, get the existential, and go for the goal by JE
as usual. Here is an example:

1.| ~Vx(Fx — Gx) P
2.| | ~Ix~Gx A (c,~E)
l.| ~Vx(Fx - Gx) P —
| 3. Fj A (g, —])
2. |3x~(Fx - Gx) 1QN L=/ o
3.| | ~(Fj — GJj) A (g,23E) 4 ~Gj A (c, ~B)
(CD 4.1 | ~(~Fj v Gj) 3 Impl 5. Ix~Gx 431
5.| | ~~Fj A~Gj 4 DeM 6. L 5211
6.| | ~Gj 5AE 7. Gj 4-6 ~E
7. [Ix~Gx I 8.| | Fj — Gj 3-7 -1
8.|Ix~Gx 2,3-7 3E 9.1 | Vx(Fx — GXx) 8 VI
10.| | L 9,1 L1
11.|Ix~Gx 2-10 ~E

CHAPTER 6. NATURAL DEDUCTION 296

The derivation on the left is much to be preferred over the one on the right, where we
are caught up in a difficult case of SG5 and then SC3. But, after QN, the derivation on
the left is straightforward—and would be relatively straightforward even if we missed
the uses of Impl and DeM.

The rest of the rules for ND+ apply to a species of restricted quantifier. In
Chapter 5 we emphasized that the universal quantifier typically applies to expressions
with main operator — and the existential to ones with A. We can streamline operations
on these expressions as follows. Take,

RQ (Vx : B)P abbreviates Vx(B — P)
(3x : B)P abbreviates Ix(B A P)

Read: ‘for all x such that 8, $’ and ‘for some x such that B, #’. In these expressions
B restricts the range of things to which the quantifier applies. Important instances,
encountered in the next section and especially in Part [V, are the bounded quantifiers
as, (Vx : x < t)® and (Ix : x < t)& where x does not appear in . These are
usually compressed to (Vx < ¢)# and (Ix <). In these cases, B is x < ¢. For
such expressions, we have natural I- and E-rules along with a replacement rule.

First the I- and E-rules for bounded quantifiers (VI), (VE), (3I), (FE), streamline
what you can do with the unabbreviated forms.

(VE) @an (VD (3B
a.|(Vx: B8)P a. | Pf a.| | By a|(G3x:B)P
b. | BY b. | BY b.| | PX
Px c.| | By
Pr Ix : B)P
* () Vx : B)P
provided £ is free for x in B and P Q
Q

provided (i) v is free for x in B and P, (ii) v is not free in
any undischarged assumption, and (iii) v is not free in the
quantified expression or @

For convenience, the assumption for (3E) occupies two lines. Formal demonstration
that these are derived rules in ND is left to Chapter 9. However, each is intuitive:
In (VE), the unabbreviated premises are Vx (B8 — &) and 8%; then VE and —E
give 7. In (3I), the premises with Al and 31 yield the unabbreviated conclusion
Ax (B A P). For (VI), given the subderivation, —I and VI yield the unabbreviated
form. And for (3E) the unabbreviated premise with the subderivation and 3E yield @
(treating P and BY as (B A P)%).
Here is the replacement rule:

~(Vx: B)P <> (Ix: B)~P

RQN
~@x: B)P > (Vx: B)~P

CHAPTER 6. NATURAL DEDUCTION 297

RQN (restricted quantifier negation) works by analogy with QN. Its demonstration
requires a new theorem.

T6.45. The following are theorems of ND.
*a) by ~(Vx 1 B)P < (Ax : B)~P
(b) Hp ~Fx : B)P < (Vx : B)~P

Demonstration of this result is left to E6.37.

E6.36. Produce derivations to show each of the following. Work the last two with all
the rules of ND+ and then again but without quantifier placement rules. Hint: The
latter are quite challenging!

a. ~(3x : ~Rx)Sxx, Saa b, Ra

b. Vx(~Axflx v 3yBgly) by, IxAf Ixf1f1x — 3yBgly
c. (Vx:~Cxbv Hx)Lxx,3qy~Lyy b5, 3xCxb

d. VxFx,VzHz H

ND+ ~3Ay(~Fy v ~Hy)
e. ~AxVy(Pxy A~Qxy) byp, YXIy(Pxy — Oxy)
f. y[(VxFx — Ay) vV (Ay — IxFx)] kp, IXIy[(Fx — Ay) vV (Ay — Fx)]

*g. ~(3x 1 Fx)Gx vV 3Ix~Gx,VyGy b, (Yz: Fz)~Gz

4=}

*h., VaVy3zAfxyz, VxVyVz[Axyz — ~(Cxyz V Bzyx)]
Fop, YXVy~VzBzglyflglx

ND+

i. ~3y(Ty vIx~Hxy) K,

D+

VxVyHxy AVx~Tx

jo Ix(Fx — 3y~Fy) Hp, ~VxFx

k. Hp, (Vx : Ax)Bx v IxAx

L. VxVy(Fx < Gy) byp, (AxFx - VyGy) A @yGy — VxFx)
m. Ix(Fx < Gx), (Vx : Gx)(Hx — Jx) b, IxJx vV [VxFx — (3x : Gx)~Hx]

n. (x : ~Bxa)Vy(Cy - ~Gxy), Vz[~Vy(Wy — Gzy) — Bza]
B, (Vx @ Cx)~Wx

*0. AxFx - ~VyGy,Vx(Kx — 3yJy),Iy~Gy — IxKx
Hp. ~AXxFx v 3yJy

p. 3zQz - (Vw : Lww)~Hw,IxBx — (Vy : Ay)Hy
Fp, Qw : Qw)Bw — (Vy : Lyy)~Ay

q- ~Vx(~PxVv ~Hx) - Vx[Cx A (Vy : Ly)Axy], @x : Hx)(Vy : Ly)Axy —
Vx(Rx AVyBxy) byp, ~VxVyBxy — Yx(~Px Vv ~Hx)

r. by, @xAx — IxBx) — Ix(Ax — Bx)

CHAPTER 6. NATURAL DEDUCTION

298

ND+ Quick Reference

ND+ includes all the rules of ND, all the derived rules of NDs+, and,

Inference Rules:

(VE) restricted univ exploit

a. | (Vx:
b. | BY

B)P
P

a,b (VE)

(V1) restricted univ intro

(3A0) restricted exist intro

a. | PY provided ¢ is free
b. | BY for x in 8 and P
Fx : B)P a,b (A0

(3E) restricted exist exploit

provided (i) v is
free for x in B and

x . D
a.| | BY A (g, (VD) a. (Elﬁ?.c B)J P. (i) v is not
P A (g, a(3E) free in any undis-
c.| | BE o
b.| | PX : v charged. auxiliary
(Vx : B)P a-b (VI) assumption, and
d Q@ (iii) v is not free
' in (Vx : 8)% orin
@ a,b-d () (3x : B)P orin @
Replacement Rules:
Sym $=1<>1=34
QS VxVyP <> VyVxP IxIy P <> JyIxP
QD V(P AQ) <> VxP AVxQ (P vQ) > IxP Vv IxQ
V(P AQ) <> P AVXQ (P AQ) <> P AIxQ
V(@ AP) <> VxQ AP (@ AP) <> IXQ AP
QP* V(P v Q) <> PVvVx@ (P VA <> PvVvIxQ
Vx(Q vV P) a> Vx@Q Vv P @V P) > IQ VP
V(P - @) > P — VxQ (P - Q) <> P — IxQ
Vx(@ — P) <> IxQ@ - P (@ — P) <> VxQ@ - P
~VxP <> Ix~P
QN ~IxP <> Vx~P
~ . €D . ~P
RQN Vx : B)P <> (Ax: B)~F

~@x: B)P > (Vx: B)~P

*The replacement rule QP requires x not free in 5.

CHAPTER 6. NATURAL DEDUCTION 299

s. Vx3dy(Ax v By) b, IyVx(Ax v By)

t. VxFx < ~3Ix3IyRxy byp, IXVYVz(Fx - ~Ryz)

*E6.37. (i) Using rules of ND, prove unabbreviated versions for both parts of T6.45.
(i1) Using I- and E-rules for the restricted quantifiers show the same, but without
unabbreviation. Hint: using notation as for E6.33, apply quantifier rules without
variable exchange.

E6.38. For each of the following, produce a translation into &4, including interpre-
tation function and formal sentences, and show that the resulting arguments are
valid in ND+.

a. If afirst person is taller than a second, then the second is not taller than the first.
So nobody is taller than themselves. (An asymmetric relation is irreflexive.)

b. A barber shaves all and only people who do not shave themselves. So there
are no barbers.

c. Alice is taller than every other woman. If a first person is taller than a second,
then the second is not taller than the first. So only Alice is taller than every
other woman.

d. There is at most one dog, and at least one flea. Each flea has a dog for a host,
and any dog hosts at most one flea. So there is exactly one flea.

e. Something is divine just in case nothing is conceived to be greater than it.
Some (conceivable) object is divine. If something is divine but not real,
then something is divine but conceived to be real. If one thing is divine
and conceived to be real, and another is divine but not real, then the first is
conceived to be greater than the second. So something is both divine and real.

Hint: Let quantifiers range over objects of conception and so set U = {0 | 0 is
conceivable}. This, of course, is a version of Anselm’s Ontological Argument
according to which god is ‘a being than which none greater can be conceived’.
This version is simplified from Robinson, “A New Formalization of Anselm’s
Ontological Argument.” For a good introductory discussion and alternate
account, see Plantinga, God, Freedom, and Evil.

6.4 Applications: Q and PA

A very important application, one with which we will be extensively concerned later
in the text, is to arithmetic. We encountered Peano Arithmetic in Chapter 3. We now

CHAPTER 6. NATURAL DEDUCTION 300

consider a pair of theories, Robinson Arithmetic (Q) and then Peano Arithmetic (PA)
once again.

For this, &£y is like £ from section 2.3.5 but without <. As described in the
language of arithmetic reference on the next page, there is the constant symbol @, the
one-place function symbol S, two-place function symbols +, and x, and the relation
symbol =. We will find it convenient to let the variables be any of a ...z with or
without positive integer subscripts. Let 4 < ¢ abbreviate Ju(u + s = ¢),and 4 < #
abbreviate Ju(Su + s = t) where u is some variable that does not appear in s
or ¢. We also encounter restricted (bounded) quantifiers in the forms (Vx < #)P,
3x <)P, (Vx < t)P, and (Ix < #)P where x does not occur in ¢ (so # is
independent of that which it bounds).

In derivations, we allow movement between these abbreviations and their unabbre-
viated forms with justification ‘abv’. For the bounded quantifiers derived introduction
and exploitation rules appear in the forms,

(VE) an (vD (3E)
a.|(Vx <)P a. | P a| |lv<t a.|(GFx <)P
b.ls<t b.|s <t b.| | PY
P c.||lv<t
Pr Fx < 1)P v o
provided s is free for x in P (Vx < t)d
Q
Q

provided v is free for x in &, not free in any undischarged

assumption, and not free in the quantified expression or @
And similarly with ‘<’ uniformly substituted for ‘<’. Insofar as any term is free for x
in the inequalities x < ¢ and x < £, constraints are simplified somewhat relative to
the formulation of section 6.3.5.”

&£ir has a standard interpretation N just like N for £, but without the assignment
to <. So the universe is the set N of natural numbers, @ is assigned zero, S the
successor function, + the addition function, x the multiplication function, and = the
equality relation. Officially, derivations are perfectly well defined apart from this or
any other interpretation. All the same, the standard interpretation motivates axioms
and results of Robinson and Peano arithmetic to follow.

6.4.1 Robinson Arithmetic, Q

Robinson arithmetic is a minimal theory of arithmetic just strong enough to support
Godel’s incompleteness theorem from Part I'V. We will say that a formula # is an

7 Actually, not every term s is free for x in Ju(u 4+ x = z) and Ju(Swu + x = 1); however for any
4, by exchange of the bound variable, these expressions are equivalent to ones that have s free for x. In a
given context, it is simplest to suppose u is some one variable (maybe z75) not appearing in other terms.

CHAPTER 6. NATURAL DEDUCTION 301

£y Quick Reference

Vocabulary:
variables: a ...z with or without positive integer subscripts
constant: ¢
one-place function symbol: S
two-place function symbols: +, x
relation symbol: =
Abbreviations:
where u does not appear in 4 or £,
s < t abbreviates Ju(u + s = 1)
4 < t abbreviates Ju(Su + ¢ = 1)
and where x does not appear in %,
(Vx < t)P abbreviates (Vx : x <)P whichis Vx(x <t — P)
(Vx <)& abbreviates (Vx : x < £)& whichis Vx(x < t —> P)
(Ix < t)P abbreviates (Ix : x < ¢)P whichis Ix(x < t A P)
(Ix < t)P abbreviates (Ix : x < ¢)P whichis Ix(x < £t A P)

From section 6.3.5 (and page 300), the restricted quantifiers have derived introduction
and exploitation rules (VE), (VI), (3E), (3]), and a restricted quantifier negation RQN. In
derivations, abv moves between abbreviated and unabbreviated forms.

&Lur has a standard interpretation N with U the set N of natural numbers and,
N[@] =0
N[S] = {(m,n) | m,n € N, and n is the successor of m}
N[+] = {{{m,n),0) | m,n,0 € N, and m plus n equals o}

N[x] = {{{m,n),0) | m,n,0 € N, and m times n equals o}

On this interpretation we may obtain derived semantic conditions for the inequalities and
bounded quantifiers (see T12.3 and T12.4).

ND+ theorem of Robinson Arithmetic just in case J follows in ND+ given as premises
the following axioms for Robinson Arithmetic:®

Q L. ~(Sx=90)

2. Sx=8y)=>(x=y)
3. x+9)=x
4

. (x+Sy)=Skx+y)

8 After R. Robinson, “An Essentially Undecidable Axiom Systen.”

CHAPTER 6. NATURAL DEDUCTION 302

5. xx@) =0
6. (x x Sy) = [(x x y) + x]
7. ~(x =0) > dy(x = Sy)

In the ordinary case we suppress mention of Q1-Q7 as premises, and simply write
Q Fp, & toindicate that & is an ND+ theorem of Robinson arithmetic—that there is
an ND+ derivation of J which may include appeal to any of Q1-Q7.

The axioms set up a basic version of arithmetic on the natural numbers. On the
standard interpretation N, @ is not the successor of any natural number (Q1); if the
successor of x is the same as the successor of y, then x is y (Q2); x plus @ is equal to
x (Q3); x plus one more than y is equal to one more than x plus y (Q4); x times @ is
equal to @ (Q5); x times one more than y is equal to x times y plus x (Q6); and any
number other than @ is a successor (Q7).

If # is derived directly from some of Q1-Q7 then it is an ND+ theorem of
Robinson Arithmetic. But if the members of a set I" are ND+ theorems of Robinson
Arithmetic, and I" &, 2, then & is an ND+ theorem of Robinson Arithmetic as
well—for any derivation of & from some theorems might be extended into one which
derives the theorems, and then goes on from there to obtain /. In the ordinary case,
then, we build to increasingly complex results: Having once demonstrated a theorem
by a derivation, we feel free simply to cife it as a premise in the next derivation. So the
collection of formulas we count as premises increases from one derivation to the next.

Though the application to arithmetic is interesting, there is in principle nothing
different about derivations for Q from ones we have done before: We are moving from
premises to a goal by rules. As we make progress, however, there will be an increasing
number of premises available, and it may be relatively challenging to recognize which
premises are relevant to a given goal. As you work through problems, you may find
the Robinson and Peano reference on page 313 helpful.

Let us start with some simple generalizations of Q1-Q7. As they are stated,
Q1-Q7 are particular formulas involving variables. But they permit derivation of
corresponding principles for arbitrary terms s and £.

T6.46. Q by, ~(St = 0)
L] ~(Sx = 0) Ql

2. Yu~(Su = 0) 1VI
3. ~(St =0) 2VE

Observe that there are no undischarged assumptions, so x is not free in an undischarged
assumption; and since ~(Su = @) has no quantifiers, term ¢ must be free for u in
~(Su = 0). So there is no problem about the restrictions on VI and VE. And since #
is any term, substituting @, (S@ + y), and the like for ¢, we have that ~(S@ = @),
~(S(S9? + y) = 0), and the like are all instances of T6.46. For the next result, let u
be a variable not in £.

CHAPTER 6. NATURAL DEDUCTION 303

T6.47. Qbyp, (St =898) = (t = 3)

LL|Sx=8Sy—>x=y Q2

2. Vul[Sx = Su - x =u] 1VI
3.| YoVul[Sv = Su — v = u] 2 VI
4.1Vu[St = Su — + = u] 3VE
50/8t=Ss—>1t=2 4 VE

Since u is not a variable in #, (4) meets the constraint on YE. Q1 — Q7 are stated in
terms of the particular variables x and y. We cannot be sure that y is not a variable
in . However, ¢ has at most finitely many variables. So we can be sure that there is
some variable not in ¢. And the derivation goes through once the quantifier is applied
to it.

“T6.48. Q Fyp, (1 +0) = 1

T6.49. Qbyp, (1 +S8) = St + 9)

T6.50. Q Hyp, (£ X 0) = 0

T6.51. Qbyyp, (1 X S3) = ((t x 8) + 1)
T6.52. Q kyp, ~(t =0) — Jw(t = Sw) where variable w does not appear in ¢

Given these results, we are ready for some that are more interesting. Let us show
that 1+1 = 2. That is, that Q k5,,, S0 + S0 = SS0.

1.[(S0+9) = 50 T6.48
&) 2.|(SO+S0)=S(SO+0) T6.49

3.1 (SO + S0) =850 2,1 =E

The first premise is an instance of T6.48 with S@ for . (2) is an instance of T6.49
that has S@ for ¢ and @ for s. Given the premises, this derivation is simple. With
(S@ + @) = SO from (1), we can substitute S@ for S@ + @ in the right side of (2) by
=E. This is just what we do. Be sure you understand each step. In the same way, and
more generally,

T6.53. Qbyp, £ + SO = St

Hint: You can do this by the same basic steps as above.

CHAPTER 6. NATURAL DEDUCTION 304

Observe the way Q3 and Q4 work together: Q3 (T6.48) gives the sum of any term
¢ with @; and given the sum of ¢ with any s, Q4 (T6.49) gives the sum of ¢ and one
more than 4. So we can calculate the sum of ¢ and zero from T6.48, and then with
T6.49 get the sum of it and one, then it and two, and so forth. In this way, we calculate
arbitrary sums. So, for example, Q I, SSO + SSS0 = SSSSSP. We start with
T6.48 and T6.49.

1.| (S50 + @) = S50 T6.48
(CK) 2.|(SSO+S0) = S(SSH+0) T6.49
3.1 (SSO + S9) = SSSO 2,1 =E

We use (1) to put the known value of §S@ + ¢ into the right side of (2). Or we might
simply have asserted (3) by T6.53. But now the value of SS@ + S is known, and
we can use T6.49 again.

1.| (S50 + 0) = S50 T6.48
2.1 (SS0 + S0) = S(SS + 0) T6.49

(CL) 3./ (SS0 + S0) = SSS0 2,1 =E
4.| (S50 + SS0) = S(SSO + SP) T6.49
5.1 (SS@ + SS0) = SSSSV 43 =E

This time, we use (3) to put the known value of §S@ + S@ into the right side of (4).
And we can use T6.49 again to get the final result. Since we are in ND+, we sort the
premises to the top to get,

1.|(SSO +0) = S50 T6.48
2.1 (SS0 + S0) = S(SST + 0) T6.49
3.| (5SSO + SSO) = S(SSO + SO) T6.49
(CM) 4.[(5S0+5SS0) = S(SSO+ 550) T6.49
5.1(SSO + S0) = SSSG 2,1 =E
6.| (SSO + SSP) = SSSSP 3,5 =E
7.1 (SSO + SSSP) = SSSSSO 4,6 =E

Again, S SO+ @ is given from T6.48; we use multiple applications of T6.49 to increase
the second term to S'S S'? for the final result.

And similarly for multiplication: Q5 (T6.50) gives the product of any term #
with @; and given the product of ¢ with any s, Q6 (T6.51) gives the product of + and
one more than 5. So we can calculate the product 4 and zero from T6.50, and then
with T6.51 get the product of it and one, it and two, and so forth. Thus, for example,
Qhbyp, SO SSP =S5S0.

ND+

CHAPTER 6. NATURAL DEDUCTION 305

1.|SOx@=90 T6.50
2.1S0x S0 =(SOx0)+ S0 T6.51
3.]0+ S0 =150 T6.53
4.1S0xSS0 = (S0xSP)+ S0 T6.51
(CN) 5150+ 50=S5S50 T6.53
6.1SIxSO=0+S0 2,1 =E
7.180x 80 =S50 6,3 =E
8.|SOxSSP = S0+ S0 4,7 =E
9.180x S50 =SS0 8,5 =E

The basic pattern of working from one case to the next is as for addition. A difference
is that the multiplications depend on additions—which require derivation of their own
(in this case, T6.53).

So far, we have focused on variable-free terms built up from ¢. But nothing stops
application to expressions in a more general form.

L|(j+Sk)=S(+k) T6.49

2.1 [+y =159 A(g.—D

3| |j+k=50 A (g, 23E)
(CO) 4.\ | |j+Sk=550 13 =E

5.00 13y +y =S50 431

6.1 [y +y =589 2,3-53E

703y +y=S80) -3y +y =559 2-6 —>I

8. |Vx[Ay(x +y = SO) —» Iy(x + y = S50)] 7 VI

The basic setup for VI, —I, and JE is by now routine. The real work is where we use
(1) and (3) to obtain j + Sk = SS@. Here are a couple of theorems that will be of
interest later:

T6.54. Qbyp, t <0 -1 =10

Hints: Be sure you are clear about what is being asked for; at some stage, you will
need abv to unpack the abbreviation. Do not forget that you can appeal to T6.46
and T6.52.

T6.55. Q by, ~(t < @)

Hint: This comes to an application of SC4. Under assumptions for ~I and then
(after abv) JE, assume ~(¢ = @) to obtain a first contradiction; you will be able
to obtain contradiction from ¢ = @ as well.

Robinson Arithmetic is interesting. Its axioms are sufficient to prove arbitrary
facts about particular numbers. Its language and derivation system are just strong
enough to support Godel’s incompleteness result, on which it is not possible for a
“nicely specified” consistent theory including a sufficient amount of arithmetic to have
as consequences & or ~J for every # (Part [V). But we do not need Godel’s result

CHAPTER 6. NATURAL DEDUCTION 306

to see that Robinson Arithmetic is (negation) incomplete: It turns out that many true
generalizations are not provable in Robinson Arithmetic. So, for example, neither
VxVy[(x x y) = (y x x)], nor its negation is provable.” So Robinson Arithmetic is
a particularly weak theory.

*E6.39. Produce derivations to show T6.48-T6.53. For any problem, you may appeal
to results before.

*E6.40. Produce derivations to show each of the following. Along with theorems
from the text, for any exercise you may appeal to ones before.

*a. Qhyp, 1+ 8550) =SSz
Hint: Do not forget that you can appeal to T6.53.
*b. Qhyp, (SSOXSS0) =S55550
c. Qhyp, (1 +S8S550) =S5S5S¢
d Qk,p, (SS5S0xSS0)=S55SSSSS9
e. Qhp, (SSSO x SS0P) = (SS9 x SSSD)

. Q hyp, ~Ax(x + SSO = S0)
Hint: Do not forget that you can appeal to T6.46 and T6.47.

Hint: You will need to unpack the abbreviation using abv.
h. Qb VX[(x =0 Vv x =80) - x <S559]

i Qhyp, (VX <SOH(x=0Vvx =50
Hint: You can use (VI) and T6.52, T6.49, T6.47 and T6.54.

i Qb (Yx < SO)(x < SS0)

E6.41. Produce derivations to show T6.54 and T6.55.

9A semantic demonstration of this negative result is left as an exercise for Chapter 7. But we
already understand the basic idea from Chapter 4: To show that a conclusion does not follow, produce an
interpretation on which the axioms are true but the conclusion is not.

CHAPTER 6. NATURAL DEDUCTION 307

6.4.2 Peano Arithmetic

Though Robinson Arithmetic leaves even standard results like commutation for multi-
plication unproven, it is possible to strengthen the axioms to obtain such results. Thus
such standard generalizations are provable in Peano Arithmetic.'” This is the system
we encountered in Chapter 3, but now with ND+. So when & is derived from the
axioms it is an ND+ theorem of Peano Arithmetic. For this, let PA1-PA6 be the same
as Q1-Q6. Replace Q7 as follows: For any formula &,

PAT7 [Pf AVX(P — P)] — VxP

is an axiom. If a formula & applies to @, and for any x if & applies to x then it
also applies to Sx, then & applies to every x. This form represents the principle of
mathematical induction. While all the axioms of Q (and so PA1-PA6) are particular
formulas, PA7 is an axiom schema insofar as indefinitely many formulas might be
of that form. We will have much more to say about the principle of mathematical
induction in Part II. For now, it is enough merely to recognize its instances. Thus, for
example, if P is ~(x = Sx), then P is ~(@ = §0), and Pg is ~(Sx = §Sx).
So,

[~(@ =SO) AVx(~(x = Sx) > ~(Sx = SS8x))] > Vx~(x = Sx)

is an instance of the schema. You should see why this is so.

It will be convenient to have the principle of mathematical induction in a rule
form. Given 5 and Vx(# — £g,) on accessible lines a and b, one may move to
Vx & with justification a,b IN.

L| Py P
X
a.| Py 2. | V(P — PE) p
x
IN b.| VX (P — Pg,) 3. [{Pg AVX(P — {Psxx)] — Vx P PA7
VP ab IN 4.| Py AP — PE) L2 Al
5. | vxP 34 —E

The rule is justified from PA7 by reasoning as on the right. That is, given P
and Yx (&P — P,) on accessible lines, one can always conjoin them, then with an
instance of PA7 as a premise reach Vx & by —E. The use of IN merely saves a couple
steps, and avoids some relatively long formulas we would have to deal with using PA7
alone. Thus, from our previous example, where & is ~(x = Sx), we would need
~(@ = S0) and Vx[~(x = Sx) > ~(Sx = §Sx)] to move to Vx~(x = Sx) by
IN. You should see that this is no different from before.

10After the work of R. Dedekind and G. Peano. For historical discussion, see Wang, “The Axiomati-
zation of Arithmetic.”

CHAPTER 6. NATURAL DEDUCTION 308

Since PA1-PAG6 are the same as Q1-Q6, theorems of Q derived from just Q1-Q6
remain theorems of PA. Further, PA has a theorem like Q7. That is, with the aid of
PA7, we shall be able to show,

PA R, ~(t =0) — 3w (t = Sw) where w is not a variable in ¢

Since it is to follow from PA1-PA7, the proof must, of course, not depend on Q7. But
this is the same as T6.52, and has Q7 as an instance. Given this, any ND+ theorem of
Q is automatically an ND+ theorem of PA—for we can derive this result, and use it as
it would have been used in a derivation for Q. We thus freely use any theorem from Q
in the derivations that follow.

With these axioms in hand, including the principle of mathematical induction,
we set out to show some general principles of commutativity, associativity, and
distribution for addition and multiplication. But we build gradually to them. For a
first application of IN, let ” be (@ + x) = x; then P is (8 + @) = @ and P¢, is
@+ Sx) = Sx.

T6.56. PA b, (0 + 1) = ¢

1.1 @0+0)=0 T6.48
2|0+ S8j)=8@+)) T6.49
4| |@+sj)=5] 23 =E
5000+) =j1—=1@+S))=5]] 3-4 =1
6.|Vx([@+x) =x] = [(@+ Sx) = Sx]) 5VI
7.1 Vx[(@ + x) = x] 1,6 IN
81 @0+1)=1 7 VE

The key to this derivation, and others like it, is bringing IN into play. That we want to
do this is sufficient to drive us to the following as setup:

al(@+0)=20 (goal)

b.| @+ j)= Ag,—D

c.||@+Sj)=S) (goal)

d. [[0+)=/1—=1@+S))=5]j] b-c =1

e.|Vx([@+x)=x]—> [0+ Sx) = Sx]) dVvI

f.|Vx[(D 4+ x) = x] a,e IN
@+21)=1 fVE

Our aim is to get the goal by VE from Vx[(# + x) = x]. And we will get this by
IN. So we need the inputs to IN: Py, that is, (0 + ¢) = @, and Vx(P — P

Sx/>
that is, Vx([(@ + x) = x] — [(@ + Sx) = Sx]). As is often the case, &y,
here (0 + @) = 0, is easy to get. It is natural to obtain the latter by VI from

[(@+ j)=j]—[@+ Sj) = Sj], and to go for this by —I. Thus the work of

CHAPTER 6. NATURAL DEDUCTION 309

the derivation is reaching goals (a) and (c). But that is not hard: (a) is an immediate
instance of T6.48; and (c) follows from the equality on (b) with an instance of T6.49.
We are in a better position to think about which (axioms or) theorems we need as
premises once we have gone through this standard setup for IN. We will see this
pattern many times.

T6.57. PA I, (St +0) = St + 9)

1.| (St +0) = St T6.48
2.0 (t+0) =1 T6.48

3./ (St+9) =Sk +9) 1,2 =E

This simple derivation results by using the equality on (2) to justify a substitution for
t in (1). This result forms the “zero case” for the one that follows.

T6.58. PAl,, (St +3) =St + 3)

L{(St+0)=Sx+9) T6.57

2.1 (x+Sj)=SkE+j) T6.49
3/(St+Sj)=SSt+)) T6.49

4.1 [(St+j)=St+j) A(g, =D
501 (St+Sj)=8SSt+J) 34=E
6.| | (St+Sj)=St+S)) 52 =E
TN[St+j)=SE+)N = (St +Sj)=Sk+ S))] 4-6 —>1
B Vx([(St+x)=SUt+x)] > [(St+Sx) =8k + Sx)]) 7 VI

9.1 Vx[(St +x) = S(t + x)] 1,8 IN
10.[(St+3)=SU+9) 9 VE

Again, the idea is to bring IN into play. Here & is (St + x) = S(4 + x). Given
that we have the zero-case on line (1), with standard setup the derivation reduces to
obtaining the formula on (6) given the assumption on (4). Line (6) is like (3) except
for the right-hand side. So it is a matter of applying the equalities on (4) and (2)
to reach the goal. You should study this derivation, to be sure that you follow the
applications of =E—for we encounter such uses over and over.

CHAPTER 6. NATURAL DEDUCTION 310

T6.59. PA,, t + 8 =38+t commutativity of addition

l.|t+0=12 T6.48
2.|104+1t=1 T6.56
3.1+ 8 =St +j) T6.49
4.18j +1=8(G +1) T6.58
S50t+0=0+1 1,2=E
6. |t+j=j+1 A (g, =D
1+ Sj=8G+1) 3,6 =E
t+Sj=Sj+1 74 =E
O t+j=j+t]>t+Sj=S8j+1] 6-8 -1
10.|Vx(t+x=x+1t] > [t +Sx=Sx+ 1)) 9 VI
11| Vx[t +x = x + ¢] 5,10 IN
12.|t+3s=38+1 11 VE

Again the derivation is by IN where & is £ + x = x + £. We achieve the zero case on
(5) from (1) and (2). So the derivation reduces to getting (8) given the assumption on
(6). The left-hand side of (8) is like (3). So it is a matter of applying the equalities on
(6) and then (4) to reach the goal. Once you have the basic setup, you are positioned
to organize in your mind which equalities you have, and which are required to reach
the goal.

T6.59 is an interesting result! No doubt, you have heard from your mother’s knee
that t + 4 = 4 + ¢. But it is a sweeping claim with application to all numbers.
Surely you have not been able to test every case. But here we have a derivation of
the result from the Peano axioms. And similarly for results that follow. Now that
you have this result, recognize that you can use instances of it to switch around terms
in additions—just as you would have done automatically for addition in elementary
school.

*T6.60. PA by, (r+3)+0=r+ (s +0)

Hint: Begin with (= + 4) + @ = »* 4 4 as an instance of T6.48. The derivation is
then a simple matter of using T6.48 again to replace 4 in the right-hand side with
s+ 0.

T6.61. PAby, (+3s)+1t=r+4+(s+1) associativity of addition

Hint: For an application of IN let # be (» + 4) + x = » + (s + x). You
already have the zero case from T6.60. Inside the subderivation for —I, use the
assumption together with some instances of T6.49 to reach the goal.

Again, once you have this result, be aware that you can use its instances for association
as you would have done long ago. It is good to think about what the different theorems
give you, so that you can make sense of what to use where!

CHAPTER 6. NATURAL DEDUCTION 311

T6.62. PAb,, + x SO = ¢

Hint: This does not require IN. It is a rather a simple result which you can do in
just a few lines.

T6.63. PAb,, O x 1 =0

Hint: For an application of IN, let # be @ x x = @. The derivation is easy enough
with an application of T6.50 for the zero case, and instances of T6.51 and T6.48
for the main result.

T6.64. PA by, St x0 = (t x @) + 0

Hint: This does not require IN. It follows rather by some simple applications of
T6.48 and T6.50.

T6.65. PAl,, Stx s =(tx3)+ 4

Hint: For this longish derivation, plan to reach the goal through IN where J is
St xx = (& x x) 4+ x. You will be able to use your assumption for —I with an
instance of T6.51 to show St x Sj = ((#+ x j) 4+ j) + Sz. Then you should be
able to manipulate the right-hand side into the result you want. You will need
several theorems as premises.

T6.66. PA

b, 1 X 4 =3 X1 commutativity for multiplication
Hint: Plan on reaching the goal by IN where & is £ x x = x x t. Apart from
theorems for the zero case, you will need an instance of T6.51 and an instance of

T6.65.

T6.67. PA b, X (6 + @) = (X 3) + (r X @)
Hint: You will not need IN for this.

T6.68. PA by, # X (6 + 1) = (r x) + (# x t) distributivity

Hint: Plan on reaching the goal by IN where & is # X (4 +x) = (7 x 4) 4+ (7 X x).
Under the assumption * X (4 + j) = (7 x 3) + (X j), perhaps the simplest
thing is to start with x (s + Sj) = » x (4 + Sj) by =I. Then the left side is
what you want, and you can work on the right. Working on the right-hand side,
(6+Sj)=S(s+7)byT6.49. And »xS(s+j) = (rx(s+J))+» by T6.51.
With this, you will be able to apply the assumption. Then further simplification
should get you to your goal.

CHAPTER 6. NATURAL DEDUCTION 312

T6.69. PA I, (8 +14) x * = (s x) + (¢t x») distributivity

Hint: You will not need IN for this. Rather, it is enough to use T6.68 with a few
applications of T6.66.

T6.70. PA by, (¢ + 1) x (8 + 1) = ((¢ x 8) + (¢ x 1)) + ((x 8) + (» x 1))

Hint: This is another application of distributivity. You may have encountered this
result under the acronym ‘FOIL’ (first/outer/inner/last) in elementary algebra.

T6.71. PA ;. (s x 1) x 0 = s x (¢ x 0)

Hint: This is easy without an application of IN.

T6.72. PA,, (8 x 1) X = =3 x (t x) associativity of multiplication

Hint: Go after the goal by IN where & is (4 X £) X x = 4 X (¢ X x). You should
be able to use the assumption (4 X £) X j = 4 x (¢ x j) with T6.51 to show that
(4 xt)xSj = (s x(txj))+ (s x t); then you can reduce the right hand side
to what you want.

T6.73. PA,, *+1t =6+t —r =24 cancellation law for addition

Hint: Go for the goal by IN where P is *» +x = 4 +x — » = 3.

T6.74. PA by, VY[t #0 — (y xt =@ xt = y = 0)]

Hint: This does not require IN.

T6.75. PA R, t #0 — (rxt = s xt — »* = 38) cancellation law for
multiplication

Hint: For this challenging derivation go for the goal by IN on x where & is
Vylt #0 - (y xt = x Xt — y = x)]. You have T6.74 for the zero-case.
Observe that we adopt the “slash” notation to indicate negated equality.

After you have completed the exercises, if you are looking for more to do, you might
take a look at the additional results from T13.11 on page 649 of Chapter 13—which
you now have the background to work.

Peano Arithmetic is sufficient for many “ordinary” results we could not obtain
in Q alone. However, insofar as PA includes the language and results of Q, it too is
sufficient for Godel’s incompleteness theorem. So PA is not (negation) complete, and
it is not possible for a nicely specified consistent theory including PA to be such that
it proves either > or ~& for every J. But such results must wait for later.

CHAPTER 6. NATURAL DEDUCTION

313

Robinson and Peano Arithmetic (ND-+)
QPA 1. ~(Sx =)
2. (Sx=8y)>(x=y)

a. | P¥
3. x+90)=x 0
b | VX(P — PE)
4. x+Sy)=Sx+y) IN
5. (xx0) =490 VxP a,b IN
6. (x x Sy) = [(x xy) +x]
Derived from PA7
Q7 ~(x=0)—3Jy(x = Sy)
PA7 [P AVXU(P — P& — VX P

T6.46 Q byp, ~(St = 0)

T6.47 Qlyp, (St =83) = (1 = 3)

T6.48 Qbyp, (1 +0) = ¢

T6.49 Qhyp, (1 +Ss) =81 + 3)

T6.50 Qbyp, U xB) =0

T6.51 Qlyp, (1 x838) = ((x4)+ 1)

T6.52 Qbyp, ~(t =0) — Jw(t = Sw) where variable w does not appear in i
T6.53 Q by, £+ SO = St

T6.54 Qbyp, 1t <0 —>1=10

T6.55 Q Fyp, ~(2 < 0)

T6.56 PA by, (8 +) = ¢

T6.57 PA kyp, (St +0) = S(t + 0)

T6.58 PA kyp, (St +) = S(t + 9)

T6.59 PAby,, t +3 =341 commutativity of addition

T6.60 PA by, (7 +) + 0 = 7 + (5 + 0)

T6.61 PAlyp, (14 3)+1t=r+(s+1) associativity of addition
T6.62 PA by, t x SO = ¢

T6.63 PA by, O x t =0

T6.64 PAlyp, St x0 = (tx0)+0

T6.65 PAFyp, St x s =(tx3)+ 4

T6.66 PA yp, £ X 6 =48 X1 commutativity for multiplication

T6.67 PA byp, * X (8 +0) = (x 8) + (* x @)

T6.68 PA byp, X (8 + 1) = (X 8) + (* x t) distributivity

T6.69 PA Hyp, (6 +4) x = (8 x)+ (¢t x*) distributivity

T6.70 PA by, (4 +7) x (54 1) = (4 x 8) + (g x) + ((r x 3) + (x 1))
T6.71 PA byp, (6 x 1) X0 = s x (1 x @)

T6.72 PA by, (8 X 1) X * =8 X (& x) associativity of multiplication
T6.73 PAbyp, ¥+ 1 =36+t —r =24 cancellation law for addition
T6.74 PAbyp, VYt #0 - (y xt =0 x 1t — y =0)]

T6.75 PAbyp, t #0 — (rxt =3 X1t —r=24) cancellation law for multiplication

In addition by abv we allow movement between abbreviated and unabbreviated forms for inequalities

and bounded quantifiers.

CHAPTER 6. NATURAL DEDUCTION 314

*E6.42. Produce derivations to show T6.60-T6.75.

E6.43. Produce a derivation to show that PA proves the result of T6.52 and so that
any ND+ theorem of Q is an ND+ theorem of PA. Hint: For an application of IN
let P bex # 0 — Jw(x = Sw).

E6.44. Produce derivations to show that T13.11a-T13.11af are theorems in ND+.
The final few are left for an exercise in Chapter 13. In the textbook 1 abbreviates
S0 (compare page 391), and some parentheses are dropped (SLAPP does not do
this). Though ND requires premises to be listed at the top, this is not necessary for
theorems — and you may find it convenient to cite theorems where they are used.

E6.45. For each of the following concepts, explain in an essay of about two pages,
so that (high-school age) Hannah could understand. In your essay, you should
(i) identify the objects to which the concept applies, (ii) give and explain the
definition, and give and explicate examples of your own construction (iii) where
the concept applies, and (iv) where it does not. Your essay should exhibit an
understanding of methods from the text.

a. The rules VI and JE, including especially restrictions on the rules.
b. The axioms of Q and PA and the way theorems derive from them.

c. The relation between the rules of ND and the rules of ND+.

Part 11

Transition: Reasoning About Logic

315

Introductory

We have expended a great deal of energy learning to do logic. What we have learned
constitutes the complete classical predicate calculus with equality. This is a system of
tremendous power including for reasoning in foundations of arithmetic.

But our work itself raises questions. In Chapter 4 we used truth trees and tables for
an account of the conditions under which sentential formulas are true and arguments
are valid. In the quantificational case, though, we were not able to use our graphical
methods for a general account of truth and validity—there were simply too many
branches, and too many interpretations, for a general account by means of trees. Thus
there is an open question about whether and how quantificational validity can be
shown.

And once we have introduced our notions of validity, many interesting questions
can be asked about how they work: Are the arguments that are valid in AD the same as
the ones that are valid in ND? Are the arguments that are valid in ND the same as the
ones that are quantificationally valid? Are the theorems of Q the same as the theorems
of PA? Are theorems of PA the same as the truths on N the standard interpretation for
number theory? Is it possible for a computing device to identify the theorems of the
different logical systems?

It is one thing to ask such questions, and perhaps amazing that there are demon-
strable answers. We will come to that. However, in this short section we do not
attempt answers. Rather, we put ourselves in a position to think about answers by
introducing methods for thinking about logic. Thus this part looks both backward
and forward: By our methods we plug the hole left from Chapter 4—in Chapter 7 we
accomplish what could not be done with the tables and trees of Chapter 4, and are
able to demonstrate quantificational validity. At the same time, we lay a foundation to
ask and answer core questions about logic.

Chapter 7 begins with our basic method of reasoning from definitions. Chapter 8
introduces mathematical induction. These methods are important not only for results,
but for their own sakes, as part of the broader “toolkit” that comes with mathematical
logic.

316

Chapter 7

Direct Semantic Reasoning

It is the task of this chapter to think about reasoning directly from definitions. Fre-
quently students who already reason quite skillfully with definitions flounder when
asked to do so explicitly, in the style of this chapter.! Thus I propose to begin in
a restricted context—one with which we are already familiar, using a fairly rigid
framework as a guide. Perhaps you first learned to ride a bicycle with training wheels,
but eventually learned to ride without them, and so to go faster, and to places other
than the wheels would let you go. Similarly, in the end, we will want to apply our
methods beyond the restricted context in which we begin, working outside the initial
framework. But the framework should give us a good start. In this chapter, then, I
introduce the framework in the context of reasoning for specifically semantic notions,
and against the background of semantic reasoning we have already done.

In Chapter 4 we used truth trees and tables for an account of the conditions under
which sentential formulas are true and arguments are valid. In the quantificational case
though, we were not able to use our graphical methods for a general account of truth
and validity—there were simply too many branches, and too many interpretations, for
a general account by means of trees. For a complete account, we will need to reason
more directly from the definitions. But the tables and trees do exhibit the semantic
definitions. So we can build on what we have already done with them. Our goal will
be to move past the tables and trees, and learn to function without them. After some
introductory remarks in section 7.1, we start with the sentential case (section 7.2), and
move to the quantificational (section 7.3).

IThe ability to reason clearly and directly with definitions is important not only here, but also
beyond. From Dennett’s (often humorous) Philosopher’s Lexicon, compare the verb to chisholm—after
Roderick Chisholm, who was a master of the technique—where one proposes a definition; considers a
counterexample; modifies to account for the example; considers another counterexample; modifies again;
and so forth. As, “He started with definition (d.8) and kept chisholming away at it until he ended up with
(d.8”""""y> Such reasoning is impossible to understand apart from explicit attention to consequences of
definitions of the sort we have in mind.

317

CHAPTER 7. DIRECT SEMANTIC REASONING 318

7.1 Introductory

I begin with some considerations about what we are trying to accomplish, and how it
is related to what we have done. At this stage, do not worry so much about details as
about the overall nature of the project. With this in mind, consider the following row
of a truth table, meant to show that B — C & ~B:

BC|B—>C/ ~B
TT|ITTT FT

(A)

Since there is an interpretation on which the premise is true and the conclusion is not,
the argument is not sententially valid. Now, what justifies setting B — C to T and
~ B to F? One might respond, “the truth tables.” But the truth tables T(—) and T(~)
themselves derive from definition ST. And similarly the conclusion that the argument
is not sententially valid derives from SV.

ST(~) I[~P]=Tiff I[P] = F; otherwise I[~P] =F.
ST(—=) I[(# — Q)] =Tiff I[P]=F or I[@] =T (or both); otherwise I[(# — Q)] =F.

sv T' K & iff there is no sentential interpretation | such that I[T'] = T but I[] = F.

In this case, I[C] = T; from this, reasoning as by VI, I[B] = F or I[C] = T; so by
ST(—), I[B — C] =T. Similarly, I[[B] = T; so by ST(~), I[~B] = F. And since we
have produced an | such that I[B — C]=TbutI[~B]=F,bysv,B - C & ~B.
Up to now, we have used tables to express these conditions. But we might have
reasoned directly:

Consider any interpretation | such that I[B] = Tand I[C] = T. Since [[C] =T, I[B] = F
or I[C] =T; so by ST(—), I[B — C] =T. Butsince I[[B] =T, by ST(~), I|[~B] = F.
So there is a sentential interpretation | such that I[B — C] =T but I[~B] = F; so by
sv,B— C ¥ ~B.

Presumably, all this is “contained” in the one line of the truth table, when we use it to
conclude that the argument is not sententially valid. Our aim is to “expose” reasoning
in this way.

Similarly, consider the following table, meant to show that ~~A F ~A4 — A.

(B)

Al~~A ~A—> 4
© T|TFT FTTT
FIFTF TF FF

Since there is no row where the premise is true and the conclusion is false, the
argument is sententially valid. Again, ST(~) and ST(—) justify the way you build the
table. And SV lets you conclude that the argument is sententially valid. Thus the table
represents reasoning as follows:

CHAPTER 7. DIRECT SEMANTIC REASONING 319

For any sentential interpretation either (i) I[A] = T or (ii) I[A] = F. Suppose (i);
then I[A] = T; so I[[~A] = F or I[A] = T; so by ST(—), I[~A — A] = T; from this
either I[~~A] = F or I[~A — A] = T; so it is not the case that I[~~A] = T and
(D) I[~A — A] = F. Suppose (ii); then [[A] = F; so by ST(~), I[~A] = T; so by ST(~)
again, I[~~A] = F; so either I[~~A] = F or I[~A — A] = T; so it is not the case that
[[~~A] =T and I[~A — A] = F. From these together, no interpretation makes it the
case that I[~~A] =T and I[~4 — A] =F. Soby sV, ~~A K ~4 — A.
Thus we might recapitulate reasoning in the table. Perhaps we typically “whip through”
tables without explicitly considering all the definitions involved. But the definitions
are involved when we complete the table.

In fact, (D) does not recapitulate the entire table (C). Thus at (i), for the conditional
we do not establish [[~A] = F—it is enough that [[A] = T so that I[~A] = For I[4] =T
and by ST(—), [[~4 — A] = T. Similarly at (i) there is no need to make the point
that I[~~A] = T. What matters is that I[~4A — A] = T, so that [[~~A] = F or
I[[~A — A] =T, and it is therefore not the case that I[~~A] =T and I[~4 — A] =F.
Such “shortcuts” may reflect what you have already done when you realize that, say,
a true conclusion eliminates the need to think about the premises on some row of a
table. Even so, the idea of reasoning in this way corresponding to a 4, 8, or more (!)
row table remains painful.

But there is a way out. Recall what happens when you apply the Chapter 4

“shortcut” table method to valid arguments. You start with the assumption that the
premises are true and the conclusion is not. If the argument is valid, you reach some
conflict so that it is not, in fact, possible to complete the row. Then, as we said on
page 105, you know “in your heart” that the argument is valid. Let us turn this into an
official argument form.
Suppose ~~A K ~A — A; then by sV, there is an | such that I[~~A] = T and
[[~A — A] = F. From the former, by ST(~), [[~A] = F. But from the latter, by ST(—),
I[[~A] = T and I[A] = F. So [[~A] = T and I[~A] = F. This is impossible; reject the
assumption: ~~A K ~A4 — A.

(B

This is better. The assumption that the argument is invalid leads to the conclusion
that for some I, I[~A] = T and I[~A] = F; but this is impossible and we reject the
assumption. The pattern is like ~E in ND. This approach is particularly important
insofar as we do not reason individually about each of the possible interpretations. This
is nice in the sentential case, when there are too many to reason about conveniently.
And in the quantificational case, we will not be able to argue individually about each
of the possible interpretations. So we need to avoid talking about interpretations one
by one.

Thus we arrive at two strategies: To show that an argument is invalid, we produce
an interpretation, and show by the definitions that it makes the premises true and the
conclusion not. That is what we did in (B) above. To show that an argument is valid,
we assume the opposite, and show by the definitions that the assumption leads to
contradiction. Again, that is what we did just above, at (E).

CHAPTER 7. DIRECT SEMANTIC REASONING 320

Before we get to the details, let us consider an important point about what we are
trying to do: Our reasoning takes place in the metalanguage, based on the definitions
stated in the metalanguage—where object-level expressions are uninterpreted apart
from their definitions. To see this, ask yourself whether a sentence & conflicts with
P 1 P. “Well,” you might respond, “I have never encountered this symbol ‘1’ before,
so I am not in a position to say.” But that is the point: whether J conflicts with
&P 1 P depends entirely on a definition for up arrow ‘1’°. As it happens, this symbol
is typically read “not both” as given by what might be a further clause of sT.>

ST(1) For any sentences & and @, I[(P 1 @)] = Tiff I[P] = F or [[@] = F (or both);
otherwise I[(1 Q)] = F.

The resultant table is,

T(1)

P 1 @ is false when & and @ are both T, and otherwise true. Given this, & does
conflict with & 1 #. Suppose I[P] = T and I[P 1 £] = T; from the latter, by ST(?),
I[?] = F or I[] = F; either way, I[#] = F; but this is impossible given our assumption
that I[#] = T. In fact, P 1 & has the same table as ~&, and £ 1 (@ 1 @) the same
as P — Q.

PP @1Q
PIPTP TT| T F
(F) T| F TF| F T
FI T FT| T F

FFl 7 T

From this, we might have treated ~ and —, and so A, V, and <, all as abbreviations
for expressions whose only operator is 1. At best, however, this leaves official
expressions incredibly difficult to read. Here is the point that matters: Operators have
their significance entirely from the definitions. In this chapter, we make metalinguistic
claims about object expressions, where these can only be based on the definitions. &
and & 1 & do not themselves conflict, apart from the definition which makes J with
P 1 P have the consequence that I[?] = T and I[#] = F. And similarly operators
with which we are more familiar gain their significance from the definition. At every
stage, it is the definitions which justify conclusions.

7.2 Sentential

With this much said, it remains possible to become confused about details while
working with the definitions. It is one thing to be able to follow such reasoning—as I

2An alternative symbol is a simple vertical line, *|’. Then it is (the Sheffer) stroke.

CHAPTER 7. DIRECT SEMANTIC REASONING 321

hope you have been able to do—and another to produce it. The idea now is to make
use of something at which we are already good, doing derivations, to further structure
and guide the way we proceed. The result will be a sort of derivation system for
reasoning with metalinguistic expressions. We build up this system in stages.

7.2.1 Truth

Let us begin with some notation. Where the script characters A, 8, €, D, ... repre-
sent object expressions in the usual way, let the Fraktur characters 2,8, €, D, ...
represent metalinguistic expressions (‘2 is the Fraktur ‘A’). Thus 2 might represent
an expression of the sort I[B] = T. Then = and <> are the metalinguistic conditional
and biconditional respectively; —, A, V, and -L are metalinguistic negation, conjunc-
tion, disjunction, and contradiction. In practice, negation is indicated by the slash (}#)
as well.

Now consider the following restatement of definition ST. Each clause is given in
both a positive and a negative form. For any sentences & and @ and interpretation |,

ST (~) [~P] =T & I[P 2T ~P)#T < I[P]=T
(=) I[P > Q=T & I[PI#TVIQ =T [P - Q#T & [P]=TAlQ#T

Given the new symbols, and that the definitions make a sentence F exactly when it is
not true, this is a simple restatement of ST. As we develop our metalinguistic derivation
system, we will treat the metalinguistic biconditionals both as (replacement) rules and
as axioms. Thus, for example, by the first form of ST(~) it will be legitimate to move
directly from I[~&] =T to [[?] # T, moving from left to right across the arrow; and
similarly but in the other direction from I[#] # T to I[~&] = T. Alternatively, it will
be appropriate to assert by ST(~) the entire biconditional, that I[[~P] =T < I[P]#T.
For now, we will mostly use the biconditionals, in the first form, as rules.

To manipulate the definitions, we require some rules. These are like ones you
have seen before, only pitched at the metalinguistic level.

com AVB) & (BVA) AALADB) & (BAY)
idm A& (AVA) A& AAA)
dem —(AADB) & (—AV D) —(AVYB) & (—AA-DB)
cnj A B AADB AADB
AAD A B
dsj A B AV B, -A AV B, B
AVY AVY B A
neg A & —=A FI }:-QI bot 9T, I
L L T

CHAPTER 7. DIRECT SEMANTIC REASONING 322

Each of these should remind you of rules from ND or ND+. In practice, we will
allow generalized versions of cnj that let us move directly from 2, %5, ..., 2, to
Ay AUy A... AU, Similarly, we will allow applications of dsj and dem that skip
officially required applications of neg. Thus, for example, instead of going by dem
from —(A A =B), to =U v =—B and then by neg to = V B, we might move by
dem directly from —(2 A =8), to = v B. We will also allow a version of dsj with a
pair of subderivations (as for VE in ND). All this should become more clear as we
proceed.

With definition ST and these rules, we can begin to reason about consequences of
the definition. Suppose we want to show that an interpretation with I[A] = I[B] =T is
such that I[~(4A — ~B)] =T.

1. [A]=T prem

2. I[B]=T prem We are given that I[A] = T and I[B] = T. From
G) 3. I[~B]#T 2 ST(~) the latter, by ST(~), I[~B]# T;so l[A] =T

4. [A]=Tal~B]#T 13 cnj and I[~B] # T; so by sT(—), I[A — ~B] #

5. [A—>~B]#T 4 5T(—) T; so by ST(~), l[~(4 — ~B)] =T.

6. I[~(A—~B)]=T 55T(~)

The reasoning on the left is a metalinguistic derivation in the sense that every step is
either a premise or results by a definition or rule. You should be able to follow each
step. And these derivations can be worked “bottom-up” in the usual way: From the
main operator, we expect to obtain I[~(4A — ~B)] = T by ST(~); for this we need
I[A — ~B]# T; again by the main operator, we expect to get this by ST(—) and so
set I[A] = T A I[~B] # T as goal; this requires both conjuncts; but the first is given,
and the second results from I[B] = T by ST(~).

On the right, we simply “tell the story” of the derivation—mirroring it step for
step. This latter style is the one we want to develop. As we shall see, it gives us power
to go beyond where the derivations will take us. But the derivations serve a purpose.
If we can do them, we can use them to construct reasoning of the sort we want. Each
stage on one side corresponds to one on the other. So the derivations can guide us as
we construct our reasoning, and constrain the moves we make. Note: First, on the
right, we replace line references with language (“from the latter”) meant to serve the
same purpose. Second, the metalinguistic symbols, =, <, —, A, V, L, are replaced
with ordinary language on the right side. Finally, on the right, though we cite every
definition when we use it, we do not cite the additional rules (in this case cnj). To
the extent that you can, it is good to have one line depend on the one before or in
the immediate neighborhood, so as to minimize the need for extended references in
the written version. And in general, as much as possible, you should strive to put the
reader (and yourself at a later time) in a position to follow your reasoning—supposing
just a basic familiarity with the definitions.

Consider now another example. Suppose we want to show that an interpretation
with I[B] # T is such that [[~(A — ~B)] # T.

CHAPTER 7. DIRECT SEMANTIC REASONING 323

I I{B] 7; T premt We are given that I[[B] # T; so by ST(~),
2.1 1 ST(~)
. I[~B] = T;sol[A] # Tor l[~B] = T; so
(H) 3. [TV I[~B] 2 dsj o
4. 1[4 — ~B] = 3 5T(=) by ST(—), I[A — ~B] = T; s0 by ST(~),
5. l[~(4 —> ~B)] #T 4s1(~) I[~(4 —> ~B)]#T.

Observe how ST(—) requires I[A] # T V I[~8B] =T to obtain I[A — ~B] = T. Thus
we obtain the disjunctive (3) in order to get (4). In contrast, on (5) of (G), ST(—) takes
the conjunctive I[A] = T A l[~B] # T for I|[A — ~B] # T. Keep these cases separate
in your mind: from the left-hand side of ST(—), a disjunction for a true conditional;
and from the right-hand side, a conjunction for a conditional that is not true.

Here is another derivation of the same result, this time beginning with assumption
of the opposite (with justification, ‘assp’) and breaking down to the parts, for an
application of neg.

1 I[~(A— ~B)]|=T assp

2. |I[A— ~B]#T 1 5T(~) Suppose I[~(A — ~B)] = T; then from

3. |[A]=TAI~B]#T 2s1t(—) ST(~), I[4 — ~B] # T; so by sT(—),
I 4. |I[~B]#T 3 cnj I[A] = Tand I[~B] # T; so I[~B] # T, so
D 5 [I[B]=T 4 ST(~) by ST(~), I[B] = T. But we are given that

6. |1[B]#T prem I[[B] # T. This is impossible; reject the as-

7o+ 3,6 bot sumption: I[~(4 — ~B)]#T.

8. I[~(4— ~B)#T 1-7 neg

Notice again that the conditional which is not true yields a conjunction. This version
takes a couple more lines. But it works as well and provides a useful illustration of
the (neg) rule. As usual, reasoning on the one side mirrors that on the other. So we
can use the metalinguistic derivation as a guide for the reasoning on the right. Again,
we leave out the special metalinguistic symbols. And again we cite all instances of
definitions, but not the additional rules.

These derivations are structurally much simpler than ones you have seen before
from AD and ND. The challenge is accommodating new notation with the different
mix of rules. As you work these and other problems, you may find the sentential
metalinguistic reference on page 333 helpful.

Some perspective: Our reasoning takes place in the metalanguage. Special symbols,
A, V, and such just are the metalinguistic ‘and’, ‘or’, and the like. Thus our work
is in the usual language we use to state definitions. This language comes with
its own interpretation. Taken this way, the metalinguistic derivations themselves
constitute metalinguistic reasonings. It is true that metalinguistic rules are given in
terms of form. We thus impose formal constraints on our reasoning. But we have
not introduced a new language whose symbols require interpretation (as for &),
and do not justify inferences by form (as for ND). So we have not formalized the
metalanguage. Rather we have adopted the formal constraints in order to guide and
structure our reasoning.

CHAPTER 7. DIRECT SEMANTIC REASONING 324

E7.1. Suppose [[A] = T, I[B] # T, and I[C] = T. For each of the following, produce
a metalinguistic derivation, and then informal reasoning to demonstrate either that
it is or is not true on |. Hint: You may find a quick row of the truth table helpful to
let you see which you want to show. Also, (e) is much easier than it looks.

2. ~B — C
b, ~B — ~C
c. ~[(4 —> ~B) > ~C]
d. ~[A —> (B — ~C)]
e. ~A— [((A— B) > C) = ~(~C — B)]

7.2.2 Validity

So far we have been able to reason about ST and truth. Let us now extend results to
validity. For this, we need to augment our metalinguistic derivation system. Let ‘S’
be a metalinguistic existential quantifier—it asserts the existence of some object. For
now, ‘S’ will appear only in contexts asserting the existence of interpretations. Thus,
for example, SI(I[?] = T) says there is an interpretation | such that I[$] = T, and
= SI(I[#] = T) says it is not the case that there is an interpretation | such that I[P] = T.
Given this, we can state SV as follows, again in positive and negative forms:

sV —SII[P=Ta ... AP =Tal[@#T) & P1...P & Q
SINP]=Ta...al[P]=TallQ#T) & Py... P ¥ Q

These should look familiar. An argument is valid when it is not the case that there is
some interpretation that makes the premises true and the conclusion not. An argument
is invalid if there is some interpretation that makes the premises true and the conclusion
not.

Again, we need rules to manipulate the new operator. In general, whenever a
metalinguistic ferm t first appears outside the scope of a metalinguistic quantifier, it is
labeled arbitrary or particular. For the sentential case, terms will be of the sort I, J,
... for interpretations, and mostly labeled ‘particular’ when they first appear apart
from the quantifier S. Say [t] is some metalinguistic expression in which term t
appears, and 2 [u] is like 2[t] but with free instances of t replaced by u. Perhaps 2[t]
is I[A] = T and A[u] is J[A] = T. Then,

exs Afu] u arbitrary or particular StA[t]

StA[t] Au] u particular and new

As an instance of the left-hand “introduction” rule, we might move from J[A] = T, for
a J labeled either arbitrary or particular, to SI(I[A] = T). If interpretation J is such

CHAPTER 7. DIRECT SEMANTIC REASONING 325

that J[A] = T, then there is some interpretation | such that I[A] = T. For the other
“exploitation” rule, we may move from SI(I[A] = T) to the result that J[A] = T so
long as J is identified as particular and is new to the derivation, in the sense required
for JE in Chapter 6. In particular, it must be that the term does not so-far appear
outside the scope of a metalinguistic quantifier, and does not appear free in current
goal expressions. Given that some | is such that I[A] = T, we set up J as a particular
interpretation for which it is so.’

In addition, it will be helpful to allow a rule which lets us make assertions by
inspection about already given interpretations—and we will limit justifications by
(ins) just to assertions about interpretations (and, later, variable assignments). Thus,
for example, in the context of an interpretation | on which I[4] = T, we might allow,

n [A]=T ins (I particular)

as a line of one of our derivations. In this case, | is a name of the interpretation, and
listed as particular on first use.

Now suppose we want to show that (B — ~D), ~B K D. Recall that our
strategy for showing that an argument is invalid is to produce an interpretation,
and show that it makes the premises true and the conclusion not. So consider an
interpretation J such that J[B] # T and J[D] # T. (A quick row of the truth table might
help to identify this as the interpretation we want to consider.)

1. J[B]#T ins (J particular)
2. JB]#TVJ[~D]=T 1 dsj
3. JJB—>~D]=T 2 ST(—)
a 451 j[~B] =T 1 ST(~)
. J[D]#T ins
6. J[JB—>~D]=TAJ~B]=TAJD]#T 34,5 cnj
7. SI(I[B > ~D]=TAIl~B]=TAI[D]#T) 6 exs
8 B—>~D,~BK D 7SV

(1) and (5) are by inspection of the interpretation J, where an individual name is
always labeled “particular” when it first appears. At (6) we have a conclusion about
interpretation J, and at (7) we generalize to the existential, for an application of SV at
(8). Here is the corresponding informal reasoning:

J[B] # T; so either J[B] # T or J[~D] = T; so by ST(—), J[B — ~D] = T. But since
J[B] # T, by ST(~), J[~B] = T. And J[D] # T. So J[B — ~D] = T and J|~B] = T but
J[D] # T. So there is an interpretation | such that [[B — ~D] =T and I[~B] = T but
I[D]#T. Soby sv, B — ~D,~B ¥ D.

3Insofar as | is bound in S1(I[A] = T), term | may itself be new in the sense that it does not so-far
appear outside the scope of a quantifier. Thus we may be justified in moving from SI(I[4] = T) to
I[A] = T, with | particular. However, as a matter of style, we will typically switch terms upon application
of the exs rule.

CHAPTER 7. DIRECT SEMANTIC REASONING 326

It should be clear that this reasoning reflects that of the derivation. We show the
argument is invalid by showing that there exists an interpretation on which the premises
are true and the conclusion is not.

Say we want to show that ~(A — B) K A. To show that an argument is valid, our
idea has been to assume otherwise and show that the assumption leads to contradiction.
So we might reason as follows:

I. |[~(A—>B)K A assp
2. |SI[~(A— B)]=TalA]#T) 1sv
3. |[J[~(A— B)|=TAJ[A]#T 2 exs (J particular)
4. |J[~(A— B)] = 3 cnj
K) 5. |J[A— B]#T 4 sT(~)
6. |J[A] = TAJ[B] #T 5 ST(—)
7. |J[A] = 6 cnj
8. J[A] #T 3 cnj
9. 7,8 bot
10. ~(A — B)E A 1-9 neg

Suppose ~(A — B) K A; then by SV there is some | such that I[~(A — B)] =T
and I[A] # T; let J be a particular interpretation of this sort; then J[~(4 — B)] =
and J[A] # T. From the former, by ST(~), JJ[A — B] # T; so by ST(—), J[A] = T and
J[B] # T. So both J[A] = T and J[A] # T. This is impossible; reject the assumption:
~(A — B) K A.

At (2) we have the result that there is some interpretation on which the premise is
true and the conclusion is not. At (3), we set up to reason about a particular J for
which this is so. J does not so-far appear in the derivation, and does not appear in the
goal at (9). So we instantiate to it. This puts us in a position to reason by ST. The
pattern is typical. Given that the assumption leads to contradiction, we are justified in
rejecting the assumption, and thus conclude that the argument is valid. It is important
that we are able to show an argument is valid without reasoning individually about
every possible interpretation of the basic sentences!
Notice that we can also reason generally about forms. Here is a case of that sort:

T74s. K (~@Q —> ~P) »> (~Q - P) —> Q)

CHAPTER 7. DIRECT SEMANTIC REASONING 327

1. |BE(~Q—>~P)—>(~Q@—>P)—>Q) assp

2. | SI[(~Q - ~P) - (~Q - P) = Q)] #£T) 1sv

3. [J[(~Q > ~P) > ((~Q—>P)—>Q]#T 2 exs (J particular)
4. [J[~Q - ~P]=TAJ[(~Q - P) > Q]#T 3 ST(—)
5. |[J[(~Q > P) > Ql#T 4 cnj

6. [J[~Q— P=TaJQ]#T 5ST(—)
7. [J@]#£T 6 cnj

8. |J~@=T 7 ST(~)
9. |[J[~Q - P]=T 6 cnj
10. [J[~QI£TVIP]=T 9 5T(—)
1. [JP)=T 10,8 dsj
12. [J[~Q@ - ~P]=T 4 cnj
13. [J[~Q)#TVJI[~P]=T 12 sT(—)
14. | J[~P]=T 13,8 dsj
15. [JP1#T 14 sT(~)
16. |L 11,15 bot
17. E (~Q - ~P) - (~Q - P) — Q) 1-16 neg

Suppose & (~@ — ~P) = ((~Q — P) — @); then by SV there is some | such that
[(~@Q - ~P) > ((~Q — P) - Q)] # T. Let J be a particular interpretation of this
sort; then J[(~@ — ~P) — ((~Q — P) — Q)] # Ty soby sT(—=), J[~Q - ~P] =T
and J[(~@ — P) — @] # T; from the latter, by ST(—), J[~@ — P] =T and J[Q]# T;
from the second of these, by ST(~), J[~@] = T. Since J[~Q — L] =T, by sST(—),
J[~@Q]# TorJ[P] =T, but J[~@] =T, so J[P] = T. Since J[~Q@ — ~P] =T, by
ST(—), J[~@]# T or J[~P] = T; but J[~@] =T, so J[~P] =T; so by ST(~), J[P] £ T.
This is impossible; reject the assumption: K (~@ — ~P) — ((~Q —) - Q).

Observe that the steps represented by (11) and (14) are not by cnj but by the ds;j
rule with 2 v B and — for the result that B.* Observe also that contradictions
are obtained at the metalinguistic level. Thus J[$] = T at (11) does not contradict
J[~P] =T at (14). Of course, it is a short step to the result that J[P] =T and J[P]# T
which do contradict. As a general point of strategy, it is much easier to manage a
conditional that is not true than a conditional that is true—for a conditional that is
not true yields a conjunctive result, and one that is true a disjunctive result. Thus we
begin above at (5) and (6) with the conditional that is not true, and use the results to
set up applications of dsj. This is typical. Similarly we can show,

T7.1s. #, P - QE @
T72s. E # - (@ - P)

T73s. E (O - (P - @) - (0 - P) > (0 — Q))

40r, rather, we have =% V 8 and %—and thus skip application of neg to obtain the proper ——
for this application of ds;j.

CHAPTER 7. DIRECT SEMANTIC REASONING 328

T7.1s=T7.4s should remind you of the axioms and rule of the sentential system ADs
from Chapter 3. These results (or, rather, analogues for the quantificational case) play
an important role for things to come.

Again to show that an argument is invalid, produce an interpretation; then use
it for a demonstration that there exists an interpretation that makes premises true
and the conclusion not. To show that an argument is valid, suppose otherwise; then
demonstrate that your assumption leads to contradiction. The derivations then provide
the pattern for your informal reasoning.

E7.2. Produce a metalinguistic derivation, and then informal reasoning to demon-
strate each of the following. To show invalidity, you will have to produce an
interpretation to which your argument refers.

*a. A—> B,~A K ~B
*h. A—> B,~B K ~A4
cA—->B,B—~>C,C—>DKA—D

d A— B,B—>~AFK ~A

ee. A—>B,~A—>~B K ~(4A— ~B)
f.(~A—>B)—>AEK ~A—> ~B

g. ~A—> ~B,BE ~(B —> ~A)

hh A—- B,~B—>AKA—~B

i. [(A—-B)—>(A—>C)]—[(A— B)— C]

j.BE(A—> B)—>[(B—>~C)— (C —> ~A)]

E7.3. Provide demonstrations for T7.1s—T7.3s in the informal style. Hint: You may
or may not find metalinguistic derivations helpful as a guide.
7.2.3 Derived Clauses

Finally, for this section on sentential forms, we expand the range of our results by
introducing derived clauses to definition ST. For this, we require some rules for =
and <.

cnd A= B, D A=B,B=C
B B A= C
A= B
bend A & B, A A & B, B A= B,B= A AsB,BeC

B A A B A& C

CHAPTER 7. DIRECT SEMANTIC REASONING 329

We will also allow versions of cnd and bend which move from, say, 2 = B and =28
to =2, and from A < B and -2, to —B (like MT and NB from ND+). And we will
allow generalized versions of these rules moving directly from, say, &f = B, 8 = €,
and € = D to A = 9; and similarly, from A & B, B & €, and € & D to
A & . In this last case, the natural informal description is, 2 iff °8; B iff €; € iff
©; so A iff ©. In real cases, however, repetition of terms can be awkward and get in
the way of reading. In practice, then, the pattern collapses to, 2 iff B; iff €; iff D; so
A iff ©—where this is understood as in the official version.

Also, when demonstrating that 2l = B, in many cases, it is helpful to get B by
neg; officially, the pattern is as on the left,

A But the result is automatic
-8B once we derive a contradic- A A =B
N tion from U and —B; so, 1

B in practice, this pattern col- A = B

A= B lapses into:

So to demonstrate a conditional, it is enough to derive a contradiction from the an-
tecedent and negation of the consequent. Let us also include among our metalinguistic
definitions, abb as a metalinguistic counterpart to abv (as for example on page 300).
This is to be understood as justifying biconditionals A[P’] < A[P] where P’ abbre-
viates &. So, for example, by abb I[P’] =T < I[L] = T. Such a biconditional can be
used as either an axiom or a rule.

We are now in a position to produce derived clauses for ST. We have already seen
derived tables from Chapter 4. Now we demonstrate the conditions.

ST (N I[P AQI=T<I[P]=Tall@=T
[PAQI#2T S I[PI£TVIQ]#T
M IP VA =T<IP]=TvIQ]=T
[PVAIA#T S I[P1#Tal@Q)#T
() I[P <Q=T< (PL]=Tall@]=T)VU[PI£Tal[@]#T)
[P < Q#T < ([P =Tal[@#T) V(P #Tal@]=T)
Again, you should recognize the derived clauses based on what you already know
from truth tables.
First, consider the positive form for ST'(A). We reason about the arbitrary inter-

pretation. The demonstration begins by abb, and strings together biconditionals to
reach the final result.

L I[PAQ]=T & I[~(P > ~Q)]=T abb (I arbitrary)
2. (P > ~@Q)]=T & I[P > ~Q#T ST(~)
L) 3. I[P > ~Q#T & [P]=TAI~Q]#T ST(—)
4. I[P]=TAl~Q)2T < I[P]=TalQ]=T ST(~)
5 P AQ]=T o I[P]=TAIQ| =T 1,2,3,4 bend

CHAPTER 7. DIRECT SEMANTIC REASONING 330

This time the interpretation is arbitrary insofar as the reasoning applies to any in-
terpretation whatsoever. This derivation puts together a string of biconditionals
of the form A & B, B & €, € & D, D & €; the conclusion follows by
bend. Notice that we use the abbreviation and first two definitions as axioms, to
state the biconditionals. Technically, (4) results from an implicit 2 < 2—that is,
[P]=TAal[~Q]#T < I[P] =T A l[~@Q] # T—followed by ST(~) as a replacement
rule, substituting I[@] = T for I[~@] # T on the right-hand side. In the “collapsed”
biconditional form, the result is as follows:

By abb, I[P A Q] = Tiff I[~(P — ~Q)] = T; by ST(~), iff [P — ~@] # T; by ST(—),
iff I[P] = T and I[~@] # T; by ST(~), iff I|[P] = Tand [[@] = T. So I[P A @] =T iff
[P]=Tand I[@]=T.

In this abbreviated form, each stage implies the next from start to finish. But similarly,
each stage implies the one before from finish to start. So one might think of it as
demonstrating conditionals in both directions all at once for eventual application
of bend. Because we have just shown a biconditional, it follows immediately that
I[? A @] # T just in case the right hand side fails—just in case one of I[] # T or
I[@] # T. However, we can also make the point directly.

By abb, [P A @] # Tiff I[~(P — ~Q)] # T; by ST(~), iff I[P — ~@] =T; by sT(—),
HE1[P] % T or [[~@] = T: by ST(~), iff I[P] £ T or [@] £ T. So I[P A @] # Tiff I[P]# T
orl[@Q]#T.

Reasoning for ST'(V) is similar. For sT/(<>) it will be helpful to introduce, as a
derived rule, a sort of distribution principle.

dst [(=ATB) A (=BVA)] & [(AaB) 7 (=2 & ~B)]

To show this, our basic idea is to obtain the conditional going in both directions, and
then apply bend. The argument from left to right is given in box (N) on the following
page. The conditional is demonstrated in the “collapsed” form, where we assume the
antecedent with the negation of the consequent and go for a contradiction. Note the
little subderivation at (11)—(14); we have accumulated disjunctions at (3), (4), (8), and
(10), but do not have any of the “sides”; to make headway, we assume the negation of
one side; this feeds into dsj and neg (the idea is related to SC4). Demonstration of
the conditional in the other direction is left as an exercise. Given dst, you should be
able to demonstrate ST(<>), also in the collapsed biconditional style. You will begin
by observing by abb that I[P <> Q] = Tiff [~((P - @) - ~(@ — P))]|=T; by
ST(~) iff.... The negative side is relatively straightforward, and does not require dst.
Having established the derived clauses for ST’, we can use them directly in our
reasoning. Thus, for example, let us show that B vV (A A ~C), (C — A) <> B &
~(A A C). For this, consider an interpretation J such that J[A] = J[B] =J[C] =T.

CHAPTER 7. DIRECT SEMANTIC REASONING

M)

" —
SR B =S

O ® N kW

JB]=T
JB]=TVJ[AA~C]=T
JBVAA~C)]=T
JA] =T
JICI#TVJ[A]=T
JIC - A]=T

JIC - Al =TAJ[B]=T

J[C — A]=TAJB]=T)VJ[C — A]#TAJ[B]#T)

J(C = A) < B =T
Jcy=T

CJA]=TAJC]=T

JAANC]=T

CJMAAOET

JBV(AA~C)=TAJC — A) < Bl=TAJ[~AAC)£T

. SII[BV(AA~C) =TAI[(C — A) < B]=TAIl[~(AAC)|£T]
BV(AA~C).(C— A) < B ¥ ~(AAC)

331

ins (J particular)
1 dsj

2 ST(V)
ins

4 dsj
5ST(—)
10,1 cnj
7 dsj

8 ST/(«>)
ins

4,10 cnj
11 sT/(A)
12 sT(~)
3,9,13 cnj
14 exs

15 sv

Since J[B] =T, either J[B] = Tor J[A A ~C] =T; so by ST'(V),J[BV (AA~C)]=T.
Since J[A] = T, either J[C] # T or J[A] = T; so by ST(—), JJC — A] = T; so both
J[C — A] = T and J[B] = T; so either both JJC — A] = T and J[B] = T or both
J[C — A]l# Tand J[B]# T; so by ST'(«>), J[(C — A) <> B] =T. Since J[A] =T and
J[C] =T,by ST/(A), JJAAC] =T; so by ST(~), J[~(AAC)]| # T. SoJ[BV(AA~C)] =T
and J[(C — A) < B] =TbutJ[~(A A C)] # T; so there exists an interpretation | such
that I[BV (AA~C)]=Tand I[(C — A) <> B] =Thbutl[~(AAC)]#T, soby sv,

BV (AA~C),(C — A) < BE ~(AAC).

M)

1.
2. | (=AVB)A (=B VA
3. | -AVB
4. |-BVY
5. | =[(AAB) Y (—A A -B)]
6. | =(UAAB) A —(=A 2 —B)
7. | =2 2 B)
8. |-wAv-2
9. | =(—2 A =B)

10. |AVD

1. ||«

12. ||®

13. | |-®

4. | |4

15. |-

16. | =%

17. |®

18. |L

19

[(=A 7 B) A (=B VA)| A —[(AAB)V (=A A —B)]

LA TB) A (=B YA = [(A LBV (=A A-B)]

assp
1 cnj

2 cnj

2 cnj

1 cnj

5 dem

6 cnj

7 dem

6 cnj

9 dem
assp

3,11 dsj
8,11 dsj
12,13 bot
11-14 neg
4,15 dsj
10,15 dsj
17,16 bot
1-18 cnd

CHAPTER 7. DIRECT SEMANTIC REASONING 332

Observe the use of dsj at (8) to feed into ST'(<>) at (9). This is no different than we
have done before, only with the relatively complex expressions.

Similarly we can show that A — (B v C), C < B, ~C K ~A. As usual, our
strategy is to assume otherwise, and go for contradiction.

I. |[A>(BvVvC(C),C < B,~CK~A assp

2. |SII[A = (BVC)]=TAIC < Bl=TAI~C]=Tal~A]#T) 1sv

3. [JJA—>(BVvO)]=TAJC < Bl=TAJ[~C]=TAJ[~A]#T 2 exs (J particular)

4. [J[~C]=T 3 cnj

5. [JIC1#T 4 ST(~)

6. [JCI#TVIB]#T 5 dsj

7. |=~([C]=TaAJ[B]=T) 6 dem

8. |[J[C <+ B]=T 3 cnj

9. |(U[C]=TAJ[B]=T)VU[C]#TAJ[B]#T) 8 ST/(+>)
©) 10. [JC]#TAJB]#T 9,7 dsj

1. [J[~A]#T 3cnj

12. |J[A]=T 11 ST(~)

13. |JJA—>(BVC)]=T 3 cnj

14. |JA]#TVIBVC]=T 13 sT(—)

15. [J[BVC]=T 14,12 dsj

16. [J[B]=TVJ[C]=T 15 sT/(V)

17. |J[B]#T 10 cnj

18. [J[C]=T 16,17 dsj

19. |L 18,5 bot

200 A->(BVv(C),C < B,~CK~A 1-20 neg

Suppose A — (B Vv C), C < B, ~C ¥ ~A; then by SV there is some | such that
[A—> (BvC)]=Tand I[C < B] =Tand I[~C] = Tbut [[~A] # T. Let J be a
particular interpretation of this sort; then J[A — (B v C)] =T and J[C <> B] =T and
J[~C] =ThbutJ[~A]# T. Since J[~C] =T, by ST(~), J[C] # T, so either J[C] # T or
J[B] # T; so it is not the case that both J[C] = T and J[B] = T. But J[C < B] =T; so by
ST'(«>), both J[C] =T and J[B] =T, or both J[C] # T and J[B] # T; but not the former,
soJ[C]#Tand J[B]#T. J[~A] # T;s0 by ST(~),J[A] =T. ButJ[A — (BV C)] =T,
so by ST(—), J[A] # TorJ[B v C] =T, but J[A] = T; so J[B VvV C] = T; so by ST'(V),
J[B]=TorJ[C]=T;butJ[B]#T;s0J[C]=T;butJ[C]+# T. This is impossible; reject
the assumption: A - (BV C),C < B,~C K ~A.

Note the move on lines (5)—(7) where we use dsj with dem to convert J[C] # T into a
negation useful at (10).

Though the metalinguistic derivations are useful to discipline the way we reason,
in the end, you may find the written versions to be both quicker and easier to follow.
As you work the exercises, try to free yourself from the derivations to work the
informal versions independently—though you should continue to use derivations as a
check for your work.

CHAPTER 7. DIRECT SEMANTIC REASONING 333

Metalinguistic Quick Reference (sentential)

() I[F Q=T ([P]=TalQ]=T) VU[PI#TAIQ]#T)

Q2T < ([P]1=TalQ)#T) VI[P]I#TAIQ]=T)

DEFINITIONS:
ST (~) I[~P] =T I[P1#T [~P1#T < I[P]=T
(=) [P —>Ql=T<I[P1#TVIQ]=T [P —> Q2T < I[P]=TalQ]#T
ST (AN I[P AQI=T & I[P]=TAlQ]=
[PAQIZT S I[P1£TVIQ]#T
M IPVQ=T& I[P =TVIQ]=T
[PVAIZT S I[P1£TAlQ#T
[P
[P

SV =SIU[P]=TA...Al[P]=TAIQ)#T) & P1...Pn EQ
SINP1]=TA...Al[PR]=TAlQ]£T) & P1...5n & Q

abb Abbreviation allows A[P'] < A[P] where P’ abbreviates P.

RULES:
com (AVY) & (BVA) AADB) & (BAY)
idm A & (A VA) A AAYA)
dem —(A AB) & (A V —-B) =(AVDYB) & (—AA D)
cnj A,B AAD AADB
AADB A B
dsj A B AV Y, -A AV B, B
AV B AV B B A
neg A & ——=A A = bot A, A
L L L
- A
exs Au] u arbitrary or particular StA[t]
StA[t] Au] u particular and new
cnd A =B, A A A=PB,B=C AA—DB
B B A= C L
A= B A=B
bend A < B, A A& B, B A= B,B=U A B,BsC
B A A& DB A& C

dst [(=AVB) A (=B Y A)] & [(A A B) T (—=A & —B)]

ins Inspection allows assertions about interpretations and variable assignments.

CHAPTER 7. DIRECT SEMANTIC REASONING 334

E7.4. Produce informal reasoning to demonstrate each of the following.

a.A—> (BAC),~CK ~A
*b. ~(A < B),~A,~B K C A~C
*c. ~(~AAN~B) K AANB

d ~A<>~BEKEB— A

e. AN(B—->C)EK (AAC)V(AAB)

f. (CVD)ABl—-> A, DK B— A

g KB AV ({(C - ~B)Ar~A)

h.D > (A—>B),~A—->~D,CADEB

i. AV B)—> (CAD),~(~AV B) &K ~(C AD)

jo AANBVC),(~CVDYA(D—>~D)K AAB

*E7.5. Complete the demonstration of derived clauses of ST’ by completing the
demonstration for dst from right to left, and providing informal reasoning for both
the positive and negative parts of ST'(V) and ST'(<>).

E7.6. Extend definition ST as follows:
P P1Q =TS I[PIATVIQ#T [P 1Q#T & I[P]=Tal@ =T

(compare page 320). Produce informal reasoning to show each of the following.
Again, you may or may not find metalinguistic derivations helpful—but your
reasoning should be no less clean than that guided by the rules.

. [P Q) =TiffI[~(PAQ)]=T
b I[P Pl =Tiff I[~P] =T

e I[P (@Q@1 Q] =TiffI[? —> @] =T

(@]

[oN

AP P @Q@TQ]=TiffIIPv@ =T

o

MNP TN (P Q] =TiffIIPAQ]=T

CHAPTER 7. DIRECT SEMANTIC REASONING 335

7.3 Quantificational

So far, we might have obtained sentential results for validity and invalidity by truth
tables. But our method positions us to make progress for the quantificational case
compared to what we were able to do before. Again we will depend on and gradually
expand our metalinguistic derivation system as a guide.

7.3.1 Satisfaction

Given what we have done, it is easy to state definition SF for satisfaction at least as
it applies to sentence letters, ~, and —. In this quantificational case, as described in
Chapter 4, we are reasoning about satisfaction, and satisfaction depends not just on
interpretations, but on interpretations with variable assignments. For § an arbitrary
sentence letter and & and @ any formulas, where |y is an interpretation | with variable
assignment d,

SF (s) la[§]=S & I[8] =T lW[8]#S < I[S]#T
(~) lg[~P] =8 & 14[P]# S la[~P]#S & 14[P] =S
(=) 4P = Q=S & 4[P]#SVIG[Q] =S 14[P — Q#S & 4[P] =S Alg[@]# S

Again, you should recognize this as a simple restatement from SF on page 118. Rules
for manipulating the definitions remain as before. Already, then, we can produce
derived clauses for Vv, A, and <.
SF' (V) l4[(P v @) =S & 14[P] =SV Ig[Q] =S
la[(P V@] #S & la[P]#S A lg[Q] £ S
(A) G[(P AQ)] =S < 14[P] =S Alg@] =S
(P AQ)]#S & lg[P]1#SV Ig[@Q]# S
() (P < @)]=S & (l4[P] =S 214[Q] =S) V (la[P] # S A l4[@Q] # S)
(P < @)]#S & (4[P] =S Al[Q]#S) V (la[P]#S A 14[@] = S)

All these are like ones from before. For the first,

1. 4P va@l=S <& ly~P —>AQ]=8 abb (1, d arbitrary)
P) 2. lg[~P - Q] =S & l4[~P]#SVI4[@Q] =S SF(—)

3. lg[~P]#SVI4[Q] =S & Iy[P] =SV I4[@] =S SF(~)

4 14[PV@]=S & 14[P] =SV I4[Q] =S 1,2,3 bend

By abb, I[P v @] = Siff lg[~P — @] = S; by SF(—), iff Iy[~P] # S or I4[@] = S; by
SF(~), iff I4[] = S or 14[@] = S. So I4[P v @] = Siff I4[P] = S or I4[@] = S.

The reasoning is as before except that our condition for satisfaction depends on an
interpretation with variable assignment rather than an interpretation alone.

Of course, given these definitions, we can use them in our reasoning. As a simple
example, let us demonstrate that if I4[P? v @] = S and I4[~@] = S, then 4[] = S.

CHAPTER 7. DIRECT SEMANTIC REASONING 336

. |I4[PVv@Q]=SAly[~Q]=S assp (I, d arbitrary)
2. |4[Pva@l=S 1 cnj
3. [l4[P]=8SVI4[@]=8 2 SF/(Vv)
Q) 4. |u~a@]l=s 1 cnj
5. |Ig[@#5S 4 SF(~)
6. [l4[P]=S 3,5 dsj
7. (I[P Vv Al=SAlg[~Q]=S) = I4[P]=S 1-6 cnd

Suppose I4[? Vv @] = S and I4[~@] = S; from the former, by SF'(V), I4[P] = S or
I4[@] = S; but I4[~@] = S; so by SF(~), I4[@] # S; so I4[P] =S. Soif 4P v @] =S
and ly[~@] = S, then I4[P] = S.

Again, basic reasoning is as in the sentential case, except that definitions are for
satisfaction, and we carry along reference to variable assignments.

Observe that given I[A] = T for a sentence letter A, to show that Iy[4 v B] =S,
we reason,

1. 1[A]=T ins (| particular)
(R) 2. I4[A] =S 1 SF(s) (d arbitrary)

3. 14[A] =SV I4[B]=S 2 dsj

4. lg[Av B]=S 3 SF/(Vv)

moving by SF(s) from the premise that the letter is true, to the result that it is satisfied,
so that we are in a position to apply other clauses of the definition for satisfaction.
SF(~) and (—), and so SF'(V), (A), («>), apply to satisfaction not truth! So we have
to bridge from truth to satisfaction before those clauses can apply.

This much should be straightforward, but let us pause to demonstrate derived
clauses for satisfaction, and reinforce familiarity with the quantificational defini-
tion SF. As you work these and other problems, you may find the quantificational
metalinguistic reference on page 352 helpful.

E7.7. Produce metalinguistic derivations and then informal reasoning to complete
demonstrations for the positive parts of SF'(A) and SF'(<>). Hint: You have been
through the reasoning before!

*E7.8. Consider an | such that I[A] =T, I[[B] # T, and I[C] = T and arbitrary d. For
each of the expressions in E7.1, produce the metalinguistic derivation and then
informal reasoning to demonstrate either that it is or is not satisfied on lg.

7.3.2 Truth and Validity

In the quantificational case, there is a distinction between satisfaction and truth. We
have been working with the definition for satisfaction. But validity is defined in terms
of truth. So to reason about validity, we need a bridge from satisfaction to truth

CHAPTER 7. DIRECT SEMANTIC REASONING 337

that applies beyond the case of sentence letters. For this, let ‘A’ be a metalinguistic
universal quantifier. So, for example, Ad(lq[#] = S) says that any variable assignment
d is such that I4[8] = S. Then we have,

TI [P] =T & Ad(g[?] = 9) [P]# T < Sd(s[P] # S)

This restates the definition from section 4.2.4. # is true on | iff it is satisfied for
any variable assignment d. # is not true on | iff it is not satisfied for some variable
assignment d. Then definition QV is like SV.

Qv —SII[P=Ta...al[P]=Tal[Q#T) & P,...P FQ
SINP]=Ta... 0P =Tal@Q#T) & P,... P £ Q

An argument is quantificationally valid just in case there is no interpretation on which
the premises are true and the conclusion is not. Of course, we are now talking about
quantificational interpretations as from section 4.2.

To manipulate the metalinguistic universal quantifier A, we will need some new
rules. In Chapter 6, we used VE to instantiate to any term—variable, constant, or
otherwise. But VI was restricted—the idea being to generalize only on variables for
truly arbitrary individuals. Corresponding restrictions are enforced here by the way
terms are introduced. We generalize from variables for arbitrary individuals, but may
instantiate fo variables or terms of any kind. The universal rules are,

unv AtA[t] Au] u arbitrary and new

Alu] u of any type AtA[t]

If some 2 is true for any t, then it is true for individual u. Thus we might move from
the generalization, Ad(Iq[A] = S) to the particular claim In[A] = S for assignment h.
For the right-hand “introduction” rule, we require that u be arbitrary and new in the
sense required for VI in Chapter 6. In particular, if u is new to a derivation for goal
AtA[t], u will not appear free in any undischarged assumption when the universal rule
is applied (typically, our derivations will be so simple that this will not be an issue).
If we can show, say, Ih[A] = S for arbitrary assignment h, then it is appropriate to
move to the conclusion Ad(l4[A] = S). We will also accept a metalinguistic quantifier
negation, as in ND+.

qn —AtA & St—=A =StU & At—U

With these definitions and rules, we are ready to reason about validity—at least
for sentential forms. Suppose we want to show,

CHAPTER 7. DIRECT SEMANTIC REASONING 338

T7.1. P, P - QF Q@

. |P,.P—>QFQ assp

2. |SI[P]=TAIP - Q]=TaAl@Q]#T) 1QV

3. |[J[P]=TAJP > Q]=TAaJQ]#T 2 exs (J particular)
4. |J[@Q]#T 3 cnj

5. | Sd(Jq[@]#S) 4TI

6. |Jn[@]#S 5 exs (h particular)
7. [J[P—->Q]=T 3 cnj

8. | Ad(Jg[P — @] =9) 7TI

9. |J[P —>@Q]=S 8 unv
10. | Jn[P]#SVIn[@Q]=S 9 SF(—)
1. [Jd[P]#S 10,6 dsj
12. [JP]=T 3 cnj
13. | Ad(J4[P] =S) 12 TI
14. |dn[P]=S 13 unv
15. |L 14,11 bot
16. P, >QFQ 1-15 neg

As usual, we begin with the assumption that the theorem is not valid, and apply the
definition of validity for the result that the premises are true and the conclusion not.
The goal is a contradiction. What is interesting are the applications of T1I to bridge
between truth and satisfaction. Again, SF applies to satisfaction, not truth. We begin
by working on the conclusion. Since the conclusion is not true, by TI with exs we
introduce a new and particular variable assignment h on which the conclusion is
not satisfied. Then, because the premises are true, by T1 with unv the premises are
satisfied on that very same assignment h. Then we use SF in the usual way. All this is
like the strategy from ND by which we jump on existentials: If we had started with
the premises, the requirement from exs that we instantiate Sd(Jgq[@] # S) to a new
term would have forced a different variable assignment. But by beginning with the
conclusion and coming with the universals from the premises after, we bring results
into contact for contradiction.

Suppose P, # — @ FE @. Then by QV, there is some | such that I[] = T and
[— @] =T but [[@] # T; let J be a particular interpretation of this sort; then J[P] =T
and J[P — @] = T but J[@Q] # T. From the latter, by TI, there is some d such that
Ja[@] # S; let h be a particular assignment of this sort; then J,[@] # S. But since
J[? — @] =T, by TI, for any d, J¢[? — @] = S; so Jy[P — @] = S; so by SF(—),
Jn[P]# Sordy[@] =S; but Jy[@] # S, so Jy[P] # S. But since J[P] =T, by TI, for any
d, J3[P] = S; so Jn[] = S. This is impossible; reject the assumption: P, P — @ F Q.

Similarly we can show,

T72. EP - (@ = P)

CHAPTER 7. DIRECT SEMANTIC REASONING 339

T73. F (O - (P - Q) — (0 - P) — (0 - Q)

T74. F (~Q - ~P) - [(~Q — P) — Q]

T7.5. There is no interpretation | and formula & such that I[?] = T and [[~8P] =T.
Hint: Your goal is to show =SI(I[] =T A [[~$] = T). You can get this by neg.

In each case, the pattern is the same: Bridge assumptions about truth to definition SF
by TI with exs and unv. Reasoning with SF is as before. Given the requirement that
the metalinguistic existential quantifier always be instantiated to a new term it makes
sense first to instantiate that which is not true, and so comes out as a metalinguistic
existential, and then come with universals on “top” of terms already introduced. This
is what we did above, and is like your derivation strategy in ND.

*E7.9. Produce metalinguistic derivations and informal reasoning to show that a,b,d,f,h
from E7.4 are quantificationally valid.

E7.10. Provide demonstrations for T7.2, T7.3, T7.4, and T7.5 in the informal style.
Hint: You may or may not decide that metalinguistic derivations would be helpful.

7.3.3 Terms and Atomics

So far, we have addressed only validity for sentential forms, and have not even seen the
(r) and (V) clauses for SF. We will get the quantifier clause in the next section. Here
we come to the atomic clause for definition SF, but must first address the connection
with interpretations via definition TA. As from page 115, we say I[#"]{as ... a,) is the
thing the function I[A"] associates with input (a; ... a,). Then for any interpretation |
and variable assignment d, with constant ¢, variable x, and complex term A" £ ... ¢,

TA (0) la[e] =[]
(V) la[x] = d[x]
(B la[h" 21 ... tn] = 1[A"](la[t1] - . . altn])
This is a direct restatement of the definition. To manipulate it we need rules for
equality.
eq t=t t=usu=t t=u,u=v t =u, At
t=v Afu]

These should remind you of results from ND. We will allow generalized versions so
that from t = u, u = v, and v = w, we might move directly to t = w. And we will
not worry much about order around the equals sign so that, for example, we could

CHAPTER 7. DIRECT SEMANTIC REASONING 340

move directly from 1 = t and %[t] to 2 [u] without first converting u =t to t = u as
required by the rule as stated.

As in other cases, we treat clauses from TA as both axioms and rules. Observe
that, effectively, an axiom 2 < ‘B of the sort we have seen up to now works as a
“rule” by combination of (an implicit) statement of the axiom with bend. Similarly, an
axiom t = u works as a rule by combination of the axiom with eq. So, for example,
we might move directly from I[¢] = m, by (an implicit) I4[¢] = I[¢] from TA(c) and
then eq, to lg[c] = m. And similarly we might move directly from lg[c] = m, by (an
implicit) Ig[#!¢] = 1[4 1](l4[c]) from TA(f) and then eq, to Ig[A'c] = I[A1](m). This
use of definition TA is further illustrated below.

Let us consider how this enables us to determine term assignments. Here is a
relatively complex case. Suppose | has U = {1, 2} and,

lla] =1
(S) lg'l={(1.2).(2.1)}
2] = {((1.1).1). ((1.2).1). ((2.1).2). {(2. 2). 2)}

Let d[x] = 2. Recall that one-tuples are equated with their members so that I[g!] is

officially {((1),2), ((2),1)}. Consider l3[g' f?xg'a]. We might do this on a tree as
in Chapter 4,

xl2l alll By TA(v) and TA(c)

gla® By TA(f)

(D

f2xglal? By TA(f)

g! f2xglall By TA()
Perhaps we whip through this on the tree. But the derivation follows the very same
path, with explicit appeal to the definitions at every stage. In the derivation that
follows, lines (1)—(4) cover the top row by application of TA(v) and TA(c). Lines
(5)—(7) are like the second row, using the assignment to a with the interpretation of
g! to determine the assignment to gla. Lines (8) - (10) cover the third row. And
(11)—(13) use this to reach the final result.

CHAPTER 7. DIRECT SEMANTIC REASONING 341

1. dix]=2 ins (d particular)
2. lg[x]=2 1 TA(v) (I particular)
3. la] =1 ins

4. lgla] =1 3 TA(c)

5. lalg'a] = I[g")(1) 4 TA(f)

6. l[gl](1)=2 ins

7. lylgla]=2 5,6 eq

8. la[f?xg'al=1[f?](2,2) 2,7 TA(H)

9. 1[f2](2,2)=2 ins
10. lg[f2xgla]=2 89 eq
11 lg[g! f2xgta] = 1[g"[(2) 10 TA(D)

12. 1[g')(2) =1 ins
13. lg[g! f2xgla] =1 11,12 eq

As with trees, to discover that to which a complex term is assigned, we find the
assignment to the parts. Beginning with assignments to the parts, we work up to
the assignment to the whole. Notice that assertions about the interpretation and the
variable assignment are justified by ins. And notice the way we use TA as a rule at (2)
and (4), and then again at (5), (8), and (11).

d[x] = 2; so by TA(v), l4[x] = 2. And l[a] = 1; so by TA(c), lg[a] = 1. Since l4[a] = 1, by
TA®), lg[g'a] = 1[g"]{1); but I[g']{1) = 2; 50 l4[g'a] = 2. Since lg[x] = 2 and I4[g'a] = 2,
by TA(), lg[f2xgla] = I[f2](2,2); but I[f2](2,2) = 2; so lg[f2xg'a] = 2. And from
this, by TA(f), la[g' f2xg'a] = 1[g'](2); but [[g'](2) = 1;s0 I4[g! f2xgla] = 1.

With the ability to manipulate terms by TA, we can think about satisfaction and
truth for arbitrary formulas without quantifiers. This brings us to SF(r). Say R" is an
n-place relation symbol, and #; ... ¢, are terms.

SE(®) Ig[R"21 ... 1a] =S < (lg[t1]. . . la[tn]) € I[R"]
la[R"21 ... tn] #S & (la[t1] . . . la[tn]) € I[R"]

This restates the definition from page 118. Typically we shall apply the definition just
in its positive form, and generate the negative case from it (as in NB from ND+). Note
that SF(r) works as a rule in combination with either bend or eq. Thus we might move
directly from lg[R 4] = S, by (an implicit) I4[R#] = S < (l4[¢]) € I[R] from SF(r) and
then bend, to (I4(#)) € I[R]. And similarly, we might move directly from I4[¢] = m,
by (the implicit statement of) SF(r) and then eq, to I4[R#] = S < (m) € I[R].

Let us expand the above interpretation and variable assignment (S) so that I[4!] =
{2} (or {(2)}) and I[B?] = {(1,2), (2,1)}. Then I4[Af?xa] = S.

CHAPTER 7. DIRECT SEMANTIC REASONING 342

1. dix]=2 ins (d particular)

2. lg[x]=2 1 TA(v) (I particular)
3. la] =1 ins

4. lgla] =1 3 TA(c)

U) 5. la[f%xa] = 1[f2](2,1) 2,4 TA(f)

6. I[f?](2,1)=2 ins

7. la[f%xa] =2 5,6 eq

8. lg[Af%xal=S & (2) €l[A] 7SF()

9. (2) el[A] ins
10. 14[Af2xa] =S 8,9 bend

Again, this mirrors what we did with trees—moving through term assignments to the
value of the atomic. Observe that satisfaction is not the same as truth! Insofar as d is
particular, unv does not apply for the result that A f ?xa is satisfied on every variable
assignment and so by TT that the formula is true. In this case, it is a simple matter to
identify a variable assignment other than d on which the formula is not satisfied, and
so to show that it is not true on I. Set h[x] = 1.

1. hix]=1 ins (h particular)
2. Ip[x] =1 1 TA(v) (I particular)
3. la] =1 ins

4. lhla] =1 3 TA(c)

5. Ih[f2xa] = 1[f3](1,1) 2,4 TA(f)

6. 1[f2](1,1) =1 ins

V) 7. h[f?xa] =1 5,6 eq

8. Ih[Af%xal=S & (1) €l[4] 7SF@)

9. (1) ¢ 1[4] ins
10. Ih[Af2xa]#S 8,9 bend
11. Sd(l4[Af?xa] #S) 10 exs
12. [Af2%xa]#T 11 TI

Given that it is not satisfied on the particular variable assignment h, exs and TI give
the result that A f?xa is not true. In this case, we simply pick the variable assignment
we want: Since the formula is not satisfied on this assignment, there is an assignment
on which it is not satisfied; so it is not true. To show that an open formula is not
true, this is the way to go. Just as we produce particular interpretations to show that
arguments are invalid, so we produce particular variable assignments to show that
open formulas are not true.

h[x] = 1; so by TA(v), In[x] = 1. And l[a] = 1; so by TA(c), Iy[a] = 1. So by TA(f),
In[f2xal = 1[£2)(1,1); but I[£2]{1,1) = 1; 50 In[f2xa] = 1. So by SF(1), I,[Af2%xa] =S
iff (1) € I[A]; but (1) ¢ I[A]; so I,[Af2xa] # S. So there is a variable assignment d such
that I4[Af2xa] # S; soby TI, I[Af%xa] # T.

In contrast, even though it has free variables, Bxg!x is true on this I. Say o
is a metalinguistic variable that ranges over members of U. In this case, it will be
necessary to make an assertion by ins that Ao(o = 1 vV o = 2). This is clear enough,

CHAPTER 7. DIRECT SEMANTIC REASONING 343

since U = {1, 2}. Observe that this assertion makes implicit reference to | of which U
is a part.

1. Ao(0=1Vo0=2) ins (I particular)
2. Ip[x]=1Vip[x]=2 1 unv (h arbitrary)
3 Ih[x] =1 assp

4. | Ihlg'x]=1g"](1) 3 TA()

5. |Igl1y=2 ins

6. |Ih[g'x]=2 4,5eq

7. |h[Bxglx]=S < (1,2) €l[B] 3,6 SF(r)

8. [(1,2) e I[B] ins

9. |Ilh[Bxglx]= 7,8 bend

W) 1o Ih[x]=2 assp

11. | Ih[g'x] =1[g'](2) 10 TA(f)
12. |1g!2) = ins
13. |h[g1x] =1 11,12 eq
14. |Ih[Bxglx]=S & (2,1) € I[B] 10,13 SF(r)
15. | (2,1) € I[B] ins
16. |Ih[Bxglx]=$S 14,15 bend
17. In[Bxg'x] =S 2,3-9,10-16 dsj
18. Ad(lg[Bxglx] =9S) 17 unv
19. I[Bxg'x]=T 18 TI

Up to this point, by ins we have made only particular claims about an assignment or
interpretation, for example that (2, 1) € I[B] or that I[g!](2) = 1. This is the typical
use of ins. In this case, however, at (1), we make a universal claim about U: any
o € Uis equal to 1 or 2. For arbitrary h, Iy[x] is a metalinguistic term picking out
some member of U; we instantiate the universal to it with the result that I,[x] = 1 or
Ih[x] = 2. When U is small, this is often helpful: By ins we identify all the members
of U; then we are in a position to argue about them individually. Thus we convert the
universal claim to a result about the arbitrary assignment, for application of unv and
then TI.

Since U = {1, 2}, for arbitrary assignment h, I[x] = 1 or I[x] = 2. Suppose In[x] = 1; then
by TA(), In[g'x] = 1[g!]{1); but I[g'](1) = 2; s0 In[g"'x] = 2; so by SF(r), I,[Bxg'x] =S
iff (1,2) € I[B]; but (1,2) € I[B]; so I,[Bxg'x] = S. Suppose In[x] = 2; then by TA(f),
In[g'x] = I[g']{2); but I[g'](2) = 1; so l,[g'x] = 1; so by SF(r), In[Bxg'x] = S iff
(2,1) € I[B]; but (2,1) € I[B]; so In[Bxg'x] = S. In either case then I[Bxg'x] = S
and since h is arbitrary, for any assignment d, l4[Bxg'x] = S; soby TI, I[Bxg!x] =T.

To show that a formula is not true, we need only find an assignment on which it is not
satisfied. To show that a formula is true, we show that it is satisfied on every variable
assignment. For this, in the above case with free variables, we have been forced to
reason individually about each of the possible assignments to x. This is doable when
U is small. We will have to consider other options when it is larger!

CHAPTER 7. DIRECT SEMANTIC REASONING 344

E7.11. Consider an | and d such that U = {1, 2},
l[a] =1
[g']={(1,1).(2,1)}
/2] ={((1.1),2), {(1,2), 1), {{2,1), 1), {(2.2),2)}

where d[x] = 1 and d[y] = 2. Produce metalinguistic derivations and informal
reasoning to determine the assignment |4 for each of the following.

*a. a
b g'y
e, glglx
d. f2glax
e. f2glaf?yx
E7.12. Augment the interpretation and variable assignment for E7.11 so that I[4!] =

{1} and I[B?] = {(1,2), (2, 2)}. Produce (variable assignments as necessary with)
metalinguistic derivations and informal reasoning to demonstrate each of the

following.
a. lg[Ax] =S
*b. [Byx]# T

c. [Bglay]|#T
d. [Aa] =T

e. [~Bxglx]=T

7.3.4 Quantifiers

We are finally ready to think more generally about validity and truth for quantifier
forms. For this, we will complete our metalinguistic system by adding the quantifier
clause to definition SF.

SE(Y) I4[¥xP] =S & Ao(lyx(0)[P] = S) W[VXP] # S < So(lg(xio)[P] £ S)

This is a simple statement of the definition from page 118. We treat the metalinguistic
variable ‘0’ as implicitly restricted to the members of U (for any o € U...). You
should think about this in relation to trees: From ly4[Vx] there are branches with
la(x|0)[#?] for each object 0 € U. The universal is satisfied when each branch is
satisfied; not satisfied when some branch is unsatisfied. That is what is happening
above. We have the derived clause too.

CHAPTER 7. DIRECT SEMANTIC REASONING 345

SF'(3) 14[3xP] =S & So(lyxio)[P] = S) 4[3xP] # S < A0(lg(xio)[P] # S)

The existential is satisfied when some branch is satisfied; not satisfied when every
branch is not satisfied. For the positive form,

1. lg[3xP] =8 & lg[~Vx~P] =8 abb (I, d arbitrary)
2. lg[~Vx~P] =S & Ig[Vx~P]#S SF(~)
(X) 3. 1[Va~P]#S & Sollg(xlo)[~P1#S) SF(V)
4. Sollg(x|o)[~P]#S) © Sollyxjo)[P1=S) SF(~)
5. 14[3xP] =8 ¢ So(ly(xj0)[P] = S) 1,2,3,4 bend

By abb, lg[3xP] = S iff lg[~Vx~P] = S; by SF(~) iff l4[Vx~P] # S; by SF(V), iff
for some 0 € U, lg|o)[~P] # S; by SF(~), iff for some 0 € U, lgx|0)[’] = S. So
la[FxP] = S iff there is some 0 € U such that lg(y)[$] = S.

Recall that we were not able to use trees to demonstrate validity in the quan-
tificational case because there were too many interpretations to have trees for all of
them, and because universes may be too large to have branches for all their members.
But this is not a special difficulty for us now. For a simple case, let us show that
E Vx(Ax — Ax).

1. |EVx(Ax — Ax) assp

2. | SIA[Vx(Ax — Ax)]#T) 1QV

3. [J[Vx(Ax — AxX)|#T 2 exs (J particular)
4. | Sd(Jg[Vx(Ax — Ax)]#9) 3TI

5. | Jn[Vx(Ax — Ax)]#S 4 exs (h particular)

) 6. | So(Jn(x|o)[Ax — Ax]#S) 5 SF(VY)

7. | dnximylAx — Ax]#8S 6 exs (m particular)
8. Jh(xlm) [Ax] =S A Jh(xlm) [Ax]#S 7 SE(—)

9. |dnximl4x] =8 8 cnj
10. | Jpxim)[Ax]#S 8 cnj
1. |L 9,10 bot
12. E Vx(Ax — Ax) 1-11 neg

If Vx(Ax — Ax) is not valid, there has to be some | on which it is not true. If
Vx(Ax — Ax) is not true on some |, there has to be some d on which it is not
satisfied. And if the universal is not satisfied, there has to be some o € U for which
the corresponding “branch” is not satisfied. But this is impossible—for we cannot
have a branch where this is so.

Suppose ¥ Vx(Ax — Ax); then by QV, there is some | such that I[Vx(Ax — Ax)]#T.
Let J be a particular interpretation of this sort; then J[Vx(Ax — Ax)] # T; so by TI,
for some d, J4[Vx(Ax — Ax)] # S. Let h be a particular assignment of this sort; then
Jh[Vx(Ax — Ax)] # S; so by SF(V), there is some 0o € U such that Jpxjo)[Ax —
Ax] # S. Let m be a particular individual of this sort; then Jp(x|m)[Ax — Ax] # S;
so by SF(—=), Jnxjm)[Ax] = S and Jn(xjm)[Ax] # S. But this is impossible; reject the
assumption: F Vx(Ax — Ax).

CHAPTER 7. DIRECT SEMANTIC REASONING 346

Notice, again, that the general strategy is to instantiate metalinguistic existential
quantifiers as quickly as possible. Contradictions tend to arise at the level of atomic
expressions and individuals.

Here is a case that is similar, but somewhat more involved. We show Vx(Ax —
Bx),3xAx E JzBz. Here is a start:

1. |Vx(Ax — Bx),3xAx ¥ 3zBz assp
2. | SI([Vx(Ax — Bx)] =T AI[AxAx] =T Al[FzBz]#T) 1QV
3. [J[Vx(Ax — Bx)| =T AJ[FxAx] =T AJ[FAzBz]# T 2 exs (J particular)
4. |J[FzBz]#T 3 cnj
5. | Sd(Jg[3zBz]#S) 4TI
6. |Jn[3zBz]#S 5 exs (h particular)
7. [JExAx]=T 3 cnj
8. | Ad(Jg[TxAx] =9) 7TI
9. |Jn[FxAx] =S 8 unv
Z) 10. | So(Un(x|o)[4X] =) 9 SF'(3)
1. | dpxml4x] =S 10 exs (m particular)
12. |J[Vx(Ax = Bx)]=T 3 cnj
13. | Ad(J4[Vx(Ax — Bx)]=9S) 12 TI
14. | Jp[Vx(Ax — Bx)]|=S 13 unv
15. | Ao(Un(x|o)[Ax — Bx] =9S) 14 SE(VY)
16. | Jpximyldx — Bx] =8 15 unv
17 | Inxm) [Ax]#SV Jh(x‘m)[Bx] =S 16 SF(—)
18. | Jneim[Bx] =S 17,11 dsj
19. | A0(n(zjo)[BZ] #S) 6 SF'(3)
20. Jh(z|m)[BZ] #S 19 unv

Note again the way we work with the metalinguistic quantifiers: We begin with
the conclusion, because it is the one that requires a particular variable assignment;
the premises can then be instantiated to that same assignment. Similarly, with that
particular variable assignment on the table, we focus on the second premise, because
it is the one that requires an instantiation to a particular individual. The other premise
and the conclusion then come in later with universal quantifications that go onto the
same thing. Also, Jy(x|m)[Ax] = S contradicts Jy(xm)[Ax] # S; this justifies dsj at
(18). However Jp(x|m)[Bx] = S at (18) does not contradict J,;jm)[Bz] # S at (20).
There would have been a contradiction if the variable had been the same. But it is not.
However, with the distinct variables, we can bring out the contradiction by “forcing
the result into the interpretation” as follows:

CHAPTER 7. DIRECT SEMANTIC REASONING 347

21. | h(x|m)[x]=m ins

22. ‘Jh(xlm) [X] =m 21 TA(V)
23. | dnxm)[Bx] =8 & (m) € J[B] 22 SF(r)
24. | (m) € J[B] 23,18 bend
25. | h(zlm)[z] =m ins

26. | In(zim) [z]=m 25 TA(v)
27. | dnzimy[Bz] =8 & (m) € J[B] 26 SF(r)
28. | (m) ¢ J[B] 27,20 bend
29. |L 24,28 bot
30. Vx(Ax — Bx),3xAx E IzBz 1-29 neg

The assumption that the argument is not valid leads to the result that there is some
interpretation J and m € U such that m € J[B] and m ¢ J[B]; so there can be no such
interpretation, and the argument is quantificationally valid. Observe that, although
we do not know anything else about h, simple inspection reveals that h(x|m) assigns
object m to x. So we allow ourselves to assert it at (21) by ins; and similarly at (25).
This pattern of moving from facts about satisfaction to facts about the interpretation is
typical.

With the order of a few lines slightly rearranged toward the end, here is the
informal reasoning:

Suppose Vx(Ax — Bx), 3xAx F 3JzBz; then by QV, there is some | such that
[Vx(Ax — Bx)] = T and I[3xAx] = T but [[3zBz] # T. Let J be a particular in-
terpretation of this sort; then J[Vx(Ax — Bx)] =T and J[AxAx] = T but J[AzBz] # T.
From the latter, by TI, there is some d such that J4[3zBz] # S; let h be a particular assign-
ment of this sort; then J,[IzBz] # S. Since J[IxAx] =T, by TI, for any d, J4[IxAx] = S;
so Jn[IxAx] = S; so by SF/(J) there is some 0 € U such that Ju(x|o)[Ax] = S; let m be
a particular individual of this sort; then Jy(xjm)[Ax] = S. Since J[Vx(Ax — Bx)] =T,
by TI, for any d, J4[Vx(Ax — Bx)] = S; so Jy[Vx(Ax — Bx)] = S; so by SF(V),
for any 0 € U, Jh(xo)[Ax — Bx] = S; 50 Jnxjm)[Ax — Bx] = S; so by SF(—),
either Jn(xm)[Ax] # S or Jnxim)[Bx] = S; but Jnxjm)[Ax] = S, 50 Jpxjm)[Bx] = S;
h(x|m)[x] = m; so by TA(V), Jn(x|m)[x] = m; so by SF(r), Jn(xjm)[Bx] = Siiff (m) € J[B];
so (m) € J[B]. But since Jy[IzBz] # S, by SF'(3), for any 0 € U, Jpz|0)[Bz] # S; so
Inzim [Bz] # S; h(z|m)[z] = m; so by TA(V), Jnzimy[2] = m; so by SF(r), Jnizmy[Bz] = S
iff (m) € J[B]; so (m) ¢ J[B]. This is impossible; reject the assumption: Vx(4Ax — Bx),
dxAx F 3AzBz.

Observe again the repeated use of the pattern that moves from truth through TI to
satisfaction, so that SF gets a grip, and the pattern that moves through satisfaction to
the interpretation. These should be nearly automatic.

Here is an example that is particularly challenging in the way metalinguistic quan-
tifier rules apply. We show 3xVyAxy F Vy3xAxy. For this, you should carefully
work through the derivation (AA) in the upper box on page 349. When multiple

CHAPTER 7. DIRECT SEMANTIC REASONING 348

quantifiers come off, variable assignments once modified are simply modified again—
just as with trees. Observe again that we instantiate the metalinguistic existential
quantifiers before universals. Also, the different existential quantifiers go to different
individuals, to respect the requirement that individuals from exs be new. The key
to this derivation is getting out both metalinguistic existentials for m and n before
applying the corresponding universals—and what makes the derivation difficult is
seeing that this needs to be done. Strictly, the variable assignment at (15) is the same
as the one at (17), only the names are variants of one another. Thus we observe by ins
that the assignments are the same, and apply eq for the contradiction.

Another approach would have been to push for contradiction at the level of
the interpretation. Something along these lines would have been required if the
conclusion had been, say, Yw3zAzw and so (17) Jy(y|m,z|n)[Azw] # S; then insofar
as they involve different atomic formulas and different assignments (15) and (17)
would not themselves contradict. Even so, we might have continued as at (AB) in the
lower box on the following page.

In the case we have been given, though, this is not necessary. With the original
conclusion Vy3dx Axy, here is the informal version:

Suppose AxVyAxy ¥ VydxAxy; then by QV there is some | such that I[IxVyAxy] =T
and [V ydxAxy] # T; let J be a particular interpretation of this sort; then J[AxVyAxy] =T
and J[Vy3dxAxy] # T. From the latter, by TI, there is some d such that J4[Vy3xAxy] # S;
let h be a particular assignment of this sort; then J,[Vy3dxAxy] # S; so by SF(V), there
is some 0 € U such that Jy(y|)[FxAxy] # S; let m be a particular individual of this sort;
then Jn(ym)[3xAxy] # S. Since J[AxVyAxy] = T, by TI for any d, Jg[IxVyAxy] = S;
s0 Jy[IxVyAxy] = S; so by SF'(3), there is some 0 € U such that Ju(x|o)[VyAxy] = S;
let n be a particular individual of this sort; then Jp(xn)[VyAxy] = S; so by SF(V), for
any 0 € U, Jnex|n,yo)[AXY] = S; 50 In(x|n,yim [AXy] = S. Since Jn(ym)[IxAxy] # S, by
SF'(3), for any o € U, Jney|m,x|o)[AXY] # S; 50 In(y|m, x| [Ax¥] # S; but h(y|m, x|n) is
the same assignment as h(x|n, y|m); so Jnx|n,y|m)[Axy] # S. This is impossible; reject
the assumption: AxVyAxy F VydxAxy.

Try reading that to your roommate or parents! If you have followed to this stage, you
have accomplished something significant. These are important results, given that we
wondered in Chapter 4 how this sort of thing could be done at all.

Here is a last trick that can sometimes be useful. Suppose we are trying to
show VxPx E Pa. We will come to a stage where we want to use the premise to
instantiate a variable o to the thing that is Jy[a]. So we might move directly from
Ao(Un(xjo)[PX] = S) to Jn(x|u,[ap [P X] = S by unv. But this is ugly, and hard to
follow. An alternative is allow a rule (def) that defines m as a metalinguistic term
for the same object as Jp[a]. This new term is not separately declared arbitrary or
particular, but rather inherits its status from the original. The result is as follows:

CHAPTER 7. DIRECT SEMANTIC REASONING

(AA)

(AB)

—_ =
= 9 PR

[N T O T T
~ S0 XN E B

*17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
217.
28.
29.
30.

31.

AxVyAxy ¥ VydxAxy

SI([3xY yAxy] = T A [VydxAxy] #T)

JEAxVyAxy]l =T AJ[VyIxAxy]# T
JIVydxAxy]|#T
Sd(Jg[VyIxAxy] £ S)
Jn[VyIxAxy]#S
So(Un(y|o) [3xAxy]#S)
In(yim [FxAxy] # S
JAxVyAxy]=T
Ad(Jg[FxVyAxy] =S)
Jh[@xVyAxy] =S
So(n(xjo)[VyAxy] = S)
Ihxim[YyAxy] =S
Ao(Un(x|n,ylo) [Axy] = S)
Inxln,ylm [Axy] =S
Ao(n(y|m,x|o) [AxYy] # S)
Ihy|m,xm[Axy] # S
h(y|m. x|n) = h(x|n, y[m)
Inxln,yim [AXy] # S

L

. IxVyAxy E VydxAxy

‘Jh(w|m,z|n)[Azw]¢ S

h(x|n, y|m)[x] = n

h(x[n. ylm)[y] =m

Jh(x\n,y\m)[x] =n

‘Jh(x\n,y\m)[y] =m

‘Jh(x\n,y\m)[Axy] =8 & (n,m) € I[4]
(n,m) € I[A]

h(w|m, z[n)[z] =n

h(w|m, z|n)[w] =m

Jh(w|m,z|n)[Z] =

Jh(w|m,zim[w] =m

Jh@w|m,zjm[Azw] =S & (n,m) € I[4]
(n,m) ¢ I[4]

L

AxVyAxy E VwIzAzw

assp
1QV

2 exs (J particular)
3 cnj

4TI

5 exs (h particular)
6 SF(V)

7 exs (m particular)
3 cnj

9TI

10 unv

11 SF'(3)

12 exs (n particular)
13 SE(Y)

14 unv

8 SF/(3)

16 unv

ins

17,18 eq

15,19 bot

1-20 neg

ins

ins

18 TA(v)
19 TA(v)
20,21 SF(r)
22,15 bend
ins

ins

24 TA(v)
25 TA(v)
26,27 SFE(r)
28, *17 bend
23,29 bot
1-30 neg

349

CHAPTER 7. DIRECT SEMANTIC REASONING 350

VxPx ¥ Pa

1. assp
2. | SIAVxPx] =T AI[Pal#T) 1QV
3. |J[VxPx]=TAJ[Pa]l#T 2 exs (J particular)
4. |J[Pa]l#T 3cnj
5. | Sd(Jg[Pa]#S) 4TI
6. |Jn[Pal#S 5 exs (h particular)
7. |Jnla]l=m def
8. [Jn[Pa]l=S & (m) e J[P] 7 SF(r)
9. | (m) ¢ J[P] 8,6 bend

10. |J[VxPx]=T 3cnj

(AC) 11. | Ad(Jg[VxPx]=S) 10 TI

12. | Jdn[VxPx] =S 11 unv

13. | Ao(Un(x|o)[P Xx] = S) 12 SF(V)

4. | Ihxm[Px] =8 13 unv

15. | h(x|m)[x]=m ins

16. | nejm[x] = m 15 TA(v)

17. [dnmy[Px]=S & (m) € J[P] 16 SF()

18. | {m) e J[P] 17,14 bend

19. |L 9,18 bot

20. VxPx E Pa 1-19 neg

The result adds a couple lines, but is perhaps easier to follow. Though an interpretation

is not specified, we can be sure that Jy[a] is some particular member of U; we simply let
m designate that individual, and instantiate the universal to it. Again the contradiction
appears as we force results into the interpretation.

Suppose VxPx ¥ Pa;then by QV, there is some | such that [[VxPx] =T and I[Pa] # T,

let J be a particular interpretation of this sort; then J[VxPx] = T and J[Pa] # T. From
the latter, by T1, there is some d such that J4[Pa] # S; let h be a particular assignment
of this sort; then Jy[Pa] # S; let m = Jy[a]; then by SF(r), Jy[Pa] = S iff (m) € J[P];
so {(m) ¢ J[P]. Since J[VxPx] =T, by TI, for any d, J4[VXxPx] = S; so Jy[VxPx] =S;
so by SF(V), for any 0 € U, Ju(x|o)[PX] = S; 50 Jn(xjm) [P X] = S; h(x|m)[x] = m; so by
TA(V), In(x|m)[x] = m; so by SE(1), Jn(xjm) [P x] = S iff (m) € J[P]; so (m) € J[P]. This
is impossible; reject the assumption: VxPx E Pa.

Since we can instantiate A0(Jn(x|o)[PX] = S) to any object, we can instantiate it to

the one that happens to be Jy[a]. The extra name streamlines the process. One can

always do without the name. But there is no harm introducing it when it will help.
At this stage, we have the tools for proof of the following theorems that will be

useful for later chapters.

*T7.6. For any | and &, I[[P] = Tiff I[VxP] =T.

Hint: For one direction, if & is satisfied on the arbitrary assignment, you may
conclude that it is satisfied on one like h(x|m). For the other direction, if you can
instantiate o to any object, you can instantiate it to the thing that is h[x]. But by

CHAPTER 7. DIRECT SEMANTIC REASONING 351

ins, h with this assigned to x, just is h. So after substitution, you can end up with
the very same assignment as the one with which you started.

T7.7. Each of the following conditions obtains.
(@) lg[(Vx : B)P] =S iff forany 0 € U, ly(x|o)[B] # S or lg(x|0)[P] = S.

(b) la[(3x : B)P] = S iff for some 0 € U, lyx|0)[B] = S and ly|)[P] = S.

Demonstration of these results is straightforward with definition RQ from page
296.

T7.6 is interesting insofar as it underlies principles like Gen in AD and VI in ND. We
further explore this link in following chapters. T7.7 applies to the restricted quantifiers
introduced in Chapter 6. Reasoning with restricted quantifiers is streamlined by their
derived semantic conditions.

E7.13. Produce metalinguistic derivations and informal reasoning to demonstrate
each of the following.

*a. F Vx(Ax — ~~AXx)

b. E ~dx(Ax A ~Ax)
*c. PaF 3xPx

d. Vx(Ax A Bx) EVyBy

e. VyPy E VxPflx

f. 3yAy F 3x(Ax Vv Bx)

g. ~Vx(Ax — Dx) F Ix(Ax A ~Dx)

h. Vx(Ax — Bx), Vx(Bx — Cx) E Vx(Ax — Cx)
i. VxVyAxy E VyVxAxy

j. Vx3dy(Ay — Bx) E Vx(VyAy — Bx)

*E7.14. Provide demonstrations for T7.6-T7.7 in the informal style. Hint: You may
or may not decide that a metalinguistic derivation will be helpful.

CHAPTER 7. DIRECT SEMANTIC REASONING

352

Metalinguistic Quick Reference (quantificational)

DEFINITIONS:
TA (c) lale] = 1[c]
(V) la[x] =d[x]
() la[A"21 ... 2a] = 1[A"[(la[21] . . . la[2n])

SF (s) 1g[8]=S < I[8]=T
@® a[R"21...4n] =8 & (la[t1]. .. la[ta]) € [R"]
(~) l[~P]1=8 & |d[=7’]#3
la[~P1#S © 14[P] =

lg[P — Q]#£S & 14[P]=S A 14[@Q]# S
(V) 1a[VxP] =8 & Ao(lyx|o)[P] = S)

dl
[
[~
[~
(=) I[P — Q] = Sﬁld[?]afSVld[@]:
[P
[
ls[VXP]#S < So(ly(xjo)[P] # S)

SF' (V) Ig[(P vV Q)] =S & Ig[P] =SV Ig[@] =S

la[(P vV @)]#S & 1a[P]#S A 1g[Q]# S

(N) (P A@)] =S & 14[P]=SAlg[@] =S

W[(P AQ)]#S & la[P]#SV1s[Q]#S

() l[(P < @)]=8 & (4[P] =S 214[Q] =S) V (Ia[P] # S A 14[Q] # S)
la[(P < D]#S & (la[P] =S A 14[A]#S) V (la[P]# S 4 14[Q] = S)
@ 14[FxP] =8 © Sollyx|o)[P] =)

l4[FxP] # S & Ao(l4(x|o)[P]1# S)

TI [P]=T & Ad(4[?] = S)
I[P1# T < Sd(lq[P] # S)

QV =SII[P1]=TA...Al[P] =TAIQI#T) & P1...P0 FQ
SIP=TA.. . AP]=TAQI#T) & Py... P K Q

abb As before, abbreviation allows A[P’] < A[P] where P’ abbreviates P.

RULES:

All the rules from the sentential metalinguistic reference (page 333) plus:

unv AtAt] Afu] u arbitrary and new
Afu] u of any type AtA[t]
qn —AtA & St—-A =St & At—UA
eq t=t t=usu=t t=u,u=v t=u, Aft]
t=v Afu]

def Defines one metalinguistic term t by another 1 so that t = u.

CHAPTER 7. DIRECT SEMANTIC REASONING 353

On the Semantics of Variables

Ours is the standard quantifier semantics, essentially due to Tarski’s 1933, “The
Concept of Truth in Formalized Languages.” At the start of section 2.3 we suggested
that variables are like pronouns. Correspondingly, as emphasized in section 5.3.1,
bound variables function as placeholders—there is no semantic difference between,

dx(x < 0) and Ay(y < 0)

Similarly one might think @ < x and @ < y say the same thing. But with d[x] = 1
and d[y] = 0, Ng[@ < x] = S and Ny4[@ < y] # S. So the formulas get different
evaluations. In response, K. Fine and others suggest alternative accounts to preserve
the status of variables as mere placeholders (Fine, “The Role of Variables,” see also
Button and Walsh, Philosophy and Model Theory, Chapter 1).

It is not clear that we have intuitions about satisfaction that do not come from the
semantics itself. So one might respond, “Well, that is the way satisfaction works.”
But allow that the placeholder intuition applies generally. Button and Walsh prefer
an account that substitutes constants for free variables. A quantified sentence Vx5
is evaluated in terms of sentences . This does not work if there are objects to
which no constant is assigned. One option is to extend £ by the addition of some
constant ¢, for each o € U. Another option adds only as many constants as there
are variables in &, considering [for each of the possible interpretations of c.

As applied to sentences, all the options give the same results for truth and validity.
Insofar as it applies exclusively to sentences, the approach with constants bypasses
formulas where variables have anything but a placeholder role. (And derivations
might be developed to bypass free variables too—compare note 3 on page 471 of
Chapter 10.) But it is not clear that we need abandon the traditional approach in
order to preserve the role of variables as placeholders. As a start,

Consider a sequence x1, X, . . . of metavariables and a function k that assigns to
each an object from U. For some J with variables z, ...z, (in the order of their
first appearance in &), let m be a map that takes z, . .. zj in that order to x1 ... x,.
So m[z,4] = x1 and so forth. Note that m is syntactically defined. Given some &
with its m, proceed very much as usual: If ¢ is a constant, ly[c] = I[c]; if z is a vari-
able, then lx[z] = kIm(2)]; if £ is A" 41 ... 4, then Ik [z] = I[A"]([#1] ... lk[£a]).
K[R" %1 ...45] = S iff (k[#1]...k[#x]) € I[R"]; k[~A] = S iff [A] # S;
k[A — B] = Siff I[A] # S or k[B] = S; and k[VzA] = S iff for every o € U,
lk(m(2)|0)[#4] = S. An assignment to X is relative to some J that gives the context of
which it is a part and might perspicuously be indicated Ix[X /P].

Treat variables as marking “slots” in a formula. Taken separately, x < dand y < @
get the same evaluation—both x and y map to x; and so are assigned the same
individual. But they mark different slots in x < # — y < @ and so may be assigned
different individuals. In effect, we group together variable assignments that supply
all the same objects to the slots. Given this, variables reappear as placeholders.

CHAPTER 7. DIRECT SEMANTIC REASONING 354

7.3.5 Invalidity

We already have in hand concepts required for showing invalidity. Difficulties are
mainly strategic and practical. As usual, for invalidity, the idea is to produce an
interpretation and show that it makes the premises true and the conclusion not.

Here is a case parallel to one you worked with trees in homework from E4.15.
We show VxPflx ¥ VxPx. For the interpretation J set, U = {1,2}, J[P] = {1},
JIf 1] ={(1,1),(2,1)}. We want to take advantage of the particular features of this
interpretation to show that it makes the premise true and the conclusion not. Begin as
follows:

L. h(x[2)[x] =2 ins (h arbitrary)
2. dhxjplx] =2 1 TA(v) (J particular)
3. Jhxjp)[PX] =S & (2) € J[P] 2SF(r)
4. (2) ¢ J[P] ins
(AD) s Jnxj2)[Px]# S 3,4 bend
6. So(n(x|o)[Px]#S) 5 exs
7. Jn[VxPx]#S 6 SE(Y)
8. Sd(Jg[VxPx]#S) 7 exs
9. JIVxPx]|#T 8 TI

Another option would have been to assume J[VxPx] = T and work to a contradiction.

1. [J[VxPx]=T assp (J particular)
2. | Ag(Uq[VxPx] =S) 1TI
3. |Jdn[VxPx]=S 2 unv (h arbitrary)
4. | AoWn(xjo)[Px] = S) 3 SF(V)
5. |dnxpp[Px]=S 4 unv
6. |h(x|2)[x]=2 ins
7. | dhxplx] =2 6 TA(v)
8. |Jnxz)[PX]1=S & (2) €J[P] TSF®)
9. [(2) e J[P] 5,8 bend
10. | (2) ¢ J[P] ins
1. |L 9,10 bot
12. J[VxPx]#T 1-11 neg

This takes extra lines, but may feel more natural insofar as it works down from the
whole to the parts, as we have done for validity. The first version goes up from the
parts to the whole, as we did showing invalidity for sentential forms. A choice between
the two is a matter of style, not correctness.

Now to show that the premise is true, one option is to reason individually about
each member of U. When the universe is small, this is always possible and sometimes
necessary. Thus the argument is straightforward but tedious by methods we have seen
before. Continuing from (AD),

CHAPTER 7. DIRECT SEMANTIC REASONING

10.
11.
12.
13.
14.
15.
16.
17.
18.

19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.

Ao(o=1Vo=2)

Inximy[x] =1V dpxym[x] =2
Jh(xlm)[x] =1

Ingelmy L 1] =LA 1I(1)
JUA(1) =

In(xjm Lf 1 x] =1

Inximy[PS1x] =S & (1) € J[P]
(1) e J[P]

Ineeimy[PS1x] =S

Jh(xlm)[x] =2

Inexim L1 x] =17 11(2)
JIFR) =1

Jh(xlm)[flx] =1

Ineeim)[PS1x] =S & (1) € J[P]
(1) e J[P]

Inximy[Pf1x] =S
Jh(xlm)[Pflx] =S
Ao(Jh(x|o)[Pf1x] =9)
Jn[VxPflx]=s
Ad(Jg[VxPf1x] = S)
JIVxPfIx]=T

JIVXPfIx] =T AJ[VxPx]#T
SIIVXPflx] =T AI[VXPx]#T)
VxPflx ¥ VxPx

355

ins

10 unv (h, m arbitrary)
assp

12 TA(f)

ins

13,14 eq

15 SF(r)

ins

16,17 bend

assp
19 TA(D)

ins

20,21 eq

22 SF(r)

ins

23,24 bend
11,12-18,19-25 dsj
26 unv

27 SE(V)

28 unv

29 T1

30,9 cnj

31 exs

32QV

Jh(x|m) has to be some member of U, so we instantiate the universal at (10) to it, and
reason about the cases individually. This reflects what we have done before.

But on this interpretation, no matter what o may be, I[/1](0) = 1. And, rather
than the simple generalization about the universe, we might have generalized by ins
about the interpretation of the function symbol itself. Thus we might have substituted
for lines (10)—(26) as follows:

10.
11.
12.
13.
14.
15.
16.
17.
18.

h(x|m)[x] =m

Jh(xlm)[x] =m

InGelmy [1 x] = JLf T (m)
Ao(J[f1](0)) =1

I (m) =1

IngelmyLf 1x] =1

Ineximy[PS1x] =S & (1) € J[P]
(1) e J[P]

Iniximy[PS1x] =S

ins (h, m arbitrary)
10 TA(v)

11 TA(f)

ins

13 unv

12,14 eq

15 SFE(r)

ins

16,17 bend

and pick up with (27) after. This is better! Before, we obtained the result when Jp,(x|m)
was 1 and again when it was 2. But, in either case, the reason for the result is that the
function has output 1. So this version avoids the cases by reasoning directly about the

result from the function. Here is the informal version on this latter strategy:

CHAPTER 7. DIRECT SEMANTIC REASONING 356

For an arbitrary assignment h, h(x|2)[x] = 2; so by TA(V), Jnx[2)[X] = 2; so by SF(r),
Jnx|2)[Px] = Siff (2) € J[P]; but (2) ¢ J[P]; 50 Jn(x[2)[P Xx] # S; so there is some 0 € U
such that Jp(xjo) [P x] # S; so by SF(V), Jy[VXxPx] # S; so there is an assignment d such
that J4[VxPx]# S;so by T, J[VxPx]#T.

For arbitrary h and m, h(x|m)[x] = m; so by TA(V), Jhxm)[X] = m; so by TA(f),
Inxim [1 x] = J[f']{m); but for any o € U, J[f!]{0) = 1; so J[f']{m) = 1; so
Iniximy [1x] = 15 s0 by SF(r), Jnxjm)[Pf ' x] = Siff (1) € J[P]; but (1) € J[P]; so
Jnixm)[Pf1x] = S; so since m is arbitrary, for any 0 € U, Jn(xjo)[PSf'x] = S; so by
SF(Y), Jn[VxPf1x] = S; and since h is arbitrary, for any assignment d, J4[VxPf!x] = S;
soby TL J[VxPflx]=T.

So there is an interpretation | such that I[VxPf1x] = T and I[[VxPx] # T; so by QV,
VxPflx ¥ VxPx.

Reasoning about cases is possible, and sometimes necessary, when the universe is
small. But it is often convenient to organize your reasoning by generalizations about
the interpretation as above. Such generalizations are required when the universe is

large.

Here is a case that requires such generalizations insofar as the universe U has
infinitely many members. Reasoning with £y, we show VxVy(x # y — Sx #
Sy) F Ix(Sx = 0). First note that no interpretation with finite U makes the premise
true and conclusion false. To see this, let [[J] be some object 0, and suppose successor
connects it to just finitely many objects—so for some n there is a sequence,

Op —> 0y —> 02 —>03 —>04 —> 05 —> -+ —> Op

So I[S] includes {(0g, 01), {01, 02), (02, 03), and so forth. But the interpretation of a
function symbol is a total function; so I[S] pairs some object with o,. This object
cannot be any of 04 through oy, or the premise is violated insofar as some one thing
is the successor of both 0, and the object before it. And if the conclusion is false no
successor is equal to zero—so the object cannot be 0g. So successor connects 0Op to an
object other than any of 0g . . . 0,—and so connects 0y to more than n objects. Reject
the assumption: there is no finite n such that successor connects 0g to just n objects.
But, as should be obvious by consideration of a standard interpretation of the symbols,
the argument is not valid. To show this, let the interpretation be N, where,

U=1{0.1,2,...}

N[@] = 0

N[S] = {(0,1).(1.2), (2.3),...}
N[=] = {(0,0), (1.1). (2,2)....}

First we show that N[3x(Sx = 0)] # T. Note that we might have specified the
interpretation for equality by saying something like, AoAp({(0,p) € N[=] < o =p).

CHAPTER 7. DIRECT SEMANTIC REASONING 357

Similarly, the interpretation of S is such that no o has a successor equal to zero—
Ao(N[S](o) # 0). We will simply appeal to these facts by ins in the following:

1. N[g]=0 ins (N particular)
2. Npxjm[@]=0 1 TA(c) (h, m arbitrary)
3. h(x|m)[x]=m ins
4. Nh(x|m)[x] =m 3 TA(V)
5. Nnem[Sx] = NIS](m) 4TA®M)
6. N[S](m)=q def
7. Nhxjm[Sx] =q 5,6 eq
8. Nh(x|m)[Sx =0]=8 <% (q,0) € N[=] 7,2 SF(r)
9. Ao(N[S]{o) # 0) ins
(AE) 10. N[S](m)#0 9 unv

11. q#0 10,6 eq

12. AoAp({o,p) € N[=] & 0=p) ins

13. (9,0) eN[=] & q=0 12 unv

14. (q.0) ¢ N[=] 13,11 bend

15. Npximy[Sx =0]#8 8,14 bend

16. Ao(Np(x|o)[Sx = 0] # S) 15 unv

17. Np[3x(Sx = 0)]#S 16 SF'(3)

18. Sd(Ng[3x(Sx = 9)]#S) 17 exs

19. NAx(Sx =0)]#T 18 TI

Most of this is as usual. What is interesting is that at (9) we assert that no o is such
that (0, 0) € N[S]. This should be obvious from the specification of N[S]. And at (12)
we assert by ins that for any o and p in U, (0, p) € N[=] iff o = p. Again, this should
be clear from the initial (automatic) specification of N[=]. In this case, there is no
way to reason individually about each member of U, on the pattern of what we have
been able to do with two-member universes. But we do not have to, as the general
facts are sufficient for the result.

Consider arbitrary h and m. N[@] = 0; so by TA(c), Np(xm)[4] = 0. But h(x|m)[x] = m;
s0 by TA(V), Ni(xjm)[X] = m; so by TA(f), Npxjm)[S x] = N[S]{m); let N[S](m) = q; then
Nh(xm) [Sx] = . From these, by SF(r), (*) Nnm)[Sx = 0] = Siff (q,0) € N[=]. For
any o € U, N[S](o) # 0; so N[S](m) # 0; so g # 0; but for any o,p € U, (0,p) € N[=]
iff o = p; so {q,0) € N[=]iff g = 0; so (q,0) ¢ N[=]; so with (%), Nyxym)[Sx =
@] # S; and since m is arbitrary, for any 0 € U, Ny(x|o)[Sx = 0] # S; so by SF'(3),
Nh[3x(Sx = @)] # S; so there is an assignment d such that Ng[3x (Sx = 0)] # S; so by
TLNEx(Sx = @) #T.

Given what we have already seen, this should be straightforward. Demonstration that
N[VxVy(x # y — Sx # Sy)] =T, and so that the argument is not valid, is left as
an exercise. Hint: In addition to facts about equality, you may find it helpful to assert
AoAp(o # p = N[S](o) # N[S](p)). Be sure that you understand this before you

CHAPTER 7. DIRECT SEMANTIC REASONING 358

assert it! Of course, we have here something that could never have been accomplished
with trees insofar as the universe is infinite.

Recall that the interpretation of equality is the same across all interpretations.
Thus our general assertion is possible in case of the arbitrary interpretation, and we
are positioned to prove some last theorems.

T7.8. E(xt = 1)

Hint: By ins for any | and any o € U, (0,0) € N[=]. Given this, the argument is
easy.

*TTO. FE(xi=y)—> (A"x1... % ... xn =A"x1 ... % ... %)

Hint: If you have trouble with this, try showing a simplified version: F (x =
y) = (h'x = hly).

T710. E(x; = y) > (R"x1 ... % ...xp > R"x1 ... Y ... %)
Hint: If you have trouble with this, try showing a simplified version: F (x =

y) = (Rx — Ry).

At this stage, we have introduced a method for reasoning about semantic defini-
tions. As you continue to work with the definitions, it should become increasingly
clear how they fit together into a coherent (and pleasing) whole. In following chapters,
we will leave the metalinguistic derivation system behind as we encounter further
definitions in diverse contexts. But from this chapter you should have gained a solid
grounding in the sort of thing we will want to do.

E7.15. Produce interpretations (with, if necessary, variable assignments) and then
metalinguistic derivations and informal reasoning to show each of the following.

a. IxPx ¥ Pa

b, B flglx = gl flx
c. VxAx - C E Vx(Ax — C)
d. IxFx,3yGy F Iz(Fz AGz2)

e. VxdyAxy ¥ AyVxAxy

*E7.16. Provide demonstrations for T7.8 and simplified versions of T7.9, T7.10 in the
informal style. Hint: You may or may not decide that a metalinguistic derivation
would be helpful. Challenge: can you show the theorems in their general form?

CHAPTER 7. DIRECT SEMANTIC REASONING 359

Theorems of Chapter 7

T7.1s P, P > QK Q

T72s K P - (Q — P)

T73s E (O - (P > Q) — (O - P)— (O —> Q))

T74s K (~Q - ~P) - [(~Q - P) — Q]

T7.1 P, P > QEQ

TI2 EP - (Q— P)

T73 E(O - (P > Q) > (0O—->P)—> (0 — Q)

T7.4 E(~Q - ~P) - [(~Q - P) — Q]

T7.5 There is no interpretation | and formula & such that I[?] = T and I[~P] = T.
T7.6 For any | and 2, I[P] = Tiff IIVxP] =T.

T7.7 Each of the following conditions obtains.
(@) lg[(Yx : B)P] = Siff forany 0 € U, ly(x|o)[B] # S or lyxjo)[P] = S.
(b) la[(Tx : B)P] = S iff for some 0 € U, lycx|o)[B] = S and lyx|0)[P] = S.

T7I8 E(t=1)

TI9O F(xi=y) > A"x1...% ... %y = A" %1 ... Y ... Xp)

T7.10 E(xj =y) > (R"x1...% ... xp > R"%1 ... Y ... Xp)

E7.17. Show that N[VxVy(x # y — Sx # Sy)] =T, and so complete the demon-
stration that VxVy(x # y — Sx # Sy) ¥ Ix(Sx = @). You may simply
assert that N[Ix (Sx = @)] # T with justification, “from the text.”

*E7.18. Here is an interpretation to show ¥ AxVy[(Axy A ~Ayx) — (Axx <
Ayy)].

U={1,2.3,...}

I[A] = {(m,n) | m=<nand m is odd, or m < n and m is even}
So I[A] has members,
(1.1).(1.2), (1.3),... (2.3),(2.4).(2,5)....

(3,3),(3,4).(3,5),... (4,5),(4,6),(4,7),...

CHAPTER 7. DIRECT SEMANTIC REASONING 360

and so forth. Try to understand why this works, and why < or < will not work by
themselves. Then find an interpretation where U has < four members and use it
to demonstrate that # IxVy[(Axy A ~Ayx) — (Axx <> Ayy)]. Hint: This is
challenging.

*E7.19. Consider £yr and the axioms of Robinson Arithmetic as in Chapter 6 (page
300). (a) Use the standard interpretation N to show Q ¥ ~VxVy[(x x y) =
(y x x)]. And (b) using N* from below, show Q ¥ VxVy[(x x y) = (¥ X x)].
You need only complete parts not worked in the answer to this exercise. For N*,
let U* = N U {a} for some object a that is not a number; assign 0 to @ in the usual
way; then,

S | + | J a X |0 j#0 a
i i+1 i i+j a 0 0 0 a
a a a a a i#0 | 0 ixj a

a 0 a a

So, for example, from the top row of the ‘+’ table, ({i, j),i + j), ({(i,a),a) €
N*[+]. Hint: This is no different than you have done before, only with premises
the axioms of Q. Also notice that N* is the same as N for m,n € N so that
reasoning about N* partially coincides with reasoning about N. This lets you
collapse some of the work: So, for example, when variables are assigned to some
m, n € U*, there are cases for G) m,n € N, (ii)me N,n=a, (iii)m=a,n € N,
(iv) m = a, n = a. By itself (i) is sufficient for a result about N.

This result (together with T10.5) is sufficient to show that Robinson Arithmetic is
not negation complete—there are sentences & of £y such that Q proves neither
& nor ~P.

E7.20. For each of the following concepts, explain in an essay of about two pages,
so that (high-school age) Hannah could understand. In your essay, you should
(i) identify the objects to which the concept applies, (ii) give and explain the
definition, and give and explicate examples of your own construction (iii) where
the concept applies, and (iv) where it does not. Your essay should exhibit an
understanding of methods from the text.

a. The difference between satisfaction and truth.
b. The definitions SF(r) and SF(V).

c. The way your reasoning works. For this you can provide an example of some
reasonably complex but clean bits of reasoning, (a) for validity, and (b) for
invalidity. Then explain to Hannah how your reasoning works. That is, provide
her a commentary on what you have done, so that she could understand.

Chapter 8

Mathematical Induction

In Chapter 1 (page 12), we distinguished deductive from inductive arguments. As
described there, in a deductive argument, conclusions are supposed to be guaranteed
by premises. In an inductive argument, conclusions are merely made probable or
plausible. Typical cases of inductive arguments involve generalization from cases.
Thus, for example, one might reason from the premise that every crow we have
ever seen is black, to the conclusion that all crows are black. The premise does
not guarantee the conclusion, but it does give it some probability or plausibility.
Similarly, mathematical induction involves a sort of generalization. But mathematical
induction is a deductive argument form. The conclusion of a valid argument by
mathematical induction is guaranteed by its premises. So mathematical induction is
to be distinguished from the sort of induction described in Chapter 1.

In this chapter, I begin with a general characterization of mathematical induction,
and turn to a series of examples. Some of the examples will matter for things to come.
But the primary aim is to gain facility with this crucial argument form. After a general
characterization in section 8.1, there are some introductory examples (section 8.2)
then cases of special interest for Part III (section 8.3) and for Part I'V (section 8.4).

8.1 General Characterization

Arguments by mathematical induction apply to objects that are arranged in series. The
conclusion of an argument by mathematical induction is that all the elements of the
series are of a certain sort. For cases with which we will be concerned, the elements
of a series are ordered by natural numbers: there is an initial member, one after that,
and so forth (we may thus think of a series as a function from the numbers to the
members). Consider, for example, a series of dominoes:

do di dy d3 ds ds de d7 ds

361

CHAPTER 8. MATHEMATICAL INDUCTION 362

This series is ordered spatially. So dj is the initial domino, d; the next, and so forth.
Alternatively, we might think of the series as defined by a function & from the natural
numbers to the dominoes, with D (0) = dg, D(1) = d1, and so forth—where this
ordering is merely exhibited by the spatial arrangement.

Suppose we are interested in showing that all the dominoes fall, and consider the
following two claims:

(1) The first domino falls.
(i1) For any domino, if all the ones prior to it fall, then it falls.

By itself, (i) does not tell us that all the dominoes fall. For all we know, there might
be some flaw in the series so that for some k dominoes prior to dj, fall, but dj does
not. Perhaps the space between dj_; and dj, is too large. In this case, under ordinary
circumstances, neither dj nor any of the dominoes after it fall. Claim (ii) tells us that
there is no such flaw in the series—if all the dominoes up to dj, fall, then dj, falls. But
(ii) is not, by itself, sufficient for the conclusion that all the dominoes fall. From the
fact that the dominoes are so arranged, it does not follow that any of the dominoes
fall. Perhaps you do the arrangement, and are so impressed with your work, that you
leave the setup forever as a memorial!

However, given both (i) and (ii), it is safe to conclude that all the dominoes fall.
There are a couple of ways to see this. First, we can reason from one domino to the
next. By (i), the first domino falls. This means that all the dominoes prior to the
second domino fall. So by (ii), the second falls. But this means all the dominoes prior
to the third fall. So by (ii), the third falls. So all the dominoes prior to the fourth fall.
And so forth. Thus we reach the conclusion that each domino falls. Here is another
way to make the point: Suppose not every member of the series falls. Then there must
be some least member d, of the series which does not fall. This d, cannot be the first
member of the series, since by (i) the first member of the series falls. And since d,
is the least member of the series which does not fall, all the members of the series
prior to it do fall. So by (ii), d, falls. This is impossible; reject the assumption: every
member of the series falls.

Suppose we have some reason for accepting (i) that the first domino falls—perhaps
you push it with your finger. Suppose further, that we have some “special reason” for
moving from the premise that all the dominoes prior to an arbitrary d fall, to the
conclusion that d, falls—perhaps the setup satisfies some rule that adaquetly relates
each dominoe dj to the ones before. Then we might attempt to show that all the
dominoes fall as follows:

CHAPTER 8. MATHEMATICAL INDUCTION 363

a. dpfalls prem (do particular)

b. | all the dominoes prior to dy, fall assp (dy, arbitrary)
A dy, falls “special reason”

d. if all the dominoes prior to dj, fall, then dj, falls b-c cnd

e. for any domino, if all the dominoes prior to it fall, then it falls d unv

f. every domino falls a,e induction

(a) is (i) and (e) is (i1); the conclusion that every domino falls follows from (a) and
(e) by mathematical induction. In this case, (a) is given; dg falls because you push
it. In order to obtain (e), for arbitrary dj we reason from the assumption at (b) to the
conclusion that dj, falls, and then move to (e) by cnd and unv. This is in fact how we
reason. However, all the moves are automatic once we complete the subderivation—
the moves by cnd to get (d), by unv to get (e), and by mathematical induction to get (f)
are automatic once we reach (c). In practice, then, those steps are usually left implicit
and omitted. Having gotten (a) and, from the assumption that all the dominoes prior
to dj. fall reached the conclusion that dj, falls, we move directly to the conclusion that
all the dominoes fall.

Thus we arrive at a general form for arguments by mathematical induction. Sup-
pose we want to show that & holds for each member of some series. Then an argument
from mathematical induction goes as follows:

(B) Basis: Show that & holds for the first member of the series.

Assp: Assume, for arbitrary k, that 2 holds for every member of the series
prior to the k” member.

Show: Show that P holds for the k”* member of the series.

Indct: Conclude that & holds for every member of the series.

In the domino case, for the basis we show (i). At the assp (assumption) step, we
assume that all the dominoes prior to dy fall. In the show step, we would complete the
subderivation with the conclusion that domino dj, falls. From this, moves by cnd to
the conditional statement, and by unv to its generalization, are omitted and we move
directly to the conclusion that all the dominoes fall. Notice that the assumption is
nothing more than a standard assumption for the (suppressed) application of cnd.
Perhaps the “special reason” is too special, and it is not clear how we might
generally reason from the assumption that some J holds for every member of a series
prior to the k™, to the conclusion that it holds for the k™. For our purposes, the key is
that such reasoning is possible in contexts characterized by recursive definitions. As
we have seen, a recursive definition always moves from the parts to the whole. There
are some basic elements, and some rules for combining elements to form further
elements. In general, it is a fallacy (the fallacy of composition) to move directly from
characteristics of parts, to characteristics of a whole. From the fact that the bricks are

CHAPTER 8. MATHEMATICAL INDUCTION 364

small, it does not follow that a building made from them is small. But there are cases
where facts about parts, together with the way they are arranged, are sufficient for
conclusions about wholes. If the bricks are hard, it may be that the building is hard.
And similarly with recursive definitions.

To see how this works, let us turn to another example. We show that every term of
a certain language has an odd number of symbols. Recall that the recursive definition
TR tells us how terms are formed from others. Variables and constants are terms; and
if 4" is a n-place function symbol and #; . .. ¢, are n terms, then 4" ¢; .. .1, is a term.
On tree diagrams, across the top (row 0) are variables and constants—terms with
no function symbols; in the next row are terms constructed out of them, and for any
n =1, terms in row n are constructed out of terms from earlier rows. Let this series
of rows be our series for mathematical induction. Every term must appear in some
row of a tree. We consider a series whose first element consists of terms which appear
in the top row of a tree, whose second element consists of terms which appear in the
next, and so forth. Let £, be a language with variables and constants as usual, but
just two function symbols, a two-place function symbol f?2 and a four-place function
symbol g#. We show, by induction on the rows in which terms appear, that the total
number of symbols in any term # of this language is odd. Here is the argument:

(C) Basis: If + appears in the top row, then it is a variable or a constant; in this case,
t consists of just one variable or constant symbol; so the total number of
symbols in ¢ is odd.

Assp: For any i such that 0 < i < k, the total number of symbols in any #
appearing in row i is odd.

Show: The total number of symbols in any ¢ appearing in row k is odd.

If ¢ appears in row k, then it is of the form fztltz or g4t1t2/t3t4 where
11 ... 14 appear in rows prior to k. So there are two cases.

(f) Suppose ¢ is f2t11,. Let a be the total number of symbols in 1, and b
be the total number of symbols in #5; then the total number of symbols in
1 is (a+b)+1: all the symbols in 1, all the symbols in #,, plus the symbol
f2. Since ¢; and £, each appear in rows prior to k, by assumption, both
a and b are odd. But the sum of two odds is an even, and the sum of an
even plus one is odd; so (a+b)+1 is odd; so the total number of symbols
in ¢ is odd.

(g) Suppose 1 is g4t1t2t3 4. Let a be the total number of symbols in %1, b
be the total number of symbols in 3, ¢ be the total number of symbols
in #3, and d be the total number of symbols in #4; then the total number
of symbols in ¢ is [(a + b) + (c +d)] + 1. Since 4 .. .14 each appear in
rows prior to k, by assumption a, b, ¢, and d are all odd. But the sum of
two odds is an even; the sum of two evens is an even, and the sum of an

CHAPTER 8. MATHEMATICAL INDUCTION 365

even plus one is odd; so [(a +b) + (c +d)] + 1 is odd; so the total number
of symbols in ¢ is odd.

In either case, then, if ¢ appears in row k, the total number of symbols in
t is odd.

Indct: For any term ¢ in £;, the total number of symbols in # is odd.

Notice that this argument is entirely structured by the recursive definition for
terms. The definition TR includes clauses (v) and (c¢) for terms that appear in the
top row. In the basis stage, we show that all such terms consist of an odd number of
symbols. Then, for (suppressed) application of cnd and unv we assume that all terms
prior to an arbitrary row k have an odd number of symbols. After that, the show line
simply announces what we plan to do. Observe the way reasoning for the show part
works:

item at stage k result at stage k

\ /

items at stages prior to k inductive assumption results at stages prior to k

By the recursive definition, items at stage k result from items at stages prior to k. The
inductive assumption applies to the items at stages prior to k, and so gives a result
for those items. And with the recursive definition we put those results together for a
conclusion about stage k. Over and over, you will be able to reason according to this
pattern. And our argument proceeds in just this way: The sentence after show says
how terms at stage k derive from ones before—if f2#1, appears in row k, #1 and #,
must appear in previous rows; then by the assumption they have an odd number of
symbols; and since the number of symbols in the parts are odd, the number of symbols
in the whole is odd. And similarly for g41t1/t21t3 £4. So any term in row k has an odd
number of symbols. Then by induction it follows that every term in this language &£
consists of an odd number of symbols.

Returning to the domino analogy, the basis is like (i), where we show that the
first member of the series falls—terms appearing in the top row always have an odd
number of symbols. Then, for arbitrary k, we assume that all the members of the
series prior to the k" fall—that terms appearing in rows prior to the k”* always have an
odd number of symbols. We then reason that, given this, the k" member falls—terms
constructed out of others which, by assumption, have an odd number of symbols must
themselves have an odd number of symbols. From this, (ii) follows by cnd and unv,
and the general conclusion by mathematical induction.

The argument works for the same reasons as before: Insofar as a variable or
constant is regarded as a single element of the vocabulary, it is automatic that variables
and constants have an odd number of symbols. So terms in the top row have an odd
number of symbols. Given this expressions in the next row of a tree, as f2?xc, or
g*xycz, must have an odd number of symbols—one function symbol, plus two or
four variables and constants. But if terms from rows zero and one of a tree have an

CHAPTER 8. MATHEMATICAL INDUCTION 366

odd number of symbols, by reasoning from the show step, terms constructed out of
them must have an odd number of symbols as well. And so forth. So terms in all the
rows have an odd number of symbols. Here is the other way to think about it: Suppose
some terms in £; have an even number of symbols; then there must be a least row
a where such terms appear. From the basis, this row a is not the top row. But since
a is the least row at which terms have an even number of symbols, terms at all the
earlier rows must have an odd number of symbols. But then, by reasoning as in the
show step, terms at row a have an odd number of symbols. Reject the assumption: no
terms in £; have an even number of symbols.

In practice, for this sort of case it is common to reason, not based on the row
in which a term appears, but on the number of function symbols in the term. This
differs in detail, but not in effect, from what we have done. In our trees, it may
be that a term in row two, combining one from row zero and another from row
one, has two function symbols, as f2x f2ab, or it may be that a term in row two,
combining terms from row one, has three function symbols, as f2 f2xyf2ab, or five,
as g* f2xyf2abf?zwf?cd, and so forth. However, it remains that the total number
of function symbols in each of some terms 4 ... 4, is fewer than the total number of
function symbols in 4" 41 ... s5; for the latter includes all the function symbols in
41 ...4n plus 4. Thus we may consider the series: terms with no function symbols,
terms with one function symbol, and so forth—and be sure that for any n > 0, terms
at stage n are constructed of ones before. Here is a sketch of the argument modified
along these lines:

(D) Basis: If 1 has no function symbols, then it is a variable or a constant; in this
case, t consists of just the one variable or constant symbol; so the total
number of symbols in # is odd.

Assp: For any i such that 0 < i < k, the total number of symbols in ¢ with i
function symbols is odd.

Show: The total number of symbols in ¢ with k function symbols is odd.

If ¢ has k function symbols, then it is of the form f2#11, or g*t1121314
where #1 ... 14 have less than k function symbols. So there are two cases.

(f) Suppose ¢ is f2¢112. [As before. . .] the total number of symbols in £ is
odd.

(g) Suppose £ is g4l1t2l3t4. [As before. ..] the total number of symbols in
t is odd.

In either case, then, if # has k& function symbols, then the total number of
symbols in # is odd.

Indct: For any term ¢ in £;, the total number of symbols in # is odd.

Here is the key point: If f2¢;4, has k function symbols, the number of function
symbols in ¢; and #» combined has to be k — 1; and since the number of function

CHAPTER 8. MATHEMATICAL INDUCTION 367

symbols in #1 and in 75 must individually be less than or equal to their combined
total, the number of function symbols in #; and the number of function symbols in
t> must also be less than k. And similarly for g4¢1t2t31§4. That is why the inductive
assumption applies to #; ... ?4, and reasoning in the cases can proceed as before.

8.2 Preliminary Examples

Let us turn now to a series of examples, meant to illustrate mathematical induction in
a variety of contexts. Some of the examples have to do with our subject matter. But
some do not. For now, the primary aim is to gain facility with the argument form. As
you work through the cases, think about why the induction works. At first, examples
may be difficult to follow. But they should be more clear by the end.

8.2.1 Case

First, a case where the conclusion may seem too obvious even to merit argument. We
show that any (official) formula & of a quantificational language has an equal number
of left and right parentheses. Again, the relevant definition FR is recursive. Its basis
clause specifies formulas without operator symbols; these occur across the top row of
our trees. FR then includes clauses which say how complex formulas are constructed
out of those that are less complex. We take as our series, formulas with no operator
symbols, formulas with one operator symbol, and so forth; thus the argument is by
induction on the number of operator symbols. As in the above case with terms, this
orders formulas so that we can use facts from the recursive definition in our reasoning.
Let us say L(&) is the number of left parentheses in &, and R(J) is the number of
right parentheses in . Our goal is to show that for any formula £, L(#) = R(P).

(E) Basis: If # has no operator symbols, then J is a sentence letter § or an atomic
R™tq ... t, for some relation symbol R" and terms #1 ... ¢,. In either
case, & has no parentheses. So L(#) = 0 and R($) = 0; so L(P) =
R(P).

Assp: For any i such that 0 = i < k, if & has i operator symbols, then
L(P) =R(P).
Show: For every & with k operator symbols, L($) = R(P).
If # has k operator symbols, then it is of the form ~w, (A — B), or
Yx A for variable x and formulas + and B with < k operator symbols.
(~) Suppose P is ~4A. Then L(#) = L(4A) and R(P) = R(+A). By the
inductive assumption L(4A) = R(4). So L(#) = L(A) = R(A) = R(P);
so L(P) = R(P).
(—) Suppose &P is (A — B). Then L(P) = L(A) +L(B) + 1 and R(P) =
R(+A) + R(B) + 1. By assumption L(A) = R(+4), and L(B) = R(B). So
L(#) =L(A)+L(B)+1=R(A)+R(B)+1 =R(P); so L(F) = R(P).

CHAPTER 8. MATHEMATICAL INDUCTION 368

Induction Schemes

Schemes for mathematical induction sometimes appear in different forms. But for
our purposes, these amount to the same thing. Suppose a series of objects, and
consider the following:

L
(a) Show that & holds for the first member
(b) Assume that & holds for members < k

() Show # holds for member k This is the form as we have seen it.

(d) Conclude & holds for every member

1I.
(a) Show that & holds for the first member

(b) Assume that & holds for members < j
(c) Show # holds for member j + 1

This comes to the same thing if we think
of j as k —1. Then &£ holds for members
B = j justin case it holds for members < k.
(d) Conclude & holds for every member

II1.
(a) Show that @ holds for the first member

(b) Assume that @ holds for member j This comes to the same thing if we think
. of j as k-1 and @ as the proposition that
(c) Show @ holds for member j + 1 # holds for members < /.

(d) Conclude @ holds for every member

And similarly the other forms follow from ours. So though in a given context one
form may be more convenient than another, the forms are equivalent—or at least
they are equivalent for sequences corresponding to the natural numbers.

Our form of induction (I) is known as “strong induction,” for its relatively strong
inductive assumption, and the third as “weak.” The second is a sometimes-
encountered blend of the other two. In PA the weak form is mirrored by axiom
PA7; we use that axiom to prove a theorem like (II) in T13.11ai.

It turns out that mathematical induction can be applied not only to sequences
corresponding to the natural numbers but also to sequences indexed by infinite
ordinals. Though we wave in that direction in section 11.4, our main concerns will
be restricted to series ordered by the natural numbers. The infinite ordinals are a
topic for a course in set theory.

Still, a remark for the interested: The first infinite ordinal w is the number of the
series 0, 1,2, But there is no finite number n such that n + 1 = wo—for any
finite n, n + 1 is just another member of the series. So for a sequence ordered by
infinite ordinals, our assumption that 4 holds for all the members < k might hold
though there is no j = k — 1 as in the second and third cases. So the equivalence
between the forms breaks down for series that are so ordered.

CHAPTER 8. MATHEMATICAL INDUCTION 369

(V) Suppose P is Vxs. Then as in the case for (~), L(#) = L(+4) and
R(#) = R(A). By assumption L(4) = R(A). So L(P) = L(A) =
R(A) = R(P); so L(P) = R(P).

If & has k operator symbols, L(£) = R(P).

Indct: For any formula , L(#) = R(P).

No doubt, you already knew that the numbers of left and right parentheses match.
But, presumably, you knew it by reasoning of this very sort. Atomic formulas have
no parentheses, and so an equal number of left and right parentheses; after that,
parentheses are always added in pairs; so, no matter how complex a formula may be,
there is never a left parenthesis without a right to match. Reasoning by mathematical
induction may thus seem perfectly natural! All we have done is to make explicit the
various stages that are required to reach the conclusion. But it is important to make
the stages explicit, for many cases are not so obvious. Notice again: We understand
formulas at stage k in terms of formulas from stages before—and so to which the
assumption applies—and then put the results together for a conclusion about stage k.
Here are some closely related problems:

*E8.1. For any (official) formula J of a quantificational language, where A(JP) is
the number of its atomic formulas, and B(#) is the number of its arrow symbols,
show that A(#) = B(#) + 1. Hint: Argue by induction on the number of operator
symbols in &. For the basis, when & has no operator symbols, it is an atomic, so
that A($) = 1 and B(#) = 0. Then, as above, you will have cases for ~, —, and
V. The hardest case is when & is of the form (A4 — B).

ES8.2. Consider now expressions which allow abbreviations (V), (A), (<), and (3).
Where A() is the number of atomic formulas in & and B() is the number of
its binary operators, show that A($) = B(#) + 1. Hint: Now you have seven
cases: (~), (—), and (V) as before, but also cases for (V), (A), (<), and (3). This
suggests the beauty of reasoning just about the minimal language!

8.2.2 Case

Many applications of mathematical induction occur in mathematics. It will be helpful
to have a couple of examples of this sort. These should be illuminating—at least if
you do not get bogged down in the details of the arithmetic! The series of odd positive
integers is 1,3,5,7,... where the n™ odd number is 2n — 1. (The n™ even number
is 2n; to find the n™ odd, go to the even just above it, and come down one.) Let
S(n) be the sum of the first n odd positive integers. So S(1) = 1,S2) =1+3 =4,
SB3)=1+3+5=9,S(4)=1+3+5+7 =16 and, in general,

Sn)y=1+3+---+(2n-1)

CHAPTER 8. MATHEMATICAL INDUCTION 370

We consider the series of these sums, S(1), S(2), and so forth, and show that, for any
n =1, S(n) =n?. Observe that S(1) = 1, and forn > 1, S(n) =S(n-1) + 2n - 1).
The sum of all the odd numbers up to the n” odd number is equal to the sum of all
the odd numbers up to the (n — 1)™ odd number plus the n”* odd number—and since
the n* odd number is 2n - 1, S(n) = S(n — 1) + (2n - 1). This gives us the required
recursive connection between a member of the series and one before. Given this, the
argument is straightforward. We argue by induction on the series of sums.

(F) Basis: If n = 1 then S(n) = 1 and n? = 1;s0 S(n) = n?.
Assp: Forany i, 1 =i <k, S(i) = i2.
Show: S(k) = k2. As above, S(k) = S(k-1)+(2k-1). But since k—1 < k, by the
inductive assumption, S(k—1) = (k—1)%;s0 S(k) = (k—1)?>+(2k-1) =
(k% =2k + 1)+ (2k - 1) = k2. So S(k) = k2.

Indct: For any n, S(n) = n2.

As is often the case in mathematical arguments, the k" element is completely deter-
mined by the one immediately before; so we do not need to consider any more than
this one way that elements at stage k are determined by those at earlier stages.' Surely
this is an interesting result—though you might have wondered about it after testing
initial cases, we have a demonstration that it holds for every n.

*E8.3. Let S(n) be the sum of the first n even positive integers; that is S(n) =
2+4+---+2n.S0S(1)=2,S(2) =2+4=6,S(3) =2+4+6 = 12, and so forth.
Show by mathematical induction that for any n =1, S(n) = n(n + 1).

E8.4. Let S(n) be the sum of the first n positive integers; that is S(n) = 14243+ - -+n.
SoS(1) =1,S2) =1+2=3,S3) =1+2+3 = 6, and so forth. Show by
mathematical induction that for any n = 1, S(n) = n(n +1)/2.

8.2.3 Case

Now a case from geometry. Where a polygon is convex iff each of its interior angles is
less than 180°, we show that the sum of the interior angles in any convex polygon with
n sides is equal to (n —2)180°. Let us consider polygons with three sides, polygons
with four sides, polygons with five sides, and so forth. The key is that when n = 3, any
n-sided polygon may be regarded as one with n — 1 sides combined with a triangle.
Thus given an n-sided polygon P,

Thus arguments by induction in arithmetic and geometry are often conveniently cast according to
the third “weak” induction scheme from the induction schemes reference on page 368. But, as above,
our standard scheme applies as well.

CHAPTER 8. MATHEMATICAL INDUCTION 371

ey
Construct a line connecting

opposite ends of a pair of ad-
jacent sides.

The result is a triangle Q and a figure R with n—1 sides, wherea = c+d and b = e+ f.
The sum of the interior angles of P is the same as the sum of the interior angles of
Q plus the sum of the interior angles of R. Once we realize this, our argument by
mathematical induction is straightforward. For any convex n-sided polygon P, we
show that the sum of the interior angles of P, S(P) = (n - 2)180°. The argument is by
induction on the number n of sides of the polygon.

(G) Basis: If n = 3, then P is a triangle; but by reasoning as follows,

\M By definition, @ + f = 180°; but b = d and
if the horizontal lines are parallel, ¢ = e and
d+e=f;s0a+(b+c)=a+(d+e)=
< g a+ f=180°

the sum of the angles in a triangle is 180°. So S(P) = 180°. But
(3-2)180° = 180°. So S(P) = (n —2)180°.

Assp: Forany i, 3 <i <k, every P with i sides has S(P) = (i —2)180°.

Show: For every P with k sides, S(P) = (k —2)180°.
For P with k sides, construct a line connecting opposite ends of a pair
of adjacent sides; the result divides P into a triangle Q and polygon
R with k& — 1 sides such that S(P) = S(Q) + S(R). Q is a triangle, so
S(Q) = 180°. Since k - 1 < k, the inductive assumption applies to R;
so S(R) = ((k - 1)-2)180°. So S(P) = 180° + ((k - 1) -2)180° =
(1+k-1-2)180° = (k-2)180°. So S(P) = (k —2)180°.

Indct: For any n-sided polygon P, S(P) = (n - 2)180°.

Perhaps reasoning in the basis brings back good (or bad!) memories of high school
geometry. But you do not have to worry about that.

In this case, the sum of the angles of a figure with n sides is completely determined
once we are given the sum of the angles for a figure with n -1 sides. So we do not need
to consider any more than this one way that elements at stage k are determined by
those at earlier stages. It is worth noting however that we do not have to see a k-sided
polygon as composed of a triangle and a figure with k — 1 sides. For consider any
diagonal of a k-sided polygon; it divides the figure into two, each with < k sides. So
the inductive assumption applies to each figure. So we might reason about the angles
of a k-sided figure as the sum of angles of these arbitrary parts, as in the exercise that
follows.

CHAPTER 8. MATHEMATICAL INDUCTION 372

*E8.5. Using the fact that for k > 3 any diagonal of a k-sided polygon divides it into
two polygons with < k sides, show by mathematical induction that the sum of
the interior angles of any n-sided convex polygon P, S(P) = (rn —2)180°. Hint: If
a figure has k sides, then for some a such that both a and k — a are at least two
(> 1), a diagonal divides it into a figure Q with a + 1 sides (a sides from P, plus
the diagonal), and a figure R with (k —a) + 1 sides (the remaining sides from P,
plus the diagonal). Fromk -a > 1,k >a+ 1;and froma > 1,k +a =k +1 so
that k > (k —a) + 1. So the inductive assumption applies to both Q and R.

E8.6. Where P is a convex polygon with n sides, and D(P) is the number of its
diagonals (where a diagonal is a line from one vertex to another that is not a
side), show by mathematical induction that any P with n = 3 sides is such that
D(P) = n(n -3)/2.

Hint: For P with k sides, connecting the vertices of adjacent sides divides P

into a triangle Q and a convex figure R with k - 1 sides. Then the diagonals

are all the diagonals of R, plus the base of the triangle, plus k — 3 lines from

vertices not belonging to the triangle to the apex of the triangle (P has k

vertices, and diagonals from the apex go to all but 3 of them). Also, in case
your algebra is rusty, (k — 1)(k — 4) = k% - 5k + 4.

8.2.4 Case

Finally we take up a couple of cases of real interest for our purposes—though we limit
consideration just to sentential forms. We have seen cases structured by the recursive
definitions TR and FR. Here is one that uses ST. Say a formula is in normal form
iff its only operators are V, A, and ~, and the only instances of ~ are immediately
prefixed to atomics (of course, any normal form is an abbreviation of a formula whose
only operators are — and ~). Where # is a normal form, let $’ be like & except that
Vv and A are interchanged and, for a sentence letter &, § and ~& are interchanged.
Thus, for example, if & is an atomic A4, then P’ is ~A, if P is (A Vv (~B A C)), then
P is (~A A (B Vv ~C)). We show that if & is in normal form, then I[~P] = T iff
[[#’] = T. Thus, for the case we have just seen,

[~(AV (~BAC)] =T iff I[(~AA(BV~C)]=T

So the result works like a generalized semantic version of DeM in combination with
DN: When you push a negation into a normal form, A flips to Vv, V flips to A, and
atomics switch between § and ~&. Our argument is by induction on the number of
operators in a formula .

(H) Basis: Suppose & has no operators and is in normal form. Then # is an
atomic §; so ~P = ~8 and P’ = ~8. So [[~P] =Tiff I[~8] =T,
iff I[P’] = T. So if # has no operators then if it is in normal form,
[~P]=TiffI[P']=T.

CHAPTER 8. MATHEMATICAL INDUCTION 373

Assp: Forany i, 0 <i <k, if & has i operator symbols then if it is in normal
form, I[~P] = Tiff [P] =T.

Show: If P has k operator symbols then if it is in normal form, I[~P] = T iff
[P]=T.
Suppose & is in normal form and has k operator symbols. Then & is
~8, AV B, or AA B where § is atomic and 4 and B are normal forms
with less than k operator symbols. So there are three cases.

(~) P is ~8. Then ~P is ~~&8,and P’ is 8. So |[~P] = Tiff [~~8] =T;
by ST(~) iff I[~8] # T; by ST(~) again iff I[§] = T; iff I['] = T. So
[~P] =TiffI[P]=T.

(V) Pis AV B. Then ~P is ~(A V B), and P’ is A’ A B'. S0 I[~P] =T
iff [[~(A Vv B)] = T; by ST(~) iff I[4A Vv B] # T; by ST/ (V) iff [[A] # T
and I[B] # T; by ST(~) iff I[~A] = T and I[~B] = T; by assumption iff
[[A'] =T and I[B] = T; by ST/ (A) iff I|A' A B'] =T; iff I[P'] =T. So
[~P]=TiffI[P']=T.

(A) Homework.

If & has k operator symbols then if it is in normal form, [[~P] = T iff
[P]=T.

Indct: For any P, if it is in normal form then I[~P] = Tiff [[P] = T.

Since the thesis to be proved is a conditional, we obtain that conditional for the basis
and show. Similarly, the assumption is a conditional that applies to formulas with
less than k operator symbols that are in normal form. Thus, for application of the
assumption at the show step, it is important not only that /4 and B have less than
k operator symbols, but that they are in normal form. If they were not, then the
inductive assumption would not apply to them. The overall pattern of the show step
is as usual: In the cases, we break down to parts to which the assumption applies,
apply the assumption, and put the resultant parts back together. In the second case,
we assert that if P is 4 v B, then £’ is A" A B’. Here + and B may be complex.
We do the conversion on £ iff we do the conversion on its main operator, and then
do the conversion on its parts. And similarly for (A). It is this which enables us to
feed into the inductive assumption. Notice that it is convenient to cast reasoning in
the “collapsed” biconditional style.

Where & is any form whose operators are ~, V, A, or —, we now show that
& is equivalent to a normal form. Consider a transform Jy defined as follows:
For atomic &, 8y = §; for arbitrary formulas 4 and B with just those operators,
(A V By = (Ay V By), (A A B)y = (Ay A By), and with prime defined as above,
(A — B)y = ([Ax] V By), and [~A]y = [Ax]. To see how this works, consider how
you would construct &y on a tree.

CHAPTER 8. MATHEMATICAL INDUCTION 374

A B A A B A

NS NS

BvA BvA
For any & on the left,
the corresponding &y
~(B v A) appears on the right. (~B A ~A)

@

A — ~(BV A) ~AV (~B A~A)

These trees work very much like unabbreviating trees from section 2.2.3. For each
& on the left, Py is on the right. The conversion of a complex formula depends on
the conversion of its parts. So starting with the parts, we construct the transform of
the whole, one component at a time. Thus for example (B v A)y is just B v A; then
[~(BV A)x=[(BV A\ =[B Vv A] = ~B A ~A. Observe that at each stage of
the right-hand tree, the result is a normal form.

We show by mathematical induction on the number of operators in & that £y
must be a normal form and that I[] = T iff I[[#y] = T. For the argument it will be
important, not only to use the inductive assumption, but also the result from above
that for any & in normal form, I[~%] = T iff I[’] = T. In order to apply this result, it
will be crucial that every &£y is in normal form. Suppose the operators of & (and so
its subformulas) are just ~, Vv, A, and —. Here is an outline of the argument, with
parts left as homework:

T8.1. For any & whose operators are ~, A, V, and —, £y is in normal form and
[P]=Tiff I|P] =T.

Basis: If & is an atomic §, then &y = §. An atomic § is in normal form; so
Py =48 isin normal form. And I[P] = Tiff [[§] = T; iff I[Py] =T.

Assp: For any i, 0 < i < k if & has i operator symbols, then $y is in normal
form and I[P] = Tiff I[Ps] = T.

Show: If P has k operator symbols, then Py is in normal form and I[P] = T iff
I[Ps] =T.
If & has k operator symbols, then & is of the form ~A, A A B, A V B,
or A — B for formulas 4 and B with less than k operator symbols.

(~) P is ~oA. Then Py = (Ay)". By assumption sy is in normal form; so since
the prime operation converts a normal form to another normal form, (Ay)’
is in normal form; so Py is in normal form. I[P] = T iff [[~A] = T; by
ST(~), iff I[A] # T; by assumption iff [[Ax] # T; by ST(~) iff I[~(AN)] = T;
since sy is in normal form, by our previous result (H), iff I[(+y)'] = T; iff
[P] =T. Sol[P] =Tiff I[P =T.

CHAPTER 8. MATHEMATICAL INDUCTION 375

(A) Homework.
(V) Homework.

(—) Homework.

In any case, if has k operator symbols, Py is in normal form and I[P] =T
iff I[Py] = T.

Indct: For any &, Py is in normal form and I[P] = T iff I[Py] = T.

The inductive assumption applies just to formulas with < k operator symbols. So it
applies just to formulas on the order of # and B. The result from before applies to
any formulas in normal form. So it applies to 4y once we have determined that Ay is
in normal form.

E8.7. Complete induction (H) to show that every & in normal form is such that
[[~&P] = Tiff I[P’] = T. You should set up the whole induction with statements
for the basis, assumption, and show parts. But then you may appeal to the text for
parts already done, as the text appeals to homework. Hint: If = (A A B) then
P = (A v B).

E8.8. Complete the demonstration of T8.1 to show that any & with just operators
~, A, V, and — has a Py in normal form such that [] = T iff I[Py] = T. Again,
you should set up the whole induction with statements for the basis, assumption,
and show parts. But then you may appeal to the text for parts already done, as the
text appeals to homework.

*E8.9. Show that for any & in normal form, ,,, ~% <> #’. Hint: The reasoning is

parallel to the semantic case, but now about what you can derive.

E8.10. Use the result from the previous problem to show that for any # whose
operators are ~, V, A, and —, Py is in normal form and ,, & < &y. Hint:
Again the reasoning is parallel to the semantic case, but now about what you can
derive.

8.2.5 Case

Here is a result like one we will seek later for the quantificational case. It depends
on the (recursive) notion of a derivation. Because of their relative simplicity, we will
focus on axiomatic derivations. If we were working with “derivations” of the sort
described in the diagram on page 67, then we could reason by induction on the row
in which a formula appears. Formulas in the top row result directly as premises or

CHAPTER 8. MATHEMATICAL INDUCTION 376

axioms, those in the next row from ones before with MP; and so forth. But our official
notion of an axiomatic derivation is not this; in an official axiomatic derivation, lines
are ordered, where each line is either an axiom, a premise, or follows from previous
lines by a rule. But this is sufficient for us to reason about one line of an axiomatic
derivation based on ones that come before; that is, we reason by induction on the line
number of a derivation. Recall that I-,,, J just in case there is a derivation of & in
the sentential fragment of AD with just A1, A2, A3, and MP. We show that if is a
theorem of ADs, then & is a tautology: if I-,,, & then K &. Thus we establish the
(weak) soundness of ADs.

Suppose I, &#; then there is an ADs derivation (1, 42, ..., #Ay) of & from
no premises, with 4, = J. By induction on the line numbers of this derivation, we
show that for any j, K ;. The case when j = n is the desired result.

(J) Basis: Since (A1, Ao, ..., Ay,) is a derivation from no premises, #; can only
be an instance of A1, A2, or A3.

(Al) Say 4 is an instance of Al and so of the form £ — (@ — P).
Suppose ¥ A1; then B £ — (@ — P); so by sv, there is an | such
that I[? — (@ — P)] # T, let J be a particular interpretation of this sort;
then J[P — (@ — P)]# T;soby sT(—), J[P] =Tand J[Q — P]#T,;
from the latter, by ST(—), J[@] = T and J[#] # T. This is impossible;
reject the assumption: K #Aj.

(A2) Similarly.

(A3) Similarly.

Assp: Foranyi, | <i <k, § A;.

Show: & Ap.
Ay is either an axiom or arises from previous lines by MP. If 4, is an
axiom then, as in the basis, K Aj. So suppose Ay arises from previous
lines by MP. In this case, the picture is something like this:
a. B—>%€

b. 8
k. € a,b MP

where a, b < k and € is Aj. Suppose ¥ Ay ; then ¥ € and by SV there
is some | such that I[€] # T, let J be a particular interpretation of this
sort; then J[€] # T. But by assumption, i B and § 8 — €; soby sV,
forany L I[B]=Tand I[B — €] =T;s0J[B]=Tand J[B — €] =T,
from the latter, by ST(—), J[B] # T or J[€] = T; so J[€] = T. This is
impossible; reject the assumption: E Ay.

Indct: For any line j of the derivation K ;.

‘We might have continued as above for (A2) and (A3). Alternatively, since we have
already done the work, we might have appealed directly to T7.2s, T7.3s, and T7.4s

CHAPTER 8. MATHEMATICAL INDUCTION 377

for (A1), (A2), and (A3) respectively. From the case when #; = & we have i P.
This result is a precursor to one we will obtain in Chapter 10. There, we will show
strong soundness for the complete system AD, if I' I, , &, then I' = #. This tells
us that our derivation system can never lead us astray. There is no situation where a
derivation moves from premises that are true to a conclusion that is not. Still, what
we have is interesting in its own right: It is a first connection between the syntactic
notions associated with derivations, and the semantic notions of validity and truth
(and it reflects informal reasoning sketched on page 201).

E8.11. Consider the system A* for exercise E3.5 and take MP in its primitive form.
Show by mathematical induction that A* is weakly sound. That is, show that if
F.« & then & £.

E8.12. Modify your argument for E8.11 to show that A* is strongly sound. That is,
modify the argument to show thatif I' I-,. & then I" & . You may appeal to
reasoning from the previous problem where it is applicable. Hint: When premises
are allowed, +4; is either an axiom, a premise, or arises by a rule. So there is one
additional case in the basis; but that case is trivial—if all of the premises are true,
and +; is a premise, then »; cannot be false. And your reasoning for the show
will be modified; now the assumption gives you I' E ~(8 A ~€)and ' Kk B
and your goal is to show I' K €.

E8.13. Modify table T(~) to a T’(~) that has I[~&] = F both when I[] = T and
I[#] = F; let table T(—) and so ST(—) remain as before. Say a formula is select
iff it is true on every interpretation given the revised tables. Show by mathematical
induction that every consequence of MP with A1 and A2 alone is select. Then
by a table show that the A3 instance (~B — ~A) — [(~B — A) — B]is not
select. It follows that there is no derivation of that formula from A1 and A2 alone
(this is an independence result of the sort discussed in section 11.3). Hint: Your
induction may be a simple modification of argument (J) from above.

E8.14. Let I[8] = T for every sentence letter §. Where P is any sentential formula
whose only operators are —, A, V, and <>, show by induction on the number of
operators in & that [[#?] = T. Use this result to show that & ~&.

E8.15. Where ¢ is a term of &, let X(¢) be the sum of all the superscripts in # and
Y (%) be the number of symbols in . So, for example, if 7 is z, then X(¢) =0
and Y(z) = 1;if #is g! f%cx, then X(¢) = 3 and Y(¢) = 4. By induction on the
number of function symbols in #, show that for any ¢ in &g, X(¢) +1 =Y (2).

CHAPTER 8. MATHEMATICAL INDUCTION 378

E8.16. Forn = 1,letS(n) =1/24+1/4+---41/2". Show by mathematical induction
that S(n) = 1 — 1/2", and so that S(n) approaches 1 as n approaches infinity.

E8.17. Show by mathematical induction that for any integer n = 0, 3" is odd—that is
that for any n = 0, there is some a such that 3" = 2a - 1.

E8.18. Show by mathematical induction that for any n = 3, an n-sided convex polygon
P may be decomposed into n — 2 triangles (where a triangle is “decomposed” into
itself). So, for example, a five-sided figure decomposes into three triangles.

ES8.19. If a Hershey bar has n squares, show by mathematical induction that it takes
n — 1 breaks (along the lines) to divide it into its individual squares.

E8.20. Show by mathematical induction that at a recent convention the number of
logicians who shook hands an odd number of times is even. Assume that O is even.
Hints: Reason by induction on the number of handshakes at the convention. At
any stage n, let O(n) be the number of people who have shaken hands an odd
number of times. Your task is to show that for any n, O(n) is even. You will want
to consider cases for what happens to O(n) when (i) someone who has already
shaken hands an odd number of times shakes with someone who has shaken an
odd number of times; (ii) someone who has already shaken hands an even number
of times shakes with someone who has shaken an even number of times; and
(iii) someone who has already shaken hands an odd number of times shakes with
someone who has shaken an even number of times.

E8.21. For any n = 1, given a 2" x2" checkerboard with any one square deleted, show
by mathematical induction that it is possible to cover the board with 3-square
L-shaped pieces. For example, a 4x4 board with a corner deleted could be covered
as follows:

CHAPTER 8. MATHEMATICAL INDUCTION 379

Hint: The basis is easy—a 2 x 2 board with one square missing is covered by a
single L-shaped piece. The trick is to see how an arbitrary 2 board with one
square missing can be constructed out of an L-shaped piece and 2k=1 §ize boards
with a square missing.

E8.22. Say & is in disjunctive normal form iff it is of the sort,
(AN AADV(BIAABp)V...V(EIA...ANC)

where each #A;, 8, ..., €; is an atomic or negated atomic (omitting inner paren-
theses for the extended conjunctions and disjunction). Allow that a disjunctive
normal form may reduce to a single disjunct and its conjunctions to a single
conjunct—so an atomic or negated atomic is already a disjunctive normal form.
Show that for any normal form £y there is a disjunctive normal form #;, such that
[[Py] = Tiff I[$] = T. Hint: This is straightforward except for the case where Py
is By A €. In this case, by assumption there are disjunctive normal forms B,
and €, such that I[By] = Tiff I[Bp] = T, and I[[€y] = T iff I[E,] = T. Since they
are in disjunctive normal form, 8B, and €, are of the sort B; vV B, vV ...V By
and €; V& V...V € forsome B ... By and €y ... €, that are conjunctions
of atomics and negated atomics. Consider a grid as follows:

‘ B1 B> By
'€1 1'31 A t’l 532 A €1 D(Bb A 81
'62 £1 A 82 fBz A 82 fBb A t’z
t’c £1A€c £2A'€c £bA'€c

And let J;, be the disjunction of conjuncts from the grid. (Effectively, this is like
repeatedly applying Dist to Bj, A €p.) Now you should be able to show that &5 is
a disjunctive normal form, and that £ is equivalent to J,.

CHAPTER 8. MATHEMATICAL INDUCTION 380

E8.23. Limit attention to sentential forms whose only operators are ~ and <>. Show
that under any (sub)formula on a truth table with at least four rows is an even
number of Ts and Fs. Hints: Reason by induction on the number of operators in
where J# is a (sub)formula on a table with at least four rows. Then by construction
of the table, it is immediate that atomics have an even number of Ts and Fs. The
show step has cases for ~ and <>. The former is easy, the latter is not. Here is a
trick that may help (which I learned from a student): Let each T be assigned an
even number and each F an odd; assign 4 <> B the sum of the numbers assigned
to 4 and B; then consider the sum of the numbers in columns of your table.

E8.24. After a few days studying mathematical logic, Zeno hits upon what he thinks
is conclusive proof that all is one. He argues by mathematical induction that all
the members of any n-tuple are identical:

Basis: If A is a 1-tuple, then it is of the sort (0), and every member of (o) is
identical. So every member of A is identical.

Assp: Forany i, 1 =i <k, all the members of any i-tuple are identical.

Show: All the members of any k-tuple are identical.
If A is a k-tuple, then it is of the form (oy,...,0r—1,0x). But both
(01,...,0k—2,0k—1) and {01, ...,0—n,0x) are k — 1 tuples; so by the
inductive assumption, all their members are identical; but these have
07 in common and together include all the members of A; so all the
members of A are identical to 0; and so to one another.

Indct: All the members of any n-tuple A are identical.

Given this, he considers the n-tuple consisting of you and Mount Rushmore, and
concludes that you are identical; similarly for you and Donald Trump, and so
forth. What is the matter with Zeno’s reasoning? Hint: Does the reasoning at the
show stage apply to arbitrary k?

8.3 Further Examples (for Part III)

We continue our series of examples, moving now to quantificational cases, and to
some theorems that will be useful especially if you go on to consider Part III.

8.3.1 Case

For variables x and v, where v does not appear in term ¢£, it should be obvious that
[t%]Y = t. If we replace every instance of x with v, and then all the instances of
v with x, we get back to where we started. The restriction that v not appear in

t is required to prevent putting back instances of x where there were none in the

CHAPTER 8. MATHEMATICAL INDUCTION 381

original—as fxv} is fvv, butthen fvvY is fxx. We demonstrate that when v does
not appear in , [¢}]7 = ¢ more rigorously by a simple induction on the number of
function symbols in .

(K) Basis: If t has no function symbols then it is a variable or a constant. Suppose
v does not appear in z. If £ is a variable or a constant other than x, then
1% = t (nothing is replaced); and since v does not appear in #, 1} =
(nothing is replaced); so [¢X]Y = ¢7 = 4. If & is the variable x, then
1% =v;and vy =x;s0 [15]Y = vy =x =1t. Soif v does not appear
in ¢ then [1}]7 = t.
Assp: Forany i, 0 <i <k, if ¢ has i function symbols and v does not appear
in z, then [£}]} = %.
Show: If ¢ has k function symbols and v does not appear in #, then [£3]Y = £.

If ¢ has k function symbols, then it is of the form, 4" 3 ... 4, for some
function symbol #” and terms 41 ... 4, each of which has < k function
symbols. Suppose v does not appear in #; then v does not appear in
any of 41 ... 45,; so the inductive assumption applies to 41 ... d5; SO
by assumption [41%]Y = s; and ... and [6,}]Y = $,. But [12]Y =
[A"s1...3n%]%; and since replacements only occur within the terms,
this is 4" [s1%]Y ... [6ny]y ; and by assumption this is 4" 51 ... s, = 1.
So [t7]} = 1.

Indct: For any term £, if v does not appear in £, [£3]Y = 4.

Consider a concrete application of reasoning for the show stage: Substitutions applied
to f2xb, say, do not affect the function symbol, but rather “distribute” onto the
individual terms x and b; so we find [f2xb*]? if we combine the function symbol
with [xX]Y and [b¥]2; but [xF]% = x and [b¥]% = b; so [f2xbX]Y is just f2xb. Itis
also worthwhile to note the place where it matters that v is not a variable in #: In the
basis case where # is a variable other than x, 7 = ¢ insofar as nothing is replaced;
but suppose # is v; then ¢ = x # ¢, and we do not achieve the desired result.

This result can be extended to one with application to formulas. If v is not free in
a formula & and v is free for x in &, then [P)]Y = &. We require the restriction
that v is not free in J for the same reason as before: If v were free in J, we might
end up with instances of x where there are none in the original—as Rxv; is Rvv,
but then RvvY is Rxx. And we need the restriction that v is free for x in & so
that once we have JPl’f, instances of x will go back for all the instances of v. So for
example, VuRxv; is YvRvv, but then remains the same when x is substituted for
free instances of v. Here is the basic structure of the argument, with parts left for
homework:

CHAPTER 8. MATHEMATICAL INDUCTION 382

*T8.2. For variables x and v, if v 1s not free in a formula & and v is free for x in
P, then [P)]Y =

Basis: If # has no operator symbols, then it is a sentence letter § or an atomic
of the form R"#; ... i, for some relation symbol R" and terms £ ... ¢;.
Suppose v is not free in J and v is free for x in P. (i) If P is 8 then it has
no variables; so £ = P and P = P. So [P)]} = = &. (ii) Say &P
is R™¢y ... t,. Since v is not free in &, v does not appear at all in & orits
terms; so by the previous result (K), [#1%]% =41 and ... and [{,5]Y = in.
So [PLIY = [R"t1 ... tny]y = RMtply - [ta]y = R”zl A
So if v is not free in & and v is free for x in P then [P[]} = &

Assp: Forany i,0 <i <k, any & with i operator symbols is such that if v is
not free in & and v is free for x in &, then [P[]Y =

Show: Any & with k operator symbols is such that if v is not free in J and v is
free for x in &, then [P[]Y =

If # has k operator symbols, then it is of the form ~#, (A — B), or
Yw A for some variable w and formulas 4 and B with < k operator
symbols. Suppose v is not free in and v is free for x in .

(~) P is ~o. Then [P[]Y = [(~A)5]Y = ~([A}]Y). Since v is not free in
P, v is not free in +4; and since v is free for x in &P, v is free for x in A.
So the assumption applies to # and... [homework].

(—) Homework.

(V) P is Yw . Either x is free in # or not. (i) If x is not free in &, then
PY = & and since v is not free in P, L7 = P; so [PL]Y = PL = P.
(ii) Suppose x is free in = Yw A. Then x is other than w; and since
v is free for x in P, v is other than w; so the quantifier does not affect
the replacements, and [P)]Y is YVw ([4}]Y). Since v is not free in P
and is not w, v is not free in +4; and since v is free for x in P, v is free
for x in #A. So the inductive assumption applies to #A; so [A%]Y = A; so
[PY1Y =Vw([AL]Y) =YwA =P
If P has k operator symbols, if v is not free in & and v is free for x in P,
then [P} =

Indct: For any P, if v is not free in & and v is free for x in &, then [P)]Y = P.

There are a few things to note about this argument. First, again, we have to be careful
that the formulas # and B of which & is composed are in fact of the sort to which
the inductive assumption applies. In this case, the requirement is not only that + and
B have < k operator symbols, but that they satisfy the additional assumptions, that v
is not free in & but is free for x in &. It is easy to see that this condition obtains in
the cases for ~ and —, but it is relatively complicated in the case for V, where there

CHAPTER 8. MATHEMATICAL INDUCTION 383

is interaction with another quantifier. Observe also that we cannot assume that the
arbitrary quantifier has the same variable as x or v. In fact, it is because the variable
may be different that we are able to reason the way we do. Finally, observe that the
arguments of this section for (K) and T8.2 are a “linked pair” in the sense that the
result of the first for terms is required for the basis of the next for formulas. This
pattern repeats in the next cases, including the theorem immediately following.

*T8.3. Where constant ¢ does not appear in formula 2, [PF]5 = PJ.

*E8.25. Provide a complete argument for T8.2, completing cases for (~) and (—).
You should set up the complete induction, but may appeal to the text at parts that
are already completed, just as the text appeals to homework.

*E8.26. Show T8.3. Hint: You will need arguments parallel to (K) and then T8.2.

8.3.2 Case

This example develops another pair of linked results which may seem obvious. Even
so, the reasoning is instructive, and we will need the results for things to come. First,

T8.4. For any interpretation |, variable assignments d and h, and term £, if d[x] = h[x]
for every variable x in ¢, then ly[¢] = In[£].

If variable assignments agree at least on assignments to the variables in #, then
corresponding term assignments agree on the assignment to ¢. The reasoning, as
one might expect, is by induction on the number of function symbols in .

Basis: If + has no function symbols, then it is a variable x or a constant c. Suppose
d[x] = h[x] for every variable x in ¢. (i) Say ¢ is a constant ¢; then by
TA(c), lg[c] = I[c] and I[c] = Ih[c]. So lg[¢] = lg[c] = l[c] = ln[c] = In[£].
(ii) Say ¢ is a variable x; then d[x] = h[x]; and by TA(v), lg[x] = d[x]
and h[x] = In[x]. So lg[4] = lg[x] = d[x] = h[x] = l[x] = lh[£]. So if
d[x] = h[x] for every variable x in ¢, then lg[¢] = In[¢].

Assp: Forany i, 0 <i <k, if ¢ has i function symbols, and d[x] = h[x] for every
variable x in £, then Iq[¢] = I[£].

Show: If t has k function symbols, and d[x] = h[x] for every variable x in ¢, then
la[¢] = In[¢].

If has k function symbols, then it is of the form 4" s ... 4, for some
function symbol #” and terms 41 ... 4, with < k function symbols. Sup-
pose d[x] = h[x] for every variable x in ¢; then d[x] = h[x] for every
variable x in 41 ... 4,; so the inductive assumption applies to 41 ... 45;
so Ig[s1] = lh[s1] and ... and ly[35] = h[snr]. So with two applications

CHAPTER 8. MATHEMATICAL INDUCTION 384

of TA(D), la[z] = la[A"s1 ... sn] = /A" [{la[s1] .. . la[sn]) = I[A"](In[s1]
dn[sn]) = h[A"s1 ... su] = In[2]. Soif d[x] = h[x] for every variable x
in z, then ly[¢] = In[¢].

Indct: For any ¢, if d[x] = h[x] for every variable x in #, then lg4[#] = I4[£].

It should be clear that we follow our usual pattern to complete the show step: The
assumption gives us information about the parts—in this case, about assignments to
41 ...35; from this, with TA, we move to a conclusion about the whole term #. Notice
again that it is important to show that the parts are of the right sort for the inductive
assumption to apply: It matters that 41 ... s, have < k function symbols, and that
d[x] = h[x] for every variable in 51 ... 4,. Perhaps the overall result is intuitively
obvious: If there is no difference in assignments to relevant variables then, by the way
things build from the parts to the whole, there is no difference in assignments to the
whole terms. Our demonstration merely makes explicit how this result follows from
the definitions.

We now turn to a result that is very similar, except that it applies to formulas. In
this case, T8.4 is essential for reasoning in the basis.

*T8.5. For any interpretation |, variable assignments d and h, and formula &, if
d[x] = h[x] for every free variable x in P, then I4[#] = S iff I,[P] = S.

The argument, as you should expect, is by induction on the number of operator
symbols in the formula &

Basis: If & has no operator symbols, then it is a sentence letter & or an atomic
of the form R"#; ... 1, for some relation symbol R™ and terms 11 ... 1.
Suppose d[x] = h[x] for every variable x free in . (i) Say & is a sentence
letter §; then I4[P] = S iff I4[&] = S; by SF(s) iff [[§] = T; by SF(s)
again iff In[&] = S iff In[P] = S. (ii) Say P is R" 4y ... 1,; then since
every variable in & is free, we have d[x] = h[x] for every variable in
so d[x] = h[x] for every variable in #; ... i,; so by T8.4, l4[¢1] = In[#1]
and ... and l4[#,] = Ih[#x]. So l4[P] = Siff I4[R" 41 ... tn] = S; by SF(r)
iff (Ig[1] ... la[£n]) € I[R"]; iff (In[¢1]...In[2n]) € I[R”] by SF(r) iff
Ih[ﬂ”tl i) = Sy iff Ih[P] = S. So if d[x] = h[x] for every variable x
free in &, then I4[P] = Siff I[P] =

Assp: Foranyi,0<i < k if 2 has i operator symbols and d[x] = h[x] for every
free variable x in &, then I4[P] = Siff I,[P] =

Show: If &P has k operator symbols and d[x] = h[x] for every free variable x in
P, then l4[P] = Siff I,[P] =S
If & has k operator symbols, then it is of the form ~#4, A — B, or Vv A
for variable v and formulas # and B with < k operator symbols. Suppose
d[x] = h[x] for every free variable x in &.

CHAPTER 8. MATHEMATICAL INDUCTION 385

(~) Suppose & is ~#. Then since d[x] = h[x] for every free variable x in
P, and every variable free in +4 is free in , d[x] = h[x] for every free
variable in #; so the inductive assumption applies to 4. I4[#] = S iff
lg[~4A] = S; by SF(~) iff I4[A] # S; by assumption iff In[4A] # S; by
SE(~), iff ln[~A] = S; iff I[P] = S.

(—) Homework.

(V) Suppose P is Vv . Then since d[x] = h[x] for every free variable x in

&, d[x] = h[x] for every free variable in + with the possible exception of
v; so for arbitrary o € U, d(v|o)[x] = h(v|o)[x] for every free variable
x in #. Since the assumption applies to arbitrary assignments, it applies
to d(v|o) and h(v|o); so for any o € U, by assumption, lg(y|o)[4] = S iff
Ih(vo)[A] = S.
Now suppose lg[P] = S but Iy[P] # S; then I4[VvA] = Sbut Iy[VvA] #S;
from the latter, by SF(V), there is some 0 € U such that lp,|0)[4] # S; let
m be a particular individual of this sort; then Iy m) [A] # S; so, with the
inductive assumption as above, lg(y|m)[A] # S; so by SF(V), l4[VvA] # S.
This is impossible; reject the assumption: if 4[] = S, then I,[P] = S.
And similarly [by homework] in the other direction.

If 2 has k operator symbols and d[x] = h[x] for every free variable x in
P, then ly[P] = Siff I,[P] = S.

Indct: For any &, if d[x] = h[x] for every free variable x in & then I4[] = S iff
In[P]=S.

Notice again that it is important to make sure the inductive assumption applies. First,
in the (V) case, we are careful to distinguish the arbitrary variable of quantification v
from x of the assumption. Then, for the quantifier case, the condition that d and h
agree on assignments to all the free variables in + is not satisfied merely because they
agree on assignments to all the free variables in . We solve the problem by switching
to assignments d(v-|o) and h(v|0), which must agree on all the free variables in .
(Why?) Reasoning in the quantifier case is more involved than we have seen so far.
But you should be in a position to bear down and follow each step.

From T8.5 it is a short step to three quick corollaries that will be useful for things
to come. First a result that should remind you of A5 from AD,

*T8.6. EVx(P —> Q) — (P — Vx@) where x is not free in &.
Homework.
Second, a result the proof of which was promised in Chapter 4 (page 122). If a

sentence P is satisfied on any variable assignment, then it is satisfied on every variable
assignment, and so true.

CHAPTER 8. MATHEMATICAL INDUCTION 386

T8.7. For any interpretation | and sentence J#, I[#] = T iff there is some assignment
d such that I4[P] = S.

Consider some sentence J and interpretation I. (i) Suppose [[?] = T; then by T1I,
I4[#] = S for any d; so there is an assignment d such that I4[$] = S. (ii) Suppose
there is some assignment d such that I4[] = S, but I[] # T. From the latter, by
TI, there is some assignment h such that I,[5?] # S; but if & is a sentence, it has
no free variables; so (vacuously) every assignment agrees with h in its assignment
to free variables in J; in particular d agrees with h in its assignment to every free
variable in J#; so by T8.5, I4[#] # S. This is impossible; reject the assumption: if
l4[#] =S then I[P] =T.

In effect, the reasoning is as sketched in Chapter 4. Whether Vx . is satisfied by d
does not depend on the particular object d assigns to x—for the quantifier “overrides”
the assignment from d. The key is contained in reasoning for the (V) case of T8.5,
which “exempts” a quantified variable from ones on which assignments must agree.
Given this, the move to T8.7 is straightforward.

Finally, as we have emphasized, the (~) and (—) clauses of definition SF apply
to satisfaction, not truth. Even so, for sentences of a quantificational language we
recover simple truth conditions as from ST. Reasoning appeals most naturally to T8.7,
though we may think of this as another corollary to T8.5.

*T8.8. For any interpretation | and sentences & and @,
() I[~P]=Tiff IP]# T
(i) I[P - Q] =Tiff I[P]# Torl[@] =T.
Homework.

As a quick consequence of this last theorem, we obtain corresponding results for A,
V, and <. Thus, for the sentential operators, sentences of a quantificational language
obey the same truth conditions as ones from sentential languages.

*E8.27. Provide a complete argument for T8.5, completing the case for (—), and
expanding the other direction for (V). You should set up the complete induction,
but may appeal to the text at parts that are already completed, as the text appeals
to homework.

*E8.28. Show T8.6 and both parts of T8.8.

E8.29. Show that for any interpretation | and sentence &, either [[P] = Tor [[~P] = T.
Hint: This is not an argument by induction, but rather another quick corollary to
T8.5; you can begin by supposing the result is false and show that the assumption
is impossible.

CHAPTER 8. MATHEMATICAL INDUCTION 387

8.3.3 Case

Here is another pair of results, with reasoning like we have already seen.

*T8.9. For any formula J#, term #, constant ¢, and distinct variables v and x, [P/]5

is the same formula as [P ;’C.
X

Notice that [/ |5 might be different from [#]¥ —for if # contains an instance
of ¢, that instance of c¢ is replaced in the first case, but not in the second. The
proof breaks into two parts. (i) By induction on the number of function symbols
in an arbitrary term 7, we show that [#Y]¢ = ¥ z Given this, (ii) by induction
on the number of operator symbols in an arbltrary formula &, we show that
[P71S = [J’f]}% Only part (i) is completed here; (ii) is left for homework.
Suppose v # x.

Basis: If » has no function symbols, then it is either v, ¢, or some other constant
or variable.
(v) Suppose * is v. Then »¥ is £; so [+Y]S = 5. But »% is v; so [»5 17;2 =
Utf =15.So (V]S =15 =[r C];’c
(¢) Suppose * is c. Then »¥ is ¢ and [rt] is x. But »£ is x; and, since
v #EX, [rx] isx. So [*7]y =x = [%x]
(oth) Suppose * 1s some variable or constant other than v or ¢. Then [*7]5 =
*% = ». Similarly, [%fc]‘;ﬁ = %1} =r So[*Y]f=»r= [%’C‘]gfc
Assp: Forany i, 0 <i <k, if » has i function symbols, then [#V]¢ = [%fc];%.
Show: If » has k function symbols, then [+7]$ = [»£ ;’%
If » has k function symbols, then it is of the form, 4" s ... 4, for some
function symbol 4" and terms 4 ...4, each of which has < k func-
tion symbols; so by assumption, [¢17] = [41,”6]1’0 and ... and [s,7]5f =
[snx]je- So[r71y =[h"s1 ... snf 1z = A"[s17 1% - [snl 13 = A" [515]

[4,19‘6]1% =[A"s1... 4nx]Zg =[r x]t“ so [#Y]¢ = [%fc]:t’§

Indct: For any », [#V]¢ = [”"occ]:;j;

You will find this result useful when you turn to the final proof of T8.9. That argument
is a straightforward induction on the number of operator symbols in &. For the
case where J is of the form Yw +#, notice that v is either w or it is not. On the

one hand, if v is w, then # = Yw #A has no free instances of v so that P/ = P,
and [P/]¢ = P§; but, similarly, ¢ has no free instances of v, so [Pf£]7 e = P5.

On the other hand, if visa Varlable other than w, then [P/] = Vw ([AY]$) and
[P£]7e = Vw ([4Z]7.) and you will be able to use the inductive assumption.

*E8.30. Complete the proof of T8.9 by showing by induction on the number of

operator symbols in an arbitrary formula & that if v is distinct from x, then
[P ;7]fc = [5) xls

CHAPTER 8. MATHEMATICAL INDUCTION 388

8.3.4 Case

We conclude this section with a result that depends on the one just before. Where
A ={(Dq...D0,)is an AD derivation, and ® = {F7, ¥, ...} is a set of formulas, for
some constant @ and variable x, say A% = (D15 ... Dyy) and @ = {F1 ¢, F2 .. .}
By induction on the line numbers in A, we show,

*T8.10. If A is an AD derivation from ®, and «x is a variable that does not appear in
A, then for any constant @, A% is an AD derivation from ®£.

Suppose A = (Dy...Dy) is an AD derivation from ®, a a constant, and x a
variable that does not appear in A.

Basis: D, is either a member of ® or an axiom.
(prem) If D; is a member of ®, then D1 is a member of Z; so (D15) is a
derivation from ®¥%.

(A1) If Dq is an instance of Al, then it is of the form, # — (@ — #); so
D1¢is [P — (Q - P2 =P — (QF — PL); but this is an instance
of Al; so if Oy is an instance of Al, then D1 ¥ is an instance of A1, and
(D1%) is a derivation from ®F.

(A2) Homework.

(A3) Homework.

(A4) If O, is an instance of A4, then it is of the form, Vv # — P/, for some
variable v and term # that is free for v in . So D1 § = [Vv P — PP|4 =
Vo P]e — [P/]4. Butsince a is a constant, [Vv P]¢ = Vo [P2]. And
since x does not appear in A, x # v; so by T8.9, [P/]2 = [PF Z{(, So
D1g =Vu[PE] — [PE 1;;,,; and since x is new to A and # is free for v
in P, 1 is free for v in PZ; so Vo [PF] — [ﬂ’f]gg is an instance of A4;
so if Oy is an instance of A4, then D;¥ is an instance of A4, and (D;5)
is a derivation from ®%.

(AS) Homework.

(eq) If Oq is an equality axiom, A6, A7, or A8, then it includes no constants; so
Dy = D145 50 D12 is an equality axiom, and (Dq5) is a derivation from
oL

Assp: Forany i, 1 <i <k, (D15 ...D;%) is a derivation from ®Z.

Show: (D15 ... Dy) is a derivation from dL.
Dy is a member of ®, an axiom, or arises from previous lines by MP or
Gen. If Dy is a member of ® or an axiom then, by reasoning as in the
basis, (D15 ... Dr2) is a derivation from ®¢. So two cases remain.

(MP) Homework.

CHAPTER 8. MATHEMATICAL INDUCTION 389

(Gen) If Oy, arises by Gen, then there are some lines in A,

i P

k Yv&P i Gen

where i <k and Oy = Vv L. By assumption P is a member of the deriva-
tion (D1y ... Dy—15) from ®¢; so Vv [PE] follows in this new derivation
by Gen; but since « is a constant, this is [Vu P]%. So (D15 ... Drl)isa
derivation from ®¥%.

(D15 ... D) is a derivation from ®F.

Indct: For any n, (D15 ... Dyy) is a derivation from dF.

The reason this works is that none of the justifications change: switching x for a
leaves each line justified for the same reasons as before. The only sticking point
may be the case for A4. But we did the real work for this in T8.9. Given this, the
rest is straightforward. Observe that this theorem is generally available: from VC, a
quantificational language has infinitely many variables; but derivations are finitely
long; so there must always be variables that do not appear in a derivation A.

*E8.31. Finish the cases for A2, A3, A5, and MP to complete the proof of T8.10.
You should set up the complete demonstration, but may refer to the text for cases
completed there, as the text refers cases to homework.

E8.32. Where @ = {Ab} and A is as follows,

1. Vx~Ax — ~Ab A4

2. (Vx~Ax — ~Ab) — (~~Ab — ~Vx~Ax) T3.13
3. ~~Ab - ~Vx~Ax 2,1 MP
4. Ab — ~~Ab T3.11

5. Ab - ~Vx~Ax 43T3.2
6. Ab prem

7. ~Vx~Ax 5,6 MP
8. dxAx 7 abv

apply the method of T8.10 to show that Ag is a derivation from <I>£. Do any of
the justifications change? Explain.

E8.33. Set U = {1}, I[8] = T for every sentence letter §, I[[R!] = {1} for every R!;
I[R?] = {(1,1)} for every RZ; and in general, I[R"] = {(1,...,1)}. Notice that
I[¢] can only be 1 for every constant ¢, and I[#"] = {{{1,...,1), 1)} for every
function symbol 4". Where # is any formula whose only operators are —, A, V,

CHAPTER 8. MATHEMATICAL INDUCTION 390

<>, ¥, and 3, show by induction on the number of operators in & that 4[] = S.
Use this result to show that * ~#. Hint: This is a quantificational version of
E8.14; this time you will want to show first that for any term ¢, l4[¢] = 1; and with
this that I4[#] = S.

8.4 Additional Examples (for Part IV)

Again, our primary motivation in this section is to practice doing mathematical in-
duction. This final series of examples develops some results about Q that will be
particularly useful if you go on to consider Part [V. As we have already mentioned
(page 306, and compare E7.19), many true generalizations are not provable in Robin-
son Arithmetic. However, we shall be able to show that Q is generally adequate for
some interesting classes of results. As you work through these results, you may find it
convenient to refer to the final Chapter 8 theorems reference on page 405.

First Theorems of Chapter 8

T8.1 For any P whose operators are ~, V, A, and —, Py is in normal form and I[P] =T
iff I[P =T.

T8.2 For variables x and v, if v is not free in a formula & and v is free for x in P,
then [P)]Y = £.

T8.3 Where constant ¢ does not appear in formula &, [P}]S = P).

T8.4 For any interpretation |, variable assignments d and h, and term #, if d[x] = h[x]
for every variable x in , then ly[z] = Ih[£].

T8.5 For any interpretation |, variable assignments d and h, and formula £, if d[x] = h[x]
for every free variable x in P, then I4[P] = S iff I[P] = S.

T8.6 EVx(P — @) — (P — Vx@) where x is not free in L.

T8.7 For any interpretation | and sentence P, I[#] = T iff there is some assignment d
such that I4[#] = S.

T8.8 For any interpretation | and sentences & and @, (i) I[~P] = T iff [[P] # T; and (ii)
[P — Q] =Tiff [P]#Tor I[@] = T. Corollary: Similarly for A, Vv, and <.

T8.9 For any formula J, term #, constant ¢, and distinct variables v and x, [P/]5 is
the same formula as [P£]7..
x
T8.10 If A is an AD derivation from ®, and x is a variable that does not appear in A,
then for any constant @, A% is an AD derivation from ®%.

CHAPTER 8. MATHEMATICAL INDUCTION 391

First, we shall string together a series of results sufficient to show that Q cor-
rectly decides atomic sentences of £yr: For any atomic sentence & and the standard
interpretation N, if N[J?] = T then Q k. &, and if N[P] # T then Q b, ~P.
Include among the atomic sentences equalities 4 = £, but also the inequalities, s < #
and s < ¢.2 Observe that if & is atomic and a sentence, its terms 4 and ¢ have no

variables.
nSs

— _ _

As a preliminary, let n abbreviate, S ... S 0. So, for example, 2 is $ 50, and 0 is
just @. Any such N is a numeral. Observe that S2, say, is just SSS@. Then it is easy
to see that,

T8.11. For any n € U and assignment d, Ng[n] = n.

By induction on the value of n. Consider an arbitrary assignment d.

Basis: By TA(c), Ng[@] = N[@] = 0; but this is just to say, Ng[0] = 0.

Assp: Forany i, 0 <i<k, Ng[i] =1i.

Show: Nglk] = k. Where k > 0, k is the same numeral as Sk—1; and by as-
sumption, Nglk—1] = k—1. So Ng[k] is Ng[Sk-1]; by TA(f), this is
N[S]{Ng[k - 1]}; by assumption this is N[S](k - 1); which is (k- 1) + 1;

which is k. So Ng[k] = k.

Indct: For any n and d, Ng[n] = n.

If the assignment to k- 1 is k— 1, then the assignment to Sk - 1 is the successor of
k-1 which is k.* Typically, I shall treat this result as “common knowledge” and assert
(or suppose) Ng[n] = n without explicit appeal to T8.11.

8.4.1 Case

We begin with some simple results for the addition and multiplication of numerals.

T8.12. Forany a,b,c € U,ifa+b=c,thenQt,, a+b="C.

By induction on the value of b. Recall that by T6.48, Q I, ¢+ + @ = ¢ and from
T6.49, Q kp, t + Ss = S(¢ + 3). Further, as above, we depend on the general
fact that, so long as a > 0, Sa -1 is the same numeral as a.

20f course, the inequalities are abbreviations, Ju(u 4+ ¢ = ¢) and Ju(Su + s =) and as such,
not atomic. However trees to construct abbreviated formulas have inequalities in the top row of their
formula part—and, as for the identification of grammatical parts with other abbreviations, the notion is
thus applied in a derived sense.

3 Again, insofar as reasoning applies the assumption just to k— 1, it would have been natural to apply
scheme III from the induction schemes reference (assume for m, show for m + 1); however we get the
same effect by applying our usual assumption to k — 1 (see note 1 on page 370).

CHAPTER 8. MATHEMATICAL INDUCTION 392

Basis: Suppose b = 0 and a+b = c; then a = ¢; but by T6.48, Q I, @ + 0=17a;
soQh, at+b=c

Assp: Foranyi,0<i<kifa+i=c,thenQk,, a+

Show: If a+ k =c, then Q }—ND+§+R =cC.
Suppose a+k =c. Sincek =i,k =0and soc > 0; letk-1 = m and
¢ -1 =d; then k is the same as Sm, C is the same as Sd, and a+ m = d.
From the latter, by assumption Q b, (@ + M) = d; by T6.49, Q k.
@+ Sm)=S@+m);soby=E,QHk,, @+ Sm) = Sd; and this is
justtosay Q b, @+ k=C.

=_C.

Indct: For any a, b, and ¢, ifa+b=c,then Q I, a+ b=-c¢.

Corollary: ifa+1 =bthen Q 5, Sa = b. Suppose a+ 1 = b; then as above,
Qhyp, a+ 1 = b; but by T6.53, Q Fp, @+ 1= Sa;soby =E,Q Fvp, S8 = b.

The basic idea for this theorem is simple: From the basis, Q F,,, @ + 0 = a; then
given the assumption for one value of b, we use T6.49 to get the next. Observe that
a, b, and ¢ are numbers—objects in the universe—and we informally manipulate them
to conclude that, say, a = ¢ fromb = 0 and a+ b = c. In contrast, 2, k, and C are
numerals of the sort S ... S@ and, say, a + k = C is a sentence of &y which we show
follows from the axioms of Q. It is not as though we somehow forget how to do
arithmetic! Rather we understand arithmetic, and show how Q is related to it. Note
the (slight) typographical difference between ‘+’ in the object language and ‘+’ to
express the function.

*T8.13. Forany a,b,c € U,ifaxb=cthenQh,, axb=C.

By induction on the value of b. Hint: Let k—1 = m and ¢ — a = d. By assumption
you should be able to obtain Q ,,, axm = d; then you will be able to apply
T6.51 and T8.12 for the desired result.

*E8.34. Provide an argument to show T8.13.

8.4.2 Case

We now obtain a series of results for atomics and negated atomics whose terms are
numerals. First, without mathematical induction it is easy to see that Q proves true
atomic sentences with numerals as terms. Recall that 4 < 7 is Ju(u + s = ¢) and
s <tisJu(Su + s = 1) for u notin 4 or £.

T8.14. For any a,b € U, (i) if a = b then Q K,

D+

Q by, @ < b; and (i) if a < b then Q 15, @ < b.

a = b; (i) if a = b then

CHAPTER 8. MATHEMATICAL INDUCTION 393

(i)Ifa=bthenQhk,, a= b: Suppose a = b; then @ is the same term as b; and

by =I,Q Hp,, @ = b.

(ii)Ifa<bthenQhk,, a < b: Suppose a < b; then there is some d that is the
difference between them, such that d +a = b; so by T8.12, Q k5, d + @ = b; so
by 3L, Q b, Ju(u +a = b); and by abv, Q b5, @ < b.

(iii) If a < b then Q k,,, @ < b: Suppose a < b; then there is some d such that
(d+1)+a=Db;soby T8.12,Q ., d+1+a = b; but d + 1 is the same term
as Sd; so Q b, Sd+a = b; so by 3L, Q b, Ju(Su + @ = b); so by abv,

Qhyp,a<h.

The cases for negated atomics are more interesting. Arguments are similar, though
we require a preliminary for one case:

T8.15. Qkp, Sj +n=j + Sn.
Homework.

With this, we are ready for the results about negated atomics. Recall that according to
T6.46, Q by, St # 0; and from T6.47,Q b, St = Ss — ¢ = 5.

T8.16. For any a,b € U, (i) if a # b, then Q ,,, a # b; (ii) if a # b, then
Q Fp, @ £ b; and (iii) if a #£b, then Q I, @ £ b.

(i)Ifa#b,thenQ k5, a # b: Suppose a # b. Then there is some d > 0 that
is the difference between them, such that either d+a = b ord+b = a. The
argument is the same either way, so suppose the latter. We show that for any n,
Qh,yp, d+n # N then whenn=b, Q k. d+b # b whichis Q I, @ # b.

Basis: Suppose n=0. Thend=d+nandd =d+n; and sinced>0,d = Sd - 1;
so Sd—-1=d=d+n. By T6.46, Q b,,, Sd—1 # 0; but this is just to say
Qhyp, d+n#T.

Assp: For0<i<k, Qb d+i # i.

Show: Q b, d+k # k.

Since k > i, k > 0; let k=1 = m; then k is Sm and d +k is Sd+m.
By T6.47, Q b, Sd+m = Sm — d+m = m; but by assumption,
Q hyp, d+m # m; so by MT, Q b, Sd+m # Sm; which is to say,

CHAPTER 8. MATHEMATICAL INDUCTION 394

(ii) If a £b, then Q K,

D, a % b: Suppose a £b. Then a > b, and for some d > 0,
d + b = a. By induction on n, we show that for any n, Q I, j + d+n # n; the
case when n = b gives Q I, j + @ # b; then by VI, Q k5, Yu(u + a # b);

and the result follows with QN.

Basis: Suppose n = 0;thend =d+n. Ford >0, letd-1=m; then d = Sm; and

Sm=d=d+n. By T6.49, Q I, j + Sm = S(j + m); and by T6.46,

Q Fyp, S(j + M) # 0;so by =E, Q b, j + Sm # 0; where this is just

tosay Qhp, j +d+n#n.

Assp: For0<i<k, Qb j +d+i# 1.
Show: Q by, j +d+k # k.

Since k > i,k >0;letk—1 =m; thenk = Smandd+k = Sd+m. By
T6.47,Q by, S(j +d+m) = SM — j +d+m = m; but by assumption,
Qhyp, J +d+m # m;soby MT, Q b, S(j +d+m) # Sm; by T6.49,
Qhyp, j+Sd+m = S(j+d+m);soby =E,Qhy,, j+Sd+m # Sm;
but this is just to say, Q b, j +d+k # k.

Indct: Forany n,Q b, j +d+n#n.

SoQ by, j +d+b # b whichis to say Q b, j +a # b. So by VI,
Q kp, Yu(u +a # b); and by QN, Q b, ~Ju(u + @ = b); which is to say,
Q l_ND+ 5 i b

(iii) If a #b, then Q F,

. @ £ b. Homework.

Supposing that Q . 0 + d+n = d+n (which you can show by an easy induction),
it is possible to reconceive the result of the induction for (i) as an instance of that for
(i1), in the case when j = 0.

E8.35. Provide arguments to show T8.15 and (iii) of T8.16. Hints: T8.15 is a simple
induction on n; for the show, let m = k- 1; you will want the assumption in
the form, Q ., Sj +m = j + Sm. For T8.16, the induction is to show
Q kyp, Sj + d+n # N. There is a complication, however, in the basis: From
a #£b, b+d = a for d=0; given that d might be 0, we cannot simply treat d as
a successor and set d = ST as above; you can solve the problem by obtaining
j + Sd # 0 for an application of T8.15. For the show, since k > 0, the argument
remains straightforward.

E8.36. Show that for any n, Q I, 0 + 1 = 7, and use this to obtain the result of the

induction for T8.16(i) from that for T8.16(ii).

CHAPTER 8. MATHEMATICAL INDUCTION 395

8.4.3 Case

The results of the previous section were limited to atomics and negated atomics whose
terms are numerals. We now extend results to consider atomics with terms of arbitrary
complexity. The atomic sentences are of course still sentences so that their terms
remain variable-free.

We have said a formula is frue iff it is satisfied on every variable assignment. Let
us introduce a parallel notion for terms.

Al The assignment to a term on an interpretation I[¢] = n iff with any d for I,
lg [t] =n.

If there were some one a such that for every x € U, (x,a) € I[i!], then for any d and
assignment to x, lg[h!x] = a—and the assignment to 4!x, I[2!x] = a. We meet some
functions of this sort in Chapter 12; but such “constant” functions are not the norm.
More relevantly, from T8.4, if assignments d and h agree on assignments to variables
in ¢, then lg[#] = In[¢]; and if £ is without variables then any assignments agree on
assignments to all the variables in #; so it is automatic that, for a variable-free term,
any lq[¢] = In[¢] = 1[4].

Given this, we start by establishing that Q proves the proper relation between
arbitrary variable-free terms and numerals.

T8.17. For any variable-free term ¢ of &yr, if N[#] =n, then Q I, + =n.

Let ¢ be a variable-free term of £y;. By induction on the number of function
symbols in %,

Basis: Suppose ¢ has no function symbols and N[#] = n. Then # can only be the

constant @; so N[#] = N[@] = 0; and n = 0. But by =1, Q I,,,, 0 = 0; so
Qhyp, t =0

Assp: For any i,0 < i < k if ¢ has i function symbols and N[i] = n, then
Qhp, t =0

Show: If ¢ has k function symbols and N[¢] = n, then Q I, t = n.

Suppose ¢ has has k function symbols and N[#] = n. Then # is of the form,
S», ® 4+ 3, o0r* x 4 for », 4, with < k function symbols.

(S) # is S». Since # is variable-free, » is variable-free and N[»] = Ng[*] = a
for some a. And since £ is variable-free, N[#] = Ng[#] = Ng[S*#]; by TA(f),
this is N[S](Ng[»]) = N[S](a) = a+1;soN[¢t] =a+1;s0oa+1 =n.
By assumption Q . » = a; and by =I, Q k5,,, S = §»; so by =E,
Q kyp, S* = Sa; but since a+ 1 = n by the corollary to T8.12, Q k.
Sa =n;soby =E, Qk,, S* =n, where thisis to say Q I, £+ =n.

(4) #is » + s. Since # is variable-free, » and 4 are variable-free and N[»| =

Ng[»] = a and N[4] = Ng[4] = b for some a and b. Since # is variable-free,

CHAPTER 8. MATHEMATICAL INDUCTION 396

N[#] = Ng[¢] = Na[r + s]; by TA(f), N[+ s] = N[+](a,b) = a+b; so
N[¢] = a+b; so a+b = n. By assumption, Q I5,,,, * = @and Q I, s = b;
andby =1, Q b, # + s =+ 3;s0by =E, Q b5, * + 4 = a+b; but
sincea+b=n,by T8.12,Q k5, a+b=n;soby=E,Q B, ¥+ 4 =N,
where this is to say Q k. + =n.

(x) Similarly [by homework].

If variable-free ¢ has k function symbols and N[#] = n, then Q I, t = n.

Indct: For any variable-free term £, if N[#] = nthen Q I, # = n.

Our intended result, that Q correctly decides atomic sentences of &£yr is not an
argument by induction, but rather collects what we have done into a simple argument.
The general idea is that from the truth or falsity of an atomic sentence including some
terms s and #, by semantic reasoning we may obtain a result for some corresponding
objects a,b € N; then, given T8.14 and T8.16, a result in Q for terms @, b—and
finally, with T8.17, the desired result for the original atomic involving terms 4 and ¢.

T8.18. Q correctly decides atomic sentences of Lyr: For any sentence J of the sort
s =1,3 < t,0ors < t,if N[’] =T then Q k5, &; andif N[&*] # T then

QK

ND+

~P.

Consider an atomic sentence P of the sort 4 = £, 4 < ¢, 0or 4 < t. Since P is a
sentence, ¢ and ¢ are variable-free. A few selected parts are worked as examples.

(a)

(b)
(©

(d)

Suppose N[s = #] = T; then by TI, for any d, Ng[s¢ = #] = S; so by SF(1),
(Ng[s], Ng[#]) € N[=]; so Ng[s] = Ng[#]. But since 4 and # are variable-
free, for some a and b, Ng[4] = N[4] = a and Ng[#] = N[£] = b; so a = b;
so by T8.14, Q K, @ = b; but since N[s] = a and N[¢] = b, by T8.17,
Qhyp, s =aandQhy,, t =Db;soby =E, Qly,, s = .

Suppose N[s =] # T; then [by homework] Q b, s # 1.

Suppose N[s < ¢] = T; then N[Fu(u + s = t)] = T, so by TI, for any d,
Na[Fu(u 4 s =)] = S; so by SF'(3), for some m € U, Ny m)[u + ¢ = #] =
S. d(u|m)[u] = m; so by TA(V), Ng(|m)[1] = m; since s and ¢ are variable-
free, for some a and b, Ny, m)[4] = N[s] = @ and Ny, m)[] = N[¢] = b; so by
TA(f), Ny@ujm)[u + 3] = N[+](m, a) = m+a. So by SF(r), (m+a,b) € N[=];
som+a=Db;soa=b;sobyT8.14, Q I, a < b. Butsince N[s] = a
and N[¢] = b, by T8.17, Q k,,, 4 = @aand Q k,, ¢ = b; so by =E,
Qhkyp, 3 = t.

Suppose N[s < #] # T; then N[Fu(u + s = #)] # T; so by TI, for some d,

Na[Fu(u + s = 1)] # S; so by SF'(3), for any 0 € U, Ny o) [u + 3 = 1] #S;
let m be an arbitrary individual of this sort; then Ny m)[u + s = t] # S.

CHAPTER 8. MATHEMATICAL INDUCTION 397

d(u|m)[u] = m; so by TA(V), Ng(u|m)[#] = m; and since s and are variable-
free, for some a and b, Ny, m)[4] = N[s] = @ and Ny, m)[#] = N[¢] = b; so by
TA(), Ny m) [t + 3] = N[+](m,a) = m+a. So by SF(r), (m+a,b) & N[=];
so m+a # b; and since m is arbitrary, forany o € U,0+a # b; soa £b;
so by T8.16, Q k,,, @ £ b. But since N[s] = a and N[¢] = b, by T8.17,
Qhyp, s =aandQhy,, t =Db;soby =E,Qly,, s £ 1.

(e) Suppose N[s <] = T; then [by homework] Q I,

by 3 < 1.

(f) Suppose N[s < t] # T; then [by homework] Q I, s £ ¢.

This is an interesting result! Q is sufficient to decide arbitrary atomic sentences of
basic arithmetic. So, for example, insofar as the formula 3x2 =2x3istrue on N, by
T8.18, Q b, 3 X 2 = 2 x 3 (compare E6.40¢). And similarly for atomic sentences
and their negations whose terms are arbitrarily complex.

E8.37. Complete the argument for T8.17 by completing the case for (x). You should
set up the entire induction, but may appeal to the text for parts that are already
completed, just as the text appeals to homework.

E8.38. Complete the remaining cases of T8.18 to show that Q correctly decides
atomic sentences of Lyr.

8.4.4 Case

We conclude the chapter with some more examples of mathematical induction, this
time working toward important results about inequality. The primary result is a version
of trichotomy, the result that for any n, Q I, Vx(x <hV x =nvn < x). Again,
though, we begin with preliminaries. First, a simple argument that introduces a pattern
of reasoning we shall see again.

T8.19. For any n, b, VxVy(x = Sy - [(y =0vy=1v...vy=n) —
(x=8S0vx=S1v...vx=S5n).

e J =Sk = [k =0Vv...Vv
k=n)— (j =S0V...vj = Sn). The result follows by VI.

By induction on the value of n we show,

o,] =Sk = [k =0— j = S0]. But
this is immediate by a couple applications of —1.
j=8Sk—>[k=0v..vk=1) —

Basis: n = 0. In this case, we require |

Assp: For any i, 0 < i < k, |5

ND+

(j=S0v...vj=Si)

CHAPTER 8. MATHEMATICAL INDUCTION 398

Show: by, j = Sk - [(k=0v...vk=k) — (j =S0Vv...vj = Sk).
Let m = k — 1. For the derivation, see the box below.

Indct: Foranyn,,, j =Sk > [(k=0v...vk=n) = (j =S0Vv...V

- > ND+
Jj = Sn).
Soby VI, b, VXVy(x =Sy > [(y =0Vv...vy=n) > (x=S0Vv...V
x = Sn)]), and the theorem is proved.

The basic idea is that we can use j = Sk together with an extended version of VE on
k =0V ...Vvk =nto get the result. The induction works by obtaining the result for
the first disjunct, and then showing that no matter how far we have gone, it is always
possible to go to the next stage. Observe that we have not included parentheses for
extended disjunctions—for it is always possible by Assoc to group disjuncts so as to
justify arbitrary applications of VE and VI as above (and we prove it in E8.40). This
theorem is useful for the next.

Recall that the bounded quantifiers (Vx < #)P, (Ax <)P, (Vx <)P, and
(Ix < t)P, are abbreviations with associated derived introduction and exploitation
rules (see page 300). Now,
T8.20. For any n, (i) Q by, (Yx < M)(x =0V x = 1V...Vvx =n)and (ii)
Qb Yx <M@#Pvx=0vx=1Vv...vx=n-1).

The first disjunct @ # @ in (ii) guarantees that the result is a well-formed sentence
even when n = 0. When n = 0 the series reduces to ¥ # @ since it contains

T8.19 (show)

l.|j=Sk—[(k=0Vv...vk=m)— (j =S0V...vj=Sm) by assp
2. |j =Sk A (g, =D
3. k=0v..vk=mvk=k A (g, =D
4. k=0v...vk=m A (g, 3VE)
5. (k=0v..Vk=m) > (j=S0Vv...v,j=Sm) 1,2 —E
6. j=S8S0v...vj=Sm 54 —E
7. j=8S0v...vj=Smv =Sk !

8. k=k A (g, 3VE)
9. j =Sk 2,8 =E
10. j=8S0v...vj=Smv =Sk 9 vI

11. j=8S0v...vj=Smv =Sk 3,4-7,8-10 VE
12.| [(k=0V...Vk=k) = (j=S0V...Vj =Sk 3-11 -1
13.|j =Sk > [(k=0V...Vk=k) = (j =8S0V...vj=Sk)] 2-12 —I

CHAPTER 8. MATHEMATICAL INDUCTION 399

all the members “up” to n — 1 and there are not any; when n = 1 the series is
@ # @ v x = 0; and so forth. We work part (ii). By induction on n,

Basis: Suppose n = 0. We need to show Q k. (Vx < @)(@ # 0). But this is
easy with T6.55 and the rule (VI).

L.||j<® A (g, (YD)
2.1 j 20 T6.55
3.1 1.2 11

4. |0#£0 31E

5.0 (Yx <@ @ £0) 1-4(VD

Assp: For0<i<k, Qb (Vx <)@ #0Vvx=0Vv...vx=i-1).

Show: Q by, (Vx <K)@ # OV x=0V...vx=k-1). Letm=k-1. Then
by assumption Q b, (Vx <m)(@ # 0V x = OV...vx=m-1). See
the derivation on page 401.

Indct: Forany n,Qh,,, (Vx <M(@ #@Vvx=0vx=1...vx=n-1).

E8.39. Complete the demonstration of T8.20 by showing part (i). Hint: The basis is
easy with T6.54.

*E8.40. For extended disjunctions we have not included parentheses. Say these
disjunctions are implicitly left-associated as, ((((A Vv B) v C) v D) Vv E). Then
applications of V-rules apply directly just to the main, rightmost, operator. Where,

Pr=A1V ... Vh,Vh, V...V A,
Ql=Av... v,
@3=AUV...VA,,

are each left-associated, show that our “loose” reasoning is justified by showing
that for any P, and any u, 1 <u < n, b, $» < (Q) v @P). Thus the left-
associated #, is provably equivalent to disjunctions with arbitrary main operator.
Hint: The argument is by induction on the value of n. Let m = k - 1; then

Pr = (Pm V Ag).

8.4.5 Case

The next theorem is a converse to T8.20 (after unabbreviation of its bounded quan-
tifiers), and illustrates a pattern of reasoning we have already seen in application to
extended disjunctions.

T8.21. For any n, (i) Q k5, Vx[(x =0vx=1V...Vx =n) — x <n]and (ii)
Qb VX[#0VvXx=0V...Vvx=n-1) > x <]

CHAPTER 8. MATHEMATICAL INDUCTION 400

Again I illustrate just (ii). For any n and a < n we show by induction on the value
ofathatQhy, @ #0Vvj=0Vv...vj=a-1)— j <n;the case when
a=ngivesQh, @#0OVj=0Vv...vj=n-1)— j <n;and the desired
result follows immediately by VI. Observe that when a = 0 the series reduces to
@ # @ as before.

Basis:a=0. WeneedQF,,, 0 #0 — j <n.

.| |0#0 A(g, =D
2.1 10=90 =1
3.1 1L 2,1 11
4.lj<n 31E
5|0#£0—j<n 1-4 -1
Assp: Foranyi,0<i<k=n,Qhy,, (0 #0Vvj=0v...vj =i-1)—> j <n.
Show: Fork =n,Q bk, @ #0Vj=0v...vj=k-1) - j <n Let
k—1=m.
L|I@#0Vvj=0v...vj=m-1)—j<n by assp
2.[|0#£0vi=0v...vj=m-1vj=k-1 A(g =D
3. B£0vji=0v...vj=m-1 A (g,2VE)
4.0l]j<nm 13 —>E
5. j=k-1 A (g, 2VE)
6. k-1<n T8.14 (since k—1 <n)
7.0 1j<n 6,5 =E
8.1|j<n 2,3-4,5-7 VE
9.|@#0Vvj=0v...vj=k-1)—j<n 2-8 —>I

Indct: Foranya<n,Qb,, @ #0Vvj=0v...vj=a-1)—j<n

SoQhy,, @#0Vvj=0v...vj=n-1)— j <nyand by VL, Q 5,

Vx[@#OVvx=0V...vx=n-1)— x <n].

The next theorem does not require mathematical induction at all, but is required
for our trichotomy result.

T8.22. For any n, (i) Q k5, Vx[n < x — (n = x v SN < x)] and (ii) Q K,
Vx[n<x —> (Sn=xVvSn<ux).

Part (ii) is worked in the box on page 403.
With this, we are ready to obtain the result at which we have been aiming:

T8.23. For any n, (i) Q k5, VX (x <NV N < x)and (ii)) Q k5,

p, VX(X <nVx =
nvn<x).

CHAPTER 8. MATHEMATICAL INDUCTION 401

T8.20 (show)

1.|VaVy(x =Sy > [(y =0Vv...vy=m-1) -

x=1v...vx=Sm-1)]) T8.19
2./ (Vx<m@#OVvx=0V...Vvx=m-1) by assp
3.0 [J <k A (g, (VD)
4.1 |j=0vIy(=Sy) from T6.52
5.0 ||j=0 A (g, 4VE)
6. j=0v...vj=k-1 5 VI
7. #£0Vj=0V...vj=k-1 6 VI
8.1 | Iy =Sy) A(g,4VE)
9. j=SI A (g, 83E)
10. Ju(Su + j =k 3 abv
11. Sh+j=k A (g, 103E)
12. Sh+SIl=k 11,9 =E
13. Sh+SI=S(Sh+1) T6.49
14. S(Sh+1)=k 12,13 =E
15. S(Sh+1)=Sm 14 aby
16. S(Sh+1)=Sm— Sh+[=m T6.47
17. Sh+1l=m 16,15 —-E
18. u(Su + 1 =m) 17 A1
19. l<m 18 abv
20. [l <m 10,11-19 JE
21. 9+0VvIi=0v...vI=m-1 2,20 (VE)
2. g+ 0 A (g, 21VE)
23. P#0Vvj=0vj=1v...vj=k-1 22 VI
24. [=0v...vli=m-1 A (g, 21VE)
25. j=Sl—-[(=0v...vlI=m-1) —

(=1Vv...vj=58m-1)] 1 with VE

26. (=0v..vi=m-1)—>(j=1v...vj=8Sm-1) 259—E
27. j=Tv...vj=Sm-1 26,24 —E
28. j=1v...vj=k-1 27 abv
29. D#0Vvj=0vj=1v...vj=k-1 28 VI
30. GAGVj=0vVj=1V...vj =K1 21,22-23,24-29 VE
3. | |6#£0vji=0v...vj=k1 8,9-30 IE
2./ |0#0Vvj=0V...vVj=k-1 4,5-7,8-31 VE
33. | (Vx <K@ #Ovx=0vx=1Vv...vx =k-1 3-32 (V)

The derivation is long but straightforward. From T6.52, either j is zero or it is not. If j is

zero, then the result is easy. If j is the successor of some /, then / < m and the assumption

applies; then the result follows with T8.19. Again parentheses for extended disjunctions

are omitted.

CHAPTER 8. MATHEMATICAL INDUCTION 402

We show (ii). By induction on the value of n, Q
the result immediately follows by VI.

b, J <NV j=nNVn<j;

Basis: n = 0. We need to show that Q F,,, j <0V j =0Vv0 <

L.|j=0v3ay(=Sy from T6.52
2.1 lj=0 A (g, 1VE)
3.]|j=0v0< 2 VI
4.1 3G =Sy A (g, 1VE)
5. Jj =Sk A(g,43E)
6. Sk +0= Sk T6.48
7.0 | Sk+0= 6.5 =E
8. Ju(Su+0=j) 731
9. 0<j 8 abv
10. j=0v0o<j 9 VI
.| |j=0v0< 4,5-10 3E
12.|j=0v0< 1,2-34-11 VE
13.|j<0vj=0v0<j 12 vI

Assp: Forany i,0<i<k, Qlyp, J <ivj=ivi<j.

Show: Q kp, J <kVvj=kvk<j.Letm=k-1.
LI(Vx<m@#0vx=0vx=1v...vx=m-1) T8.20
2| Vx[@#0Vvx=0V..vx=m-1vx=k-1) - x <K| T8.21
3. Vx[m<x - (Sm=xvVvSm<x)] T8.22
4.lj<mvj=mvm<j by assp
5.01j<m A (g, 4VE)
6./ |0#0Vvj=0v...vj=m-1 1,5 (VE)
7.010#0vj=0v...vj=m-1vj=k-1 6 VI
8.1 |@#0vj=0v...vj=m-1vj=k-1)—j <k 2 VE
9.7 <k 8,7 —E
10.| |j <kvj=kVvk<j 9 VI
1.|]|j=m A (g, 4VE)
12.| |m<k T8.14 (m <k)
13 |j <k 12,11 =E
14.| |j<kvj=kvk< 13 VI
15.] [m< A (g, 4VE)
16.| |m<j—(Sm=jvSm<) 3VE
17.] | j =SmvSm<j 16,15 >E
18.| |j=kvk<j 17 abv
19.] |j <kvj=kvk<j 18 VI
20.|j <kvj=Kkvk<j 4,5-19 VE

CHAPTER 8. MATHEMATICAL INDUCTION 403

Indct: For any n, Q b,

p,J <NV j=nvn<j.

Again, the “three-part” VE from the show is (clear but) not strictly according to
the rule. And since forany n, Q. j <nV j =nvn < j,by VI, forany n,
Qhp, VX(x <AVX=nVvn<ux).

Thus the trichotomy result is established.

E8.41. Complete the demonstration of T8.23 by showing part (i) of T8.21, T8.22, and

then T8.23.
T8.22(ii)

1.| |n<j A (g, —D
2.0 [FuSu+n=j) 1 abv

3. Sk+n=j A (g, 23E)
4, k=0v3ayk =Sy) from T6.52
5. k=0 A (g,4VE)
6. Sh+n=j 3,5=E

7. SP+n=Sn T8.12 (1 +n = Sn)
8. j=Sn 7.6 =E

9. j=SnvSn<j 3 VI

10. | 3y(k = Sy) A (g,4VE)
11. k=SI A (g, 103E)
12. Sk+n=k+ Sn T8.15

13. k+Si=j 3,12 =E
14. SI+Sn= 13,11 =E
15. Ju(Su + Sn=j) 14 31

16. Sn<j 15 abv

17. j=SnvSa<j 16 VI

18. j=SnvSa<j 10,11-17 3E
19. j=8SnvSn<j 4,5-9,10-18 VE
20.| | j=SAavSa<j 23-193E
21.|fi<j—> (j =SAvSA<)) 1-20 -1
22.|Vx[n<x — (x =SnVv Sh < x)] 21 VI

From T6.52, either k is zero or it is not. If k is zero, it is a simple addition problem to show
that j = Sn and so obtain the desired result. If k is a successor, then Sn < j and again

we have the desired result.

CHAPTER 8. MATHEMATICAL INDUCTION 404

8.4.6 Case

Finally, a couple of quick theorems that move from the provability of particular
instances to the provability of bounded quantifications.

T8.24. For any n and formula £ (x),
(i) if Q by, P(0) or ... or Q by, P(N), then Q b, (Fx < M)P(x)

(i) if 0 # 0 or Q K, PO0) or ...or Q k,, P(n-1), then Q F,,
(Fx <)P (x).

In the second case, again, we include the first disjunct to keep the conditional
defined in the case when n = 0; then the conditional obtains because the antecedent
does not. This theorem is nearly trivial: (i) For some m < n suppose Q . & (m);

by T8.14, Q k,,, M < n; so by (), Q k5, (Ix < N)P(x). Similarly for (ii).

So if P is provable for some individual < n or < n then it is immediate that the
corresponding bounded existential generalization is provable.

*T8.25. For any n and formula & (x),

(i) if Q kp, P(0) and ... and Q b, P (M), then Q b, (VX < M) P (x)

(i) if 0 = 0 and Q k,,, #£(0) and ... and Q k,, P(n-1), then Q k.
(Vx < M)P ().

This time in the second case we include a trivial truth in order to keep the condi-
tional defined when n = 0; when n = 0, then the antecedent is trivially true, but the
consequent follows from nothing. The argument is by induction on the value of n.

So if Q proves & for each individual < n or < n then Q proves the corresponding
bounded universal generalization.

*E8.42. Provide arguments to show both parts of T8.25.

E8.43. For each of the following concepts, explain in an essay of about two pages,
so that (high school age) Hannah could understand. In your essay, you should
(i) identify the objects to which the concept applies, (ii) give and explain the
definition, and give and explicate examples (iii) where the concept applies, and
(iv) where it does not. Your essay should exhibit an understanding of methods
from the text.

a. The use of the inductive assumption in an argument from mathematical induc-
tion.

b. The reason mathematical induction works as a deductive argument form.

CHAPTER 8. MATHEMATICAL INDUCTION 405

Final Theorems of Chapter 8

T8.11

T8.12

T8.13

T8.14

T8.15

T8.16

T8.17

T8.18

T8.19

T8.20

T8.21

T8.22

T8.23

T8.24

T8.25

For any n € U and assignment d, Ng[n] = n.

For any a,b,c € U,_ifa +b=c, thenQ I—ND+ at+b=c. Corollary: ifa+1=Db
then Q 5,5, Sa =b.

Forany a,b,c € U,ifaxb=cthenQt,, axb==c.

Forany a,b € U, (i) if a = b then Q b5, @ = b; (i) ifa < b then Q I, @ < b;
and (iii) ifa<b then Q k5,,, @ < b.

Qhp, Sj+n=j+5n

Forany a,b € U, (i) ifa#b, then Q 5, 3 # b; (i) if a £b, then Q I, @ £ b;
and (iii) if a £b, then Q F,, @ £ b,

For any variable-free term # of &y, if N[#] = n, then Q I, ¢ = 1.

Q correctly decides atomic sentences of &£yr: For any sentence # of the sort 4 = #,
¢ <t,ors <1, if N[P] =T then Q I, #; and if N[P] # T then Q b5, ~P.

Forany_n,l—ND*VxVy(x=Sy—>[(y=6Vy=TV...Vy=ﬁ)—>(x=S6\/
x=81v...vx=S8n).

For any n, (i) Q by, (VX < M(x = 0vx = 1v...vx = 0) and (i)
Qhbp, Yx<M@#Ovx=0vx=1Vv...Vvx=n-1).

=

For any n, (i) Q k,, Yx([x =
Qb ¥x([0#0Vvx=0V...

Vx=1V...vx =n] - x <n)and (i)
Vx=n-1—x <n).

Forany n, (i) Q Hp, VX[< x — (n = x v SN < x)] and (ii)) Q 5,
VN <x — (Sn=xVSn<x)).

For any n, (i) Q lp, Vx(x <AvAN <x)and (ii)) Q p, VX(x <AVX =nV
n<x).

For any n and formula £ (x),

(i) if Q Fyp, PO) or... or Q by, £(M), then Q b, (Fx < NP (x)

(i) if 0# 0 or Q b5, P(0) or... 0r Q b, P(n-1), then Q b, Fx < MNP (x).

For any n and formula £ (x),
(i) if Q kyp, P(0) and ... and Q I, £ (M), then Q b, (VX < M)P(x)

(i) if 0 = 0 and Q k,,, P(0) and ...and Q K, P(n-1), then Q K,
(Vx < n)P(x).

Part 111

Classical Metalogic: Soundness
and Completeness

406

Introductory

In Part I we introduced four notions of validity. In this part, we set out to show that
they are interrelated as follows:

Validity in AD

Semantic
Validity

Logical Validity

Validity in ND

An argument is valid in AD iff it is valid in ND. And an argument is semantically valid
iff it is valid in the derivation systems. So the three formal notions apply to exactly
the same arguments. And if an argument is semantically valid, then it is logically
valid. So any of the formal notions imply logical validity for a corresponding ordinary
argument.

More carefully, in Part I, we introduced four main notions of validity. There
is logical validity from Chapter 1, semantic validity from Chapter 4, and syntactic
validity in the derivation systems AD from Chapter 3 and ND from Chapter 6. These
notions are independently defined. Thus it is not immediate or obvious how they are
related. We turn in this part to the task of thinking about these notions, and especially
about how they are related. The primary resultisthat I' F P iff ' I, P iffI' I, P
(iff I' i,). Thus our different formal notions of validity are met by just the same
arguments, and the derivation systems—defined in terms of form, are “faithful” to the
semantic notion—defined in terms of truth. What is derivable is neither more nor less
than what is semantically valid. And this is just right: If what is derivable were more
than what is semantically valid, derivations could lead us from true premises to false
conclusions; if it were less, not all semantically valid arguments could be identified
as such by derivations. That the derivable is no more than what is semantically valid
is soundness of a derivation system; that it is no less is completeness. In addition,
we show that if an argument is semantically valid, then a corresponding ordinary
argument is logically valid. Given the equivalence between the formal notions of

407

PARTIII. CLASSICAL METALOGIC 408

validity, it follows that if an argument is valid in any of the formal senses, then it is
logically valid. This connects the formal machinery to the notion of validity with
which we began.

Notions of soundness and completeness appear in a variety of contexts. We have
seen sound arguments from Chapter 1; in this part we have sound derivation systems,
and encounter sound theories. Similarly, in this part we have complete derivation
systems and shall encounter complete (and incomplete) theories. These notions of
soundness and completeness are separately defined, and apply to different objects.
This invites confusion! One option is to introduce new vocabulary. But the weight of
tradition is strong. Also, in section 11.4.1 we exhibit a notion of relative soundness
such that both the soundness of derivation systems and the soundness of theories
are instances of it. And similarly, there is a relative completeness such that both the
completeness of derivation systems and the completeness of theories are instances of
it. So the different notions appear as separate instances of more general kinds. In order
to indicate distinctness at the same time as we (honor tradition and) acknowledge
underlying conceptual connections, I introduce a (silent) diacritical mark for each—
identifying the notions with application to derivation systems with an enlarged dot,
(Soundness, completeness) and ones whose application is to theories with a tilde
(Soundness, Completeness).

We begin in Chapter 9 showing that just the same arguments are valid in the
derivation systems ND and AD. This puts us in a position to demonstrate in Chapter 10
the core result that the derivation systems are both $ound and ¢omplete—that if some
premises prove &, then those premises entail /2, and if some premises entail & then
those premises prove #. Chapter 11 fills out this core picture in different directions.
It begins with short sections on expressive completeness, unique readability, and
independence (these do not depend on one another or on chapters 9 or 10 and so might
be worked any time). The chapter concludes with a longer section on beginning model
theory; this builds upon the Chapter 10 discussion of relations between interpretations
and formal expressions, and concludes with the identification of some Complete
theories—to contrast with incomplete theories from Part I'V.

Chapter 9

Preliminary Results

We have said that the aim of this part is to establish the following relations: An
argument is valid in AD iff it is valid in ND; an argument is semantically valid iff it is
valid in AD, and iff it is valid in ND; and if an argument is semantically valid, then it
is logically valid.

Validity in AD

Semantic

Logical Validity Validity

Validity in ND

In this chapter, we begin to develop these relations, taking up some of the simpler
cases. We consider the leftmost horizontal arrow, and the rightmost vertical ones. Thus
we show that quantificational (semantic) validity implies logical validity (section 9.1),
that validity in AD implies validity in ND (section 9.2), that validity in ND implies
validity in AD (section 9.3), and extend the results to ND+ (section 9.4). Implications
between semantic validity and the syntactical notions will wait for Chapter 10.

9.1 Semantic Validity Implies Logical Validity

Logical validity is defined for arguments in ordinary language. From LV, an argument
is logically valid iff there is no consistent story in which all the premises are true
and the conclusion is false. Quantificational validity is defined for arguments in a
formal language. From QV, an argument is quantificationally valid iff there is no
interpretation on which all the premises are true and the conclusion is not. So our
task is to show how facts about formal expressions and interpretations connect with

409

CHAPTER 9. PRELIMINARY RESULTS 410

ordinary expressions and stories. In particular, where & ... P, /@ is an ordinary-
language argument, and] ... &, @’ are the formulas of a good translation, we show
that if | ... #, F @', then the ordinary argument £ ... P, /@ is logically valid.
The reasoning itself is straightforward. We will spend a bit more time discussing the
result.

Recall our criterion of goodness for translation CG from Chapter 5 (page 135).
When we identify a (sentential or quantificational) interpretation function Il, we
thereby identify an intended interpretation 11, corresponding to any way w that the
world can be. For example, corresponding to the interpretation function,

I B: Barack is happy
M : Michelle is happy

llw[B] = T just in case Barack is happy at w, and similarly for M. And a formal
translation #’ of some ordinary # is good only if for any w, ll,[#'] has the same
truth value as 4 at w. Given this, we can show,

T9.1. For any ordinary argument & ... %, /@, with good translation consisting of
land P| ... P, @, if P|... P, = @ then P ... P,/Q is logically valid.

Consider an ordinary #j...%,/@ and good translation consisting of Il and
Pi...P,, Q" Suppose P| ..., E Q@ but P ...#,/Q is not logically valid.
From the latter, by LV, there is some consistent story @ where each of P; ... 5,
is true but @ is false; and since w is consistent and @ is false, @ is not true at .
Since # ... Py are true at w, by CG, lly[P{] = Tand ... and ll,[#,] = T; and
since @ is not true at w; by CG, ll,[@Q'] # T. So Il is an interpretation | that has
eachof I[{] =Tand... and I[£,] =T, and I[Q] # T; so by QV, P; ... P, ¥ Q.
This is impossible; reject the assumption: if ;... P, E @ then Py ... P,/Q is
logically valid.

It is that easy. If there is no interpretation where #; ... #;, are true but @’ is not, then
there is no intended interpretation where £/ ... P, are true but @’ is not; so, by CG,
there is no consistent story where the premises are true and the conclusion is not; so
Pi...Pn/Q is logically valid. Soif P| ... %, E Q' then Py ... P, /@ is logically
valid. This is good! It shows that we can apply our formal machinery to the arguments
with which we began.

Let us make a couple of observations: First, CG is stronger than is actually
required for our application of semantic validity to logical validity. CG requires a
biconditional for good translation.

Adstrueatw <= lly[A]=T

CHAPTER 9. PRELIMINARY RESULTS 411

But our reasoning applies to premises just the left-to-right portion of this condition:
if P is true at @ then I, [#’] = T. And for the conclusion, the reasoning goes in the
opposite direction: if 1l,[@’] = T then @ is true at (so that if @ is not true at w, then
llw[@'] # T). The biconditional from CG guarantees both. But, strictly, for premises,
all we need is that truth of an ordinary expression at a story guarantees truth for the
corresponding formal one at the intended interpretation. And for a conclusion, all we
need is that truth of the formal expression on the intended interpretation guarantees
truth of the corresponding ordinary expression at the story.

Thus we might use our methods to identify logical validity even where translations
are less than completely good. Consider, for example, the following argument:

(A) Bob took a shower and got dressed

Bob took a shower

As discussed in Chapter 5 (page 152), where Il gives S the same value as ‘Bob took a
shower’ and D the same as ‘Bob got dressed’, we might agree that there are cases
where llu[S A D] = T but ‘Bob took a shower and got dressed’ is false. So we
might agree that the right-to-left conditional is false, and the translation is not good.
However, even if this is so, given our interpretation function, there is no situation
where ‘Bob took a shower and got dressed’ is true but S A D is F at the corresponding
intended interpretation. So the left-to-right conditional is sustained. So even if the
translation is not good by CG, it remains possible to use our methods to demonstrate
logical validity. Since it remains that if the ordinary premise is true at a story then
the formal expression is true at the corresponding intended interpretation, semantic
validity implies logical validity. A similar point applies to conclusions. Of course,
we already knew that this argument is logically valid. But the point applies to more
complex arguments as well.

Second, observe that our reasoning does not work in reverse. Logical validity for
Pi...Pn/@Q does notimply P; ... P, = @'. Or, put the other way around, finding
a quantificational interpretation where £/ ... %, are true and @’ is not shows that
Pi... P, ¥ @'; however it does not show that P; ... P, /@ is not logically valid.
Here is why: There may be quantificational interpretations which do not correspond
to any consistent story. The situation is like this:

Quantificational Intéxpretations

Intended
Interpretations

Intended interpretations are a subset of all interpretations. The intended interpretations
correspond to consistent stories. If no interpretation whatsoever has the premises

CHAPTER 9. PRELIMINARY RESULTS 412

true and the conclusion not, then no intended interpretation has the premises true and
conclusion not, so no consistent story makes the premises true and the conclusion
not. But it may be that some unintended interpretation makes the premises true and
conclusion false. Thus 2] ... P, ¥ @', requires that there is an interpretation with
the premises true and conclusion not; but it does not require that there is an intended
interpretation where the premises are true and the conclusion is not; so it does not
require that there is a consistent story where & . .. $, are true but @ is not; so it does
not show that Py ... #, /@ is invalid.

It is easy to see why there might be unintended interpretations. Consider, first,
this standard argument:

All humans are mortal
(B) Socrates is human
Socrates is mortal

It is logically valid. But consider what happens when we translate into a sentential
language. We might try an interpretation function as follows:

A: All humans are mortal
H: Socrates is human

M : Socrates is mortal

with translation, A, H/M . But, of course, there is an interpretation (row of the truth
table) J on which A and H are T and M is F. So the argument is not sententially valid.
Given the interpretation function, J would correspond to a story where all humans are
mortal, Socrates is human, and Socrates is not mortal—but such a story is inconsistent!
So interpretation J is (unintended and) not sufficient to show that the argument is
logically invalid. The interpretation function matches every consistent story to an
interpretation; but this leaves open that there are interpretations not matched to
consistent stories. Sentential languages are sufficient to identify validity when validity
results from truth functional structure; this argument is valid, but not valid because of
truth functional structure.

We are in a position to expose its validity only in the quantificational case. Thus
we might have,

s: Socrates
H': {o|oishuman}

M1: {o]ois mortal}

CHAPTER 9. PRELIMINARY RESULTS 413

with translation Vx(Hx — Mx), Hs/Ms. The argument is quantificationally valid.
And, as above, it follows that the ordinary one is logically valid.

But related problems may arise even for quantificational languages. Thus consider,
©) Socrates is necessarily human

Socrates is human

Again, the argument is logically valid—if Socrates is human according to every
consistent story, then Socrates is human according to the real story. But now, with
a quantificational language, we end up with something like an additional relation
symbol N'! for {o | o is necessarily human}, and translation Ns/Hs. And this is
not quantificationally valid. Consider, for example, an interpretation with U = {1},
I[s] =1,I[N]={1}, and I[H] = {}. Then the premise is true, but the conclusion is not.
Again, the problem is that the argument includes structure that our quantificational
language fails to capture. As it turns out, modal logic is precisely an attempt to
work with structure introduced by notions of possibility and necessity. Where ‘00’
represents necessity, this argument, with translation OH s/H s is valid on standard
modal systems. !

The upshot of this discussion is that our methods are adequate when they work to
identify validity. When an argument is quantificationally valid, we can be sure that it
is logically valid. But not the converse. Thus quantificational invalidity does not imply
logical invalidity. We should not be discouraged by this or somehow put off the logical
project. Rather, we have a rationale for expanding the logical project. In Part I, we set
up formal logic as a “tool” or “machine” to identify logical validity. Beginning with
the notion of logical validity, we introduce our formal languages, learn to translate
into them, and to manipulate arguments by semantical and syntactical methods. The
sentential notions have some utility. But when it turns out that sentential languages
miss important structure, we expand the language to include quantificational structure,
developing the semantical and syntactical methods to match. And similarly, if our
quantificational languages should turn out to miss important structure, we expand the
language to capture that structure, and further develop the semantical and syntactical
methods. As it happens, the classical quantificational logic we have seen so far is
sufficient to identify validity in a wide variety of contexts—and, in particular, for
arguments in mathematics. Also, controversy may be introduced as one expands
beyond the classical quantificational level. So the logical project is a live one. But let
us return to the kinds of validity we have already seen.

E9.1. (i) Recast the above reasoning to show directly a corollary to T9.1: If F @',
then @ is necessarily true (that is, there is no consistent story where it is false).
(ii) Suppose ¥ @’; does it follow that @ is not necessarily true? Explain.

Modal logics are introduced in Priest, Non-Classical Logics. His book is profitably read together
with Roy, “Natural Derivations for Priest.”

CHAPTER 9. PRELIMINARY RESULTS 414

*E9.2. In Chapter 5 (page 148) we informally suggest inductive reasoning to show
that our translation procedure (TP) gives the right results. Make this rigorous. That
is, for an ordinary & and good formal translation Il and #’, show by induction on
the number of ordinary truth functional operators (branching in the parse tree for
P) that £ is true at world w iff l,[#’] = T. Hint: When & has k operators, for
some ordinary operator Op and equivalent formal expression Op’, & is of the sort
Op(Aj ... A,) and P’ is Op' (A ... A),) for A ... A, with < k operators.

9.2 Validity in AD Implies Validity in ND

Itis easy to see thatif I' =, ,, &, then I" I, &. Roughly, anything we can accomplish
in AD we can accomplish in ND as well. If a premise appears in an AD derivation,
that same premise can be used in ND. If an axiom appears in an AD derivation, that
axiom can be derived in ND. And if a line is justified by MP or Gen in AD, that
same line may be justified by rules of ND. So anything that can be derived in AD can
be derived in ND. Officially, this reasoning is by induction on the line numbers of
an AD derivation, and it is appropriate to work out the details more formally. The
argument by mathematical induction is longer than anything we have seen so far, but
the reasoning is straightforward.

“T92. If 'k, £, then T b, P.

Suppose I" |,,, &#. Then there is an AD derivation A = (@ ...&,) of P from
premises in I, with @, = . We show that there is a corresponding ND derivation
N, such that if @; appears on line i of A, then @; appears, under the scope of the
premises alone, on the line numbered i of N. It follows that I" I, &. For any
premises Qq, Qp,...,Q; in A, let N begin,

0.a| @, P
0.b| @ P
0j|@; P

Now we reason by induction on the line numbers in A. The general plan is
to construct a derivation N which accomplishes just what is accomplished in
A. Fractional line numbers, as above, maintain the parallel between the two
derivations.

Basis: @1 in A is a premise or an instance of Al, A2, A3, A4, A5, A6, A7, or AS8.

(prem) If @; is a premise @;, continue N as follows:

CHAPTER 9. PRELIMINARY RESULTS 415

0.a| @, P

0.b| @y P

0j]@; P
1|@; 0.iR

So @ appears, under the scope of the premises alone, on the line numbered
1of N.

(A1) If @; is an instance of A1, then it is of the form, 8 — (€ — B), and we
continue N as follows:

0.a| @, P

0.b| @, P

0j|@; P

1.1] | 8 A(g,—D

1.2 € A(g, —D

1.3 B I.IR

14| |€ - B 1.2-1.3 =1
1|8 > € —>8) 1Ll14-I

So @ appears, under the scope of the premises alone, on the line numbered
1of N.

(A2) If @1 is an instance of A2, then it is of the form, (8 — (€ — D)) —
(B —>€) > (B — D)) and we continue N as follows:

0.a| @, P

0.b| @, P

0j|Q; P

L1 |8~ (€~ D) A (g, —D)

12/ |8=e A (g, =)

1.3 B A(g, =D

1.4 € 1.2, 1.3 -E

1.5 € - D 1.1,1.3 -E

1.6 D 1.5,1.4 —-E

1.7 B—->D 1.3-1.6 —>1

1.8 |(B—>€)—>(B—> D) 1.2-1.7 =1
1| (B> (€E—=->D)—>((B—-C) = (B—> D) 1.1-1.8 =1

So @ appears, under the scope of the premises alone, on the line numbered
1of N.

(A3) Homework.
(A4) Homework.

CHAPTER 9. PRELIMINARY RESULTS 416

(A5) If @ is an instance of A5, then it is of the form Vx (£ — @) — (P —
Vx@) for some variable x that is not free in &, and we continue N as

follows:
0.a| @, P
0.b| @, P
0j]@; P
L.1]| | Vx(P — Q) A(g, —0)
12| e A (g, —D)
1.3 P —Q 1.1 VE
1.4 Q 13,12 -E
1.5 Vx@ 1.4 VI
1.6 | £ —> Vx@ 1.2-1.5 =1
1| V(P — Q) - (P - VxQ) 1.1-1.6 —>I

x is sure to be free for x in — @; so (1.3) meets the constraint on VE.
In addition, x is sure to be free for x in @ and x is not free in Vx@; further
x is not free in Vx (P — @) and we are given that x is not free in &, so x
is not free in any undischarged assumption; so the restrictions are met for
VI at (1.5). So @ appears, under the scope of the premises alone, on the
line numbered 1 of N.

(A6) Homework.

(A7) If @; is an instance of A7, then itis (x; = %) — (A"x1...x;i...%xp
= #A"x1...%...%x,) for some variables x1 ...%x, and ¥ and function
symbol 4", and we continue N as follows:

0.a|Q, P

0.b| @, P

0j|Q; P

1] |x =y A (g, —D)
120 A1 .%o coxp = A1 ... % ... xp =]

L3 | A"x1... % ...xpn =A"x1 ...y ... xp 1.2,1.1 =E
Ll(xi=y)—> A% ... x5 ...xn =A"x1 ...y ... xp) 1.1-1.3 —>I

So @ appears, under the scope of the premises alone, on the line numbered
1of N.

(A8) Homework.
Assp: Forany i, 1 <i <k, if @; appears on line i of A, then @; appears, under
the scope of the premises alone, on the line numbered i of N.

Show: If @ appears on line k of A, then @ appears, under the scope of the
premises alone, on the line numbered k of N.

CHAPTER 9. PRELIMINARY RESULTS 417

@y in A is a premise, an axiom, or arises from previous lines by MP or
Gen. If @ is a premise or an axiom then, by reasoning as in the basis
(with line numbers adjusted to k.n) if @ appears on line k of A, then @,
appears, under the scope of the premises alone, on the line numbered k of
N. So suppose @, arises by MP or Gen.

(MP) If @, arises from previous lines by MP, then A is as follows:
i B8—~>¢€
j B

ke i,j MP
where i, j <k and @, is €. By assumption, then, there are lines in NV,

i|B—=>€

j| B

So we simply continue derivation N:

i|B8B->C

j| B

k|€ i,j —E
So @ appears, under the scope of the premises alone, on the line numbered
k of N.

(Gen) If @, arises from previous lines by Gen, then A is as follows:

i B

k Vx8B i Gen
where i <k, and @ is VxB. By assumption N has a line 7,

under the scope of the premises alone. So we continue N as follows:

i| B

k|VxB i VI

CHAPTER 9. PRELIMINARY RESULTS 418

Since i and k are under the scope of the premises alone, x is not free in an
undischarged assumption. Further, since there is no change of variables,
we can be sure that x is free for every free instance of x in 8, and that x is
not free in YxB. So the restrictions are met on V1. So @ appears, under
the scope of the premises alone, on the line numbered k of N.

In any case then, @ appears, under the scope of the premises alone, on
the line numbered k of N.

Indct: For any line j of A, @; appears, under the scope of the premises alone, on
the line numbered j of N.

SoI' k5, @, where thisis justtosay I' 5, . Soif I' -, ,, #,then " I, P.

Notice the way we use line numbers, i.1,i.2, ..., i.n,i in N to make good on the
claim that for each @; in A, @; appears on the line numbered i of N—where the line
numbered i may or may not be the i line of N. We need this parallel between the
line numbers when it comes to cases for MP and Gen. With the parallel, we are in a
position to use line numbers from justifications in derivation A for the specification of
derivation N.

Given an AD derivation, what we have done shows that there exists an ND
derivation by showing how to construct it. We can see how this works by considering
an application. Thus, for example, consider the following derivation of T3.2:

1. B—>%¢€ prem

2. (B—-€) > [A—>(B—0) Al

3. A>(B—>Y) 2,1 MP
D) 4 A= (B—->0C)]—=[(A— B)— (A C)] A2

5. (A—> B) > (A—>E) 4,3 MP

6. A—> B prem

7. A—>TC 5,6 MP

Let this be derivation A; we will follow the method of our induction to construct a
corresponding ND derivation N. The first step is to list the premises. Premises appear
on lines (1) and (6) and we begin,

01|8—-e P

06|A— B P
Now to the induction itself. The first line of A is a premise. Looking back to the basis
case of the induction, we see that we are instructed to produce the line numbered 1 by
reiteration. So that is what we do:

01|8—-e P

06|A— B P

1/B—>%¢€ 0.1R

This may strike you as somewhat pointless! But, again, we need 8 — € on the line
numbered 1 in order to maintain the parallel between the derivations. So our recipe
requires this simple step.

CHAPTER 9. PRELIMINARY RESULTS 419

Numeral and Number

Numerals designate numbers. Thus the numeral (symbol) ‘1’ designates the number
(object) 1. Set aside (for philosophy of mathematics) the question what sort of
object numbers are supposed to be. Whatever numbers turn out to be, one often
encounters an ambiguity between numbers and the numerals that designate them.
This does not usually lead to trouble. So, for example, in this text we have said that
sentence letters of £; are “Roman italics 4 ... Z with or without positive integer
subscripts”; but sentence letters are symbols and their subscripts are numerals—
integers are not even candidates for the subscript role. And in a mathematical
induction we might say, “for any i such that 0 =i < k, @; has such-and-such
feature”; then @; is a symbol with a numeral subscript, but i and k of the inequality
are numbers—I/ess than is a relation on numbers not numerals.

A derivation is a syntactical object, with numerals to mark the lines. Thus when we
refer to a line i of some derivation, there are different options: (i) i is a metavariable
mapping to a numeral marking the line—this is the natural understanding of, say,
schematic descriptions of the derivation rules in Chapter 6. (ii) Variable i is assigned
a number, and thereby associated with the numeral (i) that marks the line—this is
the natural understanding of the induction where i is a number, and we reason that
@; has such-and-such feature. (iii) Another option is that i is assigned a number to
identify the i line of a derivation. In ordinary cases, the i"” line is the same as the
one marked «i>.

In the current discussion, the natural understanding is (ii)—this is so especially
because the i line may be other than the one marked (/). Without wholesale
application of the bracket notation, where it is important to make this point I say
the line is “numbered” i.

Line 2 of A is an instance of A1, and the induction therefore tells us to get it “by
reasoning as in the basis.” Looking then to the case for Al in the basis, we continue
on that pattern as follows:

011 8—>°¢€ P

06| A—> B P
118—%¢€ 0.1R

21| |B—c¢€ Ag,—D

22 A Ag, =D

2.3 B->E€ 2.1R

24| | A= (B —>0) 2223 -1
2/(B—=€) > (A—=>(B—Y)) 2.1-24 =1

Notice that this reasoning for the show step now applies to line 2, so that the line
numbers are 2.1, 2.2, 2.3, 2.4, 2 instead of 1.1, 1.2, 1.3, 1.4, 1 as for the basis. Also,
what we have added follows exactly the pattern from the recipe in the induction, given

CHAPTER 9. PRELIMINARY RESULTS 420

the relevant instance of Al.
Line 3 is justified by 2,1 MP. Again, by the recipe from the induction, we continue,

01| 8B —>¢€ P

06| A— B P
1|8 —>F€ 0.1 R

21| |8 —¢€ A(g, —D

2.2 A A(g, =D

2.3 B—->C€ 2.1R

24| | A —> (B —>) 2.2-2.3 —>I1
2/(B—=€) > (A= (B—-Y)) 2.1-24 -1
3| A—>(B—->F) 2,1 -E

Notice that the line numbers of the justification are identical to those in the justification
from A. And similarly, we are in a position to generate each line in A. Thus, for
example, line 4 of A is an instance of A2. So we would continue with lines 4.1-4.8
and 4 to generate the appropriate instance of A2. As it turns out, the resultant ND
derivation is not very efficient. But it is a derivation, and our point is merely to show
that some ND derivation of the same result exists. Soif I' =, &, thenI" I, &.

*E9.3. Set up the above induction for T9.2, and complete the unfinished cases to
show thatif I' i, &, then I" I, &. For cases completed in the text, you may
simply refer to the text, as the text refers cases to homework.

E9.4. (i) Where A is the derivation (D) from above, complete the process of finding
the corresponding derivation N. Hint: If you follow the recipe correctly, the result
should have exactly 21 lines. (ii) This derivation N is not very efficient. See if
you can find an ND derivation to show A — B8, 8 — € |, A — € that takes
fewer than 10 lines.

E9.5. Extend system A* as described for E3.5 to an A* that has ~, A, and 3 primitive
with axioms and rules as follows:

A* Al. P - (P AP)
A2. (PAQ)— P
A3. (O = P) = [~(PAQ) = ~(Q AO)]
A4, PY — IxP where t is free for x in P
MP. ~(P A~Q),P . @

R. # - @F,, IxP — @ where x is not free in @

Produce a complete demonstration to show thatif I' ., &, then I" k5, P.

CHAPTER 9. PRELIMINARY RESULTS 421
9.3 Validity in ND Implies Validity in AD

Perhaps the result we have just attained is obvious: Insofar as the resources of ND
seem to exceed the resources of AD, whenever I' I, &, we expect I" I, &°. But
the other direction may be less clear. Insofar as AD may seem to have fewer resources
than ND, one might wonder whether it is the case thatif I I, #, then I" I, &.
But, in fact, it is possible to do in AD whatever can be done in ND. To show this, we
need a couple of preliminary results. I begin with an important result known as the
deduction theorem, turn to some substitution theorems, and finally to the intended
result that whatever is provable in ND is provable in AD.

9.3.1 Deduction Theorem

According to the deduction theorem—subject to an important restriction—if there is
an AD derivation of @ from the members of some set of sentences A plus &, then
there is an AD derivation of » — @ from the members of A alone: if AU{P} I-,,, @
then A I, # — @. In practice, this lets us reason just as we do with —1.

members of A

c.|P —> @ a-b deduction theorem

At (b), there is a derivation of @ from the members of A plus J. At (c), the
assumption is discharged to indicate a derivation of > — @ from the members of A
alone. By the deduction theorem, if there is a derivation of @ from A plus J#, then
there is a derivation of — @ from A. Here is the restriction: The discharge of an
auxiliary assumption & is legitimate just in case no application of Gen under its scope
generalizes on a variable free in . The effect is like that of the ND restriction on
VI—here, though, the restriction is not on Gen, but rather on the discharge of auxiliary
assumptions. In the one case, an assumption available for discharge is one such that
no application of Gen under its scope is to a variable free in the assumption; in the
other, we cannot apply VI to a variable free in an undischarged assumption (so that,
effectively, every assumption is always available for discharge).

Again, our strategy is to show that given one derivation, it is possible to construct
another. In this case, as indicated on the following page, we begin with an AD
derivation (A), with premises A U {#} and conclusion @, = @. Treating & as an
auxiliary premise, with scope as indicated in (B), we set out to show that there is an AD
derivation (C), with premises in A alone, and lines numbered 1, 2, ... corresponding
to1,2,...in(A).

CHAPTER 9. PRELIMINARY RESULTS 422

(A 1. @ B) 1. @ O 1. 2 —>&
2. @ 2. @ 2. P> @

,7.’ P P - P

n. @y o (;‘ln n P — @,

That is, we construct a derivation with premises in A such that for any formula #4 on
line i of the first derivation, J> — A appears on the line numbered i of the constructed

derivation. The line numbered n of the resultant derivation is the desired result, so
AR, P — Q.

T9.3. If A U {#} I,,, @, and no application of Gen under the scope of & is to a
variable free in &, then A I=,,; # — Q. Deduction Theorem.

Suppose A = (@1, Q,,...,Q,) is an AD derivation of @ from A U {&}, where
@ is @, and no application of Gen under the scope of & is to a variable free in 5.
By induction on the line numbers in derivation A, we show there is a derivation
C with premises only in A, such that for any line i of A, — @; appears on

the line numbered i of C. The case when i = n gives the desired result, that
Ak, P — Q.

Basis: @ of A is an axiom, a member of A, or & itself.

(1) If @, is an axiom or a member of A, then begin C as follows:

1.1 @ axiom / premise
12 @ - (P — @y) Al
1 #— @ 1.2,1.1 MP

(ii) @y is P itself. By T3.1, F,,, » — &; which is to say &> — @1; so begin
derivation C,

1 P> T3.1

In either case, > — @ appears on the line numbered 1 of C with premises
in A alone.

Assp: Forany i, 1 <i <k, — @; appears on the line numbered i of C, with
premises in A alone.

Show: P — @y, appears on the line numbered k of C, with premises in A alone.
@ of A is a member of A, an axiom, P itself, or arises from previous
lines by MP or Gen. If @ is a member of A, an axiom, or f itself then,

by reasoning as in the basis, — @ appears on the line numbered k of
C from premises in A alone. So two cases remain.

CHAPTER 9. PRELIMINARY RESULTS 423

(MP) If @, arises from previous lines by MP, then there are lines in derivation A
of the sort,

i B8—>F€
j 8B

k€ i,j MP
where i, j <k and @, is €. By assumption, there are lines in C,

i P> (B0

j P—->3B
So continue derivation C as follows:
i P> (B0

j -8B

k1 [P>(B—->0C)]—=[(P—>B)— (P —0) A2
k2 (P> B)—> (P —>©) k.1,i MP
k »—>¢ k.2, j MP

So & — @y appears on the line numbered k of C, with premises in A
alone.

(Gen) If @, arises from a previous line by Gen, then there are lines in derivation
A of the sort,

i B

k Vx8B i Gen
where i < k and @ is VxB. Either line k is under the scope of & in
derivation A or not.

(i) If line & is not under the scope of &, then Vx B in A follows from A alone.
So continue C as follows:

k1 @ exactly as in A but with prefix
k2 @ k for numeric references
kk Vx8B
kk+1 VxB — (P - VxB) Al
k P —>Vx8B k.k+1, k.kMP

Since each of the lines in A up to k is derived from A alone, we have
&P — @y on the line numbered k of C from premises in A alone.

CHAPTER 9. PRELIMINARY RESULTS 424

(ii) If line k is under the scope of &, we depend on the assumption, and
continue C as follows:

i P—>3B (by inductive assumption)

k P —>Vx8 i T3.29

If line k in derivation A is under the scope of & then, since no application
of Gen under the scope of & is to a variable free in &, x is not free in
&; so the restriction on T3.29 is met. So we have & — @, on the line
numbered k of C, from premises in A alone.

P — @y appears on the line numbered k of C, with premises in A alone.

Indct: For any i, ® — @; appears on the line numbered i of C, from premises
in A alone.

For the last, and most interesting, case: Outside the scope of J each of the lines in
A, including Vx B, is already derived from A alone; so with Al, £ — VxB from
A alone. Under the scope of &, the restriction guarantees that x is not free in &, so
with T3.29 and & — B from A alone, » — VxB from A alone.

So given an AD derivation of @ from A U {#}, where no application of Gen
under the scope of assumption & is to a variable free in &, there is sure to be an AD
derivation of » — @ from A. Notice that T3.29 and T3.32 abbreviate sequences
which include applications of Gen. So the restriction on Gen for the deduction theorem
applies to applications of these results as well. (Some other theorems from T3.28-
T3.38 require Gen, but derivation for theorems of the sort I-,,, # may be moved to
the start, and so outside the scope of J. So they remain available.)

As a sample application of the deduction theorem (DT), let us consider another
derivation of T3.2. In this case, A = {A — B, B — €}, and we argue as follows:

1. A—> 38 prem
2. B—>F¢€ prem

3. | A assp (g, DT)
(F)

4, | B 1,3 MP

5. |¢€ 2,4 MP

6. A—>T 3-5DT

At line (5) we have established that A U {A} I, €; it follows from the deduction
theorem that A |-,,, A — €. But we should be careful: This is not an AD derivation
of A — € from A — B and B — €. And it is not an abbreviation in the sense
that we have seen so far—we do not appeal to a result whose derivation could be
inserted at that very stage. Rather, what we have is a demonstration, via the deduction
theorem, that there exists an AD derivation of A — € from the premises. If there
is any abbreviating, the entire derivation abbreviates, or indicates the existence of,

CHAPTER 9. PRELIMINARY RESULTS 425

another. Our proof of the deduction theorem shows us that, given a derivation of
AU{P} F,, @, itis possible to construct a derivation for A I,,, P — @.

Let us see how this works in the example. Lines 1-5 become our derivation 4,
with A = {A — 8B, 8B — €}. For each @; in derivation A, the induction tells us how
to derive A — @; from A alone. Thus @; on the first line is a member of A, and
reasoning from the basis tells us to use A1l as follows:

1.1 A—> 3B prem
1.2 (A —> B) —> (A — (A—> B)) Al
1 A—(A—>B) 1.2,1.1 MP

to get 4 arrow the form on line 1 of A. Notice that we are again using fractional line
numbers to make lines in derivation A correspond to lines in the constructed derivation.
One may wonder why we bother getting A — @;. And again, the answer is that our
“recipe” calls for this ingredient at stages connected to MP and Gen. Similarly, we can
use Al to get A arrow the form on line (2).

1.1 A—> 8B prem
1.2 (A—> B) = (A— (A—> B)) Al
I A—(A—>B) 1.2,1.1 MP
21 8—>F¢€ prem
22 (B—>C) > (A—>(B—YX) Al
2 A—>(B—>F) 22,2.1 MP

The form on line (3) is # itself. If we wanted a derivation in the primitive system, we
could repeat the steps in our derivation of T3.1. But we will simply continue, as in the
induction,

1.1 A—> 8B prem
1.2 (A= B) > (A— (A—> B)) Al
1 A—(A—>B) 1.2, 1.1 MP
21 B—>F¢€ prem
22 (B—>C€)—> (A—>(B—>Y) Al
2 A—> (BT 2.2,2.1 MP
3 A A T3.1

to get +A arrow the form on line (3) of A. The form on line (4) arises from lines (1)
and (3) by MP; reasoning in our show step tells us to continue,

1.1 A—> 8 prem
1.2 (A —> B) —> (A — (A—> B)) Al
1 A— (A—>B) 1.2, 1.1 MP
21 8—->F¢€ prem
22 (B—>€) > (A—>(B—Y)) Al
2 A—>(B—>F) 2.2,2.1 MP
3 A A T3.1
4.1 (A= (A—> B)) - (A —> A) > (A—> B)) A2
42 (A —> A) > (A > B) 4.1, 1 MP

4 A—> 3B 4.2,3 MP

CHAPTER 9. PRELIMINARY RESULTS 426

using A2 to get A — B. Notice that the original justification from lines (1) and (3)
dictates the appeal to (1) at line (4.2) and to (3) at line (4). The form on line (5) arises
from lines (2) and (4) by MP; so, finally, we continue,

1.1 A—> 8 prem

1.2 (A= B) = (A— (A—> B)) Al
1 A—(A—>B) 1.2, 1.1 MP

21 8->F¢€ prem

22 (B—>C) > (A—>(B—Y) Al
2 A—>(B—FC) 2.2,2.1 MP
3 Ao A T3.1

4.1 (A —> (A —> B)) —> (A —> A) > (A —> B)) A2

42 (A —> A) > (A > B) 4.1, 1 MP
4 A—> B 4.2,3 MP

51 (A—=>(B—>E€)—> (A—>B)—> (A X)) A2

52 (A—> B)—> (A—>T) 5.1,2 MP
5 A—>TC 5.2, 4 MP

And we have the AD derivation which our proof of the deduction theorem told us
there would be. Notice that this derivation is not very efficient. We did it in seven
lines (without appeal to T3.1) in Chapter 3. What our proof of the deduction theorem
tells us is that there is sure to be some derivation—where there is no expectation that
the guaranteed derivation is particularly elegant or efficient.

Here is a last example which makes use of the deduction theorem. First, an
alternate derivation of T3.3:

1. A> (B —>YC) prem

2. | B assp (g, DT)

3. A assp (g, DT)
©) 4. B—->€ 1,3 MP

5. € 4,2 MP

6. |A—>TC 3-5DT

7. B —(A—=>T) 2-6 DT

In Chapter 3 we proved T3.3 in five lines (with an appeal to T3.2). But perhaps this
version is relatively intuitive, coinciding as it does with strategies from ND. In this
case, there are two applications of DT, and reasoning from the induction therefore
applies twice: First, at line (5), there is an AD derivation of € from {A — (8 —
€), B} U {A}. By reasoning from the induction, then, there is an AD derivation from
just {A — (B — €), B} with A arrow each of the forms on lines 1-5. So there
is a derivation of A — € from {A — (B — €), 8}. But then reasoning from
the induction applies again. By reasoning from the induction applied to this new
derivation, there is a derivation from just A4 — (8 — €) with B arrow each of the
forms in it. So there is a derivation of B — (A — €) from just A — (B — €). So
the first derivation, lines 1-5 above, is replaced by another by the reasoning from DT.

CHAPTER 9. PRELIMINARY RESULTS 427

Then it is replaced by another, again given the reasoning from DT. The result is an AD
derivation of the desired result.

Here are a couple more cases, where the latter at least may inspire a certain
affection for the deduction theorem:

T94. F,, A — (B — (AANB))

T95. Fp, (A—>TC) > [(B—>TC) = (AVB)—>)]

The deduction theorem streamlines reasoning for many results in AD. And, towards
a demonstration that AD accomplishes whatever is accomplished in ND, with the
deduction theorem we shall be able to show that AD mimics ND rules requiring
subderivations.

E9.6. (i) Making use of the deduction theorem, prove T9.4 and T9.5. (ii) Having
done so, see if you can prove them in the style of Chapter 3, without any appeal to
DT.

E9.7. By the method of our proof of the deduction theorem, convert the above
derivation (G) for T3.3 into an official AD derivation. Hint: As described above,
the method of the induction applies twice: first to lines 1-5, and then to the new
derivation. The result should be derivations with 13, and then 37 lines.

E9.8. Consider the axiomatic system A* from E9.5, and produce a demonstration of
the deduction theorem for it. That is show thatif AU{#} I, @ and no application
of 3R under the scope of & is to a variable free in &, then A -, # — @.
Because A* extends A*, you may appeal to any of the A* theorems from E3.5.

9.3.2 Substitution Theorems

Allowing, as it does, substitution of arbitrary terms into arbitrary formulas, the ND
rule =E applies in contexts where the AD axioms A7 and A8 do not. Again, then, ND
may seem to have resources that AD lacks. As a basis for showing that the resources
of AD match those of ND, we turn now to some substitution results.

Say a complex term 7 is free in an expression J just in case no variable in »
is bound; then where 7 is any term or formula, let 7"/, be 7 where at most one
free instance of » is replaced by term s. Having shown in T3.38 that -, (¢; =
3) > (R"¢1...94i ... 9n = R"¢1...4...9,), one might think we have proved
that =, (» = 3) — (A — A"/;) for any atomic formula A and any terms
* and s. But this is not so. Similarly, having shown in T3.37 that -, (¢; =
3) > (A"¢1...4i...9n = A"¢1...4...9,), one might think we have proved that

CHAPTER 9. PRELIMINARY RESULTS 428

Fop (v = 38) — (t = t"/;) for any terms #, s, and #. But this is not so. In each
case, the difficulty is that the replaced term » might be a component of the other
terms ¢1 ... ¢n, and so might not be any of ¢1 ... ¢,. What we have shown is only
that it is possible to replace any of the whole terms, ¢ ... ¢,. Thus, (x = y) —
(flg'x = flgly) is not an instance of T3.37 because we do not replace g!x but
rather a component of it.

However, as one might expect, it is possible to replace terms in basic parts; use
the result to make replacements in terms of which they are parts; and so forth, all the
way up to wholes. Both (x = y) — (g!lx = g'y)and (g'x = g'y) = (flglx =
f1gly) are instances of T3.37. (Be clear about these examples in your mind.) From
these, with T3.2 it follows that I-,,, (x = y) — (f!g'x = flg!y). This example
suggests a method for obtaining the more general results: Using T3.37, we work from
equalities at the level of the parts, to equalities at the level of the whole. For the case
of terms, the proof is by induction on the number of function symbols in an arbitrary
term £.

T9.6. For arbitrary terms #, s, and £, -, (» = 3) = (£ = 1"//5).

Basis: If + has no function symbols, then # is a variable or a constant. Then
either (i) 4™/; = ¢ (nothing is replaced) or (ii) = ¢ and +™//; = 4 (all
of # is replaced). In the first case, by T3.33, |-,,, ¢ = #; which is to say,
Fop (2 =1")s); sowith Al, =, (» = s) = (+ = 4"//;). In the second
case, (» =) = (&t = t*//4) is the same as (» = 4) — (# = 4); so by
T3.1,E, (r=39) = (t = t"/)s).

Assp: For any i, 0 =i < k, if # has i function symbols, then -, (» = s) —
(t = 1"/s).

Show: If z has k function symbols, then -, (» = 3) — (¢t = 1"/;).

If has k function symbols, then # is of the form 4"¢1 ... ¢, for terms
41 ---9n With < k function symbols. If all of ¢ is replaced, or no part
of ¢ is replaced, then reason as in the basis. So suppose * is some sub-
component of #; then for some ¢;, "/, is A"*¢1...¢4;"/s ... ¢n. By as-
sumption, =, (» = 8) — (¢; = ¢;"/s); and by T3.37, =, (¢; =
4i")s) — (h"¢1...94i...9n = A"¢1...4i")s...9n); so by T3.2,
Fp (r=298)—> (W"¢1...¢i...9n =h"¢1...4i")/s...¢n); but this is
to say, =, (' =3) = (1 = t"/5).

Indct: For any terms *, ¢, and ¢, =, (» = s) = (t = 1"/,).

We might think of this result as a further strengthened or generalized version of the AD
axiom A7. Where A7 lets us replace just one of the variables xj ...x, in A"x1 ... x,
by a variable ¥, and T3.37 one of the terms Z; ... %, in 4”41 ... ¢, with a term 4, we
are now in a position to replace an arbitrary “subterm” of 4" ... ¢, with another
term 4.

CHAPTER 9. PRELIMINARY RESULTS 429

Now we can go after a similarly strengthened version of A8. We show that for
any formula , if s is free for the replaced instance of » in 2, then I, (» =) —
(P — P*/s). The argument is by induction on the number of operators in £.

*T9.7. For any formula & and terms 7 and s, if 4 is free for any replaced instance of
*in P, thent,, (» = 3) = (P — P7/,).

Basis: If P is atomic then (i) £*/s = P (nothing is replaced) or (i) P is
RM1... tj... tpand P¥[, is !R"tl 4" ... tn. Suppose 4 is free for

any replaced instance of » in . In the first case, by T3.1, =, # — P,
whichistosay F,, # — P"/s;;sowithAl, -, » = s — (P — P")s).

In the second case, by T9.6, -, (» =) — (i = #;"//s); and by T3.38,
Fp (i = 4")s) = (R ... 4i oo odn = R ... 4")5 ... 1n); sO by
132,k (2 = 4) > (R"t1 ... tj oty —> Ry ;"5 ... 1y); and
this is just to say, -, (» =) = (P — P7/s).

Assp: For any i, 0 < i < k, if # has i operator symbols and s is free for any
replaced instance of » in P, then b, (» = s) = (P — P7/;).

Corollary to the assumption: If $ has < k operators, then %/, has <k
operators; and since 4 replaces only a free instance of » in &, # is free
for the replacing instance of s in § 07°//4; so where the outer substitution
is made to sustain [P"/;]%/ = P, we have |, (6 =) = (P")s —
[P"/s1%/x) as an instance of the inductive assumption, which is just,
Fp (8 =7) = (P7)s — P). And by T334, F,, (r =3) = (s = »);
sowith T3.2, &, (r = 3) — (P — P).

Show If has k operator symbols and s is free for any replaced instance of 7 in

P,thent,, (» = 3) = (P — P7/,).

If P has k operator symbols, then & is of the form, ~A, A — B, or Vx A
for variable x and formulas 4 and 8 with < k operator symbols. If no
replacement is made, reason as in the basis. So suppose some replacement
is made and s is free for the replaced instance of » in .

(~) Suppose P is ~o. Then P ¥/ is [~A]"/; which is the same as ~[A"/;].
Since s is free for the replaced instance of #» in J, it is free for that
instance of » in +#; so by the corollary to the assumption, =, (» = 3) —
(A")s — A). Butby T3.13, &, (A")s = A) = (~A — ~[A"/;]);
so by T3.2, F,, (» = 3) = (~A — ~[A"/,]); which is to say, -,
(r=23) > (P —> P")s).

(—) Suppose P is A — B. Then P*/); is A*)fy — B or A — B"/),. (1)
In the former case, since s is free for the replaced instance of = in &, it
is free for that instance of » in +4; so by the corollary to the assumption,
Fop (0= 38) = (A”)s — A); so we may reason as follows:

CHAPTER 9.

—_

&

9.

® NN

PRELIMINARY RESULTS

(r = 34) > (A" > A)

=4
A — B
A5

Ay —> A
A
B
A — B
(A —> B) > (A")s > B)

430

by assumption
assp (g, DT)

assp (g, DT)
assp (g, DT)

1,2 MP
5,4 MP
3,6 MP
4-7DT
3-8DT

10. (= 3) = [(A = B) > (A")s — B)] 2-9DT

Sok, (* = 38) > [(A = B) - (A", — B)]; which is to say,
Fop (r = 38) = (P — P7/,). (ii) And similarly in the other case [by
homework], |-, (» = 3) = [(A - B) = (A — B"/,)]. So in either
case, =, (r =3) = (P — P7/,).

(V) Suppose & is Vxs. Then a free instance of » in J remains free in 4 and
P/ is Vx[A"/,]. Since s is free for » in P, s is free for » in A; so by
assumption, =, (» = 3) — (A — A”//s); so we may reason as follows:

1.

0

N o kW

(r =3) = (A —> A")s)

r=4

VxA — A
A —> A,
VA — A"y
Vo — VxA™/s
(r=3) > (VxA —> VxA")s)

by assumption
assp (g, DT)

A4

1,2 MP

34T32
5T3.29
2-6 DT

Notice that x is sure to be free for itself in +, so that (3) is an instance of
A4. And x is bound in Vx#, so (6) is an instance of T3.29. And because
ris free in P = Vo, and s is free for » in &, x cannot be a variable in 7
or 4; so the restriction on DT is met at (7). So k-, (* = 3) — (VxA —
VxA"/s); which is to say, I, (r =) = (P — P"/,).

For any J” with k operator symbols, -, (» = 3) = (P — P"/s).

Indct: For any P, b, (r = s) = (P — P7/,).

So for any formula J and terms » and s, if s is free for a replaced instance of »
in P, thenk,,, (» =3) = (P — P"/s).

Some final substitution results are straightforward on the pattern of what we have
just achieved. Let £%/; be & with some, but not necessarily all, free instances of term
¢ replaced by term s (as for equality rules of ND), and O f/g be O with at most one
instance of a subformula & replaced by formula @ (as for replacement rules of ND).

CHAPTER 9. PRELIMINARY RESULTS 431

*T9.8. For any formula & and terms » and s, if 4 is free for the replaced instances
of »in P, thent,, (» = s) = (P — P"/5).

By repeated application of T9.7.

*T9.9. For any formulas @, £, and @,if ' I, # < @, thenT k-, O < 0% 4.

The substitution applies to formulas rather than terms.

T9.10. For any formulas @, &, and @, interpretation |, and variable assignment d,
if 14[P] = 14[@] then 14[O] = 14[07 Jg]. Corollary: If I4[P < @] = S, then
I3[0 < 0%)g] = S.

This result is semantical rather than syntactical.

So T9.8 permits the substitution of arbitrarily many terms. T9.9 substitutes one
formula for another. And T9.10 is a parallel semantic result. For T9.9, very often
we shall be interested in the case when I' is empty, and so if F,, & < @, then
Fp O < 0%)q.

*E9.9. Set up the above demonstration for T9.7 and complete the unfinished case to
provide a complete demonstration that for any formula &, and terms » and 4, if 4
is free for any replaced instance of » in J, then I, (* = 3) — (P — P7/,).

*E9.10. Provide a demonstration for T9.8. Hint: Reason by induction on the number
of instances of » that are replaced by 4 in &. Say J; is & with i free instances of
* replaced by 4. Suppose s is free for the replaced instances of » in J. Show
that for any i, =, (» = s) = (P — F).

*E9.11. Prove T9.9. Hint: In the basis, when @ is atomic, either @ # & and no
replacement is made, or @ = J and all of O is replaced. For the show, when
all of (O is replaced or no part of O is replaced, reason as in the basis. If & is a
proper part of (), then the assumption applies. Also, where J” <> @ abbreviates
(P — @) A (@ — P), you can use (abv) along with T3.20, T3.21, and T9.4 to
manipulate formulas of the sort P < @.

E9.12. Show T9.10.

E9.13. Where the primitive operators are ~, A, and 3, show an analog to T9.9

for derivation system A* from E9.5—that for any formulas @, £, and @, if
b, P < @thenl'F, 0 < 0% /lg. Again you may appeal to any of the
theorems from E3.5.

CHAPTER 9. PRELIMINARY RESULTS 432

9.3.3 Intended Result

We are finally ready to show that if I" I, & then I' I-,,; &#. As usual, the idea
is that the existence of one derivation guarantees the existence of another. In this
case, we begin with a derivation in ND, and move to the existence of one in AD.
Suppose I" I, &; then there is an ND derivation N of & from premises in I", with
lines (@ ...&,) and @, = 5. We show that there is an AD derivation of the same
result. Our reasoning applies to a derivation A permitting DT as a rule; then given
this derivation, by the deduction theorem, there is derivation in the primitive AD. Say
derivation A matches N iff any @; from N appears at the same scope on the line
numbered i of A; and say derivation A4 is good iff it has no application of Gen to a
variable free in an undischarged auxiliary assumption (so that DT is available at any
stage in A). Then, given derivation N, we show that there is a good derivation A that
matches N. The argument is by induction on the line number of N, where we show
that for any i, there is a good derivation A; that matches N through line i. The case
when i = n is a good derivation of J under the scope of the premises alone, from
which it follows that I" I, &.
It will be helpful here (and later) to obtain a preliminary theorem,

T9.11. &, Vv P} — VxP where v is not free in Vx and free for x in

Suppose v is not free in VxJ” and free for x in . If x = v, then T9.11 is just
an instance of T3.1. So suppose x # v; then since v is not free in Vx &, v is not
free in J. Reason as follows:

1| VoR¥ - Vx(PEY T3.28
2. | Vo PE - VxP 1 with T8.2

In this case, T3.28 requires x not free in Vv) and free for v in 5 but since
every free instance of x is replaced in £, x is not free in) and so in Vv P};
and since v is not free in &, every free instance of v in & replaces a free
instance of x, and x is free for v in P} . T8.2 requires v not free in J but free
for x in &: but it is given that v is free for x in & and, from above, v is not free
in .

Note that the combination of T9.11 with T3.28 yields exchange of bound variables in
both directions: where v is not free in VxJ and free for x in &, then I-,,, VxP <
Vv P). Now we are ready for the main result.

“T9.12. If [b, P, then T F,, P.

Suppose I' |, #; then there is an ND derivation N of & from premises in I
By induction on the line numbers of N, we show that for any i, there is a good
AD derivation A; that matches N through line i.

CHAPTER 9. PRELIMINARY RESULTS 433

Basis: The first line of N is a premise, an assumption, or arises by =I. Let A; be
the same (in the latter case with justification T3.33). Then A; matches N;
and since there is no application of Gen under an undischarged assumption,
Aj is good.

Assp: For any i, 1 =i <k, there is a good derivation A4; that matches N through
line i.

Show: There is a good derivation Ay that matches N through line k. Either @ is
a premise, an assumption, arises by =I, or results from previous lines by
R, AE, AL, —E, —I1, ~E, ~I, VE, VI, <E, <1, VE, VI, 3E, 31, or =E.

(B) If @ is a premise, an assumption, or arises by =I, let Ay continue in the
same way. Then, by reasoning as in the basis, A5 matches N and is good.”
(R) If @, arises from previous lines by R, then N looks something like this,

i| B
k|8 iR

where i < k, B is accessible at line k, and @; = 8. By assumption Ay_;
matches N through line k - 1 and is good. So B appears at the same
scope on the line numbered i of Aj_; and is accessible in Az_;. So let Ay
continue as follows:

i| B

k1|8 —> 8 T3.1
k| B k.1,i MP

So @, appears at the same scope on the line numbered k of Aj; so A
matches N through line k. And since there is no new application of Gen,
Ay 1s good.
(AE) If @, arises by AE, then N is something like this,
i|BAE i|BAE

or
k|8 i AE k|¢€ i AE

where i <k and 8 A € is accessible at line k. In the first case, @ = 8.
By assumption Ax_; matches N through line k — 1 and is good. So B A €
appears at the same scope on the line numbered i of Ax_; and is accessible
in Ag_1. So let Ay continue as follows:

i|BAE

k1| (BA€) > B8 T321
k| B k.1,i MP

2There may be an application of Gen in the derivation of T3.33 for =I. However, as mentioned on
page 424, derivations for theorems of the sort I-,,, $ may appear at the top, and so outside the scope of
any undischarged assumptions.

CHAPTER 9. PRELIMINARY RESULTS 434

So @y appears at the same scope on the line numbered k of Ag; so A
matches N through line k. And since there is no new application of Gen,
Ay is good. And similarly in the other case, by application of T3.20.

(AD) If @ arises from previous lines by Al then N is something like this,

i|3B
j|€

k|BA€ i Al

where i, j < k, B and € are accessible at line k, and @; = 8 A €. By
assumption Aj;_; matches N through line k — 1 and is good. So B8 and €
appear at the same scope on the lines numbered i and j of A;_; and are
accessible in Aj_1. So let A continue as follows:

i| B

Jj|€
k1|8 — (€= (BA€) T94

k2|€¢ > (BA€) k.1,i MP
k|Bnre k.2, j MP

So @y appears at the same scope on the line numbered k of Ag; so Ax
matches N through line k. And since there is no new application of Gen,

Ay is good.
(—E) If @ arises from previous lines by —E, then N is something like this,
i|B—>%€
Jj| 3B
k|€ i,j >E

where i, j <k, 8 — € and B are accessible at line k, and @ = €. By
assumption Aj_; matches N through line k — 1 and is good. So B — €
and B appear at the same scope on the lines numbered i and j of Ax_4
and are accessible in Aj_;. So let A continue as follows:
i|B—>%€
Jj| 3B
k|e i,j MP
So @, appears at the same scope on the line numbered k of Aj; so A
matches N through line k. And since there is no new application of Gen,
Ay is good.

(—D If @ arises by —1, then N is something like this,

CHAPTER 9. PRELIMINARY RESULTS 435
i||B

Jjl €

k|8B—->F€ i-j —I
where i, j <k, the subderivation is accessible at line k, and @, = 8 — €.
By assumption Aj_; matches N through line k — 1 and is good. So B and
€ appear at the same scope on the lines numbered i and j of A;_q; since
they appear at the same scope, the parallel subderivation is accessible in

Aj—q1; since Ap—q is good, no application of Gen under the scope of B is
to a variable free in 8. So let A continue as follows:

il|s
jlle
k|8—>€ i-jDT

So @ appears at the same scope on the line numbered k of Ag; so Ax
matches N through line k. And since there is no new application of Gen
in this derivation, Ay is good.

(~E) If @, arises by ~E , then N is something like this (reverting to the unab-
breviated form),

i||~8

jl|€n~€
k|8 i-j ~E

where i, j <k, the subderivation is accessible at line k, and @; = 8. By
assumption Aj—; matches N through line k — 1 and is good. So ~8 and
€ A ~T€ appear at the same scope on the lines numbered i and j of Ag_q;
since they appear at the same scope, the parallel subderivation is accessible
in Aj—_q; since Ay_1 is good, no application of Gen under the scope of ~B
is to a variable free in ~8. So let A continue as follows:

i||~8
jllen~€
k1| ~8B — (€ A~E) i-j DT
k2| A~e) e T3.21
k3| (€ A~E) > ~C T3.20
k4| ~8B > € k.1,k2T32
k5| ~8 —> ~€ k.1,k.3T3.2
k6| (~8B - ~€) - ((~8B > €) > B) A3
k7|(~8—-¢€)— 8 k.6, k.5 MP
k| B k.7, k.4 MP

CHAPTER 9. PRELIMINARY RESULTS 436

So @y appears at the same scope on the line numbered k of Ag; so A
matches N through line k. And since there is no new application of Gen,
Ay is good.

(~I) Homework.

(VE) If @, arises by VE, then N is something like this,

fl18vEe

g| | B
h }:‘D
il|e
i

k| D f.g-hi-j VE

where f,g,h,i, j <k, B v € and the two subderivations are accessible at
line k, and @ = D. By assumption Ax_; matches N through line k — 1
and is good. So the formulas at lines numbered f, g, h, i, j appear at the
same scope on corresponding lines in Aj_q; since they appear at the same
scope, B Vv € and the corresponding subderivations are accessible in Ag_q;
since Ag_q is good, no application of Gen under the scope of B is to a
variable free in 8, and no application of Gen under the scope of € is to a
variable free in €. So let Ay continue as follows:

fl18ve

g| | B
il
il|e
|6

k1|8 —D g-h DT

k2le—>D i-j DT

k3| (B —>D)—>[(€E—>D)—> (BVE)—> D) T9.5

k4|(€—->D)—> (BVE) - D) k.3, k.1 MP

k5| (BVvE)—>D k.4, k.2 MP
k| D k.5, f MP

So @y appears at the same scope on the line numbered k of Ag; so Ax
matches N through line k. And since there is no new application of Gen,
Ay is good.
(vI) Homework.
(«~>E) Homework.
(«>]) Homework.
(YE) Homework.

CHAPTER 9. PRELIMINARY RESULTS 437

(VD) If @, arises by VI, then N looks something like this,
i|8x
k| Vx8B i VI

where i <k, B is accessible at line k, and @ = VxB; further the ND
restrictions on VI are met: (i) v is free for x in B, (ii) v is not free in
any undischarged auxiliary assumption, and (iii) v is not free in VxB.
By assumption Az_; matches N through line k — 1 and is good. So 8%
appears at the same scope on the line numbered i of Ax_; and is accessible
in Ag_1. So let Ay continue as follows:

0.k |VvBE — VxB T9.11

i| By
k.1|VoB% i Gen
k|VxB 0.k, k.1 MP

From constraint (iii) v is not free in Yx B and by (i) v is free for x in B,
so 0.k is an instance of T9.11. So @ appears at the same scope on the
line numbered k of Ay; so Ay matches N through line k. This time, there
is an application of Gen at k.1. But Aj_; is good; so no application of
Gen in lines up to k — 1 is to a variable free in an undischarged assumption.
And since Ay matches N and by (ii) v is free in no undischarged auxiliary
assumption of N, v is not free in any undischarged auxiliary assumption of
Ay There is also an application of Gen in T9.11 at 0.k; but that derivation
is under the scope of no undischarged assumptions. So Ay is good. (Notice
that, in this reasoning, we appeal to each of the restrictions that apply to
Vlin N.)

(FE) If @, arises by JE, then N looks something like this,

J
k|e h,i-j 3B

where h,i, j <k, 3x8B and the subderivation are accessible at line k, and
@, = C; further, the ND restrictions on JE are met: (i) v is free for x in
B, (ii) v is not free in any undischarged auxiliary assumption, and (iii) v
is not free in 3xB or in €. By assumption A_; matches N through line
k — 1 and is good. So the formulas at lines numbered 4, i, and j appear at
the same scope on corresponding lines in Aj_q; since they appear at the
same scope, dx B and the corresponding subderivation are accessible in

CHAPTER 9. PRELIMINARY RESULTS 438

Ak—1. Since Aj_; is good, no application of Gen under the scope of B, is
to a variable free in 8. So let A continue as follows:

0.k | Vo~BY — Vx~B T9.11
h|IxB
i||BE
jlle
k1|8% —>¢ i-j DT
k2|3wBE > € k.1 T332
k3| (Vo~B% - Vx~B) - (~Vx~B —» ~Vvr~B%) T3.13
k4| ~Vx~B — ~Vvo~BY k.3,0.k MP
k5|IxB — v BY k.4 abv
k.6|3vB% k.5, h MP
k|€ k.2, k.6 MP

From constraint (iii), that v is not free in €, k.2 meets the restriction on
T3.32. By (iii) v is not free in IxB and so in Vx~B and by (i) v is free
for x in B and so in ~B, so 0.k is an instance of T9.11. So @, appears at
the same scope on the line numbered k of Ay ; so Az matches N through
line k. The application of T3.32 at k.2 includes an application Gen to v.
But Aj_; is good; so no application of Gen in lines up to k — 1 is to a
variable free in an undischarged assumption. And since A; matches N
and by (ii) v is free in no undischarged auxiliary assumption of N, v is
not free in any undischarged auxiliary assumption of Ag. There is also an
application of Gen in T9.11 at 0.k but that derivation is under the scope
of no undischarged assumptions. So Ay is good. (Notice again that we
appeal to each of the restrictions that apply to dE in N.)
(dI) Homework.

(=E) Homework.

In any case, A; matches N through line k and is good.

Indct: Derivation A matches N and is good.

So if there is an ND derivation to show I' I, &, then there is a good matching
derivation A to show the same; so with the deduction theorem, I' -, ,, &; and if
I'byp PothenT') P

From this theorem together with T9.2, AD and ND are equivalent; thatis, I" -, &
iff I' b, #. Given this, we will often ignore the difference between AD and ND and
simply write I" = & when there is a(n AD or ND) derivation of # from premises in
T". Also given the equivalence between the systems, we are in a position to transfer
results from one system to the other without demonstrating them directly for both.

CHAPTER 9. PRELIMINARY RESULTS 439

We will come to appreciate this, especially the relative ease of operating in ND and of
operating on AD.

As before, given any ND derivation, we can use the method of our induction to
find a corresponding AD derivation. For a simple example, consider the following
demonstration that ~4 — (A A B) b5, A4:

1.|~A —> (AAB) P

2.1 | ~A A (¢, ~E)
H) 3.||AAB 1,2 —E

4.1 | A 3 AE

5. |[AA~A 42 A1

6.1 A 2-5~E

Given relevant cases from the induction, the corresponding AD derivation is as follows:

1 ~A— (AAB) prem
2 | ~A assp (¢, DT)
3 |AAB 1,2 MP
41 |(AAB)— A T3.21
4 | A 4.1,3 MP
51 |A— (~A— (AA~A)) T9.4
52 | ~A— (AA~A) 5.1,4 MP
5 |AA~A 5.2,2 MP
6.1 ~A — (AA~A) 2-5DT
62 (An~A)— A T3.21
63 (An~A)—> ~A T3.20
64 ~A— A 6.1,6.2T3.2
6.5 ~A— ~A 6.1,6.3T3.2
6.6 (~A—~A)— (~4— A) = A) A3
67 (~A—>A)—> A 6.6, 6.5 MP
6 A 6.7, 6.4 MP

For the first two lines, we simply take over the premise and assumption from the ND
derivation. For (3), the induction uses MP in AD where —E appears in ND; so that is
what we do. For (4), our induction shows that we can get the effect of AE by appeal
to T3.21 with MP. (5) in the ND derivation is by Al and, as above, we get the same
effect by T9.4 with MP. (6) in the ND derivation is by ~E. Following the strategy
from the induction, we set up for application of A3 by getting the conditional by DT.
As usual, the constructed derivation is not very efficient. You should be able to get the
same result in just five lines by appeal to T3.21, T3.2, and then T3.7. But, again, the
point is just to show that there always is a corresponding derivation.

*E9.14. Set up the above induction for T9.12 and complete the unfinished cases to
show thatif I' i, &, then I' |,,, #. For cases completed in the text, you may
simply refer to the text, as the text refers cases to homework.

CHAPTER 9. PRELIMINARY RESULTS 440

E9.15. Consider the following ND derivation and, using the method from the induction
for T9.12, construct a derivation to show 3x(C A Bx) I, C.

—

JaxcaBx)y P

2.1 |C A By A (g, 13E)
3.1 |C 2 AE
4.|C 1,2-3 JE

Hint: Your derivation should have 12 lines.

E9.16. Consider the system A from E9.5. As a preliminary to the exercise that
follows, where v is not free in 3xJ and free for x in &, show that =, IxP —
Jv P . Again you may appeal to any of the A* results from E3.5. This works as
an A* analog to T9.11.

E9.17. Consider a system N * which is like ND except that its only rules are ~E, ~I,
AE, AL, JE, and I, along with the system A* from E9.5. Produce a complete
demonstration that if I" . &, then I' -, &. You have the result of the previous
exercise, DT from E9.8, and again may use any of the theorems for A* from E3.5.
Hint: You will want to modify the definition of a good derivation to accommodate
JR.

9.4 Extending to ND-

ND+ adds twenty-six rules to ND: the ten inference rules, LI, L E, MT, HS, DS, NB,
(VI), (VE), (91), and (JE) and sixteen replacement rules, DN, Com, Assoc, Idem, Impl,
Trans, DeM, Exp, Equiv, Dist, Sym, QS, QD, QP, QN, and RQN—where some of
these have multiple forms. It might seem tedious to go through all the cases but, as it
happens, we have already done most of the work. First, it is easy to see that,

T9.13. If I' b, # then I k5, .

Suppose I" I, #. Then there is an ND derivation N of & from premises in I
But since every rule of ND is a rule of ND+, N is a derivation in ND+ as well. So
I by, P

From T9.2 and T9.13, then, the situation is as follows:
9.2 9.13
'k, — I'k, P — 'y, P
If an argument is valid in AD, it is valid in ND, and in ND+. From T9.12, the
leftmost arrow is a biconditional. Again, however, one might think that ND+ has more
resources than ND, so that more could be derived in ND+ than ND. But this is not so.

CHAPTER 9. PRELIMINARY RESULTS 441

To see this, we might begin with the closer systems ND and ND+ and attempt to show
that anything derivable in ND+ is derivable in ND. Alternatively, we choose simply to
expand the induction of the previous section to include cases for all the rules of ND+.
The result is a demonstration that if I" I, &, then I' I, #. Given this, the three
systems are connected in a “loop”—so that if there is a derivation in any one of the
systems, there is a derivation in the others as well.

*T9.14, If T b, P, then T k-, 2.

Suppose I' b, &; then there is an ND+ derivation N of & from premises in I.
We show that for any 7, there is a good AD derivation A; that matches N through

linei.

Basis:

Assp:

Show:

1L

The first line of N is a premise, an assumption, or arises by =I. Let A; be
the same, in the latter case with justification T3.33. Then A; matches N;
and since there is no application of Gen under an undischarged assumption,
Ajq is good.

For any i, 0 =i < k, there is a good derivation A; that matches N through
line i.

There is a good derivation of Ay that matches N through line k.

Either @ is a premise or assumption, arises by a rule of ND, or by the ND+
derivation rules LI, 1L E, MT, HS, DS, NB, (V]), (VE), (3I), (3E), or by
replacement rules DN, Com, Assoc, Idem, Impl, Trans, DeM, Exp, Equiv,
Dist, Sym, QS, QD, QP, QN, or RQN. If € is a premise or assumption
or arises by a rule of ND, then by reasoning as for T9.12, there is a good
derivation A that matches N through line k. So suppose @, arises by one
of the ND+ rules.

If @, arises from previous lines by LI, then N is something like this,
i|A i|A
J~A which is the same as | ~A

k|L ij L1 k|ZA~Z

for some sentence Z of the language £. Working on the right-hand version,
i,j <k, A and ~4A are accessible at line k, and @ = Z A ~Z. By
assumption Ay_; matches N through line k — 1 and is good. So # and ~ 4
appear at the same scope on the lines numbered i and j of A;_; and are
accessible in Az_1. So let Az continue as follows:

i|A

J | ~A
k1| ~A — (A—>(ZA~2)) T3.9

k2| A= (ZA~Z) k.1, j MP
k|ZA~Z k.2,i MP

CHAPTER 9. PRELIMINARY RESULTS 442

1E.
MT.

HS.
DS.
NB.
(VD).

So @y appears at the same scope on the line numbered k of Ag; so A
matches N through line k. And since there is no new application of Gen,
Ay is good.
Homework.

If @ arises from previous lines by MT, then N is something like this,

i|B8B—->€
j|~€

k|~8 i,j MT

where i, j <k, 8 — € and ~€ are accessible at line k, and @ = ~B.
By assumption Aj_; matches N through line k-1 and is good. So B8 — €
and ~€ appear at the same scope on the lines numbered i and j of Aj_;
and are accessible in Aj_1. So let Az continue as follows:

B—->C€
j|~€

~.

k1] (8B —>€) > (~€ —>~8) T3.13
k2| ~€ > ~8 k.1,i MP
k|~8 k.2, j MP

So @, appears at the same scope on the line numbered k of Aj; so A
matches N through line k. And since there is no new application of Gen,
Ay is good.
Homework.
Homework.
Homework.

If @, arises from previous lines by (V1), then N is something like this,

i| |8y i| |8y
which is the same as
VRRR €
k| (Vx:8)¢€ i-j (V) k| Vx(8B -)

Working on the right-hand version, i, j < k, the subderivation is accessible
at k, and @y is Vx(B — €); further, the restrictions on (V1) are met: (i) v
is free for x in B and €, (ii) v is not free in any undischarged assumption,
and (iii) v is not free in Vx (8B — €). By assumption A;_; matches N
through line k — 1 and is good. So B;; and € appear at the same scope on
the lines numbered i and j of A;_q; since they appear at the same scope,
the parallel subderivation is accessible in Aj_y; since Aj_; is good, no
application of Gen under the scope of B is to a variable free in B ; so
let Ay continue as follows:

CHAPTER 9. PRELIMINARY RESULTS 443

0k | Yo (B > €)% > Vx(8—>€) Tl
i||BE
jlles

k1|(B— €)% i-j DT

k2| Vv (8B —€)} k.1 Gen
k|Vx(B —€) 0.k, k.2 MP

From constraint (iii) v is not free in Vx(B — €) and by (i) v is free
for x in (B8 — €), so 0.k is an instance of T9.11. So @ appears at the
same scope on the line numbered k of Ay; so A; matches N through
line k. This time, there is an application of Gen at k.2. But Aj_; is
good; so no application of Gen in lines up to k — 1 is to a variable free in
an undischarged assumption. And since Ay matches N and by (ii) v is
free in no undischarged auxiliary assumption of N, v is not free in any
undischarged auxiliary assumption of A;. There is also an application
of Gen at 0.k; but that derivation is under the scope of no undischarged
assumptions. So Ay is good.

(YE). Homework.
(3). Homework.
(FE). Homework.
rep. If @ arises from a replacement rule rep of the form € <> D, then N is
something like this,
i|B i|8B
or
k ;Bf//i) i rep k i)"D//f i rep

where i < k, B is accessible at line k, and, in the first case, Q@ = B/p.
By assumption Aj_; matches N through line k — 1 and is good. But by
T6.43, T6.11-T6.30, T6.32-T6.38, and T6.45, I5,, € < D; so with
T9.12, F,, € < D;s0by T99, F,, B < £€//g). Call an arbitrary
particular result of this sort, Tx, and augment Ay as follows:

0k|B < B%p Tx
i|B
k| 8%)p 0.k,i T3.24

So @, appears at the same scope on the line numbered k of Aj; so A
matches N through line k. There may be applications of Gen in the
derivation of Tx; but that derivation is under the scope of no undischarged
assumption. And under the scope of any undischarged assumptions, there

CHAPTER 9. PRELIMINARY RESULTS 444

is no new application of Gen. So Ay, is good. And similarly in the other
case starting with T6.12 to obtain I, © < € from I, € < D.

In any case, A matches N through line k and is good.

Indct: Derivation A matches N and is good.

That is it! The key is that work we have already done collapses cases for all the
replacement rules into one. So each of the derivation systems, AD, ND, and ND+ is
equivalent to the others. Thatis, I' I, P iff ' I, P iff ' I, #. And that is
what we set out to show.

*E9.18. Set up the above induction for T9.14 and complete the unfinished cases to
show thatif I' I, &, then I" I, &. For cases completed in the text, you may
simply refer to the text, as the text refers cases to homework.

E9.19. Extend the system N* from E9.17 to an N * that has rules ~E, ~I, AE, Al,
3E, I, along with MT and the replacement rule Com (for A). Augment your
argument from E9.17 to produce a complete demonstration that if I' I, & then
I' k,. &. In addition to E9.17, you may appeal to any of the theorems from E3.5
along with the substitution result from E9.13.

E9.20. For each of the following concepts, explain in an essay of about two pages,
so that (college freshman) Hannah could understand. In your essay, you should
(i) identify the objects to which the concept applies, (ii) give and explain the
definition, and give and explicate examples (iii) where the concept applies, and
(iv) where it does not. Your essay should exhibit an understanding of methods
from the text.

a. The reason semantic validity implies logical validity, but not the other way
around.

b. The notion of a constructive proof by mathematical induction.

c. The equivalence between derivation systems AD, ND, and ND+.

CHAPTER 9. PRELIMINARY RESULTS 445

Theorems of Chapter 9

T9.1

T9.2

T9.3

T9.4

T9.5

T9.6

T9.7

T9.8

T9.9

T9.10

T9.11

T9.12

T9.13

T9.14

For any ordinary argument &; ... %, /@, with good translation consisting of Il and
Pl... P, Q@ if P ... P, E @, then P, ... P,/Q is logically valid.

Ifr'k,, #,thenl" |, 2.

If AU{P} I,,, @, and no application of Gen under the scope of & is to a variable
free in &, then A \,,, P — Q. Deduction Theorem.

Fop A= (B — (AAB)).
Fp (A—>C) > [(B—->C) - (AVB)— 0.
For arbitrary terms », ¢, and £, &, (* =) = (£ = £"/;).

For any formula & and terms » and 4, if s is free for any replaced instance of » in
P,thent,, (r = 3) = (P — P"/,).

For any formula & and terms » and s, if 4 is free any replaced instances of » in
P,thent,, (r = 3) > (P — P"/s).

For any formulas @, £,and @, if ', # < @, then' F,,, O - (9‘7)//@.

For any formulas @, &, and @, interpretation |, and variable assignment d, if
4[] = 14[@] then I4[O] = 1[0 Jia].

Corollary: If I[P < @] =S, then I3]@ < O Jg] = S.

Fop YUP) — VxP where v is not free in VxP and free for x in P.
IfI" 5, #,then T I, .

IfI" 5, #thenT H,, P.

IfI" b, P, then T F,,, P.

And from T9.2, T9.13, and T9.14,

Tk, PiffT K, Piff T H, 2.

Chapter 10

Main Results

We have introduced four notions of validity, and started to think about their interre-
lations. In Chapter 9, we showed that if an argument is semantically valid, then it
is logically valid, and that an argument is valid in AD iff it is valid in ND. We turn
now to the relation between these derivation systems and semantic validity. This
completes the project of demonstrating that the different notions of validity are related
as follows:

Validity in AD

Semantic
Validity

Logical Validity

Validity in ND

Since AD and ND are equivalent, it is not necessary separately to establish the relations
between AD and semantic validity, and between ND and semantic validity. Because
it is relatively easy to reason about AD, we mostly reason about a system like AD
to establish that an argument is valid in AD iff it is semantically valid. From the
equivalence between AD and ND it then follows that an argument is valid in ND iff it
is semantically valid.

The project divides into two parts. First, we take up the arrows from right to left,
and show that if an argument is valid in AD, then it is semantically valid: if " I,,, P,
then I' E &. Thus our derivation system is Sound (recall from page 408 that diacritical
marks distinguish notions of soundness and completeness). If a derivation system is
Sound, it never leads from premises that are true on an interpretation, to a conclusion
that is not (section 10.1). Second, moving in the other direction, we show that if
an argument is semantically valid, then it is valid in AD: if I' F &, then I I, P.
Thus our derivation system is complete. If a derivation system is Complete, there is a

446

CHAPTER 10. MAIN RESULTS 447

derivation from the premises to the conclusion for every argument that is semantically
valid. The argument for completeness divides into sentential (section 10.2), basic
quantificational (section 10.3), and full quantificational (section 10.4) versions.

10.1 Soundness

An arbitrary derivation system DS is Sound when its provable results are semantically
valid: if I" I, &, then I' E . Itis easy to construct derivation systems that are not
Sound. An obvious example is the preliminary system NP from Chapter 6—for, as we
showed in table (D) of Chapter 6 (page 201), R2 makes it possible to go from a true
premise to a false conclusion. Or consider a derivation system like AD but without the
restriction on A4 that the substituted term # be free for the variable x in formula .
Given this, we might reason as follows:

L. Vxdy~(x =y) prem
(A) 2. Vady~(x = y) = Jy~(y = y) “A4”
3. B~y =y) 1,2 MP

The y is not free for x in 3y~(x = y); so line (2) is not an instance of A4. And itis a
good thing: Consider any interpretation with at least two elements in U. Then it is true
that for every x there is some y not identical to it. So the premise is true. But there
is no y in U that is not identical to itself. So the conclusion is not true. So the true
premise leads to a conclusion that is not true. So the derivation system is not Sound.

We would like to show that AD is Sound—that there is no sequence of moves,
no matter how complex or clever, that would lead from premises that are true to a
conclusion that is not true. The argument itself is straightforward: Suppose I' I, ,, #;
then there is an AD derivation A = (@1 ...@&,) of # with @, = £. By induction
on line numbers in A, we show that for any i, I' F @;. The case when i = n is the
desired result. So if I' I=,,, &, then I' E &. This general strategy should by now be
familiar. However, for the case involving A4, it will be helpful to obtain a pair of
preliminary results.

10.1.1 Switching Theorems

In this section, we develop a couple theorems which link substitutions into terms and
formulas with substitutions in variable assignments. The results are a matched pair,
with a first result for terms that feeds into the basis clause for a result about formulas.
Perhaps the hardest part is not so much the proofs of the theorems, as understanding
what the theorems say. Let us turn to the first.

Suppose we have some terms ¢ and 7 with interpretation | and variable assignment
d. Say lg[»] = 0. Then the first proposition is this: term # is assigned the same object
on ly(x0), as 1 is assigned on ly. Intuitively, this is because the same object is fed
into the x-place of the term in each case. With # and d(x|0),

CHAPTER 10. MAIN RESULTS 448

A" x. .
(B) |
d(x|o): ...0...
object o is the input to the “slot” occupied by x. But we are given that l4[»] = 0. So
with ¢ and d,

e AT

© |

d: ... 0...
object o is the input into the “slot” that was occupied by x. So if I4[»] = o, then
la(x|o)[2] = la[tx]. In the one case, we guarantee that object 0 goes into the x-place
by meddling with the variable assignment. In the other, we get the same result by
meddling with the term. Be sure you are clear about this in your own mind. This will
be our first result.

*T10.1. For any interpretation |, variable assignment d, with terms ¢ and », if 4[#] = o,
then ly(x|o) [4] = la[£5].
For arbitrary terms # and » with interpretation | and variable assignment d, suppose
la[*] = 0. By induction on the number of function symbols in #, lyx|o)[£] = la[2}].

Basis: If t has no function symbols, then it is a constant or a variable. Either # is
the variable x or it is not. (i) Suppose £ is a constant or variable other than
x; then ¢ = ¢ (no replacement is made); but d and d(x|o) assign just the
same things to variables other than x; so they assign just the same things to
any variable in £; so by T8.4, Ig[¢] = ly(x|o)[£]- S0 la[2x] = la[t] = ly(x|o)[2]-
(ii) If # is x, then £ is » (all of # is replaced by #); so lg[¢] = la[*] = 0.
But £ is x; 50 lyx|o)[#] = la(x|o)[X]; by TA(v) this is d(x|o)[x]; which is
justo. So lg[tX] =0 = Id(on) [4].

Assp: Forany i, 0 <i <k, for ¢ with i function symbols, lg[2)] = lq(x|o)[£]-

Show: If ¢ has k function symbols, then lg[£5] = ly(x|o)[%]-
If ¢ has k function symbols, then it is of the form, 4”41 ... 4, where
$1...4pn have < k function symbols. In this case, ¢ = [A"31...3,]}
= A"3s1% ... 3ny; and by assumption, lg[s15] = lgxjo)[41] and ... and
la[sn7] = laio)[3n]. So la[tx] = la[A" s1% ... sn]; by TA(f), this is
A" (lg[s1%] - . Malsny]) = HA" Hlaxio)[31] - - - la(xjo)[8n]): and by TA(f)
again, this is la(x|o) [A"s1...45] = la(x|o) [£]. So |d[l;f] = ld(x/o) [£].

Indct: For any £, lg[25] = ly(x|o) [£]-

Since the “switching” leaves assignments to the parts the same, the assignment to the
whole remains the same as well.

Similarly, suppose we have term » with interpretation | and variable assignment
d, where I4[»] = o as before. Suppose 7 is free for variable x in formula @. Then

CHAPTER 10. MAIN RESULTS 449

the second proposition is that @ is satisfied on ly(x|o) iff @ is satisfied on ly. Again,
intuitively, this is because the same object is fed into the x-place of the formula in
each case. With @ and d(x|0),

(D) |
d(x|o): ...0...

object o is the input to the “slot” occupied by x. But I4[*] = 0. So with @ and d,
(E) |

object o is the input into the “slot” that was occupied by «x. So if Ig[*] = o (and # is
free for x in @), then ly(y|0)[@] = S iff I5[@%] = S. This is our second result, which
draws directly upon the first.

T10.2. For any interpretation |, variable assignment d, term », and formula @, if
la[*] = 0, and * is free for x in @, then I4[@%] = S iff Iy, |)[@] = S.

By induction on the number of operator symbols in @,

Basis: Suppose * is free for x in @ and l4[»] = 0. If @ has no operator symbols,
then it is a sentence letter § or an atomic of the form R"4;...1,. In
the first case, Q% = 8X = 8. So 4[@)] = S iff 14[8] = S; by SF(s),
iff I[8] = T; by SF(s) again, iff ly(x|o)[8] = S; iff ly(x|0)[@] = S. In the
second case, @) = [R"41...4n)F = R"t1y ... tny. So lg[@%] = Siff
l4g[R" 415 ... tnx] = S; by SE(r), iff (Ig[£1%] ... la[tx)]) € I[R"]; since
Id[%] = 0, by T10.1, iff (Id(x\o) [151] . Id(xlo)”ﬂ]) € |[ﬁn]; by SF(I‘), iff
|d(x|o)[eﬂnt1 . lfn] = S; iff Id(xlo) [(Q] =8S.

Assp: Forany i, 0 <i <k, if @ has i operator symbols, * is free for x in @, and
la[7] = o, then |d[&§] = Siff Id(xlo) [@] =S.

Show: If @ has k operator symbols, » is free for x in @, and I4[*] = o, then
la[@%] = S iff ly(x|0)[@] = S.

Suppose 7 is free for x in @ and lyg[*] = 0. If @ has k operator symbols,
then @ is of the form ~8B, B — €, or Yv B for variable v and formulas
B and € with < k operator symbols.

(~) Suppose @ is ~B. Then Q% = [~B]} = ~[BX]. Since * is free for x in
@, » is free for x in B; so the assumption applies to B. I4[@Q%] = S iff
la[~BX] = S; by SF(~), iff I4[B}] # S; by assumption iff Iy |o)[B] # S;
by SE(~), iff lg(xjo) [~ B] = S iff lg(x|0)[€] = S.

(—) Homework.

(V) Suppose @ is Vv B. Either there are free occurrences of x in @ or not.

(i) Suppose there are no free occurrences of x in @. Then @ is just @
(no replacement is made). But since d and d(x|o) make just the same

CHAPTER 10. MAIN RESULTS 450

assignments to variables other than x, they make just the same assignments
to all the variables free in @; so by T8.5, l4[@] = S iff g5 |)[€] = S. So
l4[@%] = Siff I4[@] = S;iff ly(x|)[@] = S.

(i) Suppose there are free occurrences of x in @. Then x is some variable
other than v, and @ = [Vv 8] = Vv[BX].

First, since # is free for x in @, 7 is free for x in B, and v is not a variable
in 7; from this, for any m € U, the variable assignments d and d(v|m)
agree on assignments to variables in »; so by T8.4, lg[*] = ly|m)[*];
S0 lg(wjmy[*] = 0; so the requirement of the assumption is met for the
assignment d(v|m) and, as an instance of the assumption, for any m € U,
laqo|m)[B5] = S iff lg(vjm,x[o) [B] = S.

Now suppose lyx|0)[@] = S but I3[@%] # S; then ly(x|0)[YV B] = S but
l4[Vv BX]# S. From the latter, by SF(V), there is some m € U such that
lar|m)[B1] # S; so by the above result, Iy, m,x|0)[B] # S; so by SF(V),
la(x|o) [YV B] # S; this is impossible. And similarly [by homework] in the
other direction. So ly(x|0)[@] = S iff I4[@%] = S.

If @ has k operator symbols, # is free for x in @, and l4[»] = o, then
l4[@%] = S iff lacx|o)[@] = S.

Indct: For any @, if » is free for x in @ and ly[*] = o, then Il4[@%] = S iff
Id(%lo)[@] =S.

Perhaps the quantifier case looks more difficult than it is. The key point is that since
* is free for x in @, changes in the assignment to v do not affect the assignment
to ». Thus the assumption applies to B for variable assignments that differ in their
assignments to v. This lets us “take the quantifier off,” apply the assumption, and
then “put the quantifier back on” in the usual way. Another way to make this point
is to see how the argument fails when 7 is not free for x in @ = Vv B. If » is not
free for x in @, then a change in the assignment to v may affect the assignment to
. In this case, although ly[*] = 0, lg(;y|m)[7] might be something else. So there is no
reason to think that substituting » for x will have the same effect as assigning o to x.
As we shall see, this restriction corresponds directly to the one on axiom A4.

*E10.1. Complete the cases for (—) and (V) to complete the demonstration of T10.2.
You should set up the complete demonstration, but for cases completed in the text,
you may simply refer to the text, as the text refers cases to homework.

10.1.2 Soundness

We are now ready for our main proof of Soundness for AD. Actually, all the parts are
already on the table. It is simply a matter of pulling them together into a complete
demonstration.

CHAPTER 10. MAIN RESULTS 451

*T10.3. If T b, P, then T . Soundness.

Suppose I' I=,,, . Then there is an AD derivation 4 = (@1 ... &,) of P from
premises in I', with @, = #. By induction on the line numbers in A4, we show
that for any i, I' F @;. The case when i = n is the desired result.

Basis: The first line of A is a premise or an axiom. So @ is either a member of
I' or an instance of Al, A2, A3, A4, A5, A6, A7, or A8. The cases for
A1-A3, A5-AS are treated together.

(prem) Suppose @ is a member of I" and I' ¥ @1, then by QV there is some |
such that [[T'] = T but [[@1]# T; but since [’ =Tand @ € T, 1[@4] = T.
This is impossible; reject the assumption: I' F @;.

(Ax) Suppose @1 is an instance of Al, A2, A3, A5, A6, A7,or A8 and I ¥ @;.
Then by QV, there is some | such that I[I'] = T but I[@,] # T. But by T7.2,
T7.3,T7.4,T8.6,T7.8, T7.9, and T7.10, E @1;so by QV, [[@1] = T. This
is impossible; reject the assumption: I' F @;.

(A4) If @, is an instance of A4, then it is of the form VxB — B where
term 7 is free for variable x in formula 8. Suppose ' # @;. Then by
QV, there is an | such that I[I'] = T, but I[Vx8 — B8] # T. From the
latter, by TI, there is some d such that I4[VxB8 — B8] # S; so by SF(—),
l4[VxB] = S but I4[BX] # S; from the first of these, by SF(V), for any
0 € U, lyx|o)[B] = S; so where lg[*] = m, lyix|m)[B] = S; so, since * is
free for x in formula B, by T10.2, I4[8B%] = S. This is impossible; reject
the assumption: I' F @;.

Assp: Foranyi, 1 =i <k, F @;.

Show: T' E Q.

@, is either a premise, an axiom, or arises from previous lines by MP or
Gen. If @ is a premise or an axiom then as in the basis ' F @;. So
suppose @, arises by MP or Gen.

(MP) Homework.
(Gen) If @, arises by Gen, then A is something like this,
i B

k Vx8B i Gen

where i < k and @ = VxB. Suppose I' ¥ @; then I' ¥ VxB; so by
QV, there is some | such that [[['] = T but [[Vx 8] # T. By assumption,
I' E B;sowithl[T'] =T,by QV, [[B] =T, so by T7.6, [[VxB] = T. This
is impossible; reject the assumption: I' F Q.

TE Q.

Indct: Forany n, I' E @,.

CHAPTER 10. MAIN RESULTS 452

SoifI' ,,, #,then I" E £. So AD is Sound. And since AD is Sound, with theorems
T9.2, T9.13, and T9.14 it follows that ND and ND+ are Sound as well.

*E10.2. Complete the case for (MP) to round out the T10.3 demonstration that AD is
Sound. You should set up the complete demonstration, but for cases completed in
the text, you may simply refer to the text, as the text refers cases to homework.
Hint: T8.8 may smooth your reasoning.

E10.3. Consider the derivation system A* from E9.5 and provide a complete demon-
stration that it is Sound. Notice that (A1)—(A3) and MP are the same as A*
from E8.11, and you demonstrated the Soundness of A* from ES8.11 and E8.12
(and given T8.8, your sentential reasoning for those exercises converts directly
to the quantificational case). You may appeal to prior exercises and theorems as
appropriate.

10.1.3 Consistency

The proof of Soundness is the main result we set out to achieve in this section. But
before we go on, it is worth pausing to make an application to consistency. Say a set
A of formulas is consistent iff there is no formula 4 such that A - A and A - ~uA.
Consistency is thus defined in terms of derivations rather than semantic notions. But
we show,

T10.4. If there is an interpretation M such that